
Lecture Notes on Web Vulnerabilities

Ton van Deursen and Saša Radomirović

March 23, 2010

1 Web Security

1.1 Introduction

Today’s web applications are often vulnerable to attacks. There are several
reasons why many web applications contain vulnerabilities. Programmers are
generally not aware of good security practices, security is hard to get right, secu-
rity is inconvenient. Moreover, there is no direct return on investment on secure
applications. There is also the predominant thinking that one web applications
vulnerability does not have the capability of inflicting major damage.

Table 1 gives a non-exhaustive overview of today’s web vulnerabilities. Web
vulnerabilities can be classified by the victim (either a remote system, or a local
system) and the target (either data, or a complete system).

It may not come as a surprise that web vulnerabilities cannot be prevented
completely. However, one must be aware of the mistakes and vulnerabilities
that are present, and adapt his web applications to minimize the chance that
they are compromised.

The subsequent sections present common web vulnerabilities in today’s web
applications. The common divisor of these vulnerabilities is that they rely on
input from the attacker that is executed. Therefore, a web application should
always sanitize input provided by the user.

Table 1: Classification of web vulnerabilities
Data Computer System

Remote SQL injection Apache Buffer Overf.
System

Resp.-splitting Email attachments,
Local XSS, Phishing WMF/TIFF Vulner.
Computer cookie pois. Trojans, Malware

CSRF

1

To understand why input validation is necessary, it is essential to understand
the communication between a browser and a remote server. The communication
starts by the browser issuing an HTTP GET command to the server:

GET /members/sasa/fun/ HTTP/1.1

Host: satoss.uni.lu

The server then responds with:

HTTP/1.1 200 OK

Date: Wed, 31 Oct 2007 11:27:42 GMT

Server: Apache/1.3.33 Ben-SSL/1.55 (Unix) DAV/1.0.3 PHP/4.3.10

Last-Modified: Tue, 30 Oct 2007 13:27:49 GMT

ETag: "6e000e-7f-47273155"

Accept-Ranges: bytes

Content-Length: 127

Content-Type: text/html

<HTML>

<HEAD><TITLE>Demo Website</TITLE></HEAD>

<BODY onload=’alert("Printer on Fire!");’>

<H1>Hello World</H1>

</BODY></HTML>

The response is interpreted by the browser in three steps:

1. The browser reads the header:

HTTP/1.1 200 OK

Date: Wed, 31 Oct 2007 11:27:42 GMT

Server: Apache/1.3.33 Ben-SSL/1.55 (Unix) DAV/1.0.3 PHP/4.3.10

Last-Modified: Tue, 30 Oct 2007 13:27:49 GMT

ETag: "6e000e-7f-47273155"

Accept-Ranges: bytes

Content-Length: 127

Content-Type: text/html

2. The browser reads and displays the HTML code:

<HTML>

<HEAD><TITLE>Demo Website</TITLE></HEAD>

<BODY onload=’alert("Printer on Fire!");’>

<H1>Hello World</H1>

</BODY></HTML>

3. The browser interprets and executes scripts in the content:

alert("Printer on Fire!");

2

1.2 Cross-site scripting (XSS)

Cross site scripting allows attackers to execute scripts in the user’s browser.
This may result in hijacked user sessions, defaced web sites, hostile content in
web sites, phishing attacks, and hostile browser take-overs. The malicious script
is usually JavaScript, but may be any scripting language that is interpreted by
the victim’s browser. Cross site scripting flaws occur whenever an application
takes data that originates from the user and does not validate the user input.

The attacks are usually implemented in JavaScript, which is a powerful
scripting language. Using JavaScript allows attackers to manipulate any aspect
of a rendered page, such as adding a login box which forwards credentials to a
hostile site. Another possibility is to perform a phishing attack on the user (see
Section 1.6). The evolution of JavaScript malware, finding its way into more
and more attackers toolboxes, has made finding and fixing this vulnerability
more vital than ever.

XSS attacks can be protected against by validation of all incoming data
(“whitelist validation”) and appropriate encoding of all output data. Validation
allows the detection of attacks, and encoding prevents any successful script
injection from running in the browser.

1.3 Injection flaws

Injection flaws are common in web applications. There are many types of in-
jections, for instance SQL, LDAP, XPath, XSLT, XML, and OS Command
injections. Injection flaws occur when user-supplied data is passed to an inter-
preter as part of a command or query. The most common type of injection flaw
allows for SQL injection. Structured Query Language (SQL), is a computer lan-
guage designed for the retrieval and management of data in relational database
management systems, database schema creation and modification, and database
object access control management.

A typical SQL query looks like

SELECT field FROM table WHERE condition;

For instance, if we have a table of all students and their grades, we might
want to issue the following command

SELECT student FROM allstudents WHERE grade < 10;

to list all those students whose grade is below 10.
A classic way to verify a username and password provided by a user is to

search the database for that username/password. If the database returns a
non-empty set, the user has provided a valid pair, and passes authentication. A
common way to do this is to access the database from a PHP script using the
following code:

$sql = "SELECT * FROM table WHERE username = ’" . $user . "’

AND password=’" . $password . "’;";

$result = mysql_query($sql);

3

A simple SQL injection that would allow access to the website could be to
provide admin as username and anypassword’ OR ’1’=’1 as password. Giving
such values would result in the following SQL query being executed:

$sql = "SELECT *

FROM table

WHERE username = ’admin’

AND password=’anypassword’ OR ’1’=’1’;

The latter part of the injection (’ OR ’1’=’1) ensures that the WHERE-
clause is always satisfied. This would allow the attacker to pass the authen-
tication mechanism and login to the system without knowing a valid user-
name/password combination.

Although passing the authentication scheme is undesired, much more dam-
age can be done by exploiting the fact SQL queries can be composed using a
semicolon ;. For instance, the following input for password would add a user
“Ton” to the database with password “12345”.

anypassword’ OR ’1’=’1’; INSERT INTO table VALUES (’Ton’,’12345’);--

Since the values of $user and $password are entirely under the control of
the attacker, any malicious input can be passed on to the database.

Any application that allows users to input data which is subsequently passed
on to another system is potentially vulnerable to injection flaws. The main
solution to this problem is to sanitize the data (for instance by disallowing
certain characters in user input), before passing it on to another system.

SQL Injection has been at the center of some of the largest credit card
and identity theft incidents. Today’s backend website databases store highly
sensitive information, making them a natural, attractive target for malicious
hackers. Names, addresses, phone numbers, passwords, birth dates, intellectual
property, trade secrets, encryption keys and often much more could be vulner-
able to theft. With a few well-placed quotes, semi-colons and commands entire
databases could fall into the wrong hands.

1.4 Cross-site request forgery (CSRF)

Cross-site request forgery is not a new attack, but it is gaining in popularity.
A CSRF-attack forces a logged-on browser to send a request to any web site

4

of the attacker’s choosing, which then performs the chosen action on behalf of
the victim. The attack works by including a link into a web page that accesses
another web site to which the user has logged in. The attack allows attackers
to make an HTTP request to e.g. the victim’s bank, blog, or web mail. The
following tag in any web page viewed by the victim will generate a request to
the web page that logs out the user:

If an online bank allowed its application to process requests without explic-
itly verifying the user’s credentials, the following code asks for a transfer of
funds:

<img src="http://www.example.com/transfer.php?toIBAN=123

&toBIC=456&amount=500">

Although XSS flaws are not required for CSRF attacks to work, any web site
that is vulnerable to XSS attacks is also vulnerable to CSRF attacks. When
building defense against CSRF attacks, eliminating XSS vulnerabilities in a
web site is essential, since such flaws can be used to get around CSRF defense
mechanisms.

The only protection against CSRF attacks is that applications do not rely
on credentials that are automatically submitted without the user’s knowledge.

1.5 Information leakage

Applications can unintentionally leak information about their configuration, in-
ternal working, or violate privacy through a variety of application problems.
Examples of such information are developer comments, user information, in-
ternal IP addresses, source code, software version numbers. While information
leakage itself does not have to be a problem, the information may be used by
an attacker to launch, or even automate more powerful attacks. Examples of
information leakage:

• Detailed error handling such as failed SQL statements, or other debugging
information.

• Functions that display different results based on different inputs. For ex-
ample a failed login should display the same message (e.g. "login failed")
irrelevant of whether username, password, or both were incorrect.

1.6 Phishing attacks

Phishing is an attempt to criminally and fraudulently acquire sensitive informa-
tion by masquerading as a trustworthy entity in an electronic communication.
The first phishing technique was described in detail in 1987. Phishing was first
applied on a large scale in the early 90s. While early phishing attempts were
targeted at large groups of users, recent phishing attempts are becoming more

5

and more targeted at individuals using additional information of the user that
is attacked.

In a phishing attempt, the attacker tries to spoof a legitimate web site, with
the aim of obtaining data the victim would normally supply to the original web
site. This data could be usernames and passwords or credit card information.

The first part of a phishing attack is to fool the user into visiting a ma-
licious web site. Common techniques are to make the anchor text for a link
appear to be valid, while the link actually goes to the malicious web site. An-
other common technique is to use misspelled URL’s, the use of subdomains (e.g.
http://www.bcee.lu.com or http://www.bcee.com.lu when the attacker pos-
sesses resp. the domains lu.com or com.lu), or the use of IP addresses instead
of URL’s. Another, more dangerous attack involves poisoning the DNS cache
of the user. If the attacker succeeds in poisoning the DNS cache of the user, the
user will be redirected to the wrong server.

After fooling the user into visiting the malicious web site, the attacker might
try to alter the address bar. He can either use JavaScript to alter the address
bar, place a picture of a legitimate URL over the address bar of close the original
address bar and open a new one with the URL of the legitimate URL.

In general phishing attacks are performed through e-mail or instant messag-
ing communication.

1.7 Browsers compromising privacy

Recently, two examples have shown that websites with CSS can be used to
violate the privacy of the user visiting the website. The website uses the fact
that the browser stores a history of visited pages. Depending on whether a user
has visited a page that is linked to from a browser, the color of the hyper link
is changed. The following two web sites show whether a user visited a page or
not:

http://ha.ckers.org/weird/CSS-history-hack.html

http://ha.ckers.org/weird/CSS-history.cgi

The second web site shows how a hostile web site may abuse this information:
it includes an image iff the user has visited the page. In doing this, the browser
essentially tells the web site which pages have been visited.

1.8 Predictable Resource Location (PRL)

Over time, many pages on a website become unlinked, orphaned, and forgot-
ten - especially on websites experiencing a high rate of content and/or code
updates. These Web pages sometimes contain payment logs, software backups,
post dated press releases, debug messages, source code - nothing, or everything.
Normally, the only mechanism protecting the sensitive information within is
the predictability of the URL. Automated scanners have become adept at un-
covering these files by generating thousands of guesses. However, although a

6

scanner can guess at a filename, it has no contextual reasoning to tell if the
data received is sensitive or how valuable it might be. Humans need to make
this determination.

1.9 Sources

These notes are among others based on the following:

• OWASP Top 10 Project1.

• MITRE vulnerability trends2.

1http://www.owasp.org/index.php/OWASP_Top_Ten_Project
2http://cwe.mitre.org/documents/vuln-trends/index.html

7

