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Abstract

Background: There exist several computational tools which allow for the optimisation and inference of biological networks
using a Boolean formalism. Nevertheless, the results from such tools yield only limited quantitative insights into the
complexity of biological systems because of the inherited qualitative nature of Boolean networks.

Results: We introduce optPBN, a Matlab-based toolbox for the optimisation of probabilistic Boolean networks (PBN) which
operates under the framework of the BN/PBN toolbox. optPBN offers an easy generation of probabilistic Boolean networks
from rule-based Boolean model specification and it allows for flexible measurement data integration from multiple
experiments. Subsequently, optPBN generates integrated optimisation problems which can be solved by various
optimisers. In term of functionalities, optPBN allows for the construction of a probabilistic Boolean network from a given
set of potential constitutive Boolean networks by optimising the selection probabilities for these networks so that the
resulting PBN fits experimental data. Furthermore, the optPBN pipeline can also be operated on large-scale computational
platforms to solve complex optimisation problems. Apart from exemplary case studies which we correctly inferred the
original network, we also successfully applied optPBN to study a large-scale Boolean model of apoptosis where it allows
identifying the inverse correlation between UVB irradiation, NFkB and Caspase 3 activations, and apoptosis in primary
hepatocytes quantitatively. Also, the results from optPBN help elucidating the relevancy of crosstalk interactions in the
apoptotic network.

Summary: The optPBN toolbox provides a simple yet comprehensive pipeline for integrated optimisation problem
generation in the PBN formalism that can readily be solved by various optimisers on local or grid-based computational
platforms. optPBN can be further applied to various biological studies such as the inference of gene regulatory networks or
the identification of the interaction’s relevancy in signal transduction networks.
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Introduction

The Boolean network (BN) modelling framework was first

introduced by Kauffmann in 1969 for the study of gene regulatory

networks [1]. It has been widely applied to analyse the dynamics of

different biological systems such as the gene regulatory network of

the yeast cell cycle [2], T-cell signalling [3], signal transduction in

the apoptotic pathway [4] and many more. For an overview see,

e.g., [5,6]. Despite its simplicity, the framework has been shown to

be capable of modelling large-scale biological networks and

providing meaningful biological interpretations, e.g., the attractors

can be correlated to different cellular states [7]. Nevertheless, BNs

only provide a very limited quantitative insight into biological

systems due to their inherent qualitative nature of state and time.

In 2002, the probabilistic Boolean network (PBN) modelling

framework was introduced by Ilya Shmulevich and colleagues for

the modelling of gene regulatory networks [8]. PBNs combine the

rule-based modelling of Boolean networks with uncertainty

principles as described by Markov chains [8,9]. The PBN

formalism allows multiple Boolean functions to be assigned to a

certain node with corresponding selection probabilities. This

assignment forms a collection of Boolean networks (so-called

constituent networks) that are being randomly chosen in accordance

with their selection probabilities throughout the course of a

simulation of the PBN. A constituent Boolean network determin-

ing the state transition of the PBN is randomly chosen at each

epoch in an instantaneously random PBN, while the transition

determining constituent Boolean network remains constant for a

period of time until a binary random variable asks for a switch in a

context-sensitive PBN [10]. Modelling with PBNs provides a

quantitative understanding of biological systems. For example,

interactive effects (so called influences) between certain genes [8] or

average activities of certain genes given by steady-state probabil-

ities [7] can be computed and expressed in quantitative terms.

Over the past years, PBNs have been widely applied to study

various biological systems. For instance, Yu et al. inferred a gene

regulatory network of the interferon pathway in macrophages

from time-course gene expression data via the calculation of
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Coefficient of Determination (CoD) to determine the selection

probability of each predictor function [11]. Using a similar

approach, Ma et al. inferred a brain connectivity network from

functional Magnetic Resonance Imaging (fMRI) data where the

influence of each brain compartment in patients with Parkinson’s

disease could be determined [12]. In recent years, Flöttmann et al.

modelled the regulatory processes taking place during the

production of induced pluripotent stem cells by combining the

interplay between gene expression, chromatin modification, and

DNA methylation [13]. An extensive analysis on the PBN model

of Flöttmann et al. suggests possible interventions on gene

regulation which might be further developed into clinical

applications. For more examples, see [6,14,15,16], where, among

others, PBN models for the pathogenesis of dengue viral infection

and the transcriptional programming during C. elegans develop-

ment, are discussed.

To facilitate the building of BN and PBN models as a

representation of biological systems, several computational tools

have been developed which can be applied for the optimisation

and inference of models in a Boolean formalism. For instance,

CellNetOptimiser (CellNOpt a.k.a. CNO) by Saez-Rodriguez et al. [17]

was used for the inference of a signal transduction network from

high-throughput sandwich immunoassay data [18]. Dynamic

Deterministic Effects Propagation Networks (DDEPN) by Bender et al.

allows for the reconstruction of signalling networks based on time-

course experimental data [19]. Lähdesmäki and Shmulevich

introduced BN/PBN toolbox [20], a Matlab-based toolbox which

allows for the simulation, visualisation and analysis of BN and

PBN models. BN/PBN toolbox also provides a pipeline for network

inference in both the BN and PBN formalisms based on

experimental measurements such as microarray data. The network

inference process is performed via the calculation of the CoD by

exploring the error size of a given Boolean function (or so-called

predictor) compared to data. The state transition probabilities and

the influences that determine the interactive effect for each pair of

molecules (such as genes) are subsequently calculated. The BN/

PBN toolbox was initially designed for the inference and analysis of

gene regulatory networks [20]. However, it was also applied for

the study of different biological systems such as the brain

connectivity network as previously mentioned [12].

Based on the existing functionalities of the BN/PBN toolbox, we

introduce optPBN, a Matlab-based optimisation toolbox for

probabilistic Boolean networks. optPBN allows for a simple

generation of PBN models from rule-based Boolean modelling.

Prior biological knowledge such as known interactions in the

network, which was not considered in the original BN/PBN

toolbox, can additionally be integrated as inputs in terms of

Boolean rules. optPBN facilitates the incorporation of experimental

data to BN/PBN models in order to generate an integrated

optimisation problem which can subsequently be solved by various

optimisation solvers. In comparison to the BN/PBN toolbox,

optPBN extends the functionality by allowing the identification of

suitable Boolean rules in BNs and the determination of selection

probabilities in PBNs based on experimental data and prior

knowledge. Even though the optimisation pipeline of optPBN is

rather simple and straight-forward, the results generated from

optPBN retain meaningful qualitative and quantitative biological

interpretations which are in accordance with the observed

biological phenomena as captured in the experimental data.

In terms of functionality, optPBN can handle optimisation

problems of networks characterised by various complexities. We

offer a stand-alone version of optPBN toolbox which is suitable for

solving simple optimisation problems, e.g., for small networks. For

solving optimisation problems of complex biological networks such

as the Boolean model of apoptosis from Schlatter et al. which

comprises 86 nodes and 125 interactions [4], we also offer a grid-

based optimisation pipeline of optPBN toolbox that operates on a

large-scale computational platform such as the Grid’5000 [21].

Based on the results obtained from the optimisation of Schlatter’s

model in the PBN format, we quantitatively identified an inverse

correlation between UVB irradiation, nuclear factor kappa-B

(NFkB) and Caspase 3 activations, and apoptotic activity which

could not be demonstrated in the original article due to the

qualitative limitation of the Boolean network framework. In

addition, we were able to estimate the relevancy of a newly

introduced molecular interaction, i.e., the activation of NFkB by

Caspase 8, by considering the value of fitted parameter sets and

the sensitivity of parameters as indicated by parameter distribu-

tions.

Method and Implementation

Probabilistic Boolean networks
A probabilistic Boolean network (PBN) is a collection of Boolean

networks in which a constituent network governs the state (activity)

of a node (molecule) for a random period of time before another

randomly chosen constituent network takes over [7]. Formally, a

probabilistic Boolean network G(V ,F ) is defined by a set of

binary-valued nodes V~fx1,x2, . . . ,xng and a family of sets

F~fF1,F2, . . . ,Fng. For each i~1,2, . . . ,n the set Fi is

Fi~ff (i)
1 ,f

(i)
2 , . . . ,f

(i)
l(i)g where f

(i)
j (1ƒjƒl(i)) is a possible Boolean

predictor function for the node xi and l(i) is the number of such

predictor functions. A realisation of the PBN at a given instant of

time is determined by a vector of predictor functions, where the ith

element of that vector contains the function selected at that time

point for xi. For a PBN with N realisations there are N possible

network transition functions f1, f2, . . . , fN of the form

fl~ff (1)
l1

, f
(2)

l2
, . . . , f

(n)
ln
g, l~1,2, . . . ,N, 1ƒljƒl(j), f

(i)
lj
[Fj and

j~1,2, . . . ,n. Each network transition function fl defines a

constituent Boolean network of the PBN. In this way the

realisations of the PBN can be identified with the constituent

Boolean networks.

Let c
(i)
j be the probability that the predictor f

(i)
j , 1ƒjƒl(i),

which is selected to determine the value of xi at the next time

instance. It follows that
Pl(i)

j~1 c
(i)
j ~1. The PBN is said to be

independent if the predictors for all nodes are selected independently

of each other. Assuming independence, there are N~Pn
i~1 l(i)

constituent Boolean networks of the PBN and the probability

governing the selection of a particular network is given by

Pr(fl)~cl~Pn
i~1 c

(i)
li

for all 1ƒlƒN. Two selection schemes are

possible: the selection of the constituent Boolean network takes

place at each consecutive time step (instantaneously random PBN)

or there is a random variable which governs whether the PBN is

updated in accordance with the current Boolean network or a

newly selected one (context-sensitive PBN). In both cases the

constituent network is chosen according to the selection probabil-

ities cj , 1ƒjƒN . For further details on PBN, we refer to [6,7]

which give a comprehensive overview on probabilistic Boolean

networks. An example of a PBN with three nodes is given in

Figure 1.

The example model consists of three nodes V = (N1,N2,N3) and

the functional classes F1 = {f
(N1)

1 }, F2 = {f
(N2)

1 }, and

F3 = {f
(N3)

1 ,f
(N3)

2 }. N1 and N2 are inputs, where N1 activates

N3 while N2 partly inhibits N3 (40%). The respective truth table is

shown in Figure 1C. Once both N1 and N2 are activated (taking a

state value of 1), node N3 could either solely be under the
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influence of N1 with a probability of 0.6, resulting in the activation

of N3 that will take a state value of 1. Or, node N3 could also be

under the influence of both N1 and N2 with a probability of 0.4,

resulting in the inhibition of N3 that will take a state value of 0.

The probabilistic terms that correspond to the selection probabil-

ities (c
(i)
j ) for the Boolean predictor functions are indicated in the

truth table. We study this example in the context of instanta-

neously random PBNs and show three exemplary model

simulations in Figure 1D.

There are two constituent Boolean networks of the example

model given by the two different Boolean rules for node N3 shown

in Figure 1B. These two constituent networks are randomly chosen

at each time step of a simulation which for N1 = N2 = 1 results in

flips of the state value of N3 between 0 and 1 as shown in

Figure 1D.

The dynamics of the PBN is governed by a Markov chain which

structure is presented in Figure 2. The nodes represent the states of

the system and the possible transitions between the states are

labelled with the respective transition probabilities. The graph of

the Markov chain consists of four disjoint parts referred to as A, B,

C, and D, respectively. There are four bottom strongly connected

components of the graph that correspond to four irreducible

subchains of the Markov chain: 000 (part A), 010 (part B), 101

(part C) and 110, 111 (part D). It follows that the Markov chain is

not ergodic.

With N1 and N2 set to 1, the dynamics of the resulting PBN is

given by part D of the Markov chain in Figure 2D which in fact is

an ergodic two-state Markov chain. The steady-state probability

for N3 to be active is 0.6. This value can be estimated by taking

the mean activity over a Monte-Carlo run as shown in Figure 1D.

The respective values obtained for 3 independent runs are 0.57,

0.62 and 0.52. In general, longer runs would result in a better

estimation of the steady-state probability value.

From a biological point of view, the steady-state probability of a

node being active can be interpreted as mean activity of the

respective molecule in a cell population normalised to the maximal

observed value. Let us assume that some a priori knowledge on the

model structure is given in the form of a set of constituent Boolean

networks, but the selection probabilities are unknown. The above

biological interpretation provides basis for considering inferring

the selection probabilities from measurement data from different

biological conditions (e.g., different ligand stimulations, mutants,

or inhibitor treatments). Once selection probabilities are inferred,

the relevancy of Boolean interactions can be determined by the

values of selection probability and the parameters sensitivity as

indicated by their distribution. Furthermore, selection probabilities

can be further used to calculate the influences, which reflect the

relative importance of parent molecules on the target molecules in

the resulting PBN [8].

optPBN pipeline
optPBN is a Matlab-based toolbox which operates under the

framework of the BN/PBN toolbox by Lähdesmäki and Shmulevich

[20], see File S1 for the toolbox and File S2 for optPBN’s examples.

optPBN extends the existing functionalities of the original toolbox

by allowing 1) for an easy BN/PBN models generation procedure

allowing to incorporate prior knowledge, 2) for improved model

fitting to multiple experimental data, i.e., the optimisation of

selection probabilities for different experimental settings, 3) for a

subsequent statistical analysis of the optimised parameters, and 4)

for a fast computation on grid-based platforms. A simplified

pipeline of the optimisation process in optPBN is shown in Figure 3

and a detailed explanation of the pipeline and computational

scripts can be found in File S3.

The optPBN pipeline starts with the generation of a BN/PBN

model from a preliminary model structure which is usually derived

from literature. This step can be easily done by assigning different

Figure 1. An example model with the corresponding Boolean rules, truth table and model simulation results. [A] The example model
consists of 3 nodes with one activation edge and one partial inhibition edge. The weights of both edges are expressed as selection probability next to
the arrow. [B] Two representative Boolean rules were assigned with the corresponding selection probabilities (c(i)

j ) to represent the example model in
PBN format. [C] The truth table of the example model demonstrates the state values according to different inputs. Once both inputs (N1 and N2) are
active, the output (N3) has a probability of being ON at 0.6 and of being OFF at 0.4 according to the selection probability of Boolean rules. [D] Three
separated Monte-Carlo simulations were performed on an instantaneously random PBN of the example model in Figure 1. The state values of N3 are
shown on the y-axis as a function of time. The mean of the N3 state values over 20 time steps is given on the upper right corner of each run.
doi:10.1371/journal.pone.0098001.g001
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Boolean interactions in a rule-based Boolean modelling format for

each molecule. This means, prior information is considered in

terms of a set of possible constituent Boolean functions. For each

molecule in a network, single or multiple Boolean functions with

the corresponding selection probabilities can be assigned to define

how often the respective Boolean function will be present in the

chosen constituent network. For unknown or uncertain interac-

tion(s), the selection probabilities of these Boolean rules can be

inferred later by optimisation to normalised experimental data.

In the next step, an optimisation problem is generated based on

the integration of the preliminary BN/PBN model structure and

experimental data. The description of each experimental condi-

tion (e.g., different ligand stimulations, mutants, or inhibitor

treatments) with its respective measurement data are defined as

separate modelling cases. The integration step is simplified by

applying the script rule2PBN to convert the rules and experimental

description of each modelling case into the BN/PBN toolbox’s

internal variables (see the documentation in [20] or File S3) and by

subsequently applying the script add2estim to collect and combine

multiple modelling cases into a single global data structure named

estim. Following this step, the script preprocessMultiExp derives only

essential information to generate a final integrated optimisation

problem which can subsequently be solved by different optimisa-

tion algorithms.

optPBN can be operated in two optimisation modes: ‘discrete’

and ‘continuous’. In the ‘discrete’ mode each Boolean network

from the pool of considered networks is assigned one of two

possible values: 0 or 1. Only Boolean networks with value 1 are

considered as constitutive Boolean networks of the inferred PBN,

each with equal selection probability. In the ‘continuous’ mode the

selection probabilities can be any numbers in the range from 0 to 1

with the only constraint that the sum of selection probabilities of

all constitutive Boolean networks of the inferred PBN is 1.

Additional details on the two optimisation modes can be found in

File S3.

To solve the integrated optimisation problem, two different sets

of optimisers are used in optPBN: 1) particle swarm optimisation

(PSO), pswarmSB [22], a global optimisation algorithm as described

in the Systems Biology Toolbox 2 (SBToolbox2) [23,24], and 2) the

evolutionary algorithm (EA) [25] which is integrated in the

population-based meta-heuristic optimisation framework Paradi-

sEO [26] coupled with a differential evolution algorithm (DE) [27].

We therefore offer two versions of optPBN: a stand-alone version

which uses pswarmSB and a grid-based version which uses the

coupled EA and DE algorithms. For additional details on the

pipeline of the grid-based version and the algorithms used, please

see File S4.

The stand-alone version of the optPBN toolbox (PSO-based) was

designed for solving simple optimisation problems, e.g., for small

networks, while the grid-based version (EA- and DE- based) was

customised to be implemented on a large-scale computational

platform such as the Grid’5000 [21] for solving complex

optimisation problems. The respective objective function of the

optimisation process in optPBN pipeline is to minimise the sum of

squared errors (SSE) between 1) molecular activities as represented

Figure 2. Structure of the dynamics of the example model. The
dynamics of the example PBN model presented in Figure 1 is governed
by a Markov chain. The graph of the Markov chain consists of four
disjoint parts as presented in [A], [B], [C], and [D], respectively. In each
graph, the nodes represent the states of the system and the possible
transitions between the states are labelled with the respective
transition probabilities. Four bottom strongly connected components
of the graph that correspond to four irreducible subchains of the
Markov chain are shown as follows: 000 [A], 010 [B], 101 [C] and 110,
111 [D].
doi:10.1371/journal.pone.0098001.g002

Figure 3. Optimisation pipeline of the optPBN toolbox. A
preliminary model structure is required as an input for the generation
of a PBN model. The generated PBN models from different experimental
conditions together with the corresponding measurement data are
subsequently combined to generate an integrated optimisation
problem which can be solved by various optimisation algorithms. Once
the optimisation algorithm(s) generate sufficient amount of good
parameter sets, a statistical analysis of the optimised parameter sets
(i.e., of PBN’s selection probabilities) is performed to indicate the
identifiability and the sensitivity of parameters through the consider-
ation on parameters’ distribution. The optPBN scripts used for each task
are given in parentheses.
doi:10.1371/journal.pone.0098001.g003
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by their steady-state probabilities and 2) measurement data in each

experimental condition. The interface for communication between

the integrated optimisation problem in BN/PBN toolbox’s internal

format and the optimisers, e.g., the conversion from sampled

parameter values to selection probabilities (c
(i)
j ) in PBN, is provided

in the script optfun with a set of adjustable parameters to customise

the optimisation process (see File S3).

During the optimisation process, we approximate the marginal

steady-state distribution of the output nodes by applying the two-

state Markov chain method as presented in the study of

Shmulevich et al. [28]. The ergodicity of the PBN’s underlying

Markov chain is ensured by the introduction of perturbations

controlled by a small perturbation parameter (p) as introduced by

Miranda and Parga [29]. The two-state Markov chain method is

subsequently applied to determine the number of simulation steps

to be discarded before reaching steady-state (‘burn-in period’, m0)

and the minimal number of time steps (N) required to estimate the

marginalised steady-state distribution at a pre-defined accuracy.

The accuracy of the steady-state approximation can be adapted by

adjusting the parameters (e, r, and s) as described by Raftery and

Lewis [30]. Note that the equations used for the calculation of m0

and N as presented in [28] and [30] contain two small errors. We

present the correct derivations of these two-state Markov chain

approach formulas in File S5 and we applied the correct formulas

in the optPBN pipeline accordingly.

Starting from an initial parameters setting (e.g. m0 = 0 and

N = 100), we iteratively determine a new pair of values for m0 and

N from the estimated transition probabilities between the two

meta-states. If the new value for m0+N is greater than the previous

value, the model is simulated further in order to extend the

trajectory to the length given by the new value of m0+N. Then, the

transition probabilities are re-estimated from the last N states in

the trajectory and used to calculate new values for m0 and N. This

process is repeated until the new value for m0+N is not greater than

its previous value. Finally, the marginalised steady-state probabil-

ity is estimated with the frequency with which the corresponding

state in the two-state Markov chain was sampled within the N last

elements of the obtained trajectory.

We observed in the investigated case studies that at least 5,000

iterations of selection probability (c
(i)
j ) parameter sampling by

optimisers for small models (n,10) and at least 7,500 iterations for

large model (10,n,100) are sufficient to get a good fit and to

obtain representative parameter sets for further statistical analysis.

Note that this only holds for the investigated examples and cannot

be generalised for other large-scale models. Once the optimisation

process is finished, the best parameter set is reported and the

model can be re-simulated with the script evalCijAndSimulate in

order to check the quality of model fitting by comparing simulated

steady-state probability to measurement data (see detailed

explanation in File S3). Note that under the stochastic events of

constituent networks chosen during PBN simulations, the same

exact result might not be observed from the re-simulation.

Nevertheless, the differences of the results between each simulation

are expected to be minimal based on the assumption that the

approximation of the steady-state distribution with the two-state

Markov chain approach is rather accurate.

After checking model fitting, a representative set of parameters

which fit well to measurement data can be chosen for further

statistical analysis. The calculation of mean and standard deviation

(SD) of the selected set of parameters can be performed by

applying the script BestRunsStat. The mean of selection probabil-

ities from selected parameter sets indicates to some extent what are

the expected selection probabilities for the potential constitutive

Boolean networks in PBNs that fit the experimental data. In

parallel, the SD value gives an insight on the identifiability for each

parameter and parameters’ sensitivity can be assessed from

parameter distributions. These pieces of information in turn allow

for the estimation of the relevancy of Boolean interactions within

the context of the study.

Results and Discussion

In this section, four case studies with different levels of

complexity are presented to demonstrate the functionalities of

optPBN. We applied the optPBN pipeline, which approximates

marginalised steady-state distribution with simulation of ergodic

PBNs coupled with the two-state Markov chain method, to

generate the results in this section. The parameters for checking

steady-state convergence are set as follows: p = 0.001, r = 0.025,

e= 0.01 and s = 0.95.

For each case study, we consider the best 500 parameter sets in

terms of the optimal cost to analyse the identifiability of the model

parameters and to perform subsequent statistical analyses. The

spread of the identified parameters for each case study is shown in

Figure 4. The scatter plots show that the obtained parameters are

clustered for the first three case studies. However, the parameters

in case study 4 are not always clustered. Therefore, we

demonstrated the result generated from the best run of each case

study which was marked as a red asterisk on Figure 4. A summary

of these results can be found in File S6.

Case study 1: optPBN allows for the identification of
suitable Boolean rule(s) in Boolean networks

With respect to optimising qualitative Boolean networks, optPBN

is capable of identifying a set of suitable Boolean rules from a user-

defined list of candidate rules based on experimental data. For this

task, optPBN is operated in the ‘discrete mode’ for which only 0

and 1 values for the selection probabilities are evaluated (see detail

in File S3).

In order to demonstrate the respective functionality of optPBN,

we use case study 1 (Figure 5) as an example. We pre-define a set

of five different Boolean rules to represent the potential influence

of PI3K and TNFa on NFkB as follows: connect PI3K and TNFa

activation with an OR gate (|), connect PI3K and TNFa

activation with an AND gate (&), has only an activation from

PI3K (PI), has only an activation from TNFa (TN), and has no

interactions from either PI3K or TNFa and output is fixed to 0

(Ø). We consider 4 experimental measurements of NFkB, each

with a configuration of the input nodes PI3K and TNFa. For each

individual measurement, we applied optPBN to determine which of

the pre-selected rules(s) is capable of explaining the experimental

data. The obtained results show that optPBN could identify the

correct Boolean rules. Then, we applied optPBN to all experimen-

tal measurements considered simultaneously. In this case, optPBN

identified the connection of PI3K and TNFa to NFkB with an

AND gate (&) as the only suitable Boolean rule which can explain

the complete set of experimental data. This case study shows that

optPBN can be applied for the inference of biological networks in

the Boolean formalism. The obtained results are summarised in

Table 1.

Case study 2: optPBN allows for the determination of
selection probabilities in probabilistic Boolean networks

In this theoretical case study, we consider the regulation of PIP3

by PI3Kand PTEN. We assume that this process can be modelled

with the network presented in Figure 1A, where the nodes N1, N2,

and N3 represent PI3K, PTEN, and PIP3, respectively. Nodes N1

Optimising Probabilistic Boolean Networks
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and N2 are the so-called input nodes, i.e., they are not influenced

by any node in the network and their values are determined by

explicit assignment. This makes that the underlying Markov chain

consists of four disjoint, non-communicating Markov subchains,

one for each of the four different assignments of values to the input

nodes.

Let us now assume that the model structure is only partially

known, i.e., it is known that PI3K activates PIP3, but there is no

certain information on whether PTEN activates or inhibits PIP3

and to what extent. Therefore, as a prior knowledge, we consider

four different Boolean rules that encode four potential signal flows

from PI3K and PTEN to PIP3 as follows: only activation from

PI3K (PI), only activation from PTEN (PT), activation from PI3K

and inhibition from PTEN (PI&,PT), and no interaction from

either PI3K or PTEN and output is 0 (Ø). Furthermore, four

experiments are performed, where various combinations of values

for PI3K and PTEN as the initial conditions are considered. As the

measured values of PIP3 we take the theoretical values of the

Figure 4. Scatter plots of a set of fitted parameters from all case studies. The distributions of selection probabilities from the best 500
parameter sets in term of optimal cost are shown in [A] for case study 1 (node NFkB), [B] for case study 2 (node PIP3). The dependency among
selection probabilities across two nodes are shown in [C] for case study 3 (nodes NFkB and ERK) and [D] for case study 4 (nodes NFkB and complex2).
The parameter values for the first 3 case studies form a single cluster which indicates that the respective parameters are identifiable. However, the
parameter which influences on NFkB (y-axis) seem to be identifiable in case study 4 but the parameter which influences on complex2 (x-axis) are
much sparser. Such observation raises an issue in term of parameters’ identifiability. Only the best parameter set from each case study (marked as a
red asterisk) was therefore used for further analysis and interpretation.
doi:10.1371/journal.pone.0098001.g004

Figure 5. Case study 1. [A] Case study 1 deals with a Boolean
network that consists of 3 nodes with an unknown Boolean interaction
from the two inputs. [B] The table contains artificial experimental data
from four different combinations of input states (Experiments ‘A’, ‘B’, ‘C’,
and ‘D’) of case study 1.
doi:10.1371/journal.pone.0098001.g005
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underlying Markov chain stationary probabilities determined by

the initial conditions. The partially known network structure and

the experimental data are shown in Figure 6. Now, we applied

optPBN to perform the optimisation in the ‘continuous mode’

where an extensive continuous parameter space (the interval from

0 to 1) is explored within the optimisation process to determine the

selection probabilities for the four different Boolean rules.

When performing optimisation, the values of the input nodes

are fixed to the values specified by the available experimental

conditions, one by one. For each experimental dataset only the

subchain determined by the experimental condition is considered.

In order to make the considered part of the underlying Markov

chain ergodic, perturbations are introduced which make the

considered subchain irreducible and aperiodic. In this way, the

considered part has a unique steady-state probability distribution

which can be estimated by the two-state Markov chain approach

independently of the choice of the initial state of a simulation. The

obtained steady-state probabilities are estimated and the squared

difference of the estimated value and the experimental value is

calculated. To get the final fit score, the squared differences from

all experimental conditions are added.

Two remarks are in place. First, it should be noted that the fit

quality of these experiments could be improved by increasing the

accuracy for the approximation of steady-state distribution, e.g.,

by adjusting the parameter ‘r’. Details on model fitting’s quality in

relationship to the accuracy parameter ‘r’ can be found in File S6.

Second, more importantly, the inference results heavily depend on

the experimental data. In this case study the set of experimental

data was comprehensive in the sense that it covered possible

assignments of values to the input nodes: by considering

experiments A, B, C, and D in Figure 6 part [B], all the four

non-communicating subchains of the Markov chain in Figure 2

are taken into account. If this is not the case, the inference may

result in wrong outcomes. According to the results of this case

study shown in Table 2, the selection probabilities inferred from all

experiments agree well with the selection probabilities of the

original network. However, when only experimental data from

experiments A and D were taken into account, the optimisation

inferred a PBN consisting of all four constituent Boolean networks

given by the rules ‘PI’, ‘PT’, ‘PI&,PT’,and ‘Ø’, with selection

probabilities 0.4602, 0.1344, 0.3607 and 0.0447, respectively.

In summary, this case study demonstrates that the optPBN

toolbox can be applied to infer selection probabilities from given

comprehensive data. Once the selection probabilities are obtained,

they can subsequently be used to estimate the relevancy of Boolean

interactions. In addition, they can also be used to determine the

influence between molecules as presented in [8].

Case study 3: optPBN generates comparable results to an
existing tool while having a broader functionality

To date, there are several computational tools which are

applicable for the optimisation of biological networks in the

Boolean formalism. One of the leading tools is CellNetOptimizer

(CellNOpt a.k.a. CNO) introduced by Saez-Rodriguez et al. [17].

CellNOpt was applied for building logic-based models of signal

transduction networks in different logic formalisms that are trained

against high-throughput proteomics data [18].

To illustrate and prove the functionalities of CellNOpt, the tool

was used to optimise a toy model based on a set of artificial

experimental data. The objective function of CellNOpt is based on

two components: 1) the mean squared error (MSE) deviation

between data and predicted states, and 2) a penalised term for

increasing model size (Ès) which is adjustable by a scaling factor

(a). By minimising a combination of these two terms, CellNOpt was

able to identify the Boolean interactions that correspond to

experimental data (see Figure S1).

To benchmark our newly developed toolbox, we applied optPBN

to optimise the compressed version of the toy model in Boolean

Table 1. Results from the optPBN toolbox for case study 1 compared to the original network.

Optimisation results

Exp|rules I & PI TN Ø

A 3 (0.2) 3 (0.2) 3 (0.2) 3 (0.2) 3 (0.2)

B 7 (0) 3 (0.33) 7 (0) 3 (0.33) 3 (0.33)

C 7 (0) 3 (0.33) 3 (0.33) 7 (0) 3 (0.33)

D 3 (0.25) 3 (0.25) 3 (0.25) 3 (0.25) 7 (0)

All (A to D) 7 (0) 3 (1) 7 (0) 7 (0) 7 (0)

Original network

Correct rule 7 (0) 3 (1) 7 (0) 7 (0) 7 (0)

The table shows the results of optimisation for four different individual datasets (A, B, C and D) and for the combined four datasets (All) compared to the original
network. Five different Boolean rules are applied as follows: connect PI3K and TNFa activation with an OR gate (|), connect PI3K and TNFa activation with an AND gate
(&), has only an activation from PI3K (PI), has only an activation from TNFa (TN), and has no interactions from either PI3K or TNFa and output is fixed to 0 (Ø). The symbol
‘3’ indicates that the respective rule can explain the measurement data while the symbol ‘7’ refers to the contrast observation. The results from the optPBN toolbox
divide the sum of probabilities, i.e. 1, by the number of correct result(s) in each experiment (given in parentheses) and they all correspond to the correct results.
doi:10.1371/journal.pone.0098001.t001

Figure 6. Case study 2. [A] Case study 2 deals with a probabilistic
Boolean network that consists of 3 nodes with an unknown type and
weight of interaction from PTEN to PIP3. [B] The table contains artificial
experimental data from four different combinations of input states
(Experiments ‘A’, ‘B’, ‘C’, and ‘D’) of case study 2.
doi:10.1371/journal.pone.0098001.g006
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formalism as presented in the original CellNOpt article [18], see also

Figure S1. The original toy model comprises 8 nodes. There are 2

input nodes which are TGFa and TNFa with two downstream

nodes that can be inhibited by inhibitors (PI3Ki and Rafi). The

presence of inhibitor is depicted in the input table with ‘2’ once it

is absent and with ‘+’ when it is present. The rest of the nodes are

considered as output nodes and are all measured. Here, we applied

optPBN to optimise the two unknown logic gates for NFkB and

ERK.

The original model structure with 6 different experimental

conditions were plugged into the optPBN pipeline in ‘discrete

mode’ as previously described for case study 1. optPBN is capable

of acquiring the same results as CellNOpt, i.e. to identify

‘NFkB = PI3K & TNFa’ and ‘ERK = Raf’ as the correct Boolean

rules. In addition, optPBN also identified the rule ‘ERK = -

Raf|NFkB’ as an additional solution that can also explain the

data from all experimental conditions (see Figure S1). We also

verified that both correct Boolean rules are independent as the

optimal costs after assigning these two rules one-at-a-time to be the

correct rule are highly similar.

Then, we extended the current study by applying optPBN for the

optimisation of a modified toy model based on a new set of

artificial data (case study 3) as shown in Figure 7. In this version,

we assumed that the weights of molecular activation and the

inhibitors’ efficacies are not absolute, resulting in a propagation of

signals in a non-discrete (continuous) manner. Once output nodes

can be activated by multiple molecules, i.e., NFkB can be activated

by PI3K and TNFa while ERK can be activated by Raf and

NFkB, we consider disjoint activating signals from both inputs

which are sum up to a full activation. When inhibitor is

additionally present, the activating signal is reduced proportionally

to the inhibitor’s efficacy.

Considering e.g. experiment D, both inputs are ON and there

are two unknown weights of activation from PI3K and TNFa

towards NFkB with the presence of PI3K-inhibitor treatment. If

we assume that the activating signal from PI3K is 70% and from

TNFa is 30% with the presence of PI3K-inhibitor that inhibits

PI3K signal at 70%, the signal for the activation on NFkB in this

experiment can be calculated from the sum of the remaining PI3K

signal after inhibition (100%270% = 30%) multiplied by the

weight of PI3K’s activation (70%), resulted in the signal value of

0.3*0.7 = 0.21. This signal is then combined with the disjoint

activating signal from TNFa (30% or 0.3). The sum of activating

signals for NFkB node is therefore 0.51 in this experimental

setting.

To perform an optimisation study on this modified toy model,

optPBN was applied in the ‘continuous mode’ as previously

described for case study 2. The optimisation results as shown in

Table 3 are in a good agreement with the selection probabilities of

the original model.

In summary, the results from the two toy model studies

demonstrate that the optimised networks generated from CellNOpt

and optPBN are similar when operated in a discrete (qualitative)

optimisation mode. At the same time, optPBN offers an additional

functionality of a continuous (quantitative) optimisation mode to

identify selection probabilities which might yield additional insight

into the relevancy of interactions within the network.

Case study 4: optPBN allows for the optimisation of an
apoptotic network at scalable computational time and
for the estimation of interactions’ relevancy in a context-
specific manner

Optimisation of an apoptotic network in the PBN

framework. Schlatter et al. introduced a large-scale Boolean

network of apoptosis in hepatocytes that consists of 86 nodes and

125 interactions as shown in Figure 8. [4] The assigned Boolean

interaction for each molecule was derived from literature. After

the Boolean model was built, it was subsequently validated by

experimental data which were categorised into three discrete

values: no activity ‘0’, low activity ‘1’, and high activity ‘2’. The

analysis of Schlatter’s model was conducted in CellNetAnalyzer

(CNA), a Boolean network and constraint-based models analyser

which allows for the calculation of logical steady-states [31]. As the

original model structure comprises many feedback loops, 13

interactions were removed from the model in order to generate a

new model variant which delivers fixed point steady-states and

thus is compatible to be analysed in CNA. The analysis revealed

the effects from different cytokines stimulations and UVB

irradiations towards apoptosis in hepatocytes, but only in a limited

qualitative manner [4].

Based on the original study, we applied optPBN to optimise

Schlatter’s model in the PBN formalism. We converted the multi-

value Boolean model of apoptosis into a binary PBN model which

comprises 96 nodes and 106 interaction functions (‘initial apoptosis

model’). We used the selected set of Boolean interactions as

described in the original article with minimal modifications on a

few Boolean rules to make them suitable for modelling in the PBN

format (see File S2). Our initial aim is to optimise selection

probabilities of our PBN model in order to return the steady-state

probabilities of 3 output nodes, i.e., Apoptosis, Caspase 3 and

Table 2. Results from the optPBN toolbox for case study 2 compared to the original network.

Optimisation results

Exp|rules PI PT PI&,PT Ø

A,D 0.4602 0.1344 0.3607 0.0447

All (A to D) 0.6041 0 0.3959 0

Original network

Selection probabilities 0.6 0 0.4 0

The table shows the results of optimisation for two datasets: 1) containing measurement data from experiments A and D 2) containing all measurement data from
experiments A, B, C and D. Four different Boolean rules are applied as follows: only activation from PI3K (PI), only activation from PTEN (PT), activation from PI3K and
inhibition from PTEN (PI&,PT), and no interaction from either PI3K or PTEN and output is fixed to 0 (Ø). The selection probabilities inferred from all experiments agree
well with the selection probabilities of the original network. The dataset consisting of the measurement from only experiments A and D is insufficient to reconstruct the
original network.
doi:10.1371/journal.pone.0098001.t002
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NFkB, which match the measurement data. We optimised the

selection probabilities of Boolean rules for 7 target nodes: IKK,

IkBa, IkBe, complex2, caspase8 and caspase3 (both at low and

high activities), which are connected to the 3 output nodes. This

results in the optimisation of 17 selection probabilities.

Next, pre-processing of the original measurement data on

hepatocytes for the three output nodes: Apoptosis, Caspase 3 and

NFkB, was performed by background subtraction and normalisa-

tion to the maximal value. Saturation of Caspase 3’s signals was

assumed in our study (see File S7). Then, the normalised

experimental data and the PBN model description were combined

into an integrated optimisation problem which was subsequently

solved with optPBN in ‘continuous mode’.

For this case study six different experimental conditions which

were experimentally validated are given. During optimisation six

subchains of the underlying Markov chain are considered, each

determined by fixing an input node’s value in accordance with the

experimental condition. The fixed value of the input node is not

perturbed, but all the other nodes can be perturbed, which makes

the subchain ergodic and in consequence having a unique steady-

state distribution. It should be noted that performing the

optimisation with use of a more rich set of experimental data,

i.e., for conditions which correspond to setting the input nodes to

different combinations of values, could provide more insight into

the network interactions.

Optimisation of a complex network at scalable

computational time. To evaluate the fitting cost during the

optimisation process, the marginalised steady-state probabilities

for activity of one molecule at a time for a set of output nodes

(Apoptosis, Caspase 3 and NFkB) needed to be estimated. As

previously presented in the description of the optPBN pipeline, this

was achieved by applying the two-state Markov chain approach

with the accuracy set to 0.025 (r = 0.025). Although the size of the

underlying Markov chain of the PBN is huge, i.e., 296 states, it

Figure 7. Modified toy model of Saez-Rodriguez et al. and corresponding artificial experimental data (case study 3). [A] The modified
toy model from Saez-Rodriguez et al. [18] is a probabilistic Boolean network that consists of 8 nodes with two unknown weights of Boolean
interactions for NFkB and ERK. [B] The table describes the states of inputs and inhibitor treatments for 6 experimental conditions. [C] The
corresponding normalised artificial experimental data of the experimental conditions as described in [B]. The 6 experimental conditions based on the
combination of stimulus and inhibitor treatments yield different readouts on four downstream molecules.
doi:10.1371/journal.pone.0098001.g007

Table 3. Results from the optPBN toolbox for case study 3 compared to the original network.

Optimisation results

Outputs NFkB ERK

Exp|rules PI TN RA NF

All (A to F) 0.708 0.292 0.603 0.397

Original network

Selection probabilities 0.7 0.3 0.6 0.4

The table shows the optimisation results for the dataset which combines all six experiments from A to F (All) in case study 3. Two different Boolean rules are applied for
NFkB and another two rules for ERK as follows: activation signal from PI3K (PI) or TNFa (TN) to NFkB, and activation signal from Raf (RA) or NFkB (NF) to ERK. The results
from the optimisation of modified toy model from Saez-Rodriguez et al. are corresponded with the correct results.
doi:10.1371/journal.pone.0098001.t003
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Figure 8. Boolean model of apoptosis by Schlatter et al. and normalised experimental data (case study 4). [A] The Boolean model of
apoptosis by Schlatter et al. [4] consists of 86 nodes with 125 Boolean interactions. The model was analysed with CellNetAnalyzer (CNA) to study the
correlations between 10 different inputs from different cytokines stimulations and UVB irradiations towards apoptosis. [B] The normalised
experimental dataset were generated based on the experimental data as presented in the original article (see details in File S7). The inverse
correlation between UVB irradiation, NFkB and P17 form of activated Caspase 3 (C3ap17) activations, and apoptotic activity is quantitatively observed
in the original measurement data.
doi:10.1371/journal.pone.0098001.g008

Table 4. Run-time analysis of grid-based optPBN pipeline.

Model Iterations Stand-alone version (1 core) Grid-based version (80 cores) Improvement (folds)

1 1000 305s (5m5s) 8s 38.1

5000 1093s (18m13s) 16s 68.3

2 1000 321s (5m21s) 9s 35.7

5000 1205s (20m5s) 16s 75.3

3 (modified model) 1000 1302s (21m42s) 18s 72.3

5000 6151s (1h42m31s) 39s 157.7

4 (extended structure) 1000 16783s (4h39m43s) 99s (1m39s) 169.5

5000 45503s (12h38m23s) 259s (4m19s) 175.7

The table shows the computational time of the optimisation process required by the grid-based version of optPBN pipeline operated on 80 cluster cores in comparison
to the one required by the stand-alone version running on a single local machine. The run-time analysis was performed on the four case studies for 1,000 and 5,000
parameter samplings to approximate the steady-state probability distribution of output nodes. The results reveal a remarkable reduction of the computational time
from 35 to 175 folds. Abbreviations: s = seconds, m = minutes, and h = hours.
doi:10.1371/journal.pone.0098001.t004
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turned out that in all three cases (Apoptosis, Caspase 3 and NFkB)

the two-state Markov chains were well-mixing: there were frequent

transitions between the two meta-states of the two-state Markov

chains that were considered on top of the underlying Markov

chain of 296 states. In consequence, the marginalised probabilities

could be estimated from trajectories of length less than 4000 (see

File S6). Given this, we were able to perform the optimisation task

in a feasible amount of computational time.

To confirm the accuracy of our results, we performed additional

analyses by fixing one set of selection probabilities (randomly

generated) and started the simulation from random initial

conditions as well as from the extreme cases where initial

conditions for all nodes are either zero or one. We found that

the variations between these 3 cases are minimal, all less than 0.01

(1%). Also, we generated another set of results with higher

accuracy (r = 0.01) where the number of required time steps is

increased approximately 6 folds. We found that the steady-state

distributions of output nodes which were estimated at the two

levels of accuracy (r = 0.025 and r = 0.01) are almost the same, i.e.,

they differ by less than 0.01 (1%) in all case. This indicates that the

chosen parameters lead to a good estimate of the steady-state

distribution of the considered model. We also performed the same

analysis multiple times for different parameter sets where we

obtained similar results. We present a comprehensive datasheet of

the analysis performed for one parameter set in File S8.

Due to the large size of the apoptotic network (Figure 8), the

stand-alone version of optPBN pipeline which runs on a standard

local computer (1 CPU Intel@2.99 GHz, 2 cores/CPU, 3.25 GB

RAM) is not suitable to solve the optimisation problem. Since the

optimisation required 12 hours of computational time to evaluate

approximately 5,000 parameter samples on a standard computer,

we applied the grid-based version of optPBN to solve this

optimisation problem on the Grid’5000 using 10 server machines

(1 server machine comprises 2 CPUs Intel@1.995 GHz, 4 cores/

CPU, 15 GB RAM, see detailed documentation on the installation

and execution of the grid-based pipeline in File S4 and File S9).

The optimisation process was operated in the ‘continuous mode’

on 80 parallel processing cores where the results were delivered in

a timely manner (approximately 10 minutes to evaluate 15,000

parameter samples). The run-time analysis of four case studies

reveals a reduction of computational time from 35 to 175 folds

when running the same optimisation tasks on Grid’5000 with 80

cores. More details on this analysis are shown in Table 4.

Approximation of steady-state distributions by optPBN

reveals more quantitative insight into biological data. For

comparison, the original results from Schlatter’s study (Orig.) and

the set of results from the optimisation of the ‘initial apoptosis

model’ by optPBN (Init.) are shown in Table 5. We were able to

identify a PBN model structure with a set of selection probabilities

that could match relatively well to the measurement data

quantitatively, while the results from the original model are only

limited to 0 and 1 value. The fitting costs of the original model and

of the ‘initial apoptosis model’ based on the calculation of SSE are

1.002 and 0.328, respectively. This indicates that the apoptosis

model in the PBN formalism fits the measurement data better.

In addition, the inverse correlation between the intensity of

UVB irradiation, the activations of NFkB and Caspase 3, and the

apoptotic activity were also identified in a quantitative manner.

Namely, a stronger UVB irradiation (i.e., UV2 = 600 £/m2.

UV1 = 300 £/m2) resulted in a stronger NFkB pathway activation

(0.3083 against 0.0023) but a weaker Caspase 3 activation (0.0016

against 0.9966) and a weaker apoptotic activity (0.4681 against

0.9920). In contrast, the original study of Schlatter et al. could only

identify this relationship in a limited qualitative manner [4].
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optPBN allows for an estimation of interactions’

relevancy in a context-specific manner. As can be seen in

Table 5, the fitted ‘initial apoptosis model’ (Init.) failed to explain

some of the experimental data. For instance, the fitting of NFkB in

a condition with a high concentration of Fas ligand stimulation

(FasL (2)) is not in a good agreement with the experimental

measurement (0.0198 against 0.32). This observation raises a

question whether the set of considered molecular interactions was

sufficient to model the context-specific apoptotic signalling in the

hepatocytes.

In fact, NFkB can also be activated through Caspase 8 with a

mechanism distinct from that of tumour necrosis factor alpha

(TNFa) for cytokine production as described in [32,33]. There-

fore, we modified the Boolean rules to take this information into

account and thereby derived a new model called ‘extended

apoptosis model’ (see detail in File S2). The results from the

optimisation on the ‘extended apoptosis model’ (Ext.) are shown in

Table 5. We found that the ‘extended apoptosis model’ fits the

experimental data better (cost of 0.199) than the ‘initial apoptosis

model’ (cost of 0.328) and the inverse correlation between UVB

intensity, NFkB and Caspase 3 activations, and apoptotic activity

is still preserved. In addition, we also found that the discrepancy

between the simulated model state and the measurement data of

NFkB in the FasL (2) experiment is decreased after the addition of

the new molecular interaction derived from literature.

In Figure 4, we presented the best 500 values for selection

probabilities c
(NFkB)
1 and c

(complex2)
1 in term of fitting cost. By taking

1-c
(NFkB)
1 and 1-c

(complex2)
1 , we could determine the values for the

selection probabilities c
(NFkB)
2 and c

(complex2)
2 respectively. The

mean and the SD values for these selection probabilities are given

in Table 6. These statistics were confirmed in 3 independent

optimisation runs with 500 best parameter sets considered in each

run (see File S2).

We found that the selection probability c
(NFkB)
2 for the Boolean

rule which represents the co-influence of Caspase 8 and nuclear

factor of kappa light polypeptide gene enhancer in B-cells inhibitor

alpha and epsilon (IkBa/IkBe) degradations on the activation of

NFkB obtained a mean value of 16% with SD of 2%. The non-

zero mean value indicates that this interaction is important to

explain the experimental data in the context of our study. Also, the

narrow distribution of the values of selection probability for this

Boolean rule suggests that the model is sensitive to this parameter.

Such information therefore highlights the relevancy of this newly

introduced interaction. In contrast, the distribution of the values of

the selection probability c
(complex2)
2 which describes the influence of

deubiquitinated form of receptor associated kinase 1 (RIPdeubi) on

the activation of TNF receptor-1 signalling complex 2 (complex2)

is more spread. This might suggest that the model is less sensitive

to this parameter. Therefore, the relevancy of this interaction in

the context of our study is still in question.

We tried to further investigate the influence of RIPdeubi on

complex2 by following the methodology as presented in [8].

However, we observed that, the required length of the trajectory to

estimate the joint distribution on the parent nodes of complex2 is

very long and therefore it is practically infeasible to perform this

analysis in a reasonable amount of time with the current

implementation of the optPBN toolbox. Thus, we further estimate

the relevancy of this interaction by considering the model topology

within the context of our study instead.

Considering the model topology as presented in [4], the Boolean

interaction in question represents positive signals on the activation

of complex2 by RIPdeubi via two sources (see Figure 8): 1) A

positive feedback loop from activated Caspase 8 (C8*) + unknown

proteins in type 2 apoptosis (P)Rtruncated Bid (tBid)RBaxRS-

macRRIPdeubiRcomplex2RC8*-complex2RC8*, and 2) The

positive signal from UVB radiation (UV)RBaxRsmacRRIPdeu-

biRcomplex2. According to the original study, the activation of

type 2 receptor (T2R) was only considered and experimentally

validated in the context of Jurkat cells, but not hepatocytes [4].

Therefore, the node P which is activated by T2R will never be

activated and the feedback loop as shown in 1) is not active in our

PBN model (which only fits to the hepatocyte data). In parallel, the

activation of complex2 by UVB (via RIPdeubi) requires the

presence of TNF receptor-1 signalling complex 1 (complex1). This

means the positive interaction in 2) will only be valid when TNF and

UVB co-stimulate. Nevertheless, this condition was not validated in

the original study [4] nor was constrained in the PBN model either.

Thus, the interactions on complex2 activation from 1) and 2) via

RIPdeubi as described are not relevant in the context of primary

hepatocyte. These interactions could therefore be removed from the

PBN model in our study.

We demonstrated that optPBN can be applied to determine the

selection probabilities in PBN which can subsequently be used to

estimate the relevancy of molecular interactions in the context of

study. Such information in turn leads to the generation of

computational models which could represent the dynamics of

biological networks in a context-specific manner.

Table 6. The distributions of fitted selection probabilities on the extended apoptosis model.

Molecule Functions Mean SD

NFkB = (,I_kBa|,I_kBe) 0.8354 0.0209

= (,I_kBa|,I_kBe)|(C8a|C8a_2) 0.1646 0.0209

complex2 = complex1 & FADD 0.8480 0.1105

= complex1 & FADD & RIP_deubi 0.1520 0.1105

The Boolean rules of two target molecules in the ‘extended apoptosis model’ and the parameter distributions of the top 500 fitted selection probabilities in terms of
optimal cost are shown. A low standard deviation (SD) value comparing to the corresponding mean value indicates that model is sensitive to the parameter of the
respective Boolean interaction. This information highlights the relevancy of the respective interaction within the context of study e.g., the case of nuclear factor kappa-B
(NkFB) activation by Caspase 8 (C8a or C8a_2) together with the absence of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha and
epsilon (IkBa and IkBe) inhibitions. In contrast, a high value of standard deviation comparing to the mean value as seen in the case of TNF receptor-1 signalling complex
2 (complex2) activation by deubiquitinated form of receptor associated receptor kinase 1 (RIP_deubi) suggests that the model might not be sensitive to the respective
parameter in this study. The relevancy of this interaction within the context of apoptotic signalling in primary hepatocytes is therefore in question.
doi:10.1371/journal.pone.0098001.t006
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Conclusions

We present optPBN, a novel optimisation toolbox which

provides a simple yet comprehensive pipeline for the generation

of integrated optimisation problems in the PBN formalism which

can readily be solved by various optimisers on local or grid

computational platforms. The optPBN toolbox offers two modes of

optimisation, discrete and continuous, for the selection of

appropriate constituent Boolean networks for the PBN from the

pool of available choices and for the determination of selection

probabilities from experimental data, respectively. The two modes

can be applied for the optimisation and/or inference of the

networks in both qualitative and quantitative manner.

optPBN was tested and compared against existing optimisation

tools for the Boolean formalisms where optPBN delivers similar

results and it also offers quantitative optimisation. The updated

version of CellNOpt, CellNOptR, is also capable of handling

quantitative optimisation, but the respective Boolean models have

to be converted into fuzzy logic or ordinary differential equation

(ODE) modelling frameworks beforehand [17,34]. We also

demonstrated that optPBN allows for the optimisation of an

apoptotic network, leading to the generation of an optimised PBN

model with the corresponding selection probabilities that fit

experimental data. Such results do not only yield a better

quantitative insight into biological networks, they can also be

further used to evaluate interactions’ relevancy within the network

in a context-specific manner. Lastly, the computational time which

is a major limitation when dealing with complex optimisation

problems can be better handled by applying the grid-based

implementation of the optPBN optimisation pipeline.

Limitations
Even though optPBN offers many simple-to-use functionalities,

there are some limitations that come along with the simplicity of

the toolbox. First, our approach always requires prior knowledge

on the possible interactions between molecules which are given in

the form of potential constituent Boolean networks. There exist

approaches using Bayesian network with Boolean variables for

reconstructing biological networks which do not have this

limitation, see e.g., [35]. Second, the formulation of the rule-

based modelling has to be in a specific order when there is a

combination between parameter and constant value in the

assignment of different Boolean rules. For instance, given an

output which can be activated by an input (a parameter is assigned

to the rule) while it can also be inhibited by an inhibitor (the

constant value ‘0’ is assigned to the rule), the Boolean rule which

represents the activation by an input has to come first (see more

examples in the help section of the script rule2PBN in the optPBN

toolbox). Lastly, optPBN uses only one global data structure (estim)

to store and process all information of the network so that the

integrated optimisation problem can be solved simultaneously for

all experimental cases. This setting might not be applicable to

solve the optimisation problem where different parameter values

are expected for each experimental case (i.e., the optimisation of

local parameters). The optimisation of such local parameters is not

yet available in the current version of the toolbox.

Outlook
First, we aim to improve optPBN to be capable of optimising

local parameters. In addition, we plan to introduce the concept of

penalisation for increasing model size (Ès and a) as implemented in

CellNOpt and CellNOptR as a part of our objective function in order

to generate better results. Second, we foresee that other global

optimisation techniques, e.g., Simulated Annealing, Pattern

Search methods, or Mode Hopping Metropolis sampling could

be integrated into the optPBN pipeline. Third, the ambiguity of

Boolean rules formulation to properly represent biochemical

reactions is yet to be addressed. Lastly, we envisage many useful

applications from implementing the optPBN toolbox to study

biological systems such as the inference of gene regulatory

networks from microarray data and the identification of crosstalk

signalling’s relevancy in mammalian signal transduction networks

based on experimental data in a context-specific manner.

Software Availability and Requirements

– Project name: optPBN

– Project home page: http://sourceforge.net/projects/

optpbn

– Operating system(s): Platform independent

– Programming language: Matlab (and C++ for grid-based

version)

– Other requirements: BN/PBN Toolbox, Systems Biology

Toolbox 2 (with Message Passing Interface (MPI) and

ParadisEO for grid-based version)

– License: GNU GPL v3.0 (with CeCILL license required for

ParadisEO framework)

– Restrictions: no restrictions except for commercial use

Supporting Information

Figure S1 Compared results from optPBN and CellNOpt
on the original toy model of Saez-Rodriguez et al. [A] The

model structure of the original toy model of Saez-Rodriguez et al.

[18] is shown on the left panel. The experimental descriptions and

the corresponding artificial measurement data are shown in the

left and right tables respectively. [B] The results from CellNOpt

under a defined set of size penalty (0#a,0.23 and Ès = 0.58)

identifies the AND (&) gate for the connection between PI3K and

TNFa to NFkB. The interaction from Raf was identified as the

only factor that activates ERK. [C] The results from the

optimisation with optPBN toolbox in discrete mode are in a good

agreement with CellNOpt for NFkB. Furthermore, optPBN also

discovered the OR (|) gate for the connection between Raf and

NFkB to ERK as an additional solution.

(ZIP)

File S1 Stand-alone version of optPBN toolbox. The

compressed zip file contains all scripts of optPBN toolbox in

stand-alone version. Also, it contains three scripts of optPBN

toolbox in grid-based version with the tag ‘_G5K.m’ for the

analysis of optimisation results obtained from the grid-based

pipeline which runs on a local computer. To install the stand-alone

version, a wrap-up script in Matlab (install.m) is provided for the

ease of installation. The installations of the BN/PBN toolbox [20]

and the optimisation toolbox of Systems Biology Toolbox 2

(SBtoolbox2) [24], which are required for the running of optPBN

toolbox, are also included in the wrap-up script. The grid-based

version of the optPBN toolbox is provided separately and can be

downloaded at https://sourceforge.net/projects/optpbn. It com-

prises all packages needed for running the algorithm on a cluster

or on a grid-based infrastructure. This includes the ParadisEO 1.1

framework (evolutionary algorithms and parallelisation support),

MPICH2, LibXML2, GSL, MCR and the optPBN grid-based

implementation in itself. A detailed description on the installation

and execution of the grid-based pipeline can be found in File S9.

(ZIP)
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File S2 Computational scripts of all examples and the
corresponding original result files. The compressed zip file

contains the optPBN optimisation pipeline in the form of Matlab

scripts (.m) for all examples used in this study (case study 1, case

study 2, toy models of Saez-Rodriguez et al., i.e. case study 3, and

Boolean model of apoptosis of Schlatter et al., i.e. case study 4).

For the results presented in this article, the integrated

optimisation problems of the first 3 case studies were optimised

by using the stand-alone version of the optPBN pipeline applying

particle swarm optimisation as the optimiser on a single local

machine. The last case study (Schlatter’s model, i.e. case study 4),

due to a complex optimisation problem, was optimised by using

the grid-based version of the optPBN pipeline applying a

combined differential evolution and evolutionary algorithms as

the optimisers on the Grid’5000. The corresponding results from

the optimisations of each model presented in the article are

included in a matrix format (.mat and .log) for further analysis on

the distributions of optimised parameters. A complete set of result

files for four case studies and the results from additional analysis

as presented in File S8 can be downloaded at https://

sourceforge.net/projects/optpbn.

(ZIP)

File S3 Manual of the optPBN toolbox. The PDF manual

provides a detailed description of the optPBN optimisation pipeline.

A step-by-step guideline on how to use the optPBN toolbox

together with the explanation of the core idea for each

computational script is provided in the document.

(PDF)

File S4 Grid-based pipeline of optPBN toolbox. The PDF

documentation provides a description on the grid-based pipeline of

the optPBN toolbox. It also describes a strategy to combine two

optimisation algorithms, evolutionary algorithm (EA) and differ-

ential evolution algorithm (DE), as a single optimiser. An

optimisation run on Grid’5000 is demonstrated as an example.

(PDF)

File S5 Derivations of the two-state Markov chain
approach’s formulas. The PDF documentation provides the

corrected derivations of the two-state Markov chain approach’s

formulas in relation to the derivations presented in the original

work of Raftery and Lewis [30]. The term l which refers to

1{a{b in the calculation of m0 should be replaced with lj j (i.e.,

1{a{bj j). In addition, W which denotes the standard normal

cumulative distribution function in the calculation of N should be

substituted with the inverse of its function, W21, after derivations.

(PDF)

File S6 Results of optPBN for four case studies. The

spread sheet provides a complete set of results generated from the

optPBN pipeline for the four case studies. Different numbers of

(selection probability) parameter samplings from optimisers and a

range of accuracy parameter ‘r’ from 0.01 to 0.05 are explored.

Computation time and quality of model fitting were reported for

both stand-alone and grid-based versions.

(XLSX)

File S7 Normalised and justified experimental data for
the study of apoptosis model from Schlatter et al. The

spread sheet provides a detailed description of the measurement

data that were used for the optimisation of the Boolean and

probabilistic Boolean models of apoptosis from Schlatter et al. The

pipeline on background subtraction and normalisation of exper-

imental data with the justification on the saturation of the signal

for p17 form of activated Caspase 3 is described in detail.

(XLS)

File S8 Analysis of the approximation of steady-state
distributions with different initial conditions and accu-
racies. The spread sheet presents the steady-state probability of

output nodes in case study 4 which are approximated by optPBN

applying a fixed set of selection probabilities (randomly generated)

with different sets of initial conditions. Three sets of initial

conditions (random, all zeros, and all ones) together with two levels

of accuracies (r = 0.025 and r = 0.01) were explored. Steady-state

probabilities of output nodes and parameters of two-state Markov

chain approach are shown. The differences of these values across

different sets of initial conditions and across two levels of

accuracies are also presented.

(XLS)

File S9 Installation guide for the grid-based pipeline of
optPBN and an execution example on Grid’5000. The PDF

documentation provides a list of commands to set-up the grid-

based version of the optPBN toolbox on a cluster or on a grid-based

infrastructure. An example set of commands to reserve resources

and to execute an optimisation task on Grid’5000 is also included.

(PDF)
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