Network Security

Course notes

Version 2013.1

Contents

Contents

i Contents

These are the lecture notes of Prof. Dr. Mauw as used in his classes. These notes are meant to
be informal and are only distributed to indicate the topics treated during class. Students can
download these notes for personal use only. It is not allowed to distribute these lecture notes
outside the University of Luxembourg, e.g. by publishing them on the Internet.

Contents

ii

Chapter 1

Firewalls

A firewall is a security control designed to prevent unauthorized access from an external network
to the internal (networked) system.

Operation:
e All traffic from inside to outside, and vice versa, must pass through the firewall.

e The firewall allows only authorized traffic to pass through (as defined in the security policy).

Capabilities (both security and non-security):
o Filter traffic.
e Audit traffic.

e Router functions, like NAT, IPsec, VPN.

How to bypass the firewall:

e Uncontrolled network access, like dial-in/out, wireless access (extra problem: rogue access
points).

e Physically intruding the perimeter of the system.
e Use of portable devices (PDA, laptop, USB stick)

Filtering strategies:

e Packet filtering

An IP packet contains: source address, destination address, port number, protocol, etc. Use
rules (similar to p278 of the text book) to decide on blocking or allowing (for an explanation
of the rules see the text book).

no. | action | prot | opt | source | port dest port comment
1 block * - * * SPIGOT * We don’t trust them.
2 block * - | SPIGOT * * * We don’t trust them.
3 allow | SMTP | — | internal | 25 * * From our SMTP port
4 allow | SMTP | - * * internal 25 To our SMTP port

Use default rule (can be block or allow) to decide on packets for which there is no rule.

1.1. Location of a firewall 2

Advantage: simple

Disadvantages:

Work at IP level, cannot examine upper-layer data, so cannot block application specific
commands.

— Limited logging information (source, destination, port number etc.).

— Address spoofing attacks.

Hard to fully cover organization’s security policy.

e Stateful inspection

Packets are part of an existing stream of traffic (TCP connection). The firewall is able to
determine whether a packet is either the start of a new connection, a part of an existing
connection, or an invalid packet.

e Application-level Gateway (also known as application layer firewall or application proxy)

Inspect packets at the level of the application (ftp, telnet, http). Can be used to block
websites, viruses, etc.

1.1 Location of a firewall

The firewall can be located:
e Personal firewall (on a computer)
e Between internal and external network (on the gateway)

e Double firewall separating internal network from Demilitarized Zone (DMZ) from external
network. The DMZ contains the “services” provided by the company to the external net-
work, such as web servers, mail, DNS. (See fig 9.3 p287 of the text book).

The DMZ is usually treated as no man’s land: dangerous for the inside network (viruses/malware
in DMZ), and the inside network poses a danger to it (attacks from inside to DMZ). Hence,
separate DMZ from internal network with firewall. Similarly, separate DMZ from outside
network with firewall.

Chapter 2

Intrusion Detection

Two main sources of attacks on a system:
e intruder

— internal (misuse of privileges)

— external (penetrator)
e malware: see Chapter 77

Intrusion Detection Systems (IDS) / Intrusion Prevention Systems (IPS) provide a “first line
of defense”: they will reduce intrusions but definitely not eliminate them all.

We can categorise the attacker using his skills and reasons to attack:

e Newbie/tool kit user (no specialized knowledge, use of-the-shelf hacking tool).
E.g.: Security testing firms, curious students.

e Hacker (fun, showing weaknesses, increase status). Note: even if the hacker does not damage
the system/data, the company may make a lot of cost to recover from the incident (direct,
as well as indirect costs).

E.g.: Kevin Mitnick.

e Criminals (for profit): hacking is becoming an industry with specializations and a market
for hacking services.
E.g.: You can buy valid credit card numbers online.

e Cyber terrorists (for damage, intimidation).
E.g.: Anonymous.

e Insider, e.g. disgruntled employee.
E.g.: Terry Childs (see a.o. Wikipedia).

Using this, we can tailor the Security Controls to the appropriate intruder. Example security
controls are:

IPS/IDS, logs, principle of least privilege, authentication, managerial (close down accounts of
ex-employees), back up,

2.1. Concepts of Intrusion detection 4

2.1 Concepts of Intrusion detection

Notion 1 Intrusion detection =
A security service that monitors and analyzes system events for the purpose of finding, and pro-
viding (real-time) warning of attempts to access system resources in an unauthorized manner.

Logical components of IDS:
e sensor: collect data
e analyzers: determine if intrusion has occurred
e user interface: view output and control system

Often, Intrusion Detection is not a yes/no question. The system (and operator) have to decide
given an event whether it is regular behaviour or intruder behaviour (see figure p182 text book).

Four different situations in detecting a possible attack.
’ H Positive \ Negative ‘

True a real attack triggers an alarm real attack, but no alarm
False || a regular event triggers an alarm | regular event and no alarm

Events
IDS base their operation on the observed “events”, which can contain:

e Subject: initiator of action (e.g. sjouke).

Action: which operation (e.g. login, read).

Object: on which the action is performed (e.g. file, program, printer).

Exception-condition: is the action performed successfully? (e.g. attempt to read a file which
is not readable).

e Resource usage: amount used of some resource (e.g. processor time, number of pages printed).
e Time-stamps: time at which the action took place.

Example: from pl85.
Consider the following command: COPY GAME.EXE TO <library>GAME.EXE
This command can give rise to the following three events:

| Subject | action | object exception | resouce | time-stamp
Smith execute | <library> COPY.EXE 0 CPU = 000002 11012345
Smith read <Smith> GAME.EXE 0 RECORDS =0 11023456

Smith execute | <library> COPY.EXE | write-viol | RECORDS =0 11034567

2.2 Approaches to Intrusion Detection

Two approaches to detect problems:
e Anomaly detection: find abnormal pattern/behavior.

— Threshold detection: determine threshold for frequency of occurrence of various events.

— Profile based: determine profile for each user and detect changes.

e Signature detection: define which behavioral patterns are typically those of an intruder.

Chapter 2. Intrusion Detection

Example of measures for anomaly detection (from p188 of the book).

’ Measure

Model

Type of intrusion detected

|

Login and Session Activity

Login frequency by day
and time

Mean and standard deviation

Intruders may be likely to log in
during off hours

Frequency of login at dif-
ferent locations

Mean and standard deviation

Intruders may log in from a loca-
tion that a particular user rarely
Or never uses

Time since last login

Operational

Break-in on a “dead” account

Elapsed time per session

Mean and standard deviation

Significant deviations might indi-
cate masquerader

Quantity of output to lo-
cation

Mean and standard deviation

Excessive amounts of data trans-
mitted to remote locations could
signify leakage of sensitive data

Session resource utiliza-
tion

Mean and standard deviation

Unusual processor or I/0 levels
could signal an intruder

specified terminals

Password failures at login ~ Operational Attempted to break-in by pass-
word guessing
Failures to login from Operational Attempted break-in

Program Execution Activity

Execution frequency

Mean and standard deviation

May detect intruders, who are
likely to use different command,
or a successful penetration by a
legitimate user, who has gained
access to privileged commands.

Program resource utiliza-
tion

Mean and standard deviation

An abnormal value might sug-
gest injection of a virus or Tro-
jan horse, which performs side ef-
fects that increase I/O or proces-
sor utilization.

Execution denials

Operational model

May detect penetration attempt
by individual user who seeks
higher privileges.

File Access Activity

Read, write, create, delete
frequency

Mean and standard deviation

Abnormalities for read and write
access for individual users may
signify masquerading or brows-
ing.

Records read, written

Mean and standard deviation

Abnormality could signify an at-
tempt to obtain sensitive data by
inference and aggregation.

Failure count for read,
write, create, delete

Operational

May detect users who persis-
tently attempt to access unau-
thorized files.

2.3. Base Rate Fallacy 6

Example of heuristics for signature detection:
1. Users should not read files in other users’ personal directories.
2. Users must not write other users’ files.

Users who log in after hours often access the same files they used earlier.

- W

For users, access to disks happens via the operating system’s (disk) drivers.
5. Users should not be logged in more than once to the same system.

6. Users do not make copies of system programs.

2.3 Base Rate Fallacy

Notion 2 (Fallacy) A fallacy is a “false or misleading belief/notion.”

Any intrusion detection system is an imperfect test of the system — it will fail to detect some ma-
licious events (false negatives) and detect some benign events as being malicious (false positives).

Any imperfect test suffers from the base rate fallacy: if the base rate of the events that are to
be detected is very low, detection error can make the test useless.

a. Low base rate b. High base rate

Figure 2.1: Low vs. high base rate of event.

Consider, for example, the two base rates shown in Figure Il In Figure 2.1k, we see a situation
where there are few events which we are looking for (depicted in red). Figure2Ib shows a situation
in which most events are the ones we are interested in.

Now suppose we use a test which is less than perfect: for a “red” event, there is a 90% chance
the test results in “red”, while for a “blue” event, there is a 90% chance the test results in “not
red”. Since the test is not perfect, it will make errors. But if the base rate is very low, then the
amount of errors it makes can be (far) greater than the amount of correct results it gives.

Example 2.3.1 (Testing for red with different base rates) Consider there are 99 “blue” events
for each “red” event (i.e. the base rate of “red” events is 1%).

e Of every 100 events, 99 are “blue”.
o Of these 99, 9.9 will be tested as “red”.

e So, at best, testing 100 events will result in 10 events labelled “red”, only one of which is
actually red.

So, in this setting, the test (which is 90% accurate), is only correct 10% of the time(!).
If the base rate is closer to 50%, things change:

o Of every 100 events, 50 are “blue” and 50 are “red”.
e Of the blue events, 5 will be tested as “red”.

o Of the red events, 45 will be tested as “red”.

7 Chapter 2. Intrusion Detection

e So, testing 100 events will result in 50 events labelled “red”, of which 45 events (90%) are
actually red!

Finally, consider a situation like Figure[21b: there are 99 “red” events for each “blue” event. In
this case:

Of every 100 events, 1 is “blue” and 99 are “red”.

e At worst, the one blue event will be mistakingly labelled “red” — but this only happens 10%
of the time.

Of the 99 red events, 89 will be tested as “red”.

e So, worst case, testing 100 events will result in 90 events labelled “red”, of which 89 events

(98.89%) are actually red!

Note that in this last setting, the test is good at finding red events, but not good at finding ‘not
red” ones — most of the not-red labels are incorrect.

As the above example illustrates, the performance of a non-perfect test depends on the incidence
of the tested-for event — that is, the base rate of the event. Depending on the base rate, the exact
same test can perform very well (98.89% correct) or rather bad (10% correct).

This is further illustrated by the below example.

Example 2.3.2 (Base Rate Fallacy) Consider reqular (R) and intruder (I) events. Suppose
an IDS will ring an alarm for 99 out of 100 I events. For only 1 out of 100 R events it will ring
a (false) alarm.

Suppose further that we have a computer system on which 1,000,000 R events take place in an
hour plus 100 I events.

We observe an alarm from the IDS. What is the chance that this event is an intruder event?

Answer: The system will ring an alarm for 99 of the I events and for 10,000 of the R events.
Given an alarm, the chance that this is an intruder event is 99/10,099 which is roughly 1 percent.
So the chance of a false alarm is 99 percent.

In conclusion: to understand how well a not-perfect test will perform in the real world, knowing
only its accuracy does not suffice. In addition, we need to have an idea of the ratio of positive vs.
negative events.

False positives/false negatives

An event that tests positively, but is “negative”, is called false positive — the test classifies this
event as “positive”, but that is false. Similarly, a false negative is an event which the test classifies
as “negative”, while it is actually positive. For example, for a spam filter, we have:

not spam spam
tagged “not-spam” false negative
tagged “spam” false positive

Calculations taking base rate into account

This section illustrates (by means of an example) how to answer questions related to the base rate
fallacy.

Example 2.3.3 (Base Rate Fallacy calculations) Consider a spam filter that has an accu-
racy of 99%: 99% of all spam messages is tagged as spam, while 99% of not-spam is not tagged.
We let this filter tag 1,000,000 messages, of which 5% is actually spam, and the rest isn’t. With
this, we can compute the answer to questions such as the following:

2.4. Honey pots 3

e How many spam mails are there in reality?

e How many spam mails will be tagged as spam?

e How many non-spam mails will be tagged as spam?
e How many spam mails will be tagged as non-spam?

e ctc.

To answer this, we fill in the following table:

not spam | spam sum
not tagged
tagged
sum \ | 1,000,000

Since 5% of all mail is spam, we know that there are 5% x1,000,000 = 50,000 spam mails in the
entire collection. Hence, the remaining 1,000,000 — 50,000 = 950, 000 mails are not spam.

not spam | spam sum
not tagged
tagged
sum | 950,000 | 50,000 | 1,000,000

Moreover, we know that 1% of the spam mails will not be tagged, therefore 1% x50,000 = 500
spam mails will not be tagged. The remaining 50,000 — 500 = 49,500 spam mails will be tagged.

Similarly, 1% of non-spam mails will be tagged. Hence, 1% x950,000 = 9,500 non-spam mails
will be tagged. The remaining 950,000 — 9,500 = 940, 500 mails won’t be tagged. If we fill in these
numbers, the table looks like this:

not spam | spam sum
not tagged | 940,500 500
tagged 9,500 49,500
sum | 950,000 | 50,000 1,000,000

Now we can simply sum the rows, and find that there are 940,500 4+ 500 = 941,000 mails that are
not tagged, and the remaining 9,500 + 49,500 = 59,000 mails are tagged.

In this example, the Base Rate Fallacy is that the base rate (of spam) is so low (5%), that
the tiny errors the filter makes lead to inaccurate results. In particular, the chance that a tagged
message is a false positive is 9,500/59,000 = 0.1610... = 16.1% (/).

Because the base rate of spam is low, the number of false positives is quite high.

2.4 Honey pots

Honeypot: fake resource serving to fool an intruder.

e Examples:

— file/database with fake information
— computer system
— network (virtual, simulated)

— e-mail address (spamtrap)
e Purposes:

— Divert attacker from accessing criticial systems
— Collect information about the attacker’s activity

— Encourage the attacker to stay on the system long enough for administrators to respond

	Firewalls
	Location of a firewall

	Intrusion Detection
	Concepts of Intrusion detection
	Approaches to Intrusion Detection
	Base Rate Fallacy
	Honey pots

