
A New Decomposition Method for Attractor Detection
in Large Synchronous Boolean Networks

Andrzej Mizera1, Jun Pang1,2, Hongyang Qu3, and Qixia Yuan1?

1 Faculty of Science, Technology and Communication, University of Luxembourg
2 Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg

3 Department of Automatic Control & Systems Engineering, University of Sheffield
firstname.lastname@uni.lu, h.qu@sheffield.ac.uk

Abstract. Boolean networks is a well-established formalism for modelling bio-
logical systems. An important challenge for analysing a Boolean network is to
identify all its attractors. This becomes challenging for large Boolean networks
due to the well-known state-space explosion problem. In this paper, we propose
a new SCC-based decomposition method for attractor detection in large syn-
chronous Boolean networks. Experimental results show that our proposed method
is significantly better in terms of performance when compared to existing meth-
ods in the literature.

1 Introduction

Boolean networks (BN) is a well-established framework widely used for modelling bi-
ological systems, such as gene regulatory networks (GRNs). Although it is simple by
mainly focusing on the wiring of a system, BN can still capture the important dynamic
property of the modelled system, e.g., the attractors. In the literature, attractors are hy-
pothesised to characterise cellular phenotypes [1] or to correspond to functional cellular
states such as proliferation, apoptosis, or differentiation [2]. Hence, attractor identifica-
tion is of vital importance to the study of biological systems modelled as BNs.

Attractors are defined based on the BN’s state space (often represented as a transi-
tion system or graph), the size of which is exponential in the number of nodes in the
network. Therefore, attractor detection becomes non-trivial when it comes to a large
network. In the BN framework, algorithms for detecting attractors have been exten-
sively studied in the literature. The first study dates back to the early 2000s when So-
mogyi and Greller proposed an enumeration and simulation method [3]. The idea is to
enumerate all the possible states and to run simulation from each of them until an at-
tractor is found. This method is largely limited by the network size as its running time
grows exponentially with the number of nodes in the BN. Later on, the performance of
attractor detection has been greatly improved with the use of two techniques. The first
technique is binary decision diagrams (BDDs). This type of methods [4, 5] encodes
Boolean functions of BNs with BDDs and represents the network’s corresponding tran-
sition system with BDD structures. Using the BDD operations, the forward and back-
ward reachable states can be often efficiently computed. Detecting attractors is then
? Supported by the National Research Fund, Luxembourg (grant 7814267).

2 Mizera et al.

reduced to finding fix point sets of states in the corresponding transition system. The
other technique makes use of satisfiability (SAT) solvers. It transforms attractor detec-
tion in BNs into a SAT problem [6]. An unfolding of the transition relation of the BN
for a bounded number of steps is represented as a propositional formula. The formula
is then solved by a SAT solver to identify a valid path in the state transition system of
the BN. The process is repeated iteratively for larger and larger bounded numbers of
steps until all attractors are identified. The efficiency of the algorithm largely relies on
the number of unfolding steps required and the number of nodes in the BN. Recently,
a few decomposition methods [7–9] were proposed to deal with large BNs. The main
idea is to decompose a large BN into small components based on its structure, to detect
attractors of the small components, and then recover the attractors of the original BN.

In this paper, we propose a new decomposition method for attractor detection in
BNs, in particular, in large synchronous BNs, where all the nodes are updated syn-
chronously at each time point. Considering the fact that a few decomposition methods
have already been introduced, we explain our new method by showing its main dif-
ferences from the existing ones. First, our method carefully considers the semantics of
synchronous BNs and thus it does not encounter a problem that the method proposed
in [7] does. We explain this in more details in Section 3. Second, our new method
considers the dependency relation among different sub-networks when detecting at-
tractors of them while our previous method [8] does not require this. We show with
experimental results that this consideration can significantly improve the performance
of attractor detection in large BNs. Further, the decomposition method in [9] is de-
signed for asynchronous networks while here we extend it for synchronous networks.
As a consequence, the key operation realisation for the synchronous BNs is completely
re-designed with respect to the one for asynchronous BNs in [9].

2 Preliminaries

2.1 Boolean networks

A Boolean network (BN) is composed of two elements: binary-valued nodes, which
represents elements of a biological system, and Boolean functions, which represent
interactions between the elements. The concept of BNs was first introduced in 1969 by
S. Kauffman for analysing the dynamical properties of GRNs [10], where each gene
was assumed to be in only one of two possible states: ON/OFF.

Definition 1 (Boolean network). A Boolean networkG(V,f) consists of a set of nodes
V = {v1, v2, . . . , vn}, also referred to as genes, and a vector of Boolean functions
f = (f1, f2, . . . , fn), where fi is a predictor function associated with node vi (i =
1, 2, . . . , n). A state of the network is given by a vector x = (x1, x2, . . . , xn) ∈ {0, 1}n,
where xi ∈ {0, 1} is a value assigned to node vi.

Since the nodes are binary, the state space of a BN is exponential in the number
of nodes. Each node vi ∈ V has an associated subset of nodes {vi1 , vi2 , . . . , vik(i)

},
referred to as the set of parent nodes of vi, where k(i) is the number of parent nodes
and 1 ≤ i1 < i2 < · · · < ik(i) ≤ n. Starting from an initial state, the BN evolves in time

A New Decomposition Method for Attractor Detection 3

by transiting from one state to another. The state of the network at a discrete time point
t (t = 0, 1, 2, . . .) is given by a vector x(t) = (x1(t), x2(t), . . . , xn(t)), where xi(t) is
a binary-valued variable that determines the value of node vi at time point t. The value
of node vi at time point t+ 1 is given by the predictor function fi applied to the values
of the parent nodes of vi at time t, i.e., xi(t+1) = fi(xi1(t), xi2(t), . . . , xik(i)

(t)). For
simplicity, with slight abuse of notation, we use fi(xi1 , xi2 , . . . , xik(i)

) to denote the
value of node vi at the next time step. For any j ∈ [1, k(i)], node vij is called a parent
node of vi and vi is called a child node of vij .

In general, the Boolean predictor functions can be formed by combinations of any
logical operators, e.g., logical AND ∧, OR ∨, and NEGATION ¬, applied to variables
associated with the respective parent nodes. The BNs are divided into two types based
on the time evolution of their states, i.e., synchronous and asynchronous. In synchronous
BNs, values of all the variables are updated simultaneously; while in asynchronous
BNs, one variable at a time is randomly selected for update.

In this paper, we focus on synchronous BNs. The transition relation of a syn-
chronous BN is given by

T (x(t),x(t+ 1)) =
n∧
i=1

(
xi(t+ 1)↔ fi(xi1(t), xi2(t), · · · , xiki

(t))
)
. (1)

It states that in every step, all the nodes are updated synchronously according to their
Boolean functions.

In many cases, a BN G(V,f) is studied as a state transition system. Formally, the
definition of state transition system is given as follows.

Definition 2 (State transition system). A state transition system T is a 3-tuple 〈S, S0,
T 〉 where S is a finite set of states, S0 ⊆ S is the initial set of states and T ⊆ S × S is
the transition relation. When S = S0, we write 〈S, T 〉.

A BN can be easily modelled as a state transition system: the set S is just the state
space of the BN, so there are 2n states for a BN with n nodes; the initial set of states S0

is the same as S; finally, the transition relation T is given by Equation 1.

Example 1. A BN with 3 nodes is shown in Figure 1a. Its Boolean functions are given
as: f1 = ¬(x1∧x2), f2 = x1∧¬x2, and f3 = ¬x2. In Figure 1a, the three circles v1, v2
and v3 represent the three nodes of the BN. The edges between nodes represent the
interactions between nodes. Applying the transition relation to each of the states, we can
get the corresponding state transition system. For better understanding, we demonstrate
the state transition system as a state transition graph in this paper. The corresponding
state transition graph of this example is shown in Figure 1b.

In the transition graph of Figure 1b, the three states (000), (1 ∗ 1)4 can be reached
from each other but no other state can be reached from any of them. This forms an at-
tractor of the BN. The formal definition of an attractor is given as follows.

4 We use ∗ to denote that the bit can have value either 1 or 0, so (1 ∗ 1) actually denotes two
states: 101 and 111.

4 Mizera et al.

v3 v2

v1

(a) A BN with 3 nodes.

000 101 001 011

110 111 100 010

(b) Transition graph of the BN in Example 1.

Fig. 1: The Boolean network in Example 1 and its state transition graph.

Definition 3 (Attractor of a BN). An attractor of a BN is a set of states satisfying that
any state in this set can be reached from any other state in this set and no state in this
set can reach any other state that is not in this set.

When analysing an attractor, we often need to identify transition relations between
the attractor states. We call an attractor together with its state transition relation an at-
tractor system (AS). The states constituting an attractor are called attractor states. The
attractors of a BN characterise its long-run behaviour [11] and are of particular interest
due to their biological interpretation.

For synchronous BNs, each state of the network can only have at most one outgoing
transition. Therefore, the transition graph of an attractor in a synchronous BN is simply
a loop. By detecting all the loops in a synchronous BN, one can identify all its attractors.

Example 2. The BN given in Example 1 has one attractor, i.e., {(000), (1 ∗ 1)}.

2.2 Encoding BNs in BDDs

Binary decision diagrams (BDDs) were introduced by Lee in [12] and Akers in [13] to
represent Boolean functions [12, 13]. BDDs have the advantage of memory efficiency
and have been applied in many model checking algorithms to alleviate the state space
explosion problem. A BN G(V,f) can be modelled as a state transition system, which
can then be encoded in a BDD.

Each variable in V can be represented by a binary BDD variable. By slight abuse
of notation, we also use V to denote the set of BDD variables. In order to encode the
transition relation, another set V ′ of BDD variables, which is a copy of V , is intro-
duced: V encodes the possible current states, i.e., x(t), and V ′ encodes the possible
next states, i.e., x(t + 1). Hence, the transition relation can be viewed as a Boolean
function T : 2|V |+|V ′| → {0, 1}, where values 1 and 0 indicate a valid and an invalid
transition, respectively. Our attractor detection algorithm, which will be discussed in
the next section, also utilizes two basis functions: Image(X,T) = {s′ ∈ S | ∃s ∈
X such that (s, s′) ∈ T}, which returns the set of target states that can be reached
from any state in X ⊆ S with a single transition in T ; Preimage(X,T) = {s′ ∈
S | ∃s ∈ X such that (s′, s) ∈ T}, which returns the set of predecessor states that
can reach a state in X with a single transition. To simplify the presentation, we define
Preimagei(X,T) = Preimage(...(Preimage(X,T)))︸ ︷︷ ︸

i

with Preimage0(X,T) = X .

A New Decomposition Method for Attractor Detection 5

In this way, the set of all states that can reach a state in X via transitions in T is de-

fined as an iterative procedure Predecessors(X,T) =
n⋃
i=0

Preimagen(X,T) such that

Preimagen(X,T) = Preimagen+1(X,T). Given a set of statesX ⊆ S, the projection
T |X of T on X is defined as T |X = {(s, s′) ∈ T | s ∈ X ∧ s′ ∈ X}.

3 The New Method

In this section, we describe in details the new SCC-based decomposition method for
detecting attractors of large synchronous BNs and we prove its correctness. The method
consists of three steps. First, we divide a BN into sub-networks called blocks and this
step is performed on the network structure, instead of the state transition system of
the network. Second, we detect attractors in blocks. Last, we recover attractors of the
original BN based on attractors of the blocks.

3.1 Decompose a BN

We start by giving the formal definition of a block.

Definition 4 (Block). Given a BN G(V,f) with V = {v1, v2, . . . , vn} and f = {f1,
f2, . . . , fn}, a block B(V B ,fB) is a subset of the network, where V B ⊆ V . For any
node vi ∈ V B , if B contains all the parent nodes of vi, its Boolean function in B
remains the same as in G, i.e., fi; otherwise, the Boolean function is undetermined,
meaning that additional information is required to determine the value of vi in B. We
call the nodes with undetermined Boolean functions as undetermined nodes. We refer
to a block as an elementary block if it contains no undetermined nodes.

We consider synchronous networks in this paper and therefore a block is also under
the synchronous updating scheme, i.e., all the nodes in the block will be updated at each
given time point no matter this node is undetermined or not.

We now introduce a method to construct blocks, using SCC-based decomposition.
Formally, the standard graph-theoretical definition of an SCC is as follows.

Definition 5 (SCC). Let G be a directed graph and V be its vertices. A strongly con-
nected component (SCC) of G is a maximal set of vertices C ⊆ V such that for every
pair of vertices u and v, there is a directed path from u to v and vice versa.

We first decompose a given BN into SCCs. Figure 2a shows the decomposition of a BN
into four SCCs: Σ1, Σ2, Σ3, and Σ4. A node outside an SCC that is a parent to a node
in the SCC is referred to as a control node of this SCC. In Figure 2a, node v1 is a control
node of Σ2 and Σ4; node v2 is a control node of Σ3; and node v6 is a control node of
Σ4. The SCC Σ1 does not have any control node. An SCC together with its control
nodes forms a block. For example, in Figure 2a, Σ2 and its control node v1 form one
block B2. Σ1 itself is a block, denoted as B1, since the SCC it contains does not have
any control node. If a control node in a block Bi is a determined node in another block
Bj , block Bj is called a parent of block Bi and Bi is a child of Bj . By adding directed

6 Mizera et al.

v1 v2

v3v4

v5 v6

v7v8

Σ1 Σ3

Σ2 Σ4

(a) SCC decomposition.

00 01

11 10

(b) Transition graph of block B1.

Fig. 2: SCC decomposition and the transition graph of block B1.

edges from all parent blocks to all their child blocks, we form a directed acyclic graph
(DAG) of the blocks as the blocks are formed from SCCs. As long as the block graph is
guaranteed to be a DAG, other strategies to form blocks can be used. Two blocks can be
merged into one larger block. For example, blocks B1 and B2 can be merged together
to form a larger block B1,2.

A state of a block is a binary vector of length equal to the size of the block which
determines the values of all the nodes in the block. In this paper, we use a number of
operations on the states of a BN and its blocks. Their definitions are given below.

Definition 6 (Projection map, Compressed state, Mirror states). For a BNG and its
block B, where the set of nodes in B is V B = {v1, v2, . . . , vm} and the set of nodes
in G is V = {v1, v2, . . . , vm, vm+1, . . . , vn}, the projection map πB : X → XB is
given by x = (x1, x2, . . . , xm, xm+1, . . . , xn) 7→ πB(x) = (x1, x2, . . . , xm). For any
set of states S ⊆ X , we define πB(S) = {πB(x) : x ∈ S}. The projected state πB(x)
is called a compressed state of x. For any state xB ∈ XB , we define its set of mirror
states in G asMG(x

B) = {x | πB(x) = xB}. For any set of states SB ⊆ XB , its set
of mirror states isMG(S

B) = {x | πB(x) ∈ SB}.

The concept of projection map can be naturally extended to blocks. Given a block with
nodes V B = {v1, v2, . . . , vm}, let V B

′
= {v1, v2, . . . , vj} ⊆ V B . We can define

πB′ : XB → XB′
as x = (x1, x2, . . . , xm) 7→ πB′(x) = (x1, x2, . . . , xj), and for a

set of states SB ⊆ XB , we define πB′(SB) = {πB′(x) : x ∈ SB}.

3.2 Detect attractors in a block

An elementary block does not depend on any other block while a non-elementary block
does. Therefore, they can be treated separately. We first consider the case of elementary
blocks. An elementary block is in fact a BN; therefore, the definition of attractors in
a BN can be directly taken to the concept of an elementary block.

Definition 7 (Preservation of attractors). Given a BN G and an elementary block B
inG, letA = {A1, A2, . . . , Am} be the set of attractors ofG andAB = {AB1 , AB2 , . . . ,
ABm′} be the set of attractors of B. We say that B preserves the attractors of G if for any
k ∈ [1,m], there is an attractor ABk′ ∈ AB such that πB(Ak) ⊆ ABk′ .

A New Decomposition Method for Attractor Detection 7

01 10

00 11

(a) Transition graph of Block B1 in G1.

00 01

10 11

(b) Transition graph of the “realisation”.

Fig. 3: Two transition graphs used in Example 3 and Example 4.

Example 3. Consider the BNG1 in Example 1. Its set of attractors isA = {{(000), (1∗
1)}}. Nodes v1 and v2 form an elementary blockB1. SinceB1 is an elementary block, it
can be viewed as a BN. The transition graph ofB1 is shown in Figure 3a. Its set of attrac-
tors isAB1 = {{(00), (1∗)}} (nodes are arranged as v1, v2). We have πB1

({(000), (1∗
1)}) = {(00), (1∗)} ∈ AB1 , i.e., block B1 preserves the attractors of G1.

With Definition 7, we have the following lemma and theorem.

Lemma 1. Given a BN G and an elementary block B in G, let Φ be the set of attractor
states of G and ΦB be the set of attractor states of B. If B preserves the attractors of
G, then Φ ⊆MG(Φ

B).

Theorem 1. Given a BN G, let B be an elementary block in G. B preserves the attrac-
tors of G.

For an elementary block B, the mirror states of its attractor states cover all G’s
attractor states according to Lemma 1 and Theorem 1. Therefore, by searching from the
mirror states only instead of the whole state space, we can detect all the attractor states.

We now consider the case of non-elementary blocks.

Definition 8 (Parent SCC, Ancestor SCC). An SCC Σi is called a parent SCC (or
parent for short) of another SCC Σj if Σi contains at least one control node of Σj .
Denote P (Σi) the set of parent SCCs of Σi. An SCC Σk is called an ancestor SCC (or
ancestor for short) of an SCC Σj if and only if either (1) Σk is a parent of Σj or (2) Σk
is a parent of Σk′ , where Σk′ is an ancestor of Σj . Denote Ω(Σj) the set of ancestor
SCCs of Σi.

For an SCC Σj , if it has no parent SCC, then this SCC can form an elementary
block; if it has at least one parent, then it must have an ancestor that has no parent, and
all its ancestors Ω(Σj) together can form an elementary block, which is also a BN. The
SCC-based decomposition will usually result in one or more non-elementary blocks.

Definition 9 (Crossability, Cross operations). Let G be a BN and let Bi be a non-
elementary block in G with the set of nodes V Bi = {vp1 , vp2 , . . . , vps , vq1 , vq2 , . . . ,
vqt}, where qk (k ∈ [1, t]) are the indices of the control nodes also contained by
Bi’s parent block Bj and pk (k ∈ [1, s]) are the indices of the remaining nodes. We
denote the set of nodes in Bj as V Bj = {vq1 , vq2 , . . . , vqt , vr1 , vr2 , . . . , vru}, where
rk (k ∈ [1, u]) are the indices of the non-control nodes in Bj . Let further xBi =

(x1, x2, . . . , xs, y
i
1, y

i
2, . . . , y

i
t) be a state of Bi and xBj = (yj1, y

j
2, . . . , y

j
t , z1, z2, . . . ,

8 Mizera et al.

zu) be a state ofBj . States xBi and xBj are said to be crossable, denoted as xBi C xBj ,
if the values of their common nodes are the same, i.e., yik = yjk for all k ∈ [1, t]. The
cross operation of two crossable states xBi and xBj is defined as Π(xBi ,xBj) =
(x1, x2, . . . , xs, y

i
1, y

i
2, . . . , y

i
t, z1, z2, . . . , zu). The notion of crossability naturally ex-

tends to two blocks without common nodes: any two states of these blocks are crossable.
We say SBi ⊆ XBi and SBj ⊆ XBj are crossable, denoted as SBi C SBj , if

at least one of the sets is empty or the following two conditions hold: 1) for any state
xBi ∈ SBi , there exists a state xBj ∈ SBj such that xBi and xBj are crossable; 2) vice
versa. The cross operation on two crossable non-empty sets of states SBi and SBj is
defined as Π(SBi , SBj) = {Π(xBi ,xBj) | xBi ∈ SBi ,xBj ∈ SBj and xBi C xBj}.
When one of the two sets is empty, the cross operation simply returns the other set, i.e.,
Π(SBi , SBj) = SBi if SBj = ∅ and Π(SBi , SBj) = SBj if SBi = ∅.

Let SBi = {SBi | SBi ⊆ XBi} be a family of sets of states in Bi and SBj =
{SBj | SBj ⊆ XBj} be a family of sets of states in Bj . We say SBi and SBj are
crossable, denoted as SBi C SBj if 1) for any set SBi ∈ SBi , there exists a set SBj ∈
SBj such that SBi and SBj are crossable; 2) vice versa. The cross operation on two
crossable families of sets SBi and SBj is defined asΠ(SBi ,SBj) = {Π(Si, Sj) | Si ∈
SBi , Sj ∈ SBj and Si C Sj}.

Proposition 1. Let V C be the set of control nodes shared by two blocksBi andBj , i.e.,
V C = V Bi ∩V Bj and let SBi ⊆ XBi and SBj ⊆ XBj . Then SBi C SBj is equivalent
to πC(SBi) = πC(S

Bj).

After decomposing a BN into SCCs, there is at least one SCC with no control nodes.
Hence, there is at least one elementary block in every BN. Moreover, for each non-
elementary block we can construct, by merging all its predecessor blocks, a single par-
ent elementary block. We detect the attractors of the elementary blocks and use the
detected attractors to guide the values of the control nodes of their child blocks. The
guidance is achieved by considering realisations of the dynamics of a non-elementary
block with respect to the attractors of its parent elementary block, shortly referred to as
realisations of a non-elementary block. In some cases, a realisation of a non-elementary
block is simply obtained by assigning new Boolean functions to the control nodes of the
block. However, in many cases, it is not this simple and a realisation of a non-elementary
block is obtained by explicitly constructing a transition system of this block correspond-
ing to the considered attractor of the elementary parent block. Since the parent block of
a non-elementary block may have more than one attractor, a non-elementary block may
have more than one realisation.

Definition 10 (Realisation of a non-elementary block). Let Bi be a non-elementary
block formed by merging an SCC with its control nodes. Let nodes u1, u2, . . . , ur be
all the control nodes of Bi which are also contained in its elementary parent block Bj
(we can merge Bi’s ancestor blocks to form Bj if Bi has more than one parent block or
has a non-elementary parent block). LetABj

1 , A
Bj

2 , . . . , A
Bj

t be the attractor systems of
Bj . For any k ∈ [1, t], a realisation of block Bi with respect to ABj

k is a state transition
system such that
1. the transitions are as follows: for any transition xBj → x̃Bj in the attractor system

ofABj

k , there is a transition xBi,j → x̃Bi,j in the realisation such that xBi,j C xBj

A New Decomposition Method for Attractor Detection 9

and x̃Bi,j C x̃Bj ; each transition in the realisation is caused by the update of all
nodes synchronously: the update of non-control nodes of Bi is regulated by the
Boolean functions of the nodes and the update of nodes in its parent block Bj is
regulated by the transitions of the attractor system of ABj

k ;

In the realisation of a non-elementary block all the nodes of its single elementary
parent block are considered and not only the control nodes of the parent block. This al-
lows to distinguish the potentially different states in which the values of control nodes
are the same. Without this, a state in the state transition graph of the realisation may
have more than one out-going transition, which is contrary to the fact that the out-going
transition for a state in a synchronous network is always determined. Although the def-
inition of attractors can still be applied to such a transition graph, the attractor detection
algorithms for synchronous networks, e.g., SAT-based algorithms, may not work any
more. Moreover, the meaning of attractors in such a graph are not consistent with the
synchronous semantics and therefore the detected “attractors” may not be attractors of
the synchronous BN. Note that the decomposition method mentioned in [7] did not take
care of this and therefore produces incorrect results in certain cases. We now give an
example to illustrate one of such cases.

Example 4. Consider the BN in Example 1, which can be divided into two blocks:
block B1 with nodes v1, v2 and block B2 with nodes v2, v3. The transition graph of B1

is shown in Figure 3a and its attractor is (00)→ (10)→ (11). If we do not include the
node v1 when forming the realisation of B2, we will get a transition graph as shown in
Figure 3b, which contains two states with two out-going transitions. This is contrary to
the synchronous semantics. Moreover, recovering attractors with the attractors in this
graph will lead to a non-attractor state of the original BN, i.e., (001).

For asynchronous networks, however, such a distinction is not necessary since the situ-
ation of multiple out-going transitions is in consistent with the asynchronous updating
semantics. Definition 10 forms the basis for a key difference between this decomposi-
tion method for synchronous BNS and the one for asynchronous BNs proposed in [9].

Constructing realisations for a non-elementary block is a key process for obtaining
its attractors. For each realisation, the construction process requires the knowledge of all
the transitions in the corresponding attractor of its elementary parent block. In Section 4,
we explain in details how to implement it with BDDs. We now give some examples.

Example 5. Consider the BN in Figure 2a. Its Boolean functions are given as follows:{
f1 = x1 ∧ x2, f2 = x1 ∨ ¬x2, f3 = ¬x4 ∧ x3, f4 = x1 ∨ x3,
f5 = x2 ∧ x6, f6 = x5 ∧ x6, f7 = (x1 ∨ x6) ∧ x8, f8 = x7 ∨ x8.

(2)

The network contains four SCCs Σ1, Σ2, Σ3 and Σ4. For any Σi (i ∈ [1, 4]), we form
a block Bi by merging Σi with its control nodes. Block B1 is an elementary block and
its transition graph is shown in Figure 2b. Block B1 has two attractors, i.e., {(0∗)} and
{(11)}. Regarding the first attractor, block B3 has a realisation by setting the nodes v1
and v2 (nodes from its parent block B1) to contain transitions {(00) → (01), (01) →
(00)}. The transition graph of this realisation is shown in Figure 4a. Regarding the

10 Mizera et al.

0000 0100

0110 0001

0010 0111

0101 0011

(a) Realisation 1 of Example 5.

1100 1110

1111 1101

(b) Realisation 2 of Example 5.

Fig. 4: Transition graphs of two realisations in Example 5.

second attractor, block B3 has a realisation by setting nodes v1 and v2 to contain only
the transition {(11)→ (11)}. Its transition graph is shown in Figure 4b.

A realisation of a non-elementary block takes care of the dynamics of the undeter-
mined nodes, providing a transition system of the block. Therefore, we can extend the
attractor definition to realisations of non-elementary blocks as follows.

Definition 11 (Attractors of a non-elementary block). An attractor of a realisation
of a non-elementary block is a set of states satisfying that any state in this set can be
reached from any other state in this set and no state in this set can reach any other state
that is not in this set. The attractors of a non-elementary block is the set of the attractors
of all realisations of the block.

With the above definition, we can extend Definition 10 by allowing Bj to be a non-
elementary block as well. As long asBi’s parent blockBj contains all the control nodes
of block Bi, the attractors of Bj can be used to form the realisations of Bi, no matter
Bj is elementary or not. Observe that using a non-elementary block as a parent block
does not change the fact that the attractor states of the parent block contain the values
of all the nodes in the current block and all its ancestor blocks.

Computing attractors for non-elementary blocks requires the knowledge of the at-
tractors of its parent blocks. Therefore, we need to order the blocks so that for any
block Bi, the attractors of its parent blocks are always detected before it. The blocks
are ordered topologically. For easier explanation of the order, we introduce the concept
of topological credit as follows. For simplification, we refer topological credit as credit
in the remaining part of the paper.

Definition 12 (Topological credit). Given a BN G, the an elementary block Bi of G
has a topological credit of 0, denoted as P(Bi) = 0. Let Bj be a non-elementary block
and Bj1 , . . . , Bjp(j) be all its parent blocks. The topological credit of Bj is defined as

P(Bj) = max
p(j)
k=1(P(Bjk)) + 1, where p(j) is the number of parent blocks of Bj .

3.3 Recovering attractors for the original BN

After computing attractors for all the blocks, we need to recover attractors for the orig-
inal BN, with the help of the following theorem.

Theorem 2. Let G be a BN and let Bi be one of its blocks. Denote Ω(Bi) as the block
formed by all Bi’s ancestor blocks and denote X (Bi) as the block formed by merging
Bi withΩ(Bi).X (Bi) is in fact an elementary block, which is also a BN. The attractors
of block Bi are in fact the attractors of X (Bi).

A New Decomposition Method for Attractor Detection 11

Theorem 3. Given a BN G, where Bi and Bj are its two blocks, let ABi and ABj be
the set of attractors for Bi and Bj , respectively. Let Bi,j be the block got by merging
the nodes in Bi and Bj . Denote the set of all attractor states of Bi,j as SBi,j . If Bi and
Bj are both elementary blocks, ABi C ABj and ∪A∈Π(ABi ,ABj)A = SBi,j .

The above developed theoretical background with Theorem 2 and Theorem 3 being its
core result, allows us to design a new decomposition-based approach towards detection
of attractors in large synchronous BNs. The idea is as follows. We divide a BN into
blocks according to the detected SCCs. We order the blocks in the ascending order based
on their credits and detect attractors of the ordered blocks one by one in an iterative way.
We start from detecting attractors of elementary blocks (credit 0), and continue to detect
blocks with higher credits after constructing their realisations. According to Theorem 2,
by detecting the attractors of a block, we in fact obtain the attractors of the block formed
by the current block and all its ancestor blocks. Hence, after the attractors of all the
blocks have been detected, either we have obtained the attractors of the original BN or
we have obtained the attractors of several elementary blocks of this BN. According to
Theorem 3, we can perform a cross operation for any two elementary blocks (credits
0) to recover the attractor states of the two merged blocks. The resulting merged block
will form a new elementary block, i.e., one with credit 0. The attractors can be easily
identified from the set of attractor states. By iteratively performing the cross operation
until a single elementary block containing all the nodes of the BN is obtained, we can
recover the attractors of the original BN. The details of this new algorithm are discussed
in the next section. In addition, we have the following corollary that extends Theorem 3
by allowing Bi and Bj to be non-elementary blocks. This corollary will be used in the
next section.

Corollary 1. Given a BN G, where Bi and Bj are its two blocks, let ABi and ABj be
the set of attractors for Bi and Bj , respectively. Let Bi,j be the block got by merging
the nodes in Bi and Bj . Denote the set of attractor states of Bi,j as SBi,j . It holds that
ABi C ABj and ∪S∈Π(ABi ,ABj)S = SBi,j .

4 A BDD-based Implementation

We describe the SCC-based attractor detection method in Algorithm 1. As mentioned
in Section 2.2, we encode BNs in BDDs; hence most operations in this algorithm is
performed with BDDs. Algorithm 1 takes a BN G and its corresponding transition
system T as inputs, and outputs the set of attractors of G. In this algorithm, we denote
by DETECT(T) a basic function for detecting attractors of a given transition system
T . Lines 23-26 of this algorithm describe the process for detecting attractors of a non-
elementary block. The algorithm detects the attractors of all the realisations of the non-
elementary block and performs the union operation of the detected attractors. For this, if
the non-elementary block has only one parent block, its attractors are already computed
as the blocks are considered in the ascending order with respect to their credits by the
main for loop in line 4. Otherwise, all the parent blocks are considered in the for loop
in lines 13-21. By iteratively applying the cross operation in line 16 to the attractor sets
of the ancestor blocks in the ascending order, the attractor states of a new block formed

12 Mizera et al.

Algorithm 1 SCC-based decomposition algorithm
1: procedure SCC DETECT(G, T)
2: B := FORM BLOCK(G); A := ∅; Ba := ∅; k := size of B;
3: initialise dictionary A`; //A` is a dictionary storing the set of attractors for each block
4: for i := 1; i <= k; i++ do
5: if Bi is an elementary block then
6: T Bi := transition system converted from Bi; //see Section 2.2 for more details
7: Ai := DETECT(T Bi); A`.add((Bi,Ai));
8: else Ai := ∅;
9: if Bp

i is the only parent block of Bi then
10: Ap

i := A`.getAtt(Bp
i); //obtain attractors of Bp

i

11: else Bp := {Bp
1 , B

p
2 , . . . , B

p
m} be the parent blocks of Bi (ascending ordered);

12: Bc := Bp
1 ; //Bp is ordered based on credits

13: for j := 2; j <= m; j ++ do
14: Bc,j := a new block containing nodes in Bc and Bp

j ;
15: if (Ap

i := A`.getAtt(Bc,j)) == ∅ then
16: A := Π(A`.getAtt(Bc),A`.getAtt(Bj)); Ap

i := D(A);
17: //D(A) returns all the attractors from attractor states sets A
18: A`.add(Bc,j ,Ap

i);
19: end if
20: Bc := Bc,j ;
21: end for
22: end if
23: for A ∈ Ap

i do
24: T Bi(A) := 〈SBi(A), TBi(A)〉; //obtain the realisation of Bi with A
25: Ai := Ai ∪ DETECT(T Bi(A));
26: end for
27: A`.add((Bi,Ai)); //the add operation will not add duplicated elements
28: A`.add((Bi,ancestors,Ai)); //Bi,ancestors means Bi and all its ancestor blocks
29: for any Bp ∈ {Bp

1 , B
p
2 , . . . , B

p
m} do //Bp

1 , B
p
2 , . . . , B

p
m are parent blocks of Bi

30: A`.add((Bi,p,Ai));
31: end for
32: end if
33: end for
34: for Bi ∈ B and Bi has no child block do
35: A = D(Π(A`.get(Bi),A));
36: end for
37: return A.
38: end procedure

39: procedure FORM BLOCK(G)
40: decompose G into SCCs and form blocks with SCCs and their control nodes;
41: order the blocks in an ascending order according to their credits; B := (B1, . . . , Bk);
42: return B. //B is the list of blocks after ordering
43: end procedure

by merging all the parent blocks are computed as assured by Corollary 1. The attractors

A New Decomposition Method for Attractor Detection 13

0100 0001 0111 0010

0000 0101 0011 0110

(a) Realisation 1 of B2.

1100 1110

1101 1111

(b) Realisation 2 of B2.

Fig. 5: Two realisations used in Example 6.

are then identified from the attractor states with one more operation. The correctness of
the algorithm is stated as Theorem 4.

Theorem 4. Algorithm 1 correctly identifies the set of attractors of a given BN G.

010000 010010 010001 010011

000000 000010 000001 000011

(a) The first realisation of B4

110000 110011

110010 110001

(b) The second realisation of B4

111100 111111

111110 111101

(c) The third realisation of B4

Fig. 6: Transition graphs of the three realisations for block B4.

We continue to illustrate in Example 6 how Algorithm 1 detects attractors.

Example 6. Consider the BN shown in Example 5 and its four blocks. Block B1 is
an elementary block and it has two attractors, i.e., A1 = {{(0∗)}, {(11)}}. To detect
the attractors of block B2, we first form realisations of B2 with the attractors of its par-
ent block B1. B1 has two attractors so there are two realisations for B2. The transition
graphs of the two realisations are shown in Figures 5a and 5b. We get two attractors for
block B2, i.e., A2 = {{(0 ∗ 00)}, {(1101)}}. Those two attractors are also attractors
for the merged block B1,2, i.e., A1,2 = A2. In Example 5, we have shown the two re-
alisations of B3 regarding the two attractors of B1. Clearly, B3 has two attractors, i.e.,
A3 = {{(0∗00)}, {(1100)}, {(1111)}}.B4 has two parent blocks. Therefore, we need

14 Mizera et al.

Algorithm 2 Leaf-based optimisation
1: procedure LEAF DETECT(G)
2: form an elementary block B by removing all the leaves of G;
3: AB := SCC DETECT (B); ΦB := ∪AB∈ABAB ; //detect attractors of B
4: T := transition system of G with state space restricted toMG(Φ

B);
5: A := DETECT (T);
6: return A.
7: end procedure

to merge the two parent blocks to form a single parent block. Since the attractors of the
merged block B1,3 are the same as B3, we directly obtain the attractors of B1,3, i.e.,
A1,3 = A3 = {{(0∗00)}, {(1100), (1111)}}. There are three attractors so there will be
three realisations for block B4. The transition graph of the three realisations are shown
in Figure 6. From the transition graphs, we easily get the attractors of B4, i.e., A4 =
{{(0∗0000)}, {(0∗0001)}, {(110000)}, {(110011)}, {(111100)}, {(111111)}}. Now
the attractors for all the blocks have been detected. We can now obtain all the attrac-
tors of the BN by several cross operations. We start from the block with the largest
credit, i.e., block B4. The attractors of B4 in fact cover blocks B1, B3 and B4. The
remaining block is B2. We perform a cross operation on A2 and A4 and based on the
obtained result we detect the attractors of the BN, i.e., A = D(Π(A2,A4) = {{(0 ∗
000000)}, {(0∗000001)}, {(11010011)}, {(11010000)}, {(11011111)}, {(11011100)}}.

4.1 An optimisation

It often happens that a BN contains many leaf nodes that do not have any child node.
Each of the leaf nodes will be treated as an SCC in our algorithm and it is not worth
the effort to process an SCC with only one leaf node. Therefore, we treat leaf nodes in
a special way. Formally, leaf nodes are recursively defined as follows.

Definition 13. A node in a BN is a leaf node (or leaf for short) if and only if it is not
the only node in the BN and either (1) it has no child nodes except for itself or (2) it has
no other children after iteratively removing all its child nodes which are leaf nodes.

Algorithm 2 outlines the leaf-based decomposition approach for attractor detection.
We now show that Algorithm 2 can identify all attractor states of a given BN.

Theorem 5. Algorithm 2 correctly identifies all the attractor states of a given BN G.

5 Experimental Results

We have implemented the decomposition algorithm presented in Section 4 in the model
checker MCMAS [14]. In this section, we demonstrate the efficiency of our method
by comparing our method with the state-of-the-art decomposition method mentioned
in [8] which is also based on BDD implementation. We generate 33 random BN models
with different number of nodes using the tool ASSA-PBN [15, 16] and compare the

A New Decomposition Method for Attractor Detection 15

original models models with leaves removedmodel
ID

#
nodes

non-
leaves

#
attractors tM2 [s] tM1 [s] Speedup tM2 [s] tM1 [s] Speedup

1 100 7 32 4.56 0.86 5.3 0.58 0.02 29.0
2 120 9 1 18.13 0.95 19.1 1.10 0.04 27.5
3 150 19 2 201.22 1.66 121.2 0.74 0.02 37.0
4 200 6 16 268.69 7.04 38.2 0.97 0.02 48.5
5 250 25 12 533.57 11.16 47.8 0.90 0.04 22.5
6 300 88 1 – – N/A 238.96 65.33 3.7
7 450 43 8 – 60.82 N/A 3704.33 0.17 21790.2

Table 1: Selected results for the performance comparison of methods M1 and M2.

performance of the two methods on these 33 models. All the experiments are conducted
on a computer with an Intel Xeon W3520@2.67GHz CPU and 12GB memory.

We name our proposed decomposition method M1 and the one in [8] M2. There
are two possible implementations of the DETECT function used in Algorithm 1 as men-
tioned in [8]: monolithic and enumerative. We use the monolithic one which is shown
to be more suitable for small networks as the decomposed sub-networks are relatively
small. Since the method in [8] uses similar leaf reduction technique, we make compar-
isons on both the original models and the models whose leaves are removed in order
to eliminate the influence of leaf nodes. We set the expiration time to 3 hours. Before
removing leaf nodes, there are 11 cases that both methods fail to process. Among the
other 22 cases, our method is faster than M2 in 16 cases, which is approximately 73%.
After removing leaf nodes, there are 5 cases that both methods fail to process. Among
the other 28 cases, our method is faster than M2 in 25 cases, which is approximately
89%. We demonstrate the results for 7 models in Table 1 and the remaining result can
be found in [17]. Since our method considers the dependency relation between differ-
ent blocks, the attractors of all the blocks need to be computed; while method M2 can
ignore the blocks with only leaf nodes. Therefore, the performance of our method is
more affected by the leaf nodes. This is why the percentage that our method is faster
than M2 is increased from 73% to 89% when leaf nodes are removed. Notably, after
eliminating the influence of leaf nodes, our method is significantly faster than M2. The
“–” in Table 1 means the method fails to process the model within 3 hours. The speedup
is therefore not applicable (N/A) for this result. The speedup is computed as tM2

/tM1
,

where tM1 is the time cost for M1 and tM2 is the time cost for M2. All the time shown
in Table 1 is in seconds. In general, we obtain a larger speedup when the number of
attractors is relatively small. This is due to that our method takes the attractors of the
parent block into account when forming a realisation of a non-elementary block and the
number of realisations increases with the number of attractors. Summarising, our new
method shows a significant improvement on the state-of-the-art decomposition method.

6 Conclusion and Future Work

We have introduced a new SCC-based decomposition method for attractor detection of
large synchronous BNs. Although our decomposition method shares similar ideas on
how to decompose a large network with existing decomposition methods, our method
differs from them in the key process and has significant advantages.

16 Mizera et al.

First, our method is designed for synchronous BNs, as a consequence the key pro-
cess for constructing realisations in our method is totally different from the one in [9],
which is designed for asynchronous networks. Secondly, our method considers the de-
pendency relation among the sub-networks. The method in [8] does not rely on this re-
lation and only takes the detected attractors in sub-networks to restrict the initial states
when recovering the attractors for the original network. In this way, the decomposition
method in [8] potentially cannot scale up very well for large networks, as it still requires
a BDD encoding of the transition relation of the whole network. This is our main moti-
vation to extend our previous work [9] towards synchronous BNs. Experimental results
show that our method is significantly faster than the one in [8]. Lastly, we have shown
that the method proposed in [7] cannot compute correct results in certain cases.

Our current implementation is based on BDDs. One future work is to use SAT-
solvers to implement the DETECT function as SAT-based methods are normally more
efficient in terms of attractor detection for synchronous BNs [6].

References

1. Kauffman, S.: Homeostasis and differentiation in random genetic control networks. Nature
224 (1969) 177–178

2. Huang, S.: Genomics, complexity and drug discovery: insights from Boolean network mod-
els of cellular regulation. Pharmacogenomics 2(3) (2001) 203–222

3. Somogyi, R., Greller, L.D.: The dynamics of molecular networks: applications to therapeutic
discovery. Drug Discovery Today 6(24) (2001) 1267–1277

4. Garg, A., Xenarios, L., Mendoza, L., DeMicheli, G.: An efficient method for dynamic anal-
ysis of gene regulatory networks and in silico gene perturbation experiments. In: Proc.
11th Annual Conference on Research in Computational Molecular Biology. Volume 4453
of LNCS., Springer (2007) 62–76

5. Garg, A., Di Cara, A., Xenarios, I., Mendoza, L., De Micheli, G.: Synchronous versus
asynchronous modeling of gene regulatory networks. Bioinformatics 24(17) (2008) 1917–
1925

6. Dubrova, E., Teslenko, M.: A SAT-based algorithm for finding attractors in synchronous
Boolean networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics
8(5) (2011) 1393–1399

7. Guo, W., Yang, G., Wu, W., He, L., Sun, M.: A parallel attractor finding algorithm based on
Boolean satisfiability for genetic regulatory networks. PLOS ONE 9(4) (2014) e94258

8. Yuan, Q., Qu, H., , Pang, J., Mizera, A.: Improving BDD-based attractor detection for syn-
chronous Boolean networks. Science China Information Sciences 59(8) (2016) 080101

9. Mizera, A., Pang, J., Qu, H., Yuan, Q.: Taming asynchrony for attractor detection in large
Boolean networks (technical report). Available online at http://arxiv.org/abs/
1704.06530 (2017)

10. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets.
Journal of Theoretical Biology 22(3) (1969) 437–467

11. Shmulevich, I., Dougherty, E.R.: Probabilistic Boolean Networks: The Modeling and Con-
trol of Gene Regulatory Networks. SIAM Press (2010)

12. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell System
Technical Journal 38(4) (1959) 985–999

13. Akers, S.B.: Binary decision diagrams. IEEE Transactions on Computers 100(6) (1978)
509–516

A New Decomposition Method for Attractor Detection 17

14. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: An open-source model checker for the ver-
ification of multi-agent systems. International Journal on Software Tools for Technology
Transfer (2015)

15. Mizera, A., Pang, J., Yuan, Q.: ASSA-PBN: a tool for approximate steady-state analysis of
large probabilistic Boolean networks. In: Proc. 13th International Symposium on Automated
Technology for Verification and Analysis. Volume 9364 of LNCS., Springer (2015) 214–220

16. Mizera, A., Pang, J., Yuan, Q.: ASSA-PBN 2.0: A software tool for probabilistic Boolean
networks. In: Proc. 14th International Conference on Computational Methods in Systems
Biology. Volume 9859 of LNCS., Springer (2016) 309–315

17. Mizera, A., Pang, J., Qu, H., Yuan, Q.: Benchmark Boolean networks. http://satoss.
uni.lu/software/ASSA-PBN/benchmark/attractor_syn.xlsx

