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1

Introduction

This chapter is intended to sketch the context of the research detailed in this thesis for
a reader unfamiliar with security. It introduces the setting, and provides an outline
of the thesis.

1.1 Understanding security

Security matters.

In the real world, there are various mechanisms that provide security. For example,
valuables are locked in safes, passports identify people crossing borders and signa-
tures on contracts express the agreement of the signing parties. These basic security
mechanisms have their equivalents in the digital world. The safekeeping of secrets is
called confidentiality, and verifying the correctness of documents such as passports
and contracts is called integrity in the digital world.

These basic security concepts have been studied in great depth. Our understanding of
these security concepts has matured. In contrast, the understanding of more complex
security concepts has yet to progress. In this thesis, we examine two more complex
security notions: privacy in voting and ‘tit-for-tat’ in trading.

(a) vote-buying (b) coercion

Figure 1.1: Influencing voters

In voting, the link between a voter and her vote must remain private, irrespective
of any pressure on the voter. In trading, both seller and buyer require ‘tit-for-tat’:
neither wants to give without getting something back. These are both complex issues,
as we illustrate below.

1



2 Chapter 1 Introduction

1.1.1 Privacy in Luxembourgian elections

Privacy in voting relies on the secrecy of the ballot. As no one can link any given ballot
to any voter, the choice that the voter made remains secret. However, as Figure 1.1
illustrates, voters may be pressured into revealing this link. We illustrate one way
in which a voter can do so in actual elections: the Luxembourgian elections for the
Châmber vun Députéirten (the parliamentary chamber in Luxembourg).

In the elections for the Châmber, Luxembourg is divided into four regions: North,
East, South and Centre. Each region directly selects representatives for their portion
of the Châmber: for example, the Centre region elects 21 representatives. Candidates
are grouped by party, and the number of candidates per party must be equal to the
number of seats in the region. Hence, in the Centre region every party has precisely
21 candidates. To vote, each voter in the Centre region picks 21 preferences, and
marks them on the ballot, at most two per candidate (see Figure 1.2).

1. ADR · · · 7. KPL

1-1. Jacques Henckes ◦ ◦ · · · 7-1. Paul Back ◦ ◦
...

...
...

1-21. Fernand Zeutzius ◦ ◦ · · · 7-21. Marco Tani ◦ ◦

Figure 1.2: An example of a Luxembourgian ballot in the Centre region

Suppose a vote buyer makes a voter an offer the voter just cannot refuse. Then, the
voter wishes to prove how she voted to the buyer. Before the elections, she agrees
with the buyer on a specific, unique way to fill in her ballot. If a ballot marked in
this way turns up in the set of cast ballots, the buyer knows the voter complied.
In the example of Figure 1.2, the voter can fill in 7 × 21 × 2 = 294 boxes. If she
votes twice for one specific candidate, she can fill in 19 of the remaining 292 boxes.
She has an extremely large number of different, unique ways to vote twice for one
candidate (to be precise,

(

292
19

)

= 314, 269, 098, 408, 967, 151, 724, 980, 483, 800 possible
ways). Consequently, even in a very large group of voters, every voter can fill in the
ballot in their own unique way. The ballot then acts as a receipt, a proof of how a
voter voted.

Receipts are not only an opportunity for voters to sell their votes (Figure 1.1a). Since
any voter can produce a receipt, a Luxembourgian Mafia (should such an organisation
exist) could coerce voters (Figure 1.1b), that is, force voters to produce a receipt. In
this way, the Mafia could check each voter to see if she voted for the Mafia’s favoured
candidate.

The complexity of such privacy problems cannot be captured fully in terms of confi-
dentiality and integrity – it extends beyond them.

1.1.2 Tit-for-tat on Ebay

Suppose person A is looking for an item on Ebay, and happens to find person B

offering precisely what A is looking for. Naturally, A bids. If A wins, A will want to
be assured that he will receive the goods before sending the payment. Conversely, B
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will want assurance that he will receive the payment before sending the goods. Both
want to finish the trade, but both require assurance that the other will deliver in
order to continue. This leads to the dilemma illustrated in Figure 1.3: who goes first?

“Should I pay before “Should I send the goods
receiving the goods?” before receiving payment?”

A B

Figure 1.3: Fairness dilemma in on-line trading

Whoever acts first, risks that the trading partner will receive, but not deliver. En-
suring this is not possible is called fair exchange. There are various ways to achieve
this with physical items (e.g. books), such as meeting in person or using an escrow
service.

However, such options cannot be straightforwardly extended to digital items (such as
MP3 files). Transfer of a digital item is done by copying the item. While the transfer
procedure could erase the source file, there is no way to guarantee that all copies of
the source were erased.

Digital items can be copied effortlessly for free. If an unlimited amount of copies are
available, the copies themselves lose all value, and there is no point in trading them.
Thus, trade in digital goods can only succeed if there is a limit to the copyability of
the goods.

This contrasts with the absoluteness of confidentiality and integrity: either they are
satisfied, or not. A qualified requirement such as a limit on copyability is a different
matter.

1.1.3 Privacy vs. fairness

This thesis sets out to investigate the two issues above.

A better understanding of privacy in elections is needed to ensure that a voting system
does not offer any leakage of privacy (other than the loss of privacy due to publication
of the result). To this end, we formalise the notion that anything that reduces privacy
is a receipt in the first part of this thesis.

In the second part of this thesis, we investigate how to enable fairness in digital
exchange, that is, how to enable limited reselling of digital objects, while preventing
unlimited copying.
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1.2 Approach

The goal of this section is not to describe the approach to studying the two problems in
full detail, but to provide an outline of the approach. In later chapters, the approach
is described in a more detailed fashion.

We believe that security objectives cannot be studied in isolation. Security objectives
are embedded in a context with other security objectives, a system, users of the
system and a malevolent entity, called the intruder, who seeks to upset the system’s
objectives.

To this end, we begin by analysing the problem domain: voting and digital rights
management, which enables trade of digital goods, respectively. From both analyses,
there emerges an understanding of parties involved, a set of core security requirements
and an understanding of how the core security requirements relate to each other and
the parties involved.

The analysis of voting will indicate a consensus on terminology for security objectives,
but this terminology is not always sufficiently precise. In the case of privacy, the
consensus has not matured into a full understanding of privacy in voting. In digital
rights management we do not even find a clear-cut consensus on the terminology for
desired security objectives.

In both cases, however, we continue with an investigation of literature to bring the
current understanding of privacy in voting and fairness in digital rights management
(respectively) to light. In both cases, we will find that there exist systems whose claims
are not valid. We will argue that a structured, rigorous, unambiguous approach to
security is necessary. The area of formal methods offers this, and we will use formal
methods in both cases.

For privacy in voting, there are various systems proposed with claims of privacy, some
of which have been broken. We will introduce a quantified formalisation of privacy
with which the privacy offered by these systems can be measured. This formalisation
will enable us to detect any loss of privacy.

For fairness in digital exchange, there is no vast body of literature available. On the
contrary, we find only few works in this area. Thus, we set out to prove the feasibility
of fairness in digital exchange by introducing a new digital rights management system,
Nuovo DRM. We will formalise the goals of Nuovo DRM and we will verify that Nuovo
DRM achieves its goals.

The study of privacy in voting concludes with an application of our formalisation in a
case study. The study of fairness in exchange is similarly concluded by a verification
using model-checking. As such, both approaches end with substantiating the found
results via a formal analysis.

1.3 Thesis organisation

The rest of this thesis is organised in three parts.
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Part I: Privacy in Voting

This part of the thesis begins in Chapter 2, by investigating the domain of voting.
From this analysis, we derive a set of core requirements for voting systems. By
comparison to requirements terminology in existing literature, we see that there is
confusion on privacy in voting. The rest of this part of the thesis endeavors to address
this confusion.

To this end, we continue in Chapter 3 by clarifying mechanisms that are used to
introduce privacy in voting systems. This is followed up by a survey of voting systems,
that focuses on systems designed to ensure privacy. We note that not every system
lives up to its promised privacy, often newer systems find privacy flaws in older systems
and aim to address them.

In Chapter 4, we propose a new formalisation of voting systems. We then express
privacy as a measure on this formalisation. This new definition quantifies privacy,
and, as such, can determine partial loss of privacy as well as total loss of privacy.
We introduce several models of conspiring voter behaviour, and we define how to
compare the privacy of a conspiring voter to the privacy of a non-conspiring voter.
The chapter ends by discussing how this newly introduced formalisation of privacy
relates to existing notions of privacy and verifiability (a voter’s ability to verify the
result) in voting. This chapter is based on work together with Sjouke Mauw and Jun
Pang [JMP09b, JMP09a].

The voting part of this thesis is concluded with Chapter 5. In this chapter, we
provide extensions to the formal framework that capture the mechanisms explained
in Chapter 3 that introduce privacy in voting systems. Furthermore, we illustrate
how the framework is used by establishing the privacy and resistance to conspiracy
of a specific voting system, the FOO92 voting scheme [FOO92].

Part II: Fairness in Digital Exchange

This part of the thesis begins in Chapter 6 by investigating the domain of Digital
Rights Management systems. From this analysis, we derive a set of core security
requirements for DRM systems. This chapter is based on earlier work with Sjouke
Mauw [Jon04, JM07, JM09].

In Chapter 7, we study the feasibility of fair exchange in DRM systems. To this end,
we survey fair exchange DRM systems, to find only a very limited number of proposals
in literature for peer-to-peer exchange. Upon examination, the first proposal in this
field is flawed. We design a new system, Nuovo DRM to address these flaws and
provide fair exchange. To substantiate the security of Nuovo DRM, we formalise
the goals of the original proposal and verify that Nuovo DRM satisfies these goals
using model checking. While the verification substantiates the formal security of
Nuovo DRM, this security is based on several assumptions. In the remainder of the
Chapter, several strategies are detailed that can mitigate the effects of violations of
these assumptions. This chapter is based on work together with Mohammad Torabi
Dashti and Srijith Krishnan Nair [TKJ07, TKJ08].
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Part III: Concluding remarks

This part consists only of Chapter 8. In this chapter, we review the contributions of
this thesis and propose future work.

A note on terminology. In this thesis, both the singular voter (in Part I) and the
singular user (in Part II) are referred to using female pronouns (i.e.she uses, her ballot,
etc.). Furthermore, to distinguish between a system description found in literature
and an implemented system, the former is designated “scheme” while the latter is
designated “system”.
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Introduction to voting

This chapter investigates the domain of voting, in particular the security problems
relevant to it. This analysis sets the stage for the next chapters. The analysis first
defines the goal of a voting system and its stakeholders. The definition of the goal
of a voting system gives rise to a high-level requirement, which is further refined
iteratively. The analysis results in a list of core requirements on voting systems, from
which the research question emerges.

Having established the core requirements for voting, we briefly review some security
techniques particularly well-suited to the problem domain. The chapter ends with an
overview of the setting and notation used in the remainder of this part of the thesis.

2.1 Domain analysis

Throughout history, humans have banded together so as to better face external threats
as well as to enjoy mutual benefits. Inevitably, groups need to determine a group
preference – from simple issues (follow the bisons or stay), to complex issues (how
to best address environmental concerns). Voting is, in its most basic form, a way to
determine a group preference based on the individual members’ preferences.

As an example, consider the preferences of three people Alice, Bob, and Carol. They
have to decide where the group will go next, either North or South:

• Alice prefers North,

• Bob prefers South, and

• Carol prefers North.

In this example, we can see that the group as a whole prefers North. However,
combining individual preferences is not always straightforward. Consider the following
extension to the example (see Figure 2.1): the group is extended with Dave, and the
group may go East or West as well as North and South. Suppose that Alice wants to
go North, and Carol prefers East, Dave does not have a preference, and Bob prefers
South first and West second. Establishing the group’s preferred direction given the
preferences as depicted in Figure 2.1 is impossible: Bob submitted his preferences in
a different format than the others, Dave absented and on top of that, the individual
preferences do not determine any one direction as the most preferred direction.

9
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Alice Bob Carol Dave
North South 1 East —

West 2

Figure 2.1: Example of hard-to-combine preferences.

From here on, we take the view that in seeking to establish a group preference, the
group has settled on a standardised format in which each individual preference must be
expressed (thus disallowing Bob’s deviation). Furthermore, the group has settled on a
way to combine the pronounced individual preferences into a group result. The exact
way of combining individual preferences into a group preference can vary from group
to group, and even from election to election within a group. However, we assume that
the group members are always in agreement before establishing a group preference
on how to combine the individual preferences to determine the group preference. As
we abstract away from this detail, we consider the group preference to be the set of
individual preferences.

Given these assumptions, a voting system is a system that determines the group
preference, i.e. the set of all individual preferences. More specifically:

Concept 1 (Voting system). A voting system is a system that as input takes indi-
vidual members’ preferences, and produces the group preference.

We call a voting system acceptable if the results it produces are accepted by the group
members.

We also account for a party that tries to subvert the elections. A clearer picture of
what this attacker can do will emerge from the requirements analysis below .

Requirements on voting systems as found in literature are often derived from many
different sources, including legal texts that mandate requirements (see e.g. [LKK+03,
LGK02]). However, in general, it is unclear how requirements in these various sources
have been established. Therefore, in order to arrive at the core requirements for voting
systems, we analyse the requirements of the stakeholders.

Terminology. Throughout the rest of Part I of the thesis, the following terms will
be used to describe the voting process:

- election the entire process of determining a group preference.
- voter an individual group member, referred to as “she”.
- authorities those parties administering (parts of) an election. Often, at

least two tasks are distinguished: voter registration (han-
dled by the Registrar) and counting of votes (handled by
the Counter or Tallier).

- voting credentials objects proving the subject is a voter (i.e. allowed to vote).
- option, candidate the items on which a preference is sought.
- vote an expression of an individual’s preference.
- ballot an object in a voting system representing a cast vote.
- to cast to submit a voter’s preference to the voting system.
- to tally to count votes.
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2.1.1 Establishing stakeholders

We consider the stakeholders involved in voting systems. On the one hand, there are
voters – the individuals whose preferences are sought as input. On the other hand,
there is a group of individuals administering the process, the voting authorities. We
separate these two stakeholders, even though process administration can be fully
handled by the voters (for example in the case of leader elections [Lan77]). In such
situations, we consider the voters to be the authorities. The stakeholders and their
roles are summarised in Table 2.1:

Group Role
voters cast votes
authorities administer the election

Table 2.1: Voting stakeholders

As is evident from Table 2.1, authorities do not cast votes, they serve only to admin-
ister the process. As such, any core requirements they desire from the process either
follow from the voters’ requirements, or are not imposed. In the following analysis
this is assumed, and thus the analysis only focuses on voters.

In addition to the identified stakeholders, every voting system is embedded in a con-
text – there are outside parties that have an interest in the result or the process, but
are not directly part of the process. Examples of such parties include labour unions,
politicians, lobby groups, non-governmental organisations, current government, legis-
lature, and so on, as well as attackers. Most requirements such parties would impose
on the voting system follow from requirements voters impose. Note that there are ex-
ceptions. Consider, for example, the often-seen lack of anonymity in votes by boards
of directors. This lack does not follow from a requirement of the board members,
but from the shareholders (a party in the context), who require accountability of the
board. Nevertheless, we limit the analysis below to the stakeholder requirements.

The analysis below uses the following methodology to arrive at the core requirements:
it starts with the initial high-level requirements of voters, which are then progressively
refined until the analysis arrives at core requirements for voting systems.

2.1.2 Core voting system security requirements

The goal of the analysis is to uncover core security requirements for voting systems.
This means that other requirements, such as accessibility for disabled voters, are not
covered.

Given the notion of an acceptable voting system described above, a voter requires the
following of a voting system: the result is a correct transformation of the system’s
input, and the correctness can be verified.

Thus, the two initial security requirements are stated as follows:

• (IR1) The result represents the group preference correctly.

• (IR2) The result is verifiably correct.
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We detail both these requirements further.

Initial requirement 1

Because of the symmetry between group members, the group preference is the uni-
fication of the individual voters’ preferences. A voting system takes these individual
preferences, processes them and produces the group preference – the set of all in-
dividual preferences. Thus, for the group preference to be represented correctly, all
voters’ votes must be correctly treated at each stage, from input to final result, and
accounted for only once. Thus, requirement IR1 is detailed further as:

• (R1) All voters are free to cast their votes.

• (R2) Only votes cast by voters are taken into account.

• (R3) Every voter’s cast vote is taken into account only once.

• (R4) The result of the system depends correctly on all cast votes.

Requirement R1 uses the term free. This freedom means that a voter is not restricted
from providing her genuine preference as input. Stated differently, voters need not
overcome any external influence in casting their votes. They are unrestricted, “free”
to vote.

Note that this does not require voters to cast their votes. Concept 1 left this question
open as this is not a defining property of voting systems. Hence, whether abstainment
is allowed or not is not a core voting system requirement, and thus we leave this open.

Requirement R4 states that the result depends “correctly” on the individual votes.
This means that the result accounts for all individual votes as cast, and that the result
depends on nothing more than the cast votes. Thus, requirement R4 is detailed further
as follows:

• (R4a) The result accounts for all cast votes.

• (R4b) The result accounts for each vote as cast.

• (R4c) The result depends on nothing but the cast votes.

Initial requirement 2

In refining requirement R4, the term “correctly” was expanded. A similar expansion
applies to requirement IR2 (“verifiably correct”), but: voters do not know the entire
set of cast votes. If voters could know which votes had been cast, then they know the
set. Then, voters do not need a voting system to determine this set. Thus, voters can
only verify that their own vote is accounted for correctly, and that the result is based
on a list of cast votes (and nothing else). More specifically:
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• (R5) Every voter can verify that the result accounts for her cast vote.

• (R6) Every voter can verify that the result accounts for all votes as cast, and
on nothing further.

The full list of requirements uncovered in this analysis is reproduced in Table 2.2.

- R1: all voters are free to cast their votes.
- R2: only votes cast by voters are taken into account.
- R3: every voter’s cast vote is taken into account only once.
- R4: the result of the system depends correctly on all cast votes, i.e.:

- R4a: the result accounts for all cast votes.
- R4b: the result accounts for each vote as cast.
- R4c: the result depends on nothing but the cast votes.

- R5: every voter can verify that the result accounts for her cast vote.
- R6: every voter can verify that the result accounts for all votes as cast,

and on nothing further.

Table 2.2: Core requirements for voting system

The list of requirements in Table 2.2 is derived from Concept 1 of a voting system.
Providing a more detailed concept of voting (e.g. accounting for abstainment) will
result in a more detailed set of requirements. The trade-off for this increased de-
tail is that such a concept is more narrow, that is, the resulting requirements are
less generic in nature. Consequently, while the above analysis does not provide a
complete, detailed list of voting requirements, it uncovers the core requirements for
voting systems. The lack of completeness is due to the fact that the starting point
for the analysis is not a fully implemented voting system, but a conceptual notion
of voting systems. As such, the uncovered requirements hold for a generic class of
voting systems (as opposed to the more complete list an analysis of a fully detailed
voting system could have resulted in). Simply put, by refining the initial setting, the
analysis and thus the analysis results can be further refined. We conjecture that no
analysis found in literature can be considered complete, that is, any analysis found in
literature may similarly be further refined by further detailing the setting.

2.2 Terminology in literature

Throughout literature, a diverse terminology has emerged to describe voting require-
ments. This diversification results from the ad hoc nature in which some new terms
are established. Newly found attacks are translated into a new requirement, which
receives a name. Later, such requirements are further generalised, and a new term
emerges that provides wider coverage than the original term. Moreover, on more than
one occasion, one term is interpreted differently by different researchers.

Below, we provide an overview of the most common terms found throughout literature,
and indicate some of the inconsistencies in terminology. The goal of the list below is
not to provide a complete overview of all terminology in literature, but to make the
reader familiar with the common terms and concepts used and show how these terms
relate to the core requirements as listed in Table 2.2.
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• eligibility: only eligible voters (those part of the group) may vote.
Eligibility is found e.g. in [FOO92, LBD+03, ALBD04].
Eligibility is related to requirement R2.

• democracy: only eligible voters may vote, and they may only vote once.
Obviously, this term encompasses eligibility (as described above). Systems us-
ing eligibility often refer to the second part of the democracy requirement (one
vote per voter) under different names. Examples include double-voting [Din01],
unreusability [FOO92, LK00], prevention of double-voting [ALBD04]. Democ-
racy is used in e.g. [KW99], and is called “eligibility” in [CGS97].
Democracy is related to requirements R2 and R3.

• accuracy: accuracy comprises the following three requirements:

1. The result depends on all cast votes.

2. The result depends on nothing more than the cast votes.

3. The result depends on the votes as they were cast.

Accuracy as described here is used in e.g. [KW99, Din01]. In [FOO92], the
term “completeness” is used similarly, except that it does not prevent the result
from depending on more than the cast votes. In [LK02], “completeness” only
covers the first sub-requirement, and “soundness” addresses the second sub-
requirement.
Accuracy is related to requirement R4.

• universal verifiability: given a set representing the cast votes, the announced
result can be verified by anyone.
Universal verifiability is named as such in [SK95, CFSY96, LBD+03, CCM08],
amongst others. In other works, such as [FOO92, BT94, Oka97, ALBD04], a
requirement for “correctness” or “verifiability” or “universally acceptable” is
mentioned, but what this term means is not made explicit. The term “universal
verifiability” has been deprecated in lieu of more detailed terms (see below).
Universal verifiability is related to requirement R6.

• individual verifiability: a voter can verify that her vote is counted as she
cast it.
Individual verifiability is found in e.g. [SK95, CCM08]. In [MBC01], the concept
is alluded to as “atomic verifiability”. As with universal verifiability, use of the
term individual verifiability has been superseded by the more detailed terms
mentioned below.
Individual verifiability is related to requirement R5.

• privacy or vote-privacy: the system does not reveal which candidate the
voter chose.
There exist various alternate definitions (for example, variants of “all votes
must be secret” [FOO92, KW99, LK00], “vote-voter relationship must be kept
private” [ALBD04], indistinguishability of ballots [CGS97]).

The fact that there is no clear consensus in literature on a definition of vote-
privacy is a clear indication that this notion has not been fully investigated
yet.

Vote-privacy is related to requirement R1.
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• receipt-freeness: the voter cannot prove how she voted.
This term was introduced by [BT94], in the context of vote-buying, and has
received widespread usage. In [JV06], a receipt is characterised as a a piece of
knowledge that is only possessed by the voter, identifies the voter’s vote uniquely
and proves that the vote was cast.
Receipt-freeness is related to requirement R1 as well.

• coercion-resistance: The voter cannot be coerced.
This notion was first introduced in [JCJ05], and has since been used errati-
cally. The original definition encompasses receipt-freeness and resistance to the
following attacks:

– randomisation: the voter is forced to vote for a random candidate,

– simulation: the voter is forced to give her credentials to the attacker, who
then votes in her stead,

– forced abstention: the attacker forces the voter not to vote.

Other works assign a different meaning to this term (or to a similar-sounding
term), for example resistance to forcing a voter to vote in a particular way
(e.g. [LK02], or even equating it with the above definition of receipt-freeness
([MBC01] and to some extent [CCM08]). Again, the fact that there is no clear
consensus clearly indicates an incomplete understanding of this concept.
Coercion-resistance, too, is related to requirement R1.

Note that vote-privacy, receipt-freeness and coercion-resistance all relate to require-
ment R1. They all embody a different aspect of privacy. There is no consensus in
literature on these concepts.

In addition to the terms mentioned above, several new terms emerged recently that
deal with aspects of verification by voters. These terms originate from a new direction
in research, end-to-end verifiable voting systems. End-to-end verifiable voting systems
focus on ensuring that voters can verify each step in the voting process, from putting
their vote into the system to verifying the result (see Chapter 3). This is to mimic the
chain of custody, that is often present in paper-ballot elections. Chain of custody for
paper ballots implies that at every stage of the voting process observers (e.g. voters)
may be present if they choose, thus ensuring that any tampering with the process can
always be observed and, thus, detected.

All the requirements listed below detail aspects of verifiability. Hence, each of these
is related to requirement R5 and/or requirement R6. Some of the terms below pre-
suppose the existence of a public record of cast votes. A system may publish such a
record; it must do so in order to satisfy a requirement which presupposes the public
existence of such a record.

• cast-as-intended, recorded-as-cast: in literature, a distinction emerges be-
tween correctly transcribing a voter’s input and correctly storing all inputs.
However, these concepts are fairly new, and consensus on terminology seems to
be emerging only now. The terms cast-as-intended and recorded-as-cast, are be-
ing used more and more to describe these respective concepts. This thesis takes
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cast-as-intended to mean that the voter can verify that her input is what she in-
tended (e.g. by displaying a dialogue “you chose ..., are you sure [y/n]?” before
the voting system considers a vote as having been cast). We take recorded-as-
cast to mean that the system’s record of ballots includes the unmodified voter’s
ballot.
The concept cast-as-intended occurs for example in [RS07, CCC+08, Rya05,
BMR07], while the recorded-as-cast concept is found, for example, in [Cha04,
CEC+08, FCS06, CCC+08, AR06].

• tallied-as-recorded: anyone can verify that the published record of ballots
conforms with the result as announced by the system.
This concept can be found in e.g. [Cha04, CEC+08, CCC+08, AR06, BMR07,
FCS06]. Note that the latter two use the equivalent term counted-as-recorded.

• counted-as-cast: Any voter can verify that her vote counts in favour of the
candidate for which she cast it.
Counted-as-cast combines the ideas of recorded-as-cast and tallied-as-recorded.
This term occurs e.g. in [RS07], while the previous mentioned works allude
indirectly to the same concept.

2.3 Conclusions

Voting requirement terminology suffers from inclarities. For some requirements (such
as R4) the situation seems not so bad. In other cases, most notably R1, a clear
consensus is absent in literature. Note that even requirements on which consensus
did exist (e.g. R5, or R6), may suddenly become subject of refinement when a new
approach (in this case, end-to-end verifiability) emerges. In the case of R5 and R6,
this gave rise to several new terms, leading again to confusion.

The confusion surrounding requirement R1 and the interaction with requirements R5
and R6 (verifiability) indicates that the underlying concepts of these requirements
are not well-understood in literature. Privacy is a fundamental concept for require-
ment R1: if privacy is ensured, then no one can hold a voter accountable for her
vote. Although privacy itself is not sufficient to ensure R1 (for example, the election
office can be too far off to vote for certain voters, or a candidate may hold all voters
accountable for the election result), it is an essential ingredient to ensure freedom
to cast votes. However, the confusion surrounding the concept of privacy in voting
indicates that privacy is particularly poorly understood. Therefore, the concept of
privacy in voting must be clarified. This leads us to formulate the research question
for this part of the thesis as follows:

Research question I. Investigate and improve understanding of privacy in voting.

We address this question as follows. First, we survey voting systems from literature
to investigate how privacy is addressed by these systems in Chapter 3. The survey
enables us to pinpoint the nature of the confusion surrounding privacy in voting. This
information is used to guide the development of a privacy framework for expressing
voting systems in Chapter 4. The framework is applied to several voting systems from
literature in Chapter 5.
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A survey of voting schemes and

systems

The previous chapter established core voting system requirements, and highlighted
that there is no clear consensus in literature on several of these core requirements.
This chapter provides a survey of the status of requirements R1 (privacy) and R5 and
R6 (verifiability) in computer science research. First, some standard techniques from
cryptography that support privacy and verifiability in electronic voting systems are
explained. Then, this chapter surveys voting schemes and systems with a focus on
privacy and verifiability.

Note that the discussion is not intentionally focused on electronic voting systems.
However, as the discussed systems all originated from computer science research,
many of them are electronic voting systems and thus the survey, by necessity, mostly
details electronic voting systems.

3.1 Cryptographic support for privacy in voting

As remarked in the previous chapter, the interaction between privacy (requirement
R1) and verifiability (requirements R5,R6) is not well understood. Several crypto-
graphic concepts have been introduced that enable electronic voting systems to pro-
vide privacy whilst preserving verifiability. The concepts discussed are those prevalent
in current voting systems: privacy-enhancing encryption techniques, mixnets, secret
sharing, and proofs.

3.1.1 Properties of cryptographic systems

Cryptographic systems may exhibit properties that support privacy. Such properties
can obviously be leveraged for voting systems. Below, we discuss three such properties:
homomorphic encryption, blind signatures and re-encryption. This is followed up
by a note on the security implications of cryptographic systems which exhibit such
properties.

A note on notation. In the setting of this thesis, cryptography operates on strings
of bits. To explain the working of the various properties, the properties are provided
with a signature expressing their working. This signature uses B to denote any string
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of bits. Furthermore, we distinguish between various subclasses of bitstrings. For
example, encryptions are denoted Benc , signatures are denoted Bsig , and keys as
Keys . As an example of notation, we provide the descriptions of encryption and
signing.

• Encryption takes a bitstring and a key, and outputs an encrypted bitstring.
Encryption is denoted by { } : B ×Keys → Benc .

• Signing takes a bitstring and a key, and outputs a signed bitstring.
Signing is denoted by sign : Keys × B → Bsig .

Homomorphic encryption

The main difference between homomorphic encryption and regular encryption is that
in homomorphic encryption, there is an algebraic operation on multiple ciphertexts
that results in an algebraic operation on the corresponding plaintexts. The specific
algebraic operations depend on the used cryptographic system.

Notation. We use BHE to denote bitstrings representing homomorphically encrypted
messages. Homomorphic encryption concerns the following three functions.

• {||}, which encrypts a message in B . It has the following signature:
{| |} : B ×Keys → BHE .

• ⊗, which denotes an appropriate operation on encrypted messages. It has the
signature ⊗ : BHE × BHE → BHE .

• ⊕, which denotes the appropriate operation on messages. It has the signature
⊕ : B × B → B .

Properties. Homomorphic encryption is characterised as follows. Given two messages
ma,mb, and a key k, we can produce {|ma|}k and {|mb|}k. Homomorphic encryption
shares the following properties of regular encryption:

• Neither m nor k can be learned from {|m|}k without the decryption key k−1.

• ma 6= mb =⇒ {|ma|}k 6= {|mb|}k.
• ka 6= kb =⇒ {|m|}ka 6= {|m|}kb .

Regular encryption has an additional property:

• {m}k cannot be made without key k and message m.

In homomorphic encryption, this property is relaxed somewhat. This is due to the
homomorphic property, which allows two encrypted messages to be combined mean-
ingfully (using ⊗) into one encrypted message without using a key:

(HE1) {|ma|}k ⊗ {|mb|}k = {|ma ⊕mb|}k.
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The actual operations represented by ⊗ and ⊕ depend on the used cryptographic sys-
tem. Examples of homomorphic cryptographic systems include RSA [RSA78] (where
both ⊗ and ⊕ are multiplication), ElGamal [Elg85] (again, both ⊗ and ⊕ are mul-
tiplication), and Paillier [Pai99] (where ⊗ is multiplication and ⊕ is addition). A
detailed survey of homomorphic systems is given in [FG07].

Application in voting. Homomorphic encryption can be applied to tally votes using
asymmetric cryptography. In asymmetric cryptography, the decryption key is differ-
ent from the encryption key. Furthermore, it is believed to be intractable to determine
the decryption key given the encryption key.

In such a setting, every voter can encrypt her vote with the election public key. The
authorities add all votes together, which results in the encrypted tally. If

⊗

set denotes
application of ⊗ to each element of set , and

⊕

set similarly denotes application of ⊕,
then summing up all the votes γ(v) by the voters v ∈ V is written as:

⊗

v∈V

{|γ(v)|}k = {|
⊕

v∈V

γ(v)|}k.

Anyone can verify that this equality holds, but only the voting authorities can decrypt
the result. Thus, any voter can verify that her vote contributes to the result, but no
one except the authorities can see for which candidate a particular voter voted. This
preserves vote-privacy while offering verifiability. In combination with secret sharing
(see below), homomorphic encryption can even prevent the authorities from learning
for whom a particular vote was cast.

Blind signatures

A blind signature [Cha82] is a way for a party to sign a message without knowing the
message. Compare this to a sealed envelope, containing a piece of carbon paper and
a message to be signed. The carbon paper will copy anything written on the envelope
to the message, including a signature. Thus, a notary can sign the envelope, while
the secret message is not revealed to him. The envelope (the blind) can be removed,
revealing a signed message.

Notation. We denote a blinded message with Bblind . In blind signing, the following
two functions are used:

• [[ ]], which blinds a message.
[[ ]] : B ×Keys → Bblind .

• deblind , which removes the blinding from a signed blinded message.
deblind : B ×Keys → Bsig .

Properties. If a blinded message is signed, the message can be deblinded without
removing the signature. For a message m, blinded with key bk , signed with key
sk(a), we have the following.

(BS) deblind(signsk(a)([[m]]bk ), bk) = signsk(a)(m).
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Application in voting. Blind signatures can be used to ensure that only eligible voters
can vote (see Figure 3.1). A voter v blinds her vote γ(v) using blinding key bk . She
signs that and sends her signed, blinded vote to the registrar. The registrar separates
the blinded message and the signature, and verifies that the voter is eligible and has
not yet voted. If so, the registrar signs the blinded vote and sends it back to the
voter. The voter unblinds the received message using bk and sends the signed vote to
a tallier.

v → registrar: signsk(v)([[γ(v)]]bk )

registrar → v: signsk(R)([[γ(v)]]bk )

v → tallyer: signsk(R)(γ(v))

Figure 3.1: An example of the use of blind signatures.

Re-encryption

Re-encrypting a message means changing the ciphertext, without changing the corre-
sponding plaintext. Knowledge of the decryption key is not needed for re-encryption.

Notation. We denote re-encryptably encrypted ciphertext as Brenc . A re-encryptable
encryption of a message m has two parts inside the encryption: the message m and
a random factor r. We denote the set of random factors as Nonces . Using this,
re-encryption of message m is written as follows.

• 〈{|}〉, which encrypts a message in a form suitable for re-encryption.
〈{ | }〉 : B × Nonces ×Keys → Brenc

• rcrypt , which re-encrypts a message.
rcrypt( , ) : Brenc × Nonces → Brenc .

• f , a function that combines two random factors.
f( , ) : Nonces × Nonces → Nonces .

Properties. A re-encrypted ciphertext is distinct from the original ciphertext. How-
ever, both decrypt to the same plaintext. Thus, for message m, key k and randoms
r, r′ we have the following:

(RE1) rcrypt(〈{m | r}〉k, r′) = 〈{m | f(r, r′)}〉k

(RE2) 〈{m | f(r, r′)}〉k 6= 〈{m | r}〉k

Examples of cryptographic systems allowing re-encryption include ElGamal [Elg85],
Goldwasser-Micali [GM84], and Paillier [Pai99].
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Application in voting. In voting, re-encryption is used to break the link between
a voter and her submitted vote. By re-encrypting a cast vote, the vote remains
unchanged, while the encrypted message no longer matches the message the voter
cast. An extension of this is used in mixnets (which are explained below), to break
the link between the input and the output of a mixnet.

Security implications

Note that each of the above properties allows a ciphertext to be altered in a mean-
ingful way without access to the decryption key. Cryptographic systems with this
property are called malleable [DDN00]. Malleability of the cryptographic system can
be leveraged for privacy (because a ciphertext can be changed by someone not know-
ing the plaintext, i.e. by someone other than the encrypting individual). However,
a malleable ciphertext can be changed in a meaningful way by an attacker as well.
Due to this, malleable cryptographic systems do not achieve the highest levels of
cryptographic security (ciphertext indistinguishability under adaptive chosen cipher-
text attack, IND-CCA2). Despite this, such systems can attain a certain amount of
security (e.g. indistinguishability under chosen plaintext attack, IND-CPA). As the
ciphertexts of a malleable cryptographic system can be changed by anyone in a mean-
ingful way, such systems must be used with care and awareness of their limitations
and vulnerabilities.

3.1.2 Proofs

A proof is used to convince another party of the correctness of a certain statement.
For example, consider a proof that one message m′ is a re-encryption of another
messages m. This can be proven in various ways, e.g. by revealing the random factor
used to re-encrypt.

Proofs can have various properties. We discuss two properties that ensure that the
proofs do not reduce privacy: zero knowledge proofs and designated verifier proofs.

Zero knowledge proofs

A zero knowledge proof (ZKP) is a proof of a statement s which reveals nothing about
statement s, except its truth. For example, the statement ∃r : m′ = rcrypt(m, r))
reveals that m′ is a re-encryption of m, but not how. A proof of this statement that
only proves that it is true, but does not reveal r, is a zero knowledge proof.

Observe that in this example, both prover P and verifier V know the statement
∃r : m′ = rcrypt(m, r) and m and m′. However, only P knows the value of r (V
knows some value is used, but not which, and the statement does not reveal the
value). As shown by the example, a zero knowledge proof deals with some public
knowledge and some private knowledge. More specifically: a zero knowledge proof
proves a boolean statement s over publicly and privately known arguments, without
revealing the private knowledge.
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Application in voting. Zero knowledge proofs are often used in voting to prove to a
voter how her vote is being processed by the system. This enables a voter to verify
that her vote is being handled correctly, without her being able to prove how she
voted. An example of this is proving correctness of encryption without revealing the
encryption key. This is done in mixnets (see below).

Designated verifier proofs

Regular proofs are transferable. A voter who possesses a proof of a boolean statement
s can transfer that proof to anyone. This is not always desirable, for example a voter
selling a proof of how she voted. Suppose prover P wants to prove the truth of
statement s to verifier V , but doesn’t want V to be able to prove s to anyone else.
What P can do, is prove the following to V :

“I am V OR s.”

As the verifier knows that the prover is not V , the statement s must be true. As “I
am V ” holds true for the verifier, the verifier can prove “I am V OR x.” for any x
(by proving that the verifier is V ). Hence, V cannot use the above proof to convince
anyone else of statement s.

Application in voting. Designated verifier proofs are used much like zero knowledge
proofs. They enable the possibility of revealing information to a voter that enables her
to verify that her vote is counted. Since these proofs cannot be forwarded, this does
not impact the voter’s privacy. As for zero knowledge proof, a possible application is
their use in mixnets, e.g. shuffling a list of candidates and revealing the order only to
the voter [HS00].

3.1.3 Secret sharing

There are instances where access to information is deemed too dangerous to reside
with one person. A classical Hollywood example is firing a nuclear weapon: this often
requires two keys, held by two different individuals. Cryptographers have devised a
mechanism to achieve a similar result cryptographically [Sha79, Bla79]. A secret is
shared by a number of authorities, and only by putting the shares together, can the
authorities recover the secret.

A technical solution works by interpolation of polynomials (see Figure 3.2). A poly-
nomial of degree n is uniquely determined by any n + 1 points of the polynomial.
Hence, given n+ 1 points, a polynomial can be uniquely determined.

To share a secret, the secret is encoded as a number m. Then, a random polynomial
is chosen that covers the point (0,m). Random coordinates on the polynomial are
then chosen as shares of the secret. Each share is then given by a random point on
the polynomial.

For example, suppose that a secret messagem is shared over four shares. This requires
a polynomial of degree 3 (number of shares minus one). In Figure 3.2, the secretm = 1
is shared over four shares s0, . . . , s3 using the polynomial −0.2x3 + 0.5x2 + 0.7x+ 1.
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Figure 3.2: Secret m shared over s0, s1, s2 and s3.

To recover the secret, the four points given by the shares are interpolated, which
reconstructs the original polynomial. The secret message is then given by the value
of the interpolated polynomial for x = 0.

Note that the benefit of secret sharing comes at a price: to recover the secret, all
shares are required. One missing share makes it impossible to recover the secret.
This means that any one unwilling party, who holds a share, can prevent recovery of
the secret.

In order to mitigate this, more shares can be handed out. As a polynomial of degree
n is uniquely determined by any n+ 1 points of the polynomial, any desired number
of shares can be handed out. The polynomial can be reconstructed using any subset
of n+1 of these shares. This is called threshold cryptography. Often, a secret sharing
scheme is referred to as (t, n) meaning that t (for threshold) shares are needed, and
that there are n shares in total. As threshold cryptography prevents the problem of
a single share holder blocking attempts to recover the secret, it is often used when
secret sharing is applied.

In general, there are two types of secrets which can be protected by secret sharing.

• secrets too valuable to trust to one person (e.g. the launch code for a nuclear
weapon).

• secret inputs to computations (e.g. a decryption key).

While secrets of the first type are meant to be reconstructed when necessary, this is not
the case for secrets of the second type. Indeed, it would be better if the computations
could proceed without reconstructing the secret – in this way, the secret would remain
protected. This is possible in some cryptographic schemes, such as ElGamal [Elg85]).
In ElGamal, an asymmetric cryptographic scheme, it is not necessary to reconstruct
the secret key in order to decrypt an encrypted message. As an example of how
computations can be achieved using shares instead of using the secret itself, we sketch
how shared-key decryption is done in ElGamal (a public-key, homomorphic encryption
scheme).
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Example. Encryption in ElGamal works as follows. The public key is given by raising
the generator g of a given group to the private key k: gk. Encrypting message m
results in (gr, (gk)rm), where r is chosen by the encrypting agent. To decrypt, one
raises the first element gr to the power k, which results in the term grk. Then, the
second element (gk)rm is divided by grk, resulting in m. Note that the private key k
is not needed for decryption. Decryption only requires grk, which is derived from k.

A shared decryption of (gr, (gk)rm) is done as follows. Assume the private key k is
split into n shares s1, . . . , sn, such that gk = gs1+s2+···+sn. Each shareholder i raises
gr to his share and sends (gr)si to the others. Now, the shareholders can compute
Πi(g

r)si = (gr)k, which is the term needed to decrypt (gr, (gk)rm). In this fashion,
the message can be recovered without constructing k.

Application in voting

Secret sharing can be used in voting to distribute a decryption key. Suppose all voters
encrypt their votes with the same public key. The corresponding private key is then
split over all authorities, to ensure that only the authorities acting in concert can
uncover the votes. As explained above, it is not even necessary to reconstruct the
private key to decrypt the votes. In combination with homomorphic cryptography,
the encrypted result could be established, which is then decrypted. In this process,
the private key is not reconstructed, thus ensuring that no authority can decrypt any
other message.

Another use of secret sharing allows a voter to share her vote over several authorities.
This requires that an authority can combine all the shares he receives from the voters.
For example, suppose there are only two candidates and two voting authorities. The
candidates can be encoded as {−1, 1}. Each voter splits her vote into two random
shares. The sum of these shares is either 1 or −1 and encodes the vote. A voter
wishing to vote 1 could have a share 539 and another share −538. Another voter
could have shares 15 and −16 for voting −1. Now, each voter sends one share to
each authority. Thus, the first authority receives (for example) 15 and −538, and
the second −16 and 539. Note that neither authority can determine how any voter
voted. Next, each authority sums the received shares (resulting in −523 and 523).
The authorities add their sums together, resulting in 0. In this case, both candidates
got an equal number of votes, and the authorities did not learn how any voter voted.

3.1.4 Mixnets

Chaum [Cha81] proposed a cryptographic way to shuffle lists. A mix shuffles its input
in such a way that no element of the output can be linked back to an element in the
input. To ensure that the link between input list and output list is not trivially
retrieved, the mix needs to change the appearance of every message without changing
the meaning of any message. Using cryptography, this can be achieved by decrypting
or re-encrypting the messages. To decrypt a message, the mix must possess the
decryption key. To this end, the input messages are encrypted with the public key
of the mix. Re-encryption does not require the mix to possess a decryption key, and
thus puts less restrictions on the input. To shuffle a list, a mix decrypts or re-encrypts
each element, and randomises the order in which the elements appear in the list.
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In order to ensure that no single entity can recover the ordering, multiple mixes
can be chained to form a mixnet. This is possible with both decryption mixes and
re-encryption mixes. In the case of decryption mixes, each mix removes one layer
of encryption. The initial input must then consist of several layers of encryption,
each layer specifically targeted at one mix. The last mix in the mixnet then outputs
the finalised list. This approach is used in onion routing [SGR97], which provides
anonymous routing. With re-encryption mixes, the initial overhead of encrypting
each message once for each mix is avoided.

Figure 3.3 sketches the working of a mixnet. The first mix takes an input list of
messages (here, w, x, y, z) and outputs a shuffled list (x,w, y, z) in such a way that the
individual messages cannot be linked to its input (denoted in Figure 3.3 by rotation
of the messages). The output of the first mix becomes the input of the second mix,
which in turn provides the input to the last mix. The output of the last mix is not
linkable to the input of the first mix, nor to any of the intermediate stages.
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Figure 3.3: An example of a mixnet in operation (adapted from [HS00])

To prove that the output is indeed a permutation of the input, the mix can use zero-
knowledge proofs or designated verifier proofs. A pair of mixes has another option
available, called randomised partial checking [JJR02]: they shuffle and publish their
results. An independent party then selects for each message in the intermediate set
(i.e. the output of the first mix, which is the input of the second mix) whether the
link to the input or the link to the final output is revealed. As the mixes do not know
in advance which link they must reveal, the likelihood of being caught should they
mix fraudulently is substantial. At the same time, input messages cannot be linked
to the output messages as only one of the two links necessary for linking is revealed
for any message.

Application in voting Mixnets are used to provide anonymity in various ways in
voting systems. One approach is to use mixnets to construct an anonymous channel
(a communication channel that hides who put a message on the channel). Another
use is to shuffle the list of candidates on a specific ballot. The order of the candidate
is then revealed to the voter (using a designated verifier proof) and correctness of the
shuffle is proven publicly (using zero knowledge proofs). A third option, proposed
in [Nef01], is to mix voter credentials together, such that the voters are no longer
individually identifiable, but only as a group.
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3.2 Voting schemes and systems

Academic interest in development of voting systems was triggered by a remark in a
paper by Chaum on mix networks [Cha81]. The paper discussed the application of mix
networks to voting in one short paragraph. In the years following Chaum’s remark,
quite a number of theoretical voting schemes were proposed. In order to ensure voter
trust in the scheme, most of them offer traceability of the vote. Upon voting, the
voter acquires a receipt, which she can use to trace her vote to the results. Benaloh
and Tuinstra showed in [BT94] that such receipts can be used to nullify vote-privacy,
when the voter shows her receipt to another party. They had the insight that vote-
privacy is not optional, but must be enforced by the system. None of the classical
schemes that had been proposed up to then satisfied this requirement. Their work
led to a new direction in voting schemes: receipt-free voting systems. Later, Juels,
Catalano and Jakobsson [JCJ05] further refined the notion of privacy by identifying
the need for coercion-resistance (see the upper band in Figure 3.4).

Ensuring correctness of receipt-free and coercion-resistant systems is done by complex
cryptographic operations. This convoluted approach to verification hindered their
adoption in real-world elections. Recognising this as a problem, Chaum [Cha04]
proposed a voting scheme which offered a far easier mechanism to verify correctness
of the result. This inspired further developments of practical systems that combine
verifiability and privacy. This particular type of systems is called end-to-end verifiable
systems (lower band in Figure 3.4).

The aim of this section is to give an overview of the significant trends in voting,
both theoretical schemes and practical systems. To this end, we discuss a number
of significant instances of both of the above sketched types (schemes and systems).
The discussions below focus on properties of and relations between the schemes and
systems. For full specifics on the schemes and systems, the reader is referred to the
original papers.

theoretical receipt-free coercion-resistant

practical end-to-end verifiable

time

Cha81 BT94 JCJ05

Cha04

Figure 3.4: Development of voting systems

The rest of this section is organised as follows. First, theoretical schemes are described
(following the upper time line in Figure 3.4). Then, practical systems are described
(the lower time line in Figure 3.4).
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3.2.1 Receipt-free voting schemes

There is a vast body of literature describing voting schemes predating (or not account-
ing for) the seminal work of Benaloh and Tuinstra. These schemes strove to provide
privacy while assuring the correctness of the result. Below we highlight two such
schemes: the FOO92 scheme [FOO92] and the CGS97 scheme [CGS97]. The FOO92
scheme was designed with the intent of actual use. It has been used as the basis for
implementation of two voting systems (Sensus [CC97] and Evox [Her97]). CGS97 was
designed with the intent of being as efficient as possible. As such, it has been used as
a basis by various theoretical schemes that aim to incorporate receipt-freeness.

After these two schemes, the focus turns towards receipt-free schemes. First, we
discuss the seminal work by Benaloh and Tuinstra [BT94]. This is followed by an
alternative proposal by Niemi and Renvall [NR94], which appeared around the same
time and addressed the same concerns. From then on, research into voting became
quite prolific, and we highlight the more influential receipt-free schemes that followed
their work.

After discussing receipt-freeness, we outline the recent work of Juels, Catalano and
Jakobsson [JCJ05]. Their introduction of the notion of coercion-resistance has led
to a new direction in voting. However, this notion has not fully matured, and it is
not clear yet which of the proposed coercion-resistant schemes will be regarded as
influential. Hence, we cease our survey into receipt-free voting schemes at that point,
and summarise the survey with two tables listing the claims and used cryptographic
techniques, respectively.

FOO92

The FOO92 scheme [FOO92] aims to combine privacy with verifiability. To achieve
this, it uses blind signatures as follows (see Figure 3.5). The voter encrypts her
vote, blinds that encryption and sends the blinded, encrypted vote to the registrar
(the first message of Figure 3.5). The registrar verifies that the voter is an eligible
voter and that she hasn’t voted yet. If so, the registrar signs the blinded, encrypted
vote and sends the signed version to the voter (the second message in Figure 3.5).
The voter then unblinds this message and obtains an encrypted vote, signed by the
Registrar. She sends this via an anonymous channel to the tallier (the final message
in Figure 3.5).

Then, after the voting period has ended, the tallier publishes list L containing all
signed, encrypted votes received. After publication, the voter sends the decryption
key for her vote to the tallier (not shown in Figure 3.5). This allows the tallier to
open the vote and count the votes.

The FOO92 scheme has some known issues, for example all voters must take action
twice, once to cast their votes and once to send the used encryption key. Furthermore,
it is trivially not receipt-free: the decryption key of a particular vote is a sufficient
receipt. The privacy of the FOO92 scheme is examined in detail in Chapter 5.
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sk(R), pk(v)

Registrar

pk(R), sk(v), bk , kv, γ(v)

Voter v

pk(R), L := ∅

Tallier

{[[{γ(v)}kv]]bk}sk(v)

check voter

verify signature

{[[{γ(v)}kv]]bk}sk(R)

verify signature

deblind

sv := {{γ(v)}kv}sk(R)

sv

verify signature

add(L, sv)

Figure 3.5: Vote casting in FOO92

CGS97

The scheme proposed by Cramer, Gennaro and Schoenmakers [CGS97] aims to be
optimally efficient for a multi-authority setting. In their scheme, a voter publishes a
single encrypted vote plus a proof that the published message contains a valid vote.
The scheme is a homomorphic (ElGamal) voting scheme, it sums all encrypted votes
and then uses joint decryption to decrypt the sum. Cramer et al. note that the proof
of validity used can be made non-interactive using the Fiat-Shamir technique [FS86].
They note that in this case, care should then be taken to ensure that the constructed
challenges are voter-specific. The scheme is sketched in Figure 3.6.

pk(R), γ(v)

Voter v Tallier

publish:
votv = {|γ(v)|}pk(R),
proof of validity

verify proofs
compute T =

⊗
v∈V votv

jointly decrypt T

Figure 3.6: Vote casting in CGS97
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Cramer et al. note that their scheme is not receipt-free. They state that this can be
achieved using special channels, which in their view could be replaced with tamper-
resistant hardware. They raise the idea of receipt-freeness without untappable chan-
nels, similar to incoercible multi-party computation without untappable channels.
However, [HS00] points out that in the specific multi-party example cited, partici-
pants can prove specific behaviour.

The CGS97 scheme successfully reduced the communication and computational load
for voting significantly in comparison to previous efforts. In addition, the ideas set
forth by this scheme have been influential, leading to various adaptations to achieve
receipt-freeness.

BT94

In their landmark paper, Benaloh and Tuinstra describe an attack on vote-privacy,
apparently used in Italy. In certain election schemes used for multiple parallel elections
in Italy, voters could list their votes in any order. Knowing this, an attacker can
assign specific permutations of votes a priori. This permutation then acts as a voter’s
“signature”. If a voter’s signature is not in the set of cast votes, the voter deviated
from her assigned voting strategy. If the signature is present, then the voter complied
with her assigned voting strategy.

The above example illustrates two important things. First, it exemplifies that if the
voter can somehow undo the privacy of her vote, she is at risk of being coerced.
Secondly, it also shows that any input of the voter may allow her to lift her privacy.

Benaloh and Tuinstra devised a way around this problem. Their solution uses some
cryptographic tricks and some strong assumptions to ensure privacy:

• A doubly homomorphic randomised encryption system, having ciphertext oper-
ations ⊗ and ⊘ with plaintext equivalent operations + and −, respectively.
The cryptographic system allows one to prove that a given ciphertext encrypts
a given plaintext.

• A source of random bits.

• A voting booth.
While inside a voting booth, a voter cannot be observed, nor can the voter send
out communications. However, the voter can still receive communications, and
can also record received communications.

Moreover, there are only two candidates: 0 and 1.

The idea behind the main part of the scheme is that the voting authority first commits
to a series of encrypted pairs of 0 and 1 privately sent to the voter. Then, the voting
authority proves publicly that all but the first generated pair either consist of an
encrypted 0 and an encrypted 1, or that they encrypt the same pair (possibly in
reverse order) as the first pair. Which option is chosen depends on random bits
generated by the source. As the voting authority committed to the decryptions of all
pairs beforehand (including the first pair), the voter knows the ordering of all pairs
and thus knows which value encrypts her vote.
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Note that in addition to a specifically tailored cryptographic system, the BT94 scheme
relies on the existence of a voting booth, and a private channel. While a cryptographic
system satisfying the particular requirements exists, Benaloh and Tuinstra leave it
unclear how to satisfy these latter two assumptions. In addition, their scheme can
only handle a maximum of two candidates. Ensuing approaches sought to address
some of these shortcomings, as is described further on.

NR94

Around the same time, Niemi and Renvall remarked the possibility for vote buying
as well [NR94]. They too noted that all existing schemes gave the voter a token,
which is made public upon counting. Their solution was to adapt this token, so that
the voter cannot prove that it is hers. The (multi-party) computations done for this
occur inside a voting booth, which keeps the voter completely private. The token
allows a voter to check if her vote is part of the public set of received votes (ensuring
individual verifiability). Furthermore, the correctness of the count can be publicly
verified (ensuring universal verifiability).

However, the ability for a voter to check that her vote is in the published set of votes
can be abused by a voter to prove how she voted. Simply put, a voter can predict a
specific vote occurring in the set (i.e., her own vote). She does so to the vote buyer,
who then verifies that the value indeed appeared. In this way, the voter can prove to
the vote buyer which vote is hers.

The computations needed do not scale well with respect to false votes, something
which Niemi and Renvall already note. Furthermore, the scheme requires a strict
assumption (a voting booth). Although their proposal was influential for its ideas
(like [BT94]), the mechanics they proposed have been relegated to the fringes of
voting research.

SK95

Sako and Kilian [SK95] noticed the reliance on strong physical assumptions (voting
booths) in both [BT94] and [NR94]. They propose to use mixnets to relax the strong
assumptions. Moreover, their mixnet-based approach is one of the first to use proofs
of correctness for mixnets to achieve universal verifiability. Similar to [BT94], their
scheme lets the voting authorities mix an encrypted 0 and an encrypted 1 vote, while
proving to the voter how they mixed. This process is detailed in Figure 3.7.

The last mixer, mixer n in Figure 3.7, generates a list of encrypted zeroes and ones,
using a probabilistic encryption scheme (ensuring no two ciphertexts are equal). The
mixer publishes the list of encrypted pairs, and a proof that each pair contains an
encrypted zero and an encrypted one. Furthermore, the mixer sends a proof to the
voter of the order of each pair. This proof, sent over an untappable channel, is such
that the voter can lie about the order. After this, the next mixer (n− 1, omitted in
the depiction) takes an and shuffles it. Mixer n−1 publishes the mixed list an−1, and
a proof that he shuffled correctly. Moreover, he sends a proof of how he reordered
over an untappable channel to the voter. Again, this proof can be used by the voter
to lie. This process is repeated by all mixers in the mixnet. After the last mix, the
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Mixer 1 Mixer n Voter v Tallier

an = 〈(ǫ, ǫ′) ∈ Enc(0)× Enc(1)〉∗

publish an, proof(an)

order(an)

a1 = shuffle(a2)
publish a1, proof-shuffle

order(a1)

votv = x, where (x, y) ∈ a1

votv

Figure 3.7: Voting in SK95

voter sends one element of one pair of a1 (that corresponds to her choice) over an
anonymous channel to the tallier.

The proposed mixing scheme was criticised by Michels and Horster [MH96]. They
describe a known attack whereby a malicious voter can relate her vote to an honest
voter’s vote, by merely using the encrypted version of the honest vote. This relation
survives decryption. Thus, the dishonest voter can later test all published votes to
see which two satisfy the relation, thus revealing (to the malicious voter) how the
honest voter voted. In addition to this attack, Michels and Horster also describe a
new attack against the mixing process. If all subsequent mixing centres collaborate,
they can reverse the mixing by the immediate preceding mix. Note that this means
that if there is only one honest mix (which should be enough to provide an honest
mixnet), its shuffling can be completely negated by the rest of the mixnet.

Sako and Kilian manage to lessen the strict assumptions of previous schemes (absence
of a voting booth). Instead, the scheme requires an anonymous channel and a private
channel. However, their approach does not scale well to multi-candidate elections and
their cryptographic approach does not offer full security. The scheme has been used
as basis for an implementation, DigiShuff [FMM+02]. DigiShuff mitigates the critique
to a certain extent. DigiShuff is discussed below.

Okamoto97

Okamoto [Oka97] aims to reduce communication and computation overhead by using
blind signatures and an anonymous channel. He identifies a security flaw with respect
to receipt-freeness in an earlier version of his work [Oka96] and proposes three new
versions. In this work, Okamoto considers a voting scheme to be receipt-free if the
voter can cast a vote other than the vote buyer’s preferred vote. The set of received,
encrypted votes is made public. Okamoto avoids the problem of [NR94] by allowing
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each received vote to be opened in many ways.

All new versions have strong assumptions. Each uses an anonymous channel from the
voter to the authorities. Additionally, the first and second schemes require untappable
channels, while the third scheme uses a voting booth.

HS00

Hirt and Sako [HS00] set out to further reduce overhead and enable less strict physical
assumptions. They cast a critical eye on previous work, showing a receipt in the multi-
authority version of [BT94], noting the processing load of [SK95] and identifying the
use of anonymous, secret communication channels in [Oka97] as prohibitive towards
adaption. Furthermore, they note that the designated verifier proofs of [SK95] are
only designated, if the verifier possesses the corresponding private key (in normal
cases, this is assumed to be guaranteed by the key infrastructure). The proof is
transferable if the verifier can prove she does not possess the private key.

Voter v Talliers

votv = x, where (x, y) ∈ a1

publish votv

compute T =
⊗

v∈V votv

jointly decrypt T

Figure 3.8: Change in vote casting from SK95 to HS00

Hirt and Sako propose a generic construction for introducing receipt-freeness in voting
schemes based on homomorphic cryptography. Much like [BT94, SK95], the scheme
proposed by Hirt and Sako mixes a list of candidates. A zero knowledge proof of
correctness of the mix is published, and a designated verifier proof revealing how the
candidate list was mixed is given to the voter. The voter derives which entry in a
shuffled, encrypted list represents her choice. This process greatly resembles vote
casting in [SK95] (Figure 3.7). The only exception is the last message. Instead of
sending her vote over an anonymous channel, the voter announces it publicly. The
talliers take all published votes, sum them together and jointly decrypt the result,
without reconstructing the decryption key. The publishing of the vote is depicted in
Figure 3.8.

Like [SK95], the used designated verifier proofs require possession of a private key.
Hirt and Sako provide a protocol in which a verifier proves she possesses the private
key which ensures non-transferability.

Hirt and Sako apply their construction to [CGS97]. The lack of receipt-freeness
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in [CGS97] originates from the fact that the voter creates and posts her vote on
a public channel. This derivative consists of the basic construction by Hirt and
Sako, and borrows the cryptographic scheme and the encoding of votes from [CGS97].
Consequently, the resulting scheme more closely resembles [SK95] (as depicted in
Figure 3.7) than [CGS97] (as shown in Figure 3.6).

Hirt and Sako reduce the strong assumptions from earlier works. However, their ap-
proach still requires an untappable channel from voting authorities to voters. They
conjecture that physical assumptions are necessary to ensure receipt-freeness – with-
out such assumptions, the voter’s private information would be a valid receipt.

LK00

Lee and Kim [LK00] also set out to introduce receipt-freeness in [CGS97]. Un-
like [HS00], Lee and Kim do not aim to provide a generic construction for receipt-
freeness, but seek to incorporate receipt-freeness into [CGS97]. Their approach is to
ensure that the receipt present in [CGS97] (the voter’s vote) can no longer act as a
receipt. They introduce a trusted third party, an honest verifier (HV), that cooperates
with the voter in constructing the vote.

pk(R)

HV

pk(R)

Voter

v = {|γ(v)|}pk(R)

w = witness(v, rv)
comv

i = witness(v, ri, ci)

comhv = {|rj |}pk(R)

chhv = rk

(v, comv
0≤i<|C|)

(comhv , chhv )

respv = response(chhv )
chv = rl

(respv, chv)

verify respv

resphv = response(chv)
publish validity proof

resphv

verify resphv

verify proof
calculate final ballot
publish final ballot

Figure 3.9: Extensions to CGS97 for receipt-freeness in LK00

The vote encryption process (sketched in Figure 3.9) involves multiple steps. First, the
voter encrypts her vote as v and commits to a witness to this vote, w. Furthermore,
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she creates a false commitments comv(v, ri, ci) for every other candidate ci ∈ C\{γ(v)}
and random numbers ri. The voter’s vote and all commitments are send to HV. HV
replies with its own commitment and challenge (which is independent of the voter’s
supplied information). The voter responds, and issues a challenge of her own. HV
responds to this challenge and publishes a proof of validity for the final vote. The
voter computes her final vote based on the HV’s response, and publishes her vote.

The idea of the scheme is that as the voter no longer fully controls the encryption of
her vote, one particular receipt is prevented. However, as Hirt points out in [Hir01],
the HV can help the voter in casting a vote that falsifies the result. Furthermore, the
voter can construct a receipt similarly to the receipt in the multi-authority version
of [BT94].

The nature of the communication channel with the HV is not specified. However,
the voter sends her vote unencrypted over this channel. Hence, it should be at least
private.

BFP01

Baudron, Fouque, Pointcheval, Stern and Poupard seek to address the practical use-
fulness of voting schemes. To this end, they propose a scheme [BFP+01] that allows
for tally computations at local, regional and national level. The scheme achieves this
by having the voter cast three encrypted votes (one for each level) along with a proof
that the three encrypted votes encrypt the same candidate.

As these votes are made public, the basic scheme is inherently not receipt-free. Bau-
dron et al. address this by suggesting to use a hardware device to re-encrypt the votes.
Correctness of the encryption can be proven using an interactive zero knowledge proof
or a non-interactive, designated verifier proof. They claim that the interactive zero
knowledge proof would not harm receipt-freeness as the actual transcript of the in-
teraction is indistinguishable from a simulated transcript (and thus the voter can
provide a fake transcript). However, as pointed out by Hirt [Hir01] and later by Juels
et al. [JCJ05], the interactivity in a zero knowledge protocol can be abused to con-
struct a receipt. Moreover, the remark in [HS00] concerning designated verifier proofs
is also not addressed. As Baudron et al. do not provide further details, we consider
the claim of receipt-freeness for their protocol dubious at best.

MBC01

Magkos, Burmester and Chrissikopoulis also set out to transform [CGS97] into a
receipt-free voting scheme. They follow the approach of [LK00] by trying to ensure
that the obvious receipt of [CGS97] is not a proof of how the voter voted. Again,
the approach is to achieve this by having an external party co-construct the voter’s
vote. However, instead of relying on an external party, they propose to use a tamper-
resistant smart card (see Figure 3.10). The voter sends a random order of the two
possible votes (+1 and -1) to the smart card. The smart card then re-encrypts these
values (denoted by renc in the figure) and sends them back. Finally, the smart card
proves the correctness of the re-encryption using an interactive zero knowledge proof.
After this, the voter knows which of a′, b′ is an encryption of her choice. After this,
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the scheme mimics the steps of the CGS97 scheme.

smartcard

pk(R)

Voter

v = {|+ 1|}pk(R)

v′ = {| − 1|}pk(R)

(a, b) = (v, v′) ∨ (a, b) = (v′, v)

(a, b)

a′ = renc(a)
b′ = renc(b)

(a′, b′)
interactive proof

Figure 3.10: Extensions to CGS97 for receipt-freeness in MBC01

Magkos et al. identify a need for randomness in voting schemes, to ensure vote-privacy.
They analyse where this randomness could originate from: voter, authorities or an
external source. According to their analysis, letting the voter introduce randomness
enables her to abuse the randomness as a receipt. Letting the authorities choose the
randomness implies a need for an untappable channel, according to this analysis. An
external source would also require such a channel. However, Magkos et al. propose
to provide the voter with tamper-resistant smart cards for introducing randomness.
This would reduce the assumptions further: as long as the voter can interact with the
smart card in an unobserved, untappable way, receipt-freeness can be achieved.

The approach of Magkos et al. somewhat relaxes the constraints on communication
channels, but leaves open how to ensure that the voter is not observed while using
these channels. Furthermore, their relaxation is done by introduction of a smart card.
They do not answer the question whether this introduction brings about new risks.

KY02

Kiayias and Yung propose a scheme which takes quite a different stance [KY02]. They
extend the notion of privacy with perfect ballot secrecy : knowledge of a result of a
subset of ballots is only accessible to the coalition of all voters whose ballot is not in
the subset. Then they propose a scheme that satisfies this criterion (which is weaker
than receipt-freeness). Furthermore, they focus on the setting of boardroom elections.

In this scheme, voters provide randomness, then protect their vote using some random-
ness from all voters. This protection resembles homomorphic encryption, however,
there is no decryption algorithm available. As with homomorphic encryption, the
protected votes are added together, producing a protected result. To determine the
result, the protection is removed by brute-force search.

The scheme requires voter-interaction at three different stages. The authors provide
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mitigation procedures to ensure that a malicious voter cannot upset the entire election
by abstaining in a later stage.

Although the authors mention receipt-freeness as a desirable requirement of voting
schemes, they make no claim that their scheme is receipt-free, nor that receipt-freeness
is or is not necessary in boardroom elections. The protection of the vote provides an
obvious receipt. Hence, the scheme does not satisfy receipt-freeness. Interestingly
enough, the scheme only uses a public channel, no specialised communication channel
is used. This corroborates the remark in [HS00] that physical assumptions seem to
be necessary to achieve receipt-freeness.

LK02

Lee and Kim take heed of Hirt’s remarks [Hir01] and note that the approach to
constructing a receipt for [LK00] is also applicable to [MBC01], as both voting schemes
use interactive proofs, where the voter may abuse her interactivity to construct a
receipt. They also claim that this holds true in general for blind signatures: the used
blinding factor can act as a receipt.

Lee and Kim base their new receipt-free homomorphic scheme on the scheme pro-
posed in [Hir01], but they replace the assumption of a trusted third party randomiser
of [Hir01] with an assumption of a tamper-resistant randomiser possessed by the voter.
Lee and Kim do note that the costs of such external hardware for every voter may be
prohibitive to large-scale adaption. Although Lee and Kim do not state this explicitly,
their scheme also relies on the assumption on designated verifier proofs, as pointed
out in [HS00] (i.e., designated verifier proofs are transferable to anyone who can be
convinced that the voter does not possess the decryption key). Furthermore, as Lee
and Kim themselves point out, one of the proof-techniques they use may leak more
information than intended.

In addition to the above remarks, the conclusions for [MBC01] carry over to [LK02]:
the constraints are relaxed by introducing a new object, but the security of this new
object is not extensively treated.

LBD03

Lee, Boyd, Dawson, Kim, Yang and Yoo [LBD+03] take the ideas of using tamper-
resistant hardware from [LK02] and use it to construct a receipt-free mixnet-based
voting scheme. The link between a voter and her vote is hidden by mixing. As such,
the cast votes are individually decrypted to compute the tally. The scheme does not
use the homomorphic property, even though the used cryptographic system, ElGamal,
does support this. Verifiability of the result is achieved by verifiability of the mixnet
and proofs of correctness from the tamper-resistant hardware.

Communication with the special hardware is, as in [MBC01] and previous works,
assumed to be unobservable. Additionally, the scheme uses designated verifier proofs
to prove correctness of mixing, which have the same assumption on knowledge of the
secret key as [SK95, HS00, LK02]. Furthermore, Lee et al. note themselves that the
malleability of the used cryptographic system enables a voter to copy another voter’s
encrypted vote. They seem to imply that this does not pose a security risk, even
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though the signed and encrypted votes of each voter is cast by making it public.

ALBD04

Together with Aditya, Boyd and Dawson, Lee extends [LBD+03] to do away with the
tamper-resistant hardware (by having that role fulfilled by a voting authority) and
use an optimistic mixnet. The optimistic mixnet used is optimistic in the sense that
it proves that the product of the input is the product of the output (and not that each
element in the input corresponds to an element in the output). Note that this leaves
the possibility for a dishonest mix to change one vote, as long as there is another
change that cancels the first change (e.g., halving vote c1 and doubling vote c2, as
1
2c1 · 2 c2 = c1 · c2). The optimistic mixnet on which Aditya et al. base their scheme
pairs each input element c with its hash h(c), and mixes the pair (c, h(c)). To further
ensure that a dishonest mix does not thwart the entire mixing procedure, messages
are doubly encrypted. In case of an (detected) error, the set of messages prior to
the faulty mix is decrypted once. The decrypted set can then be used as input to a
regular mixnet. In this way, the scheme ensures verifiability, while the mixnet provides
receipt-freeness.

As Aditya et al. point out, the security of optimistic mixnets is not beyond doubt yet
(see e.g. [Wik03]). They introduce several changes to the optimistic mixing scheme to
prevent identified flaws. Most notable of these changes are the use of only one encryp-
tion layer, and omitting the hashing. This latter change reintroduces the possibility
to change votes as explained above.

JCJ05

Juels, Catalano and Jakobsson noted in [JCJ05] that even if a scheme prevents vote-
buying, there remain privacy-related threats for voters. They identify the following
three privacy-related threats that are not covered by any privacy requirement on
voting yet:

• Forced abstention (the voter is forced to abstain).

• Simulation (the voter is forced to give her credentials to the attacker, who votes
in her stead).

• Randomised voting (the voter is forced to vote for a random candidate).

Juels et al. introduce the term coercion-resistant to describe the requirement of being
receipt-free and preventing the three attacks above. The voting scheme they propose
seeks to achieve this by allowing a voter to derive fake voting credentials from real
voting credentials. The voter can claim the fake credentials are her real credentials.
These fake credentials can then be used as the attacker pleases (either not, to abstain;
or allowing the attacker to vote, or to cast a random vote). Votes cast using these
fake credentials are removed at the tallying stage, after being made public and being
mixed. As the false votes are removed after having been mixed, the link between a
removed vote and a published vote is not retrievable.
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Privacy Verifiability Channels
System VP RF CR Individual Universal v→a a→v

[FOO92] + - - + + A -
[CGS97] + - - + + -1 -
[BT94] + +2 - + - A U
[NR94] + + - + + A U
[SK95] + +4 - + + A U
[Oka97] + + + + + A,UA U
[HS00]∗,∗∗ + + - + + - U
[LK00]∗ + +2 - + + P P
[MBC01]∗ + +2 - + + H H
[BFP+01] + -3 - + + H H
[KY02] + - - + + - -
[LK02] + + - + + H H
[LBD+03] + + - + + H H
[ALBD04] + + - + + U U
[JCJ05] + +4 + + + A U

* Improves [CGS97]
** Based on [SK95]

- Privacy claims: VP: vote privacy, RF: receipt-freeness, CR: coercion-resistance
- Channels: -: public, A: anonymous channel, P: private channel, U: untappable channel, UA: untap-

pable anonymous channel, H: voter has hardware device

Notes:

1. The authors propose an extension that uses a private channel from voter to authority.
2. Claim known to be broken.
3. The authors propose an extension using standard techniques to satisfy receipt-freeness. Note that

some of these techniques have been exploited to construct receipts in other schemes.
4. See the remarks in the discussion of the work.

Table 3.1: Claims of classical and receipt-free schemes

The authors claim that the published votes do not constitute receipts. Their reasoning
is that the attacker does not know whether or not a voter has cast a vote, so the
attacker cannot force a voter to decrypt any message. However, there is an effect on
voter privacy, as follows. If a voter is willing to reduce her privacy, she can show how
she constructed the encrypted vote. This proves the voter cast this one vote. This
vote, however, may be false. But, if no votes are removed after mixing, then the vote
was not false, and thus the voter has proven how she voted. In general, if the number
of removed votes is smaller than the number of receipts obtained (by the attacker),
voter privacy is harmed.

In short, Juels et al. further refine the notion of privacy in voting. They propose a
voting scheme to satisfy this refined notion, which again relies on specific assumptions
on the used communication channels. Furthermore, while their scheme allows a willing
voter to reduce her privacy (i.e. the scheme is not receipt-free), that receipt does not
prevent an unwilling voter to remain private. This indicates that coercion-resistance
is not a straightforwardly stronger requirement than receipt-freeness.
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BlindSig HomEnc Mixnet SecShare ZKP DVP
[FOO92] + - -1 - - -
[CGS97] - + - + + -
[BT94] - + - - - +
[NR94] - - - + + +
[SK95] - - + - + +
[Oka97] + - + -2 + -
[HS00] - + + + + +
[LK00] - + - + + -
[MBC01] - + - + + +
[BFP+01] - + - + + -
[KY02] - -3 - + + -
[LK02] - + - + + +
[LBD+03] - - + + -4 +
[ALBD04] - - + + + +
[JCJ05] - + + + + +5

Legend:
- BlindSig: blind signatures, HomEnc: homomorphic encryption, SecShare: secret sharing
- ZKP: zero knowledge proof, DVP: designated verifier proof

Notes:
1. The use of mixnets is not described in the paper, but the scheme does use an anonymous channel

(which are usually implemented using mixnets).
2. The second scheme in [Oka97] does use secret sharing, the other two presented schemes do not.
3. The result is determined by combining the protected votes, and deprotecting the result, much like

homomorphic cryptography.
4. The use of zero knowledge proofs is not described in the paper, however, the paper suggests to use

a verifiable mixnet (which would provide a zero knowledge proof).
5. This is only used if the registering authority is not trusted.

Table 3.2: Usage of cryptographic techniques in voting schemes

Summary

The claims made by the various schemes with respect to privacy and verifiability are
listed in Table 3.1. The use of cryptographic techniques is summarised in Table 3.2
(note that re-encryption is used in mixnets, and, as such, has been left out of the
table).

From Table 3.1, it is obvious that every protocol that claims receipt-freeness, uses
a specialised communication channel. Hirt and Sako [HS00] remark this too, and
hypothesise that some physical assumptions are necessary to achieve receipt-freeness.
The following types of communication channels have been used in literature to ensure
receipt-freeness.

• An anonymous channel, i.e. a channel where no one learns who sent a message.

• A private channel, i.e. a channel where no observer learns anything about the
contents of messages.

• An untappable channel, i.e. a channel where no observer can learn anything,
not even if messages are communicated.
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• A hardware device, communications with which are untappable.

• An untappable anonymous channel, i.e. a channel which is both anonymous and
untappable.

A frequently used concept in actual elections to ensure privacy is a voting booth. The
concept of a voting booth is often realised in remote voting schemes as a bi-directional
untappable channel. However, a voting booth is to ensure a private environment,
while untappable channels ensure private communications. Despite these diverging
objectives, an untappable channel can constitute a reasonable approximation, as it
is a way to incorporate procedures and physical measures that are to ensure that a
voter can communicate in private. Moreover, in actual elections the privacy of the
voting booth is occasionally violated. For example, visually impaired voters may be
allowed to bring a seeing assistant into the voting booth.

3.2.2 Practical and end-to-end verifiable systems

Elections were held before Chaum initiated research into voting. With the advent of
computers and the Internet, governments and democratic bodies became interested
in leveraging their potential for elections. On top of that, researchers have been on
the lookout for a real-world use case for their schemes. Examples of this are given
by the implementations of the FOO92 scheme, DigiShuff [FMM+02], and the RIES
system [HJP05].

Chaum’s aim to provide an unprecedented level of verifiability, whilst preserving pri-
vacy [Cha04], proved to be a fertile breeding ground for research. Following Chaum’s
work, various end-to-end verifiable systems have been proposed, all aiming to combine
privacy and verifiability. In this section, we first discuss the implementations of the
FOO92 scheme and of DigiShuff. This is followed by an overview of the RIES system.
The rest of the section is dedicated to Chaum’s work and the works it inspired.

Implementations of FOO92

There are two publicly available implementations of the FOO92 scheme [FOO92]:
Sensus [CC97] and Evox [Her97].

Evox. Evox chooses to implement the anonymous channel by having a third party
receive all votes. After the voting phase ends, the third party forwards the set of
received messages to the tallier. This in itself is not detrimental to privacy. However,
the Evox system deviates from [FOO92] by adding the decrypted vote to the message
sent over the anonymous channel. This means that every voter reveals to the third
party how she voted.

Sensus. Sensus does not provide an implementation of the anonymous channel. As
such, it remains similar to FOO92 in this regard, thus avoiding the problem of Evox.
However, the anonymous channel in FOO92 is a necessary constituent to achieve
vote-privacy (with respect to the tallier). As Sensus does not provide an anonymous
channel, it fails to provide vote-privacy.
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Comparison with FOO92. Both implementations of FOO92 clarify one item left
unclear in the original scheme. In FOO92, a list of all received encrypted votes is
published. This list is used by voters to send their decryption key (indicating which
index their vote has, so that the tallier knows which key to use). In FOO92, it is not
clear whether or not the published list is updated with the keys. Both Sensus and
Evox do update the published list. In this way, both systems ensure that anyone can
construct any vote on the list. This addresses the problem of a voter that constructs
a listed vote, thus proving she cast that vote.

While both Sensus and Evox base their design on [FOO92], both systems have devi-
ations which lower the offered privacy with respect to [FOO92]. In the case of Evox,
this can be mitigated by assuming a third party trusted to not reveal or act upon
how voters voted. However, far easier systems are possible if a trusted third party is
used.

DigiShuff

The DigiShuff system [FMM+02] is based on the work by Sako and Kilian [SK95].
Furukawa, Miyauchi, Mori, Obana and Sako notice that some of the computations
involved for proving correctness of shuffling and proving correctness of decrypting
are similar. By merging these computations, they achieve a speed-up in comparison
to [SK95]. Furthermore, the system uses a “Shuffling Management Centre”, that
handles communications with each mix in the mixnet. This prevents the attack
of [MH96], as long as the Shuffling Management Centre does not cooperate with the
individual mixes.

The DigiShuff system exploits the proposed merging of computations to great effect.
Furukawa et al. claim speed improvements over [SK95] of up to a factor 16 in a test
election with 10,000 voters.

RIES

The RIES system [HJP05] was developed in the Netherlands to support voting for
water control boards (which are democratic bodies). The system aims to provide a
high level of verifiability. Below, we describe how this is achieved.

The RIES system operates in three phases: pre-election, post-election and a voting
phase. During the pre-election phase, the authorities generate an election id el id and,
for each voter, a secret key. This key is used to generate a personalised candidate
list from the initial candidate list (see Figure 3.11). To generate this, each candidate
is encrypted with the voter’s secret key. The election id is also encrypted with the
voter’s key and acts as a pseudonym for the voter. This personalised candidate list
is sent to the voter. Furthermore, a hash function, mac, is applied to each entry on
the personalised list. This results in a new list (shown in Figure 3.11(c)), which is
published. As the hash function is non-invertible, this does not provide information
about the personalised candidate list.

To vote, a voter selects the candidate of her choice on her personalised candidate
list. She sends her vote and her pseudonym over an anonymous channel to the tallier.
When all votes have been received, the post-voting phase begins. The tallier publishes
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el id
1 can1

...
...

n cann

(a) initial

sk(v)−−−→

{el id}sk(v)
1 {can1}sk(v)
...
...

n {cann}sk(v)

(b) personalised

mac−−−→

mac({el id}sk(v))
1 mac({can1}sk(v))
...
...

n mac({cann}sk(v))

(c) published

Figure 3.11: Per-voter candidate lists in RIES

the set of received votes. To determine the final result, the mac of each received vote
is computed. Using the supplied pseudonym, the resulting value can be looked up in
the published lists and so counted for the correct candidate. The above procedures
allow voters to verify that their vote is counted, and that it is counted correctly.

The security of RIES has been analysed by various academics (see e.g. [HJP05, JV07])
as well as by officially commissioned security institutions [HJS+08, GHH+08]. Al-
though the parts examined (and thus the conclusions) vary from study to study, it is
clear that the RIES design has various problems. The most serious of these are the
inherent ability for a voter to prove how she voted, the possibility for the authorities
to vote on behalf of voters, and the lack of procedures to deal with complaints (such
as when a voter discovers discovers that her vote is missing).

Chaum04

In [Cha04], Chaum introduced visual cryptography as a means to combine easy voter
verification with vote-privacy. A voter’s vote is recorded on two layers of paper. Each
layer contains a pattern of apparently random dots, but when overlaying them over
each other, the voter’s vote is revealed. The voter can take the layer of her choice as
a receipt, as it, by itself, does not reveal her vote. The other layer is destroyed. The
receipt layer is scanned and acts as the voter’s ballot.

All ballots are published, allowing the voter to verify that her ballot is received cor-
rectly. To determine the election result from the ballots, the ballots are mixed. Each
mix visually decrypts the ballots. This results in a set of readable ballots, from which
the tally is straightforwardly established. To ensure verifiability, Chaum suggests to
use randomised partial checking [JJR02].

Chaum’s approach to combining privacy and verifiability does not require heavy cryp-
tographic operations on the part of the voter. However, mixing applied to visual
cryptography makes the scheme less transparent.

Prêt à Voter

Prêt à Voter builds forth on the ideas proposed by Chaum. It was originally developed
by Ryan [Rya04, Rya05], and later extended by Chaum, Ryan and Schneider [CRS05].
This scheme avoids the use of a two-layered receipt by having two columns. The left-
hand column of the ballot presents the candidates in a random order, while the right-
hand column has space for the voter to mark her preference. At the bottom of the
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right-hand column is a cryptographic string (an onion) which encodes the candidate
ordering on the ballot. This onion is the encryption of a random offset D0 with each
talliers public keys.

South
North
East
West

3ei82Lk

Figure 3.12: A ballot in Prêt à Voter

A voter marks her preference, separates the two columns and destroys the left-hand
column. The right-hand column is scanned by the system and taken home by the
voter as a receipt. Since the candidate ordering is not retrievable from the right-hand
column except by all talliers decrypting in order, the receipt cannot be used to prove
the voter’s preference.

Creating a candidate order is handled in a similar manner to [HS00]. The main
difference is that Prêt à Voter does not prove the candidate order. Instead, there are
more ballots than necessary. A voter has the option of having the onion on an empty
ballot decrypted, to confirm the candidate order of that ballot. In this fashion, Prêt
à Voter enables a cut-and-choose style proof of correctness of the candidate order.

To provide further verifiability without sacrificing privacy, the conversion of receipts
to countable votes is subject to randomised partial checking [JJR02]. This part of Prêt
à Voter is lifted out by the subsequent voting system Scantegrity, which is detailed
below.

In addition to these verification facilities, Prêt à Voter provides auditing procedures
to ensure that the ordering on a given ballot matches that ballot’s onion (voiding the
ballot in the process, hence this procedure can only be executed on surplus ballots),
and several error detection and recovery procedures.

Since its inception, Prêt à Voter has received further attention [RS06, LR08a], which
addresses discovered problems such as chain voting and kleptography. Chain voting
is a voting attack where an intruder somehow has a blank ballot. The intruder fills
in the candidate of his choice on the ballot. Next, he offers a voter who is about to
go and vote a reward for bringing back a blank ballot. As she must cast a vote, the
intruder gives the voter his filled-in ballot. When the voter hands the intruder a blank
ballot, he gives her a reward and once again possess a blank ballot. Kleptography is
the trick of embedding a cryptographic system inside another cryptographic system.
Users of the outer cryptographic system do not experience any difference, but their
encrypted messages leak information to those possessing the decryption key of the
inner cryptographic system. Prêt à Voter uses cryptography to hide the candidate
ordering. As this is the key to achieving privacy, information leakage would potentially
nullify privacy.

The extensions to Prêt à Voter have addressed these and other issues and have ex-
tended the capabilities of the system to support more diverse voting methods, leading
to a more mature voting system.
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Figure 3.13: A Punchscan ballot voting for “south”

Punchscan

Punchscan [FCS06] takes Chaum’s idea of layers quite literally. In Punchscan, a ballot
consists of two layers (see Figure 3.13, where the layers are coloured for clarity). The
top layer has a numbered list of the candidates in a random order. Below that list,
there is a series of holes. The bottom layer provides the used numbers in a random
order at the location of the holes in the top layer. A choice is made by using a big
marker to colour both the bottom layer number and the top layer hole at the same
time. The top layer does not identify which choice has been made, only which hole has
been selected. The bottom layer does not reveal which candidate has been selected,
only which sequence number that candidate had on this particular ballot. Hence,
neither ballot can identify the voter’s choice. One layer is destroyed, and the other
one is copied for tallying. The voter retains the copied layer for verification.

The ordering of sequence numbers in both top and bottom layer is stored by the
authorities, and linked to the ballot id number (in Figure 3.13, the ballot has id
number 002). Using the stored information, the authorities can reconstruct the voter’s
choice from either layer in a manner similar to Prêt à Voter.

Although Punchscan seems to offer privacy and verifiability, the scheme has draw-
backs. One such drawback, as mentioned in [BMR07], is that even though a layer
does not give sufficient information to determine how a voter voted, the distribution of
layers over possible votes can be skewed. Consider, for example, an election between
two choices (Figure 3.14).

A: Yes A: Yes B: Yes B: Yes
B: No B: No A: No A: No

a b b a a b b a

Figure 3.14: Ballot orderings for a two-choice election in Punchscan

Consider an attacker who offers a reward for:

• any top-layer where Yes is labelled A, and where the left hole is marked,

• any bottom layer where A appears left and is marked.
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All possible ballots are shown in Figure 3.14. Note that only for the first ballot,
voting Yes will leave the result with a rewarding layer. To receive a reward if given
the second or third ballot, a voter must vote No. And, if given the fourth ballot, the
voter cannot produce a layer that will receive the reward.

This particular drawback was addressed in Punchscan by forcing a voter to choose
which layer is her receipt before she has seen the ballot.

Scantegrity

The researchers behind Punchscan recognised that the process of randomised partial
checking and reconstructing the choice (originating from Prêt à Voter) can be taken
independent from the ballot-casting process. They devised a new verification system
called Scantegrity [CEC+08]. Scantegrity can be added to an existing voting system
to provide verifiability. In essence, Scantegrity employs randomised partial check-
ing [JJR02] as follows: it uses two mixes to mix the votes, making the results of each
mix public. Verifiability of the entire mixing process is achieved by revealing for each
vote in the intermediate mixed set either where it originated from (revealing the link
to the input), or where it ended up (revealing the link to the output).

In Figure 3.15 this process is more detailed. Again, each choice on a ballot is assigned
a random code ∈ {w, x, y, z}. The Switchboard is the result after the first mix (and
thus the input to the second mix). The Switchboard is published. Verifiability is
achieved as follows: for each entry on the Switchboard, a coin is flipped. Depending
on the result of this coin flip, either it is revealed where it originated (indicated by
thick lines in the left mix), or it is revealed how it affects the result (indicated by
thick lines in the right mix).

Figure 3.15: Vote verification in Scantegrity

Both Scantegrity and Punchscan suffer from security problems. The pattern voting
attack (as described in [BT94]) is not prevented by either. Furthermore, they do not
prevent randomisation attacks [JCJ05].

Due to detected security and usability problems, several researchers of the original
Scantegrity teamed up with others to develop Scantegrity II [CCC+08]. The main
improvement is hiding the verification codes using invisible ink. Using a special
marker, the voter marks her choice, which reveals the invisible ink (and thus the
confirmation code for that choice).
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Scratch & Vote

Much like Prêt à Voter and Punchscan, Scratch & Vote [AR06], by Adida and Rivest,
uses randomised candidate orderings on the ballots. A ballot lists the candidates in
the left column and has space for the voter to indicate her choice in the right column.
Below the right column, there is a bar code which states the candidate ordering in
encrypted form. Below the bar code, there is a scratchable surface. When this surface
is removed, the random factors used to encrypt the candidate ordering are revealed.
To verify that the order in the left column matches the bar code in the right column,
a voter can scratch away the scratch-layer and then verify the ordering of the bar
code (using a bar code scanner).

For example, consider an election with options North, West, South and East (see
Figure 3.16).

South . . .
West . . .
North . . .
East . . .

pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp

p p p p p p p p p
p p p pp p p

p p p
p p p
p p p
p p p
p p p
p
{South, r1}pk
{West , r2}pk
{North, r3}pk
{East , r4}pk

p p p p p p p p p p p p p r1, r2, r3, r4

Figure 3.16: A ballot in Scratch & Vote

A voter receives two ballots, one to prove ballot integrity and one to vote. The voter
chooses which ballot is used for which purpose. To prove ballot integrity, the voter
removes the scratch surface, revealing the used randomisation values. Using a bar
code scanner, the voter can now compute whether the bar code candidate ordering
(which is encrypted) matches the depicted candidate ordering (which she can encrypt
herself, using the revealed random values). The used ballot is invalid, as its scratch
surface has been removed. Therefore, if the voter is satisfied, she uses the other ballot
to cast her vote. Upon casting this ballot, its scratch surface is detached from the
ballot and destroyed. In this way, the ballot no longer holds sufficient information by
itself to reveal the decrypted candidate ordering.

The election result is established by applying the homomorphic property of the used
cryptographic system. The encrypted result is then decrypted without revealing the
decryption key (as described in Section 3.1.3).

Adida and Rivest extend the concept of scratch-surface verifiability to both Prêt à
Voter and Punchscan. However, they do note that privacy of the scheme is based on
the assumption that the scratch surface is perfect: either it hides the used random
values, or it is detected as having been scratched. Furthermore, malicious authorities
could record the candidate orderings in advance, and use this to reveal how voters
voted. Adida and Rivest remark that this problem is inherent in preprinted paper-
based cryptographic voting. For example, Prêt à Voter and Punchscan have the same
weakness.
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3BS

A radically different approach to end-to-end verifiability was proposed by Rivest and
Smith. Their scheme, the ThreeBallot scheme or 3BS [RS07], uses a specific form of
ballot. This ballot consists of three separate ballots, which together form the whole
ballot (a Threeballot, see Figure 3.17). Each separate ballot contains an election-wide
unique code at the bottom.

To vote, a voter places one mark in each row. In the row of her choice, she places a
second mark. The voter is free to place the marks in any column, as long as there is
one row with two marks (her choice) and all other rows have one mark.

When the voter casts the vote, she chooses one ballot of which she receives a certified
copy. The copy allows the voter to verify that her Threeballot contributes to the
result. After voting, the set of all received ballots is published. This allows all voters
to verify that their certified copy is in the set, as well as verifying that the announced
result matches the published set of ballots. The certified copy does not prove how
the voter voted, as it could have been part of various valid Threeballots. The ballots
in the published set can be combined with the certified copy of a ballot. Although
not all possible combinations constitute a valid Threeballot, in general there will be
several possible valid Threeballots, thus ensuring vote-privacy.

ballot 1a ballot 1b ballot 1c
North ◦ North • North ◦
South • South ◦ South ◦
East • East ◦ East •
West ◦ West ◦ West •
$xY63#bZ[ ’@a0^U 3G< ]Lw%4!r;}

Figure 3.17: A Threeballot in favour of “East”

As Rivest and Smith already note, not all possible ballots can be combined with a
given receipt. For example, a receipt on which each candidate has a mark must be
linked to a completely unmarked ballot and a ballot where precisely one candidate is
marked. This means the privacy of a voter can be significantly reduced. The authors
propose several solutions to address this. Each solution has its own problems with
respect to feasibility and practicality.

Alongside 3BS, Rivest and Smith introduce two additional voting schemes in [RS07]:
VAV (vote/antivote/vote) and Twin. VAV greatly resembles 3BS, but interprets the
ballots differently. Two ballot are marked ‘V’ for vote, the third is marked ‘A’ for
antivote. A mark on the antivote ballot cancels a mark on a vote ballot. The VAV
scheme requires that the antivote ballot is marked precisely the same as one of the
two vote ballots. Other than this, the scheme works as 3BS (e.g. the voter can choose
which ballot to copy as a receipt). In the third proposed scheme, Twin, each voter
receives a copy of a receipt of a vote, but not of her own vote. In this way, direct
verifiability is traded off for increased privacy.

Rivest and Smith already point out several possible avenues of attack on 3BS in
their original paper. The level of privacy 3BS offers has been the subject of criticism
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(see e.g. [App06]). Nevertheless, 3BS’s core ideas offer an interesting approach to
combining verifiability and privacy. 3BS’s approach is further explored in Section 5.3.

Bingo Voting

Bohli, Müller-Quade and Röhrich propose a radically different approach: Bingo Vot-
ing [BMR07]. In Bingo Voting, the authorities generate, for each voter, one random
number per candidate, generating a pair of random number and candidate. For voter
vi and candidate cj , such a pair would look like (ri,j , cj). Thus, for n voters and
m candidates, the authorities generate n ·m pairs. The authorities keep these pairs
secret, but publish commitments to these pairs.

To vote, a voter selects her candidate. This candidate is assigned a freshly generated
random number. To ensure freshness of the generated number, Bohli et al. suggest
to use (for example) a mechanical device such as used in bingo. The voter is given a
receipt, on which the candidate of her choice is assigned the freshly generated random
number. To ensure that the receipt cannot be used to sell her vote, all other candidates
are assigned one of the previously generated random numbers.

In order to establish the election result, the list of all handed-out receipts is published.
Furthermore, a list of all unused pairs is published and opened, and the authorities
prove that all unopened commitments are indeed used on one receipt. The final result
is then given by the unused, opened candidate-number pairs. Note that an abstaining
voter leaves one unused candidate-number pair per candidate. Hence, the abstaining
voters can be deducted from the tally, if necessary.

Bohli et al. claim that Bingo Voting satisfies (amongst others) Cast-as-Intended, be-
cause a voter can verify that the freshly generated number is assigned to the candidate
of her choice. However, during casting the voter has no opportunity to verify that
the other numbers assigned are numbers that were committed to previously, nor that
exactly one number was used from each set of candidate-number pairs of the non-
preferred candidates.

Aperio

The Aperio system [ECA08] is a variation on Punchscan that was developed to serve
as an end-to-end verifiable system for environments where computerised support is
low (e.g. developing countries). Aperio extends the layered approach of Punchscan
further, basically providing a layer-based approach to randomised partial auditing.
Each ballot has a receipt layer and two (differently coloured) audit layers. Each
layer has its own unique identification number for auditing. Each layer is marked
as the voter marks her choice on the top layer (the ballot), recording the location
of the voter’s choice. The election officials create, for each colour of audit layer,
two sealed envelopes. The envelopes each contain a list, the one list linking the audit
identification numbers to the voter receipt identification numbers. The other list links
the audit identification number to the used candidate ordering.

Randomised partial auditing is achieved by choosing which colour of layer will reveal
which of the two links. As both links (the link to the voter ballot and the link to the
result) are revealed, the system provides a level of verifiability.
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Conclusions

Various efforts have emerged that sought to transform theoretical voting schemes into
actual systems. The systems created aim to combine strong privacy measures with a
high level of verifiability. Chaum’s work [Cha04] inspired new ways to leverage the
privacy and verifiability-combining properties of mixnets. However, care must still be
taken – with the cryptographic details (e.g. the flaw in [SK95], corrected by DigiShuff)
as well as with the new details (e.g. the privacy-reducing threats to Punchscan and
3BS).

3.3 Summary

A wide variety of theoretical “receipt-free” schemes has been proposed. Despite argu-
ments (and even proofs) of achieving receipt-freeness, methods to construct a receipt
for several of these schemes have emerged in literature.

A wide variety of practical “end-to-end verifiable” systems has been proposed. Despite
arguments (and even proofs) of achieving privacy and verifiability, methods to reduce
a voter’s privacy have been identified for several systems.

Claims of privacy are far easier made than substantiated. As established in the
previous chapter, a better understanding of privacy in voting is necessary. But this is
not enough. We need a rigorous, well-developed method to provide design methods
and verification methodology that can actually prove privacy. Hence, privacy needs to
be unambiguously defined, and a verification methodology needs to be designed that
can verify whether a voting scheme or system fulfills the unambiguous definition of
privacy. The area of formal methods offers a structured and rigorous mathematically
based approach to definitions and verification.

In the next chapter, we design a formal framework for formalising voting schemes and
systems, which supports precise articulations of privacy properties.
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Formalising voting systems

From the previous chapters, a need for formalising privacy in voting has emerged.
In this chapter, we investigate existing formalisations and propose a new, improved
formalisation. The chapter is organised as follows.

First, we discuss previous formalisations of privacy in voting and outline our approach
in Section 4.1. A formal framework for modelling voting systems is introduced in
Section 4.2. Section 4.3 shows how to quantify privacy in the framework. Then,
the attention turns towards conspiring voters. Section 4.4 discusses ways in which
voters can conspire to reduce their privacy. These ways are formalised in Section 4.5.
The chapter is ended by discussing the relation between privacy as captured by the
framework and receipt-freeness, coercion-resistance and verifiability in Section 4.7.

4.1 Related work

This section discusses the various research efforts that have been devoted to formal-
ising privacy properties for electronic voting. We can distinguish two main lines of
research into formalising privacy in voting. On the one hand we see modelling of
privacy properties in applied π by Kremer and Ryan [KR05], and later Kremer, Ryan
and Delaune [DKR06, DKR08], which culminated in the automatic verification of
Backes, Hriţcu and Maffei [BHM08]. On the other hand we see works formalising
privacy in logics: Jonker and De Vink [JV06] in first-order logic, and then privacy
in epistemic logic by Jonker and Pieters [JP06], and later Baskar, Ramanujam and
Suresh [BRS07], who have a knowledge based formalisation in epistemic logic.

In addition to the lines sketched above, Juels, Catalano and Jakobsson introduce
coercion-resistance. Their definition is of a cryptographic nature, in that it is a
comparison of probabilities. The definition compares the probability of the intruder
to determine if a coercion attempt was successful to an “ideal” intruder. The “ideal”
intruder is one that does not learn whether or not coercion was successful.

In the remainder of this section, we first discuss the research formalising properties
in applied π. A discussion of the logical formalisms follows. We finish by describing
our approach to furthering the definitions of privacy.

51
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4.1.1 Privacy expressed in applied π

Kremer and Ryan analyse the FOO92 protocol in the applied π calculus [KR05].
There they provide an early formalisation of privacy. This formalisation is based
on the indistinguishability of swapping two votes between voters. Swapping votes
between voters ensures that the result of the election remains unchanged, while having
a different input to the system. Kremer and Ryan formalise indistinguishability as
observational equivalence.

In their later work with Delaune [DKR06, DKR08], indistinguishability is defined
as labelled bisimilarity instead, which coincides with observational equivalence. De-
laune, Kremer and Ryan use labelled bisimilarity as the basis for vote-privacy, receipt-
freeness and coercion-resistance. They propose that a system is receipt-free if an
intruder cannot distinguish between a cooperating, information-sharing voter and a
voter who fakes cooperation with the intruder. To ensure the result of the two cases
are equivalent, there must be a second voter who swaps votes with the voter under
observation. Delaune, Kremer and Ryan extend this approach to encompass coercion-
resistance, which they view as the situation where the voter not merely shares infor-
mation with the intruder, but in addition only sends out intruder-supplied terms in
the process of casting her vote. The definitions are applied to the scheme proposed
by Lee et al. [LBD+03]. To determine whether the scheme is receipt-free, a “faking
voter” needs to be constructed, who fakes cooperation with the intruder. A similar
construction holds for coercion-resistance, where Delaune, Kremer and Ryan note
that the scheme by Lee et al. is not coercion-resistant if the encryption system used
supports integrity checking.

Backes, Hriţcu and Mattei [BHM08] extend the work of Delaune, Kremer and Ryan.
They address several drawbacks: the definition of coercion-resistance in [DKR08]
uses quantification over an infinite set of contexts, forces the intruder to follow the
intended behaviour of the system, and does not address forced abstention attacks.
Backes et al. propose a new definition of coercion-resistance, which captures immunity
to simulation attacks and thus (as the authors show) forced abstention attacks, while
leaving randomisation attacks as future work. Backes et al. define coercion-resistance
as a comparison between a voter feigning cooperation with the intruder to a voter who
is truly cooperating with the intruder. This definition requires two additional agents
to prevent trivial differences in the result. There is a second voter to balance the
vote of the cooperating voter, and an extractor that balances any vote the intruder
may supply himself, using the voting credentials supplied by the coerced (or feigning)
voter. In this way, the election result is the same for both scenarios (coerced voter
vs. feigning voter). This definition is then applied to the work of Juels et al. [JCJ05].

4.1.2 Privacy expressed in logics

While the above line of research has been fruitful, it fails to acknowledge the role
of the intruder knowledge. Intuitively, receipt-freeness is about proving something
to the intruder. As such, the intruder’s knowledge comes into play. Jonker and De
Vink [JV06] characterise receipt-freeness as these properties of the receipt. In their
view, a receipt is an object that uniquely identifies the voter, that uniquely identifies
the voter’s candidate and that uniquely identifies the voter’s cast vote. Hence, their
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definition of receipt-freeness is based on the absence of such objects. Jonker and
Pieters [JP06] build on these ideas to provide a definition of receipt-freeness based
on the anonymity framework by Garcia, Hasuo, Pieters and Van Rossum [GHPR05].
They distinguish weak receipt-freeness from strong receipt-freeness. Weak receipt-
freeness means that the intruder is not sure if a specific voter voted for a specific
candidate. Strong receipt-freeness explicitly includes a set of candidates which the
intruder cannot rule out as possible choices of the voter. Both of these works express
receipt-freeness in a generic, logical formalism, which is not easily applied. Baskar,
Ramanujam and Suresh [BRS07] continue in this line, focusing on the knowledge of
agents. Their approach establish a more practically applicable decision procedure for
receipt-freeness. They also prove that derivability of a term from a set modelling
knowledge is decidable in polynomial time. Baskar et al. define receipt-freeness in an
epistemic logic, much like Jonker and Pieters. While expressing privacy properties
in a logic of knowledge is quite natural and straightforward, it is more difficult to
develop verification techniques within such a framework.

4.1.3 Approach

The definitions of [DKR06, DKR08, BHM08] provide qualitative definitions of privacy
properties. A qualitative approach leaves the possibility for the intruder to reduce
privacy, however. Examples of such include forcing a voter not to vote for a certain
candidate, and determining at which end of the political spectrum the voter voted.

We believe that the only way to detect such privacy attacks, is to compute the precise
set of possible votes the voter may have cast. Consequently, we take the view that
any modifier of privacy constitutes a receipt, as inspired by the definitions of weak
and strong receipt-freeness of [JP06]. This implies that we do not express privacy as a
comparison between two situations, but the privacy of a given situation is measured.
To this end, the distinguishing power of the intruder needs to be captured precisely.
This distinguishing power derives from his knowledge, for which Baskar et al. [BRS07]
provide a knowledge modeling which is decidable. The distinguishing power of that
knowledge is captured by Garcia et al. in [GHPR05], where they provide a definition
of reinterpretation. To measure the exact privacy, we introduce anonymity groups,
along the lines of Mauw et al. [MVV04] and Chothia et al. [COPT07].

4.2 Framework for modelling voting systems

In this section, we develop a formal syntax and provide semantics for expressing the
communication behaviour of voting systems. We use the following setting for voting
systems.

• There is a set of voters V, a set of candidates C, and a set of voting authorities
Aut .

• Each voter v ∈ V is entitled to cast one vote for a candidate from the set of
candidates C.

• A public-key infrastructure for the public key pk(a) and private key sk(a) of
agents a ∈ V ∪ Aut has been set up.
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• All votes have equal weight.

• The set of received ballots precisely determines the election result, and is pub-
lished after the elections.

• The candidate preferred by voter is independent of the voting system, which
implies that the relation between voters and their preferred candidates can be
given a priori.

As the setting dictates that the set of received ballots (which determines the election
result) is published after elections, counting is avoided in our framework. It is sufficient
for a voting system to produce the set of received ballots.

We capture the relation between voters and their preferred candidate by the relation
γ : V → C. This relation specifies for each voter v ∈ V for which candidate c ∈ C
she votes, viz. γ(v). To reconstruct tuples, we use projection functions πi, i > 0 that
return the ith component of a tuple. For ease of reference, Agents = V ∪ Aut .

In addition to the above, the framework is based on the following security assumptions.
These assumptions follow the standard intruder model originally proposed by Dolev
and Yao [DY83]:

• Cryptography works perfectly.
This assumption means that encryption and decryption are only possible with
the appropriate key, that hash functions are irreversible, and that the public key
infrastructure is secure (every agent knows every agent’s public key, no agent
knows any private key except for his own).

• Communications are under complete control of the intruder, with the exception
of communications over untappable channels.
This assumption means the following: any message that is sent out, is received
by the intruder. Furthermore, any received message originates from an intruder.
The intruder can arbitrarily block messages, if he so chooses. As seen in Sec-
tion 3.2.1, untappable channels are outside intruder control.

Note that we refer to the intruder instead of an intruder.

The framework expresses the interactions between agents (voters, voting authorities)
as communication of terms. First we describe the syntax of terms and communication
events. Then we specify the semantics of an individual agent. The semantics of the
framework are then based on the semantics of the agents. We express the behaviour
of the entire system as traces of events.

4.2.1 Syntax of the framework

We first define the syntax of terms, which is followed by the syntax of agents. Next,
the syntactical representation of a voting system is defined as a function associating
a state with each agent.
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Terms

The terms communicated in a voting system are built up from variables from the set
Vars, candidates from the set C, random numbers from the set Nonces , and crypto-
graphic keys from the set Keys . The set of keys of a particular agent a is given by
Keysa. These basic terms can be composed through pairing ((ϕ1, ϕ2)) and encryption
({ϕ}k).
Definition 1 (terms). Let Vars be a set of variables, containing at least the variable
vc, let Agents be a set of agents, let C be a set of candidates, let Nonces be a set of
nonces, and let Keys be a set of keys, ranged over by var, a, c, n and k, respectively.
The class Terms of terms, ranged over by ϕ, is given by the BNF

ϕ ::= var | a | c | n | k | (ϕ1, ϕ2) | {ϕ}k.
Syntactical equivalence of terms ϕ1, ϕ2 is denoted as ϕ1 = ϕ2. A term is called open
if it contains variables and closed if it contains no variables. The set of variables of
an open term ϕ is given by fv(ϕ). To close an open term ϕ, the variables of ϕ are
substituted by closed terms (and not bound).

Terms encrypted with k can be decrypted using the inverse key k−1. For symmetric
encryption, k−1 = k, whereas in asymmetric encryption, pk(a) denotes the public key
and sk(a) the corresponding secret key of agent a. Signing is denoted as encryption
with the secret key.

Example (terms) The encryption of a nonce n with the public key of agent a is
denoted as {n}pk(a). A pair of this encrypted nonce with itself, unencrypted, results
in the term ({n}pk(a), n). Note that (({n}pk(a), n), n) 6= ({n}pk(a), (n, n)), as the
terms are syntactically different.

Variables represent unspecified terms, such as a voter’s choice. The voter’s choice
is represented by the variable vc until instantiated. Note that variables cannot be
bound by a term (hence the set of variables of a term is the set of free variables of
that term). However, variables can be instantiated by substitution.

Definition 2 (term substitution). We introduce a variable mapping relation 7→, of
type Vars → Terms. The substitution of a single variable var by a term ϕ is denoted
as var 7→ ϕ. Application of a substitution σ to ϕ is denoted as σ(ϕ). The domain
of σ, notation dom(σ), is the set of variables for which σ specifies a substitution. The
range of σ, notation rng(σ), is defined as {σ(var) | var ∈ dom(σ)}. The composition
of two substitutions σ′ after σ is denoted by σ′ ◦σ. The empty substitution is denoted
as ∅.

Agents communicating terms can expect to receive a term with a certain structure, for
example, a term encrypted with the agent’s public key ({ϕ}pk(a)). This is expressed
by specifying an open term for the receiving agent (such as {var}pk(a)), that serves as
a template for the expected term.

Definition 3 (term matching). A closed term ϕcl matches a term ϕo, if there is a
substitution σ, such that dom(σ) = fv(ϕo) and σ(ϕo) = ϕcl . We denote this as

match(ϕcl , ϕo, σ) ≡ σ(ϕo) = ϕcl ∧ dom(σ) = fv(ϕo).
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Lemma 1. (unique substitution). Given a closed term ϕcl and a term ϕo, there is
at most one substitution σ such that match(ϕcl , ϕo, σ).

Proof. (Proof by contradiction) Suppose that for two terms ϕcl , ϕo there exist σ1, σ2
such that:

• match(ϕcl , ϕo, σ1) and match(ϕcl , ϕo, σ2) both hold, while

• σ1 6= σ2, σ1(ϕo) = σ2(ϕo) = ϕcl , and dom(σ1) = dom(σ2) = fv(ϕo).

As dom(σ1) = dom(σ2) and σ1 6= σ2, there must be at least one variable var ∈ dom(σ1)
such that σ1(var) 6= σ2(var). But since dom(σ1) = fv(ϕo), var ∈ fv(ϕo). Thus
σ1(ϕo) 6= σ2(ϕo), which is a contradiction.

Example (variable matching and substitution) Consider the term of the previous
example, {n}pk(a). In Table 4.1, we compare this term to several other terms to see
if they match under the stated substitution. In Table 4.1, we assume that n 6= n′ and
pk(a) 6= k.

ϕ σ match({n}pk(a), ϕ, σ)
var var 7→ {n}pk(a) true
{var}pk(a) var 7→ n true
{n}pk(a) ∅ true
{n′}pk(a) any false
{n}k any false

Table 4.1: Example: matching and substitution of terms

A term ϕ may be derived from a set of terms K (notation K ⊢ ϕ) if it is an element
of K or if it can be derived by repeated application of the following rules:

(pairing) K ⊢ ϕ1, K ⊢ ϕ2 =⇒ K ⊢ (ϕ1, ϕ2)
(left) K ⊢ (ϕ1, ϕ2) =⇒ K ⊢ ϕ1

(right) K ⊢ (ϕ1, ϕ2) =⇒ K ⊢ ϕ2

(encryption) K ⊢ ϕ, K ⊢ k =⇒ K ⊢ {ϕ}k
(decryption) K ⊢ {ϕ}k, K ⊢ k−1 =⇒ K ⊢ ϕ

An agent’s knowledge is a set of terms closed under derivability. Closure of a set K
under derivability is defined as K = {ϕ | K ⊢ ϕ}.

Example (derivability and knowledge) From a knowledge set K containing term n,
we can derive the following terms: n, (n, n), ((n, n), n), (n, (n, n)), and so on. If K
also contains a key k, we can additionally derive terms such as {n}k, (n, {n}k), (n, k),
(k, n), . . . .
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Agents

Terms are communicated between agents. Communication of a term is an event. Fol-
lowing the conclusions of the survey of voting systems in Section 3.2.1, we distinguish
public, anonymous, and untappable communication channels. Hence, there are dis-
tinct events for each type of channel. Furthermore, we note that any election process
inherently has multiple phases. As such, synchronisation between the election officials
must be inherent in voting systems. For the framework to support this, we introduce
a phase synchronisation event.

Definition 4 (events). The class Ev of communication events, ranged over by ev, is
given by:

Ev = { s(a, a′, ϕ), r(a, a′, ϕ), as(a, a′, ϕ), ar(a′, ϕ), us(a, a′, ϕ), ur(a, a′, ϕ),
ph(i) | a, a′ ∈ Agents , ϕ ∈ Terms , i ∈ N },

where s, r, as , ar , us , ur denote sending and receiving over public, anonymous and un-
tappable channels, respectively. Finally, ph(i) is the event denoting that an agent is
ready to execute phase transition i.

The subclass of send events is denoted as:

Ev snd = {s(a, a′, ϕ), as(a, a′, ϕ), us(a, a′, ϕ) | a, a′ ∈ Agents , ϕ ∈ Terms}.

Similarly, the subclass of receive events is denoted as:

Ev rcv = {r(a, a′, ϕ), ar(a′, ϕ), ur(a, a′, ϕ) | a, a′ ∈ Agents , ϕ ∈ Terms}.

The subclass of phase events is denoted as Evph = {ph(i) | i ∈ N}.

Variable substitution is extended straightforwardly to events, by replacing all substi-
tuted variables in the term of one event. This is denoted as σ(ev) for an event ev and
a substitution σ. The function fv is similarly extended, by application to the term of
an event. The set of variables of an event ev is thus given by fv(ev).

The behaviour of an agent is determined by the order in which events occur. This
order is defined by the agent’s process, which is specified in the style of process
algebra’s such as ACP [BW90] and µCRL [BFG+01].

Definition 5 (processes). The class Processes of processes, ranged over by P , is
defined as follows.

P ::= δ | ev .P | P1 + P2 | P1 ⊳ ϕ1 = ϕ2 ⊲ P2 | ev .X(ϕ1, . . . , ϕn).

Here, δ denotes a deadlock. A process can be preceded by an event (ev .P ). Fur-
thermore, a process can be a choice between two alternative processes, either a non-
deterministic choice (P1 + P2) or a conditional choice (P1 ⊳ ϕ1 = ϕ2 ⊲ P2). If ϕ1 is
syntactically equal to ϕ2, the process behaves as P1; otherwise, the process behaves
as P2. Finally, we have guarded recursion of processes. We assume a class of pro-
cess variables, which is ranged over by X. For every process variable X, with arity
n, there is a defining equation of the form X(var1, . . . , varn) = P , with the syntactic
requirement that the free variables of P (as defined below) are precisely var1, . . . , varn.
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Example (processes) The following are examples of processes.

δ

ph(1).δ
ph(2).δ ⊳ {ϕ}k = {ϕ′}k ⊲ ph(1).δ
ph(1).X(ϕ1, {ϕ2}k, n)

Without loss of generality, we assume a naming convention such that all free variables
in the defining equation of a process variable have globally unique names. This limits
the scope of such variables to that defining equation.

Substitutions are extended to processes. The substitution σ applied to process P is
denoted as σ(P ) and is defined as follows.

σ(P ) =































δ if P = δ

σ(ev).σ(P ′) if P = ev .P ′

σ(P1) + σ(P2) if P = P1 + P2

σ(P1)⊳ σ(ϕ1) = σ(ϕ2)⊲ σ(P2) if P = P1 ⊳ ϕ1 = ϕ2 ⊲ P2

σ(ev).Y (σ(ϕ2), . . . , σ(ϕn)) for fresh Y (var1, . . . , varn) = σ(P ′)
if P = ev .X(ϕ1, . . . , ϕn) ∧ X(var1, . . . , varn) = P ′

Note that for guarded recursion (i.e. ev .X(ϕ1, . . . , ϕn)), the substitution σ is applied
to the invoked process too (i.e. to P , if X(var1, . . . , varn) = P ). This is done by
introducing a new defining equation for a fresh process variable Y . The defining
equation is of the form Y (var1, . . . , varn) = P ′, where P ′ is the substitution σ applied
to process P , so Y (var1, . . . , varn) = σ(P ).

The function fv is also extended to processes. Note that receiving a term binds
the received variables, hence receive actions reduce the number of free variables.
Furthermore, remark that in guarded recursion all free variables of the defined process
are bound by the invocation (due to the syntactic requirement). Thus, the only free
variables of an invocation are the free variables of the argument list.

fv(P ) =















































































∅ if P = δ

fv(P ′) if P = ev .P ′ ∧ ev ∈ Evph

fv(P ′) ∪ fv(ev) if P = ev .P ′ ∧ ev ∈ Ev snd

fv(P ′) \ fv(ev) if P = ev .P ′ ∧ ev ∈ Ev rcv

fv(P1) ∪ fv(P2) if P = P1 + P2

fv(P1) ∪ fv(ϕ1) ∪ fv(ϕ2) ∪ fv(P2) if P = P1 ⊳ ϕ1 = ϕ2 ⊲ P2

fv(ϕ1) ∪ · · · ∪ fv(ϕn) if P = ev .X(ϕ1, . . . , ϕn)
∧ ev ∈ Evph

fv(ϕ1) ∪ · · · ∪ fv(ϕn) ∪ fv(ev) if P = ev .X(ϕ1, . . . , ϕn)
∧ ev ∈ Ev snd

fv(ϕ1) ∪ · · · ∪ fv(ϕn) \ fv(ev) if P = ev .X(ϕ1, . . . , ϕn)
∧ ev ∈ Ev rcv

Variables used in a defining equation which do not appear in the argument list of the
equation must be bound by their occurrence. This means that such variables may
only occur in events which bind variables, i.e. events ∈ Ev rcv .

An agent’s state is a combination of behaviour, i.e. the order in which events are
executed (as determined by a process), and knowledge (a set of terms) as follows.
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Definition 6 (agent state). The state of an agent a is given by the agent’s knowledge
knwa and its process Pa. Thus, agent state st ∈ Agstate is a tuple of knowledge and
a process:

Agstate = P(Terms)× Processes .

A voting system specifies, for each agent, its state. Hence, a voting system is a
mapping from agent to states.

Definition 7 (voting system). A voting system is a system that specifies a state for
each agent a. The class of voting systems, VotSys, is defined as VotSys = Agents →
Agstate. We denote the state assigned by voting system VS ∈ VotSys to agent a as
VS(a) = (knwa, Pa). Here, knwa is the knowledge of agent a, and Pa describes its
behaviour.

A voting system VS ∈ VotSys may be instantiated with voter choices, as given by
choice function γ : V → C. This instantiation is denoted as VSγ , which, for each voter,
substitutes the voter choice variable vc by the choice specified by γ in her process, as
follows.

VSγ(a) =

{

VS(a) if a 6∈ V
(

π1(VS(a)), π2(σ(VS(a)))
)

if a ∈ V ∧ σ = vc 7→ γ(a)

Recall that πi denotes a projection function that extracts the ith component from a
tuple.

Example (voting system) In Table 4.2 we specify a voting system VS0 with two voters
va, vb and one authority T . In VS0, voter va sends her signed vote, encrypted with
T ’s public key, to counter T . Voter vb does the same for her vote. Note that these
votes are specified as vc, until instantiated by a choice function. The counter receives
these votes in variables var1 and var2, respectively. The initial knowledge of a voter
consists of her private key and the public key of T . As there are no voter-to-voter
interactions, we omit the public keys of other voters in the initial knowledge of a
voter in this example. In addition to VS0, we also show VSγ1

o , where γ1(va) = ca and
γ1(vb) = cb.

VS0(va) = ({pk(T ), sk(va)}, s(va, T, {{vc}sk(va)}pk(T )) . δ)
VS0(vb) = ({pk(T ), sk(vb)}, s(vb, T, {{vc}sk(vb)}pk(T )) . δ)
VS0(T ) = ({pk(va), pk(vb), sk(T )},

r(va, T, {{var1}sk(va)}pk(T )) . r(vb, T, {{var2}sk(vb)}pk(T )) . δ)

VSγ1

0 (va) = ({pk(T ), sk(va)}, s(va, T, {{ca}sk(va)}pk(T )) . δ)
VSγ1

0 (vb) = ({pk(T ), sk(vb)}, s(vb, T, {{cb}sk(vb)}pk(T )) . δ)
VSγ1

0 (T ) = VS0(T )

Table 4.2: Example: voting system VS0 and VSγ1

0 (where γ1(va) = ca and γ1(vb) = cb)



60 Chapter 4 Formalising voting systems

4.2.2 Semantics of the framework

The operational semantics of a voting system is defined by a number of derivation
rules of the form

p1 . . . pn

S
e−→ S′

.

This expresses that if the system is in state S and if the premises p1 to pn are satisfied,
the system may perform event e and continue in state S′ (see e.g. [Plo81, Plo04,
BV96]). The operational semantics is defined in two layers. First, the semantics of
individual agents is defined. Next we define the semantics of a voting system based
on the semantics of individual agents. The operational semantics of a voting system
can be seen as the parallel composition of all agents.

Agent semantics

The semantics of agents describes the effect of the events on the agent state. Recall
that agent state is defined as a tuple containing a knowledge set and a process:
Agstate = P(Terms)× Processes .

In our assumed intruder model, each tappable communication by an agent is a com-
munication with the intruder. Hence, the semantic rules below take the intruder’s
knowledge into account. The states considered below thus consist of a tuple of intruder
knowledge KI and agent state. In the rules below, events may involve a, x ∈ Agents ,
which we omit from the premise of the rules.

There are some restrictions on the terms that may occur in an event. A term ϕ

occurring in a send event must be closed (fv(ϕ) = ∅) at the moment of sending. A
term ϕ occurring in a receive event can specify the structure of the term ϕ′ to be
received. There is a limitation: a receiving agent a can only specify the structure up
to the extent of his knowledge knwa. The readable predicate specifies if an agent a
can receive ϕcl using a term ϕo as a receive pattern, for a substitution σ such that
match(ϕcl , ϕo, σ) holds, as follows.

Definition 8 (readability of terms). The readability of a term ϕ depends on those
terms ϕ′ necessary to deconstruct ϕ. We denote this as ϕ′ ⊑ ϕ. The deconstruction
operator ⊑ is defined inductively as follows (cf. [Cre06]).

ϕ ⊑ ϕ

ϕ1 ⊑ (ϕ1, ϕ2) ϕ2 ⊑ (ϕ1, ϕ2)
ϕ ⊑ {ϕ}k k−1 ⊑ {ϕ}k

Note that to deconstruct an encryption, the decryption key is required.

Using this operator, agent a’s ability to read a term ϕcl using a term ϕo acting as a
pattern, given a suitable substitution σ, is defined as follows.

Rd(knwa, ϕcl , ϕo, σ) ≡ match(ϕcl , ϕo, σ) ∧ ∀ϕ′⊑ϕo
: knwa ∪ {ϕcl} ⊢ σ(ϕ′).

Thus, a term ϕcl is readable for agent a with pattern ϕo and substitution σ, if for
every subterm of ϕo, the instantiation of that subterm is derivable from the knowledge
of agent a enriched with ϕcl .
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Example (readability of terms) Below, we illustrate the readability function for sev-
eral cases.

ϕ p knw σ Rd(knw , ϕ, p, σ)
n var ∅ var 7→ n true
n n {n} ∅ true

{n}k {var}k ∅ var 7→ n false
{n}k {var}k {k−1} var 7→ n true

(ϕ1, ϕ2) var ∅ var 7→ (ϕ1, ϕ2) true
(ϕ1, ϕ2) (var, var) ∅ var 7→ ϕ1 ϕ1 = ϕ2

This definition allows us to specify the operational semantics of agent behaviour as
follows.

public send. An agent may send a closed term ϕ if and only if the agent knows
the term (note that variables do not capture knowledge).

knwa ⊢ ϕ fv(ϕ) = ∅
(KI , knwa, s(a, x, ϕ).P )

s(a,x,ϕ)−−−−−→ (KI ∪ {ϕ}, knwa, P )

public receive. A receive event specifies an open, readable term ϕ. By receiving a
matching term ϕ′, the unassigned variables in ϕ are assigned a value by the unique
substitution σ such that Rd(knwa, ϕ

′, ϕ, σ).

KI ⊢ ϕ′ fv(ϕ′) = ∅ Rd(knwa, ϕ
′, ϕ, σ)

(KI , knwa, r(x, a, ϕ).P )
r(x,a,ϕ′)−−−−−−→ (KI , knwa ∪ {ϕ′}, σ(P ))

anonymous send. The anonymous send semantics follows directly from the above
public send semantics by replacing the send event s(x, y, ϕ) with event as(x, y, ϕ).

knwa ⊢ ϕ fv(ϕ) = ∅
(KI , knwa, as(a, x, ϕ).P )

as(a,x,ϕ)−−−−−−→ (KI ∪ {ϕ}, knwa, P )

anonymous receive. An anonymous receive is largely equal to the public receive,
except that the event omits information about the sender.

KI ⊢ ϕ′ fv(ϕ′) = ∅ Rd(knwa, ϕ
′, ϕ, σ)

(KI , knwa, ar(a, ϕ).P )
ar(a,ϕ′)−−−−−→ (KI , knwa ∪ {ϕ′}, σ(P ))

untappable send. An untappable send is a send event which happens outside
intruder control or even intruder awareness. It thus limits the power of the intruder.
Note that the intruder does not learn the communicated term for an untappable send
event.

knwa ⊢ ϕ fv(ϕ) = ∅
(KI , knwa, us(a, x, ϕ).P )

us(a,x,ϕ)−−−−−−→ (KI , knwa, P )
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untappable receive. An untappable receive is the receiving dual of the untappable
send. Thus, it occurs outside intruder control or awareness, and represents a limit on
the power of the intruder. Note that, at this level of the semantics, the origin of the
term ϕ′ is not specified. The origin of this term is specified at the system level, where
untappable receive is synchronised with untappable send.

fv(ϕ′) = ∅ Rd(knwa, ϕ
′, ϕ, σ)

(KI , knwa, ur(x, a, ϕ).P )
ur(x,a,ϕ′)−−−−−−→ (KI , knwa ∪ {ϕ′}, σ(P ))

phase synchronisation. The events of the set Evph are intended to synchronise
agents in the system. At the agent level, these events have little impact, as evidenced
by the following operational semantic rule.

ev ∈ Evph

(KI , knwa, ev .P )
ev−→ (KI , knwa, P )

non-deterministic choice. An agent that can execute a non-deterministic choice
may choose any of the alternatives, as follows.

(KI , knwa, P1)
ev−→ (K ′

I , knw
′
a, P

′
1)

(KI , knwa, P1 + P2)
ev−→ (K ′

I , knw
′
a, P

′
1)

(KI , knwa, P2)
ev−→ (K ′

I , knw
′
a, P

′
2)

(KI , knwa, P1 + P2)
ev−→ (K ′

I , knw
′
a, P

′
2)

conditional choice. A conditional choice is a choice between two processes, based
upon syntactical comparison of two terms. While these two terms may be open terms
in the agent’s specification, upon execution, we require that these terms are closed.

(KI , knwa, P1)
ev−→ (K ′

I , knw
′
a, P

′
1) fv(ϕ1) = ∅

(KI , knwa, P1 ⊳ ϕ1 = ϕ1 ⊲ P2)
ev−→ (K ′

I , knw
′
a, P

′
1)

(KI , knwa, P2)
ev−→ (K ′

I , knw
′
a, P

′
2) ϕ1 6= ϕ2 fv(ϕ1) = fv(ϕ2) = ∅

(KI , knwa, P1 ⊳ ϕ1 = ϕ2 ⊲ P2)
ev−→ (K ′

I , knw
′
a, P

′
2)

guarded recursion. Agent a may execute an invocation of process variable X
with argument list ϕ1, . . . , ϕn if the corresponding process in the defining equation
can execute, under the specified arguments.

(KI , knwa, σ(P ))
ev−→ (K ′

I , knw
′
a, P

′)
X(var1, . . . , varn) = P σ = var1 7→ ϕ1 ◦ · · · ◦ varn 7→ ϕn

(KI , knwa, X(ϕ1, . . . , ϕn))
ev−→ (K ′

I , knw
′
a, P

′)
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System semantics

The operational semantics of voting systems describe how the state of a voting system
changes due to the interactions of its agents. The state of a voting system is given by
the intruder knowledge and the state of each agent.

Definition 9 (state of a voting system). The state of a voting system is a tuple of
intruder knowledge and a mapping of agents to agent states (recall that VotSys =
Agents → Agstate), as follows.

State = P(Terms)× VotSys .

The knowledge and current process for each agent are given by VotSys. We denote
the attribution of state (knwa, Pa) to agent a as a@(knwa, Pa). The current state of
agent a in system state (KI , S) is denoted as a@(knwa, Pa) ∈ S. The initial state of
voting system VS with respect to choice function γ is (K0

I ,VSγ), for initial intruder
knowledge K0

I .

Typically, the initial intruder knowledge contains public keys of all agents, compro-
mised keys etc.

The operational semantics of voting systems in the context of a Dolev-Yao intruder
(limited to public and anonymous channels) is given below. The semantic rules give
rise to a labelled transition system, with labels denoting the events. Untappable com-
munication is modelled as synchronous communication, hence the us and ur events
are replaced by uc events (denoting untappable communication) in the set of labels
Labels of the transition system:

Labels = {uc(a, a′, ϕ) | a, a′ ∈ Agents ∧ ϕ ∈ Terms} ∪
Ev \ {us(a, a′, ϕ), ur(a, a′, ϕ) | a, a′ ∈ Agents ∧ ϕ ∈ Terms}.

Both untappable communications and phase synchronisation are synchronous events
by more than one agent. The other events are executed without synchronising with
other agents. We distinguish the non-synchronous events as Evnosync , which is defined
as follows.

Evnosync = {s(a, a′, ϕ), r(a, a′, ϕ), as(a, a′, ϕ), ar(a′, ϕ) | a, a′ ∈ Agents , ϕ ∈ Terms}.

The below system semantics uses the above agent semantics to define the dynamic
behaviour of the system. The rules below may involve agents a, b ∈ Agents , which we
omit from the premises of the rules. Note that the premise of the rules involves agent
state transitions (a three-tuple of intruder knowledge, agent knowledge and agent
process), and may specify restrictions on the system state (a mapping of agents to
agent states).

non-synchronous events. The operational semantics for public and for anony-
mous send as well as read events is given by the following rule.

(KI , knwa, P )
ev−→ (K ′

I , knw
′
a, P

′) ev ∈ Evnosync a@(knwa, P ) ∈ S

(KI , S)
ev−→ (K ′

I , {a@(knw ′
a, P

′)} ∪ S \ {a@(knwa, P )})
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untappable communications. As no agent, nor the intruder, except for the send-
ing agent and the receiving agent, are aware of untappable communications, we model
them as synchronous communication. This captures both untappable send and receive
in one transition. Hence, a new label for this transition is needed. We use uc(a, b, ϕ),
which must match both the send us(a, b, ϕ) and the receive ur(a, b, ϕ) events. Note
that the intruder’s knowledge does not change due to untappable communications,
nor does the sending agent’s knowledge.

(KI , knwa, Pa)
us(a,b,ϕ)−−−−−−→ (KI , knwa, P

′
a)

(KI , knw b, Pb)
ur(a,b,ϕ)−−−−−−→ (KI , knw

′
b, P

′
b)

s0 = {a@(knwa, Pa), b@(knw b, Pb)} s0 ⊆ S

(KI , S)
uc(a,b,ϕ)−−−−−−→ (KI , {a@(knwa, P ′

a), b@(knw ′
b, P

′
b)} ∪ S \ s0)

phase synchronisation. Phase events denote synchronisation points. A ph(i)
event may only occur if all authorities have agreed that the election will evolve into
a new phase. As a consequence, all agents who are ready and willing to do so will
move to the new phase as well.1

In the semantics rule below, the agents that are ready and willing to execute the
phase transition are captured (together with their states) in the set Phase. Note that
Phase is a subset of all agents ready to execute a phase transition, as readiness does
not imply willingness. The set Phase ′ reflects the new states for these agents. Finally,
we explicitly require each authority a ∈ Aut to be ready and willing to execute the
phase transition.

i ∈ N

Phase ⊆ {a@(knwa, Pa) ∈ S | ∃P ′
a : (KI , knwa, Pa)

ph(i)−−−→ (KI , knwa, P
′
a)}

Aut ⊆ {a ∈ Agents | ∃knwa, Pa : a@(knwa, Pa) ∈ Phase}
Phase ′ = {a@(knwa, P

′
a) | ∃Pa : a@(knwa, Pa) ∈ Phase ∧

(KI , knwa, Pa)
ph(i)−−−→ (KI , knwa, P

′
a)}

(KI , S)
ph(i)−−−→ (KI ,Phase

′ ∪ S \ Phase)

The above semantics rules give rise to labelled transition systems. Each possible
execution of the system is represented by a path in this labelled transition system. A
path is represented by a list of its labels, which is called a trace. The set of traces of
a given voting system is defined as follows.

Definition 10 (traces). The class of traces Traces consists of finite lists of labels.
The traces of a voting system VSγ (voting system VS instantiated with choice function
γ) are given by

Tr(VSγ) = {α ∈ Labels⋆ | α = α0 . . . αn−1 ∧
∃s0, . . . , sn ∈ State : s0 = (K0

I ,VSγ) ∧
∀0 ≤ i < n : si

αi−→ si+1}
1We conjecture that our semantics of phase synchronisation is similar to the strong phase seman-

tics as proposed in [DRS08].
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s1 s2

r1 s2
s1

s2
r1

r2

Figure 4.1: A labelled transition system

The set of traces of a voting system VS is now given by

Tr(VS) =
⋃

γ∈V→C

Tr(VSγ).

We denote the intruder knowledge in the last state of a trace t as Kt
I . The empty

trace is denoted by ǫ.

Example (traces) Consider the voting system VS0 from Table 4.2, and a choice func-
tion γ1 such that γ1(va) = γ1(vb) = c. Then we have the following.

ǫ ∈ Tr(VSγ1

0 )
s(va, T, {{c}sk(va)}pk(T )) ∈ Tr(VSγ1

0 )
s(va, T, {{c}sk(va)}pk(T )) s(vb, T, {{c}sk(vb)}pk(T )) ∈ Tr(VSγ1

0 )
s(va, T, {{c}sk(va)}pk(T )) r(va, T, {{c}sk(va)}pk(T )) ∈ Tr(VSγ1

0 )
. . .

If we denote the send event of voter va as s1 , the send event of voter vb as s2 and the
corresponding read events of the tallier as r1 , r2 , respectively, the labelled transition
system for this voting system is as in Figure 4.1. Its full set of traces is succinctly
described as

Tr(VSγ1

0 ) = {ǫ, s1 , s2 , s1 s2 , s2 s1 , s1 r1 , s1 s2 r1 , s2 s1 r1 , s1 r1 s2 ,
s1 s2 r1 r2 , s1 r1 s2 r2 , s2 s1 r1 r2}.

Traces model the dynamic behaviour of the system. The next section determines the
privacy of a given voter in a given trace. This trace-based definition of voter privacy
is then extended to establish the privacy of a voter in a voting system.

4.3 Privacy in voting systems

The framework developed in the previous section enables us to express if an intruder
can distinguish two executions of the system, as previously expressed by Mauw, Ver-
schuren and De Vink [MVV04] and later by Garcia et al. [GHPR05] for passive in-
truders. Traces t, t′ are to be considered equivalent if the intruder cannot distinguish
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them. To formalise this equivalence, the distinguishing ability of the intruder is for-
malised as the intruder’s ability to distinguish two messages. We introduce the notion
of reinterpretation to capture this.

Definition 11 (reinterpretation [GHPR05]). Let ρ be a permutation on the set of
terms Terms and let KI be a knowledge set. Map ρ is called a semi-reinterpretation
under KI if it satisfies the following.

ρ(ϕ) = ϕ for ϕ ∈ C ∪ {a, sk(a), pk(a) | a ∈ Agents}
ρ((ϕ1, ϕ2)) = (ρ(ϕ1), ρ(ϕ2))
ρ({ϕ}k) = {ρ(ϕ)}ρ(k) if KI ⊢ ϕ, k ∨ KI ⊢ {ϕ}k, k−1

Map ρ is a reinterpretation under KI iff it is a semi-reinterpretation and its inverse
ρ−1 is a semi-reinterpretation under ρ(KI). The notion of reinterpretation is extended
straightforwardly to events and to traces by applying ρ to the message fields of events
(in traces).

The notion of reinterpretation models the intruder’s ability to distinguish terms. The
intruder can distinguish any candidate and agent name from any other term. As public
keys and private keys identify the agent, these too can be distinguished from any other
term. As the intruder does not know which nonces or (non-public / private) keys
belong to which agents, he cannot distinguish these from other terms. Furthermore,
the intruder can distinguish the structure of paired terms. Encrypted terms can only
be distinguished if the intruder can decrypt the term or if he can construct the term
himself. Note that as the intruder cannot distinguish one key from another, ρ must
be applied to the encryption key of any encrypted message that he can distinguish.

Example (reinterpretation) In Table 4.3, we provide two permutations on terms ρ
and ρ′ that are reinterpretations for k, k′, n, n′, n′′ ∈ KI .

ϕ ρ(ϕ) ρ′(ϕ)

n n′ n′′

k k′ k

c c c

{(c, n)}k {(c, n′)}k′ {c, n′′}k
sk(a) sk(a) sk(a)

Table 4.3: Example: reinterpretation of terms

Some events in a trace are hidden from the intruder, hence the intruder has a restricted
view of a trace. In particular, the intruder cannot see any uc transitions (communica-
tions over untappable channels), nor the sender of anonymous communications. The
visible part of a trace is captured by the function obstr : Traces → Traces as follows:

obstr(ǫ) = ǫ

obstr(ℓ · t) =







obstr(t) if ℓ = uc(a, a′, ϕ)
as(x, ϕ) · obstr(t) if ℓ = as(a, x, ϕ)
ℓ · obstr(t) otherwise
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Definition 12 (trace indistinguishability). Traces t, t′ are indistinguishable for the
intruder, notation t ∼ t′ iff there exists a reinterpretation ρ such that the visible part
of t is the visible part of ρ(t′) and the final intruder knowledge in t and t′ is equal
modulo ρ. Formally put:

t ∼ t′ ≡ ∃ρ : obstr(t′) = ρ(obstr(t)) ∧ Kt
I = ρ(Kt′

I ).

The above definition of the intruder’s ability to distinguish traces extends to his ability
to distinguish sets of traces as follows.

Definition 13 (choice indistinguishability). Given voting system VS, choice functions
γ1, γ2 are indistinguishable to the intruder, notation γ1 ≃VS γ2 iff

∀t ∈ Tr(VSγ1) : ∃t′ ∈ Tr(VSγ2) : t ∼ t′ ∧
∀t ∈ Tr(VSγ2) : ∃t′ ∈ Tr(VSγ1) : t ∼ t′

The set of choice functions indistinguishable for the intruder in a given system is now
succinctly defined as follows.

Definition 14 (choice group). The choice group for a voting system VS and a choice
function γ is given by

cg(VS, γ) = {γ′ | γ ≃VS γ
′}.

The choice group for a particular voter v, i.e. the set of candidates indistinguishable
from v’s chosen candidate, is given by

cgv(VS, γ) = {γ′(v) | γ′ ∈ cg(VS, γ) }.

In the last definition, the privacy of a voting system is defined with respect to an
intruder who can control all communication channels except the untappable chan-
nels. The next chapter poses the question of how much of this remaining privacy is
controlled by the voter.

4.4 Conspiring voters

The above framework captures the behaviour of a passive voter, who does not actively
cooperate with the intruder to prove how she has voted. However, as remarked in the
introduction, we focus on voters trying to renounce their vote-privacy. A conspiring
voter can try to share her knowledge with the intruder. The classic receipt-freeness
case assumes the voter shares her final knowledge. As noted in [JV06], the timing of
knowledge sharing is important. In order to prove that she really has the receipt, the
voter needs to share her private knowledge before it becomes public in the course of
the execution of the voting system. Furthermore, during the course of an election,
a voter may learn or commit to knowledge that the intruder is unaware of, due to
untappable communications or a voting booth. A voter may seek to circumvent
such privacy provisions by sharing any acquired knowledge with the intruder, and
by using intruder-supplied information for any outgoing communication. As stated
in the conclusions of Section 3.2.1, voting booths can be equated to a bi-directional
untappable channel.
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The timing of sharing information between the conspiring voter and the intruder is
important. We distinguish the cases where the voter shares her full knowledge (post-
election or pre-election) from the cases where the voter conspires to nullify the effect
of untappable channels (sharing information, using intruder-supplied information, or
both). In absence of untappable channels, all communications are visible to the
intruder. In this case, the sooner a voter shares her knowledge with the intruder, the
more traces the intruder can distinguish. Classical receipt-freeness, classic-rf, tries to
break vote-privacy by sharing knowledge after elections. However, sharing knowledge
beforehand, start-rf, gives the intruder more knowledge during the elections. This
situation is depicted below in Figure 4.2(i).

In the presence of untappable channels, the intruder is not aware of every increase of
the voter’s knowledge. The voter can mitigate this by conspiring mid-election. Her
willingness to do so is captured in Figure 4.2(ii). The conspiring voter may choose to
share information the intruder would not learn otherwise (rf-share) or use intruder-
supplied terms in communications hidden from the intruder (rf-witness) to later prove
how she voted. The combination of these two notions is at the top of the ordering
(rf-relay).

Figure 4.2: Knowledge sharing, (i) pre- and post-election and (ii) mid-election

A voter may use privacy-reducing techniques from both hierarchies to reduce her
privacy. We denote this, e.g., as a type 1a voter, or a type 2c voter. In the next
section, we present precise definitions of these notions.

4.5 Modelling conspiratory behaviour

A conspiring voter behaves differently from a regular voter, as she will communicate
with the intruder in certain circumstances. We incorporate the different conspiracy
classes into the framework as follows. We start by selecting a regular voter and the
conspiracy class that we assume her to satisfy. Then the regular specification of this
voter is transformed into a conspiring specification by following the transformation
rules of this conspiracy class as defined below. For instance, the transformation
for class 1 (classic-rf) consists of adding an extra event at the end of the voter’s
specification which represents the sharing of her knowledge with the intruder.

In order to formalise this approach, we extend the set of events Ev with events:
{is(v, ϕ), ir(v, ϕ)}, where is(v, ϕ) denotes agent v sending term ϕ to the intruder,
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and ir(v, ϕ) denotes agent v receiving term ϕ from the intruder. The agent level
semantics of these events is given below:

send to intruder:
knwv ⊢ ϕ fv(ϕ) = ∅

(KI , knwv, is(v, ϕ).P )
is(v,ϕ)−−−−→ (KI ∪ {ϕ}, knwv, P )

receive from intruder:
KI ⊢ ϕ′ fv(ϕ′) = ∅ Rd(knwv, ϕ

′, ϕ, σ)

(KI , knwv, ir(v, ϕ).P )
ir(v,ϕ′)−−−−−→ (KI , knwv ∪ {ϕ′}, σ(P ))

The specific conspiracy classes are captured by a syntactical transformation of the
process of the conspiring voter v as follows:

• 1. classic-rf: at the end of her process, v sends her knowledge set to the
intruder (knwv is represented as a pairing of each element of knwv).

• 2. start-rf: as the first event executed by v, she sends her knowledge set to
the intruder.

• a. rf-share: each ur(a, v, ϕ) is followed by an is(ϕ).

• b. rf-witness: The intruder supplies the voter-controllable parts of the term
used in each us(v, a, ϕ). To do so, the intruder must know what terms are
voter-controllable. To this end, we introduce two functions:

– a function vars(v, ϕ) that returns the variables of ϕ that agent v can control,
and

– a function freshvars(v, ϕ), that replaces every voter-controllable variable in
ϕ by a fresh variable.

The voter sends vars(v, ϕ) to the intruder, who replies with a similar term,
changing the values to his liking. The voter then uses the newly supplied values
in the untappable send event.

• c. rf-full: this combines rf-share and rf-witness.

Note that where classic-rf and start-rf transform the ending and beginning, respec-
tively, of voter v’s process, the other three conspiracy classes transform events inside
the voter process. To model conspiracy, we first introduce an event transformation
function θi, which relies on auxiliary functions vars and freshvars. Then, the event
transformation function is then extended to processes and to voting systems.

The function vars : V ×Terms → Terms captures those variables of a term ϕ that are
under a voter v’s control. This function is defined as follows.

vars(v, ϕ) =















{ϕ} if ϕ ∈ Vars
vars(v, ϕ′) if ϕ = {ϕ′}k, for k ∈ Keysv
vars(v, ϕ1) ∪ vars(v, ϕ2) if ϕ = (ϕ1, ϕ2)
∅ otherwise
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The function freshvars : V×Terms → Terms replaces every voter-controllable variable
in ϕ by a fresh variable. To this end, we assume the existence of a substitution
σfresh , where dom(σfresh) = vars(v, ϕ), that substitutes fresh variables for every voter-
controlled variable. Note that some, but not all occurrences of a variable may be
voter-controllable (e.g. var in the term (var, {var}sk(R))). Hence, σfresh may only
freshen those those uses of variables that are under voter control, as follows.

freshvars(v, ϕ) =














σfresh(var) if ϕ ∈ Vars
{freshvars(v, ϕ′)}k if ϕ = {ϕ′}k, for k ∈ Keysv
(freshvars(v, ϕ1), freshvars(v, ϕ2)) if ϕ = (ϕ1, ϕ2)
ϕ otherwise

Definition 15 (event transformation). We define the following event transformation
functions θi : V × Ev → Processes, for i a conspiracy class ∈ {a, b, c}.

− θa(v, ev) =

{

ur(ag, v, ϕ) . is(v, ϕ) if ev = ur(ag, v, ϕ)
ev otherwise

− θb(v, ev) =







is(v, vars(v, ϕ)) . ir(v, vars(v, ϕ′)) . us(v, ag, ϕ′)
if ev = us(v, ag, ϕ), for ϕ′ = freshvars(v, ϕ)

ev otherwise

− θc(v, ev) = θb(v, θa(v, ev)).

We model sending of a set (for example, is(v, vars(v, ϕ))) as sending a pairing of all
elements of the set (in this example, vars(v, ϕ)).

The event transformation θa ensures that every untappable receive event is followed by
an intruder send event. The event transformation θb ensures that the intruder supplies
all voter-controllable input for every untappable send event. The event transformation
θc combines θa and θb.

Example (event transformation) In Table 4.4, we show some examples of event
rewrites. We leave out θc, as it is the composition of θa and θb.

ev θa(ev) θb(ev)
ph(1) ph(1) ph(1)

ur(a, b, var) ur(a, b, var) . is(v, var) ur(a, b, var)
us(a, b, (vc, {vc}sk(R))) us(a, b, (vc, {vc}sk(R))) is(v, vc) . ir(v, irvar) .

us(a, b, (irvar, {vc}sk(R)))

Table 4.4: Example: event transformation

We model a conspiring voter, according to the conspiracy classification above, by
means of a process transformation function. This function transforms the process by
introducing conspiring behaviour.
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Definition 16 (process transformation). The function Θi : V×Processes → Processes
transforms a process for a specific voter v into a conspiring process of the class i ∈
{1, 2, a, b, c}. For i = 2, conspiracy is a matter of sharing initial knowledge, which is
modelled as

Θ2(v, P ) = is(knwv).P

In the other cases, conspiracy has an effect on the events of the processes. For read-
ability, we do not distinguish cases for i = 1, but simply state θ1(v, ev) = ev. For
i ∈ {1, a, b, c}, process transformation is defined as follows.

Θi(v, P ) =














































δ if i 6= 1 ∧ P = δ

is(v, knwv).δ if i = 1 ∧ P = δ

θi(v, ev).Θi(v, P ) if P = ev .P
Θi(v, P1) + Θi(v, P2) if P = P1 + P2

Θi(v, P1)⊳ ϕ1 = ϕ2 ⊲Θi(v, P2) if P = P1 ⊳ ϕ1 = ϕ2 ⊲ P2,

for ϕ1, ϕ2 ∈ Terms
θi(v, ev).Y (ϕ1, . . . , ϕn), for fresh Y (var1, . . . , varn) = Θi(v, P

′)
if P = X(ϕ1, . . . , ϕn) ∧X(var1, . . . , varn) = P ′

Example (process transformation) In the example process transformations below, s1
is the send action of voting system VS0, in Table 4.2. The first two entries transform
voter process 1 from VS0. The final example illustrates how a more complex process
is transformed.

P i Θi(v, P )
s1 .δ 1 s1 .is( v, (pk(T ), sk(va)) ).δ
s1 .δ 2 is( v, (pk(T ), sk(va)) ).s1 .δ

s1 .δ + s2 .δ ∈ {a, b, c} θi(v, s1 ).δ + θi(v, s2 ).δ

Process transformation is extended to voting systems as follows.

Θi(v,VS)(a) =
{

VS(a) if a 6= v

(π1(VS(v)),Θi(v, π2(VS(v)))) if a = v

The above transformations are extended to i ∈ {1a, 2a, 1b, 2b, 1c, 2c} for combinations
of conspiring behaviour, e.g. Θ1a(v,VS) = Θ1(v,Θa(v,VS)). Using the above system
transformation, we can define the choice group for conspiring voters in a voting system
within our framework (see Section 4.3).

Definition 17 (conspiracy induced choice group). The choice group of conspiring
voter v in voting system VS given choice function γ, with respect to different conspir-
acy classes i ∈ {1, 2, a, b, c, 1a, 2a, 1b, 2b, 1c, 2c}, is given by

cg iv(VS, γ) = cgv(Θi(v,VS), γ).

Given this definition of privacy, conspiracy-resistance is a measure of the voter’s choice
groups as follows.
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Definition 18 (conspiracy-resistance). We call voting system VS conspiracy-resistant
for conspiring behaviour i ∈ {1, 2, a, b, c} iff

∀v ∈ V, γ ∈ V → C : cg iv(VS, γ) = cgv(VS, γ).

Remark that for when |V| = 1 or |C| = 1, we have ∀γ : cg(VS, γ) = {γ}, which implies
that ∀v ∈ V : cgv(VS, γ) = cg iv(VS, γ) = {γ(v)}. Thus, in such settings, there is not
vote-privacy to lose, and conspiracy-resistance is satisfied trivially.

The notion of receipt-freeness as introduced by Benaloh and Tuinstra [BT94] coincides
with ∀v, γ :

∣

∣cg1v(VS, γ)
∣

∣ > 1. The approach of Delaune, Kremer and Ryan [DKR06,
DKR08] coincides with choice groups of size greater than one. Our framework cap-
tures any modifier of privacy, including modifiers that are not privacy-nullifying. The
amount of conspiracy-resistance of a system is measured as the difference in privacy
between a regular voter and a conspiring voter. The above privacy definitions capture
this by determining the exact choice group and thus the exact voter privacy for any
level of conspiracy.

4.6 Integrating privacy primitives

The framework as introduced in this chapter focuses on expressing systems. In order
focus on the framework, the privacy-enhancing primitives discussed in Section 3.1 were
left out. Having established the framework, this section integrates these primitives.
Integrations of the primitives are introduced in the same order as discussed previously:
properties of cryptographic systems (homomorphic encryption, blind signatures, re-
encryption), shared secret decryption and proofs.

4.6.1 Properties of cryptographic systems

The properties of cryptographic systems used for privacy operate on terms. As such,
the extensions for these need only discuss those parts of the framework that deal with
terms. The relevant parts are:

• the term algebra,

• term derivation K ⊢ ϕ,
• deconstruction of terms ϕ′ ⊑ ϕ (for readability),

• reinterpretation of terms ρ(ϕ),

• the functions governing voter controllable variables of terms, vars(v, ϕ) and
freshvars(v, ϕ).

The integration each of these primitives is discussed in the above order. Note that
the definitions of substitution (Definition 2), matching (Definition 3) and readability
(Definition 8) themselves do not depend on the term structure. As such, these def-
initions do not need to be adapted. Furthermore, all extensions are observable by
default. As such, the definition of the observable function obstr does not change with
the below extensions.
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Homomorphic encryption

To model a specific homomorphic encryption system on terms, we extend the term
algebra as follows.

ϕ ::= . . . | ϕ1 ⊕ ϕ2 | {|ϕ|}k
Homomorphic encryption of a term ϕ with key k is denoted as {|ϕ|}k, while ϕ1 ⊕ ϕ2

denotes the plaintext homomorphic operator. Note that due to the equivalence HE1
(see Section 3.1.1), we do not need to introduce the ciphertext operator ⊗.

Derivation of these new terms is governed by the following extension to the derivation
rules.

(encryption) K ⊢ ϕ,K ⊢ k =⇒ K ⊢ {|ϕ|}k
(decryption) K ⊢ {|ϕ|}k,K ⊢ k−1 =⇒ K ⊢ ϕ

(homomorphic operation) K ⊢ {|ϕ1|}k,K ⊢ {|ϕ2|}k =⇒ K ⊢ {|ϕ1 ⊕ ϕ2|}k

The deconstruction of a homomorphically encrypted term {|ϕ|}k is equivalent to the
deconstruction of regular encryptions.

ϕ ⊑ {|ϕ|}k, k−1 ⊑ {|ϕ|}k

Reinterpretation of homomorphically encrypted terms is similar to reinterpretation
of normally encrypted terms.

ρ({|ϕ|}k) = {|ρ(ϕ)|}ρ(k), if KI ⊢ ϕ, k ∨ KI ⊢ {|ϕ|}k, k−1

Finally, the voter-controllable term functions are expanded as follows.

vars(v, {|ϕ|}k) = vars(v, ϕ), if k ∈ Keysv

freshvars(v, {|ϕ|}k) =
{

{| freshvars(v, ϕ)|}k, if k ∈ Keysv
{|ϕ|}k otherwise

Blind signatures

To encompass blind signatures, we extend the term algebra as follows.

ϕ ::= . . . | [[ϕ]]k

In the derivation rules, the unique property of blinding is expressed: an agent that
knows the blinding key k can derive a signed, unblinded term from a signed, blinded
term.

(blinding) K ⊢ ϕ,K ⊢ k =⇒ K ⊢ [[ϕ]]k
(deblinding) K ⊢ [[ϕ]]k,K ⊢ k =⇒ K ⊢ ϕ
(deblind signing) K ⊢ {[[ϕ]]k}sk(a),K ⊢ k =⇒ K ⊢ {ϕ}sk(a)

Note that blinding thus resembles encryption with a key k where k−1 = k.

The deconstruction of a blinded term results in the used key and the term itself, as
follows.

ϕ ⊑ [[ϕ]]k, k ⊑ [[ϕ]]k
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Reinterpretation of blinded terms occurs if the intruder can deblind the term, or if
the intruder can construct the blinded term.

ρ([[ϕ]]k) = [[ρ(ϕ)]]ρ(k), if KI ⊢ k ∧ (KI ⊢ ϕ ∨KI ⊢ [[ϕ]]k)

Finally, the functions dealing with voter-controllable variables are extended for blind
terms as follows:

vars(v, [[ϕ]]k) = vars(v, ϕ), if k ∈ Keysv

freshvars(v, [[ϕ]]k) =

{

[[freshvars(v, ϕ)]]k if k ∈ Keysv
[[ϕ]]k otherwise

Re-encryption

Re-encryption is an encryption scheme where the form of the ciphertext can be
changed without the key. This change does not affect the encrypted plaintext, but
a random factor. As such, this random factor must be modelled and distinguishable
from the encrypted term in the term algebra. Thus, we extend the term algebra as
follows.

ϕ ::= . . . | 〈{ϕ1 | ϕ2}〉k
Here, ϕ1 represents the encrypted term, and ϕ2 models the manipulable part of the
randomness of the encryption.

The derivation rules for re-encryption capture its properties. The randomness in the
encryption is modelled as pairing of nonces. Therefore, re-encryption can only extend
the randomness with nonces, and not with arbitrary terms. Note that extending the
randomness does not require any key.

(encryption.) K ⊢ ϕ,K ⊢ n,K ⊢ k =⇒ K ⊢ 〈{ϕ | n}〉k
(decryption) K ⊢ 〈{ϕ1 | ϕ2}〉k,K ⊢ k−1 =⇒ K ⊢ ϕ1

(re-encryption) K ⊢ 〈{ϕ1 | ϕ2}〉k,K ⊢ n =⇒ K ⊢ 〈{ϕ1 | (ϕ2, n)}〉k

The deconstruction of a re-encryptable term is as follows. Note that the randomness
is not part of the deconstruction of the encrypted term. This is because the only
effect of the random factor is to ensure a variation in the ciphertext.

ϕ1 ⊑ 〈{ϕ1 | ϕ2}〉k, k−1 ⊑ 〈{ϕ1 | ϕ2}〉k

Finally, the functions dealing with voter controllable variables are extended as follows.

vars(v, 〈{ϕ1 | ϕ2}〉k) = vars(v, ϕ1) if k ∈ Keysv

freshvars(v, 〈{ϕ1 | ϕ2}〉k) =
{

〈{freshvars(v, ϕ1) | ϕ2}〉k if k ∈ Keysv
〈{ϕ1 | ϕ2}〉k otherwise

4.6.2 Shared secret decryption

We describe here how the framework is extended to capture shared secret decryption,
in which secret key k−1 is not reconstructed (see Section 3.1.3). We briefly recapitulate
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the setting. There is an encryption key k and a decryption key k−1. The decryption
key k−1 is split over n shares. We consider threshold sharing, i.e. t ≤ n authorities
need to participate to obtain a decryption. In a t, n threshold secret sharing scheme,
there are n shares of secret k. We denote the ith share, (for 0 ≤ i < n), as t,nsharek,i.

To decrypt an encrypted term {ϕ}k without reconstructing k−1, specific decryption
shares are used. These shares depend on the term to be decrypted, and we denote

such a share as t,nshare
{ϕ}k

k,i . With t of such shares, the term can be decrypted.

The term algebra is extended as follows for shared secret decryption.

ϕ ::= . . . |t,n sharek,i |t,n share
{ϕ}k

k,i , for 0 ≤ i < n and t, n ∈ N.

A decryption share can be derived from a share of k and an encrypted term. With
t decryption shares, an encrypted term can be decrypted. This is captured by the
following derivation rules.

(decrypt share) K ⊢t,n sharek,i K ⊢ {ϕ}k =⇒ K ⊢t,n share
{ϕ}k

k,i

(decryption) K ⊢ {ϕ}k,K ⊢ Zt,n, |Zt,n| ≥ t =⇒ K ⊢ ϕ,
where Zt,n ⊆ {t,nshare{ϕ}k

k,i | 0 ≤ i < n}.

An agent receiving a share cannot specify the structure of the share. Thus, a share is
a term, which cannot be deconstructed. The same holds for decryption shares. Con-
sequently, either can be freely reinterpreted. Furthermore, as shares have no internal
structure, there is no need to extend the vars and freshvars functions. Thus the above
extensions complete the modelling of shared secret decryption in the framework.

4.6.3 Integrating proofs

In Section 3.1.2, we discussed two types of proofs: zero knowledge proofs (ZKP) and
designated verifier proofs (DVP). The precise modelling of a proof depends on what
is being proven, as well as which properties the proof is to have. As such, this section
serves as an illustration of how to extend the framework with ZKP and DVP proofs.

Voting systems that use mixnets may use a designated verifier zero knowledge proof
(DZP) to prove that a term ϕ1 is a re-encryption of a term ϕ2. An example of a
voting scheme using DZP is [LBD+03]. As this type of proof combines both the zero
knowledge property, and the designated verifier property, it is well-suited to illustrate
how to model these proofs in the framework.

Designated verifier zero knowledge proofs of re-encryption

Proofs are communicated between agents. Hence they must be terms, and thus, as
before, we introduce extensions at the term level. Furthermore, proofs steer decisions
by agents. As such, we introduce the possibility for an agent to choose, based on a
proof. This new process construct has an impact on every definition that depends
on the structure of processes. These are the process substitution σ(P ), the free
variables of a process fv(P ), the semantics rules, and the process transformation
function Θi(v, P ).
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Extensions to terms. A DZP of re-encryption proves that two terms of the form
〈{ϕ1 | ϕ′

1}〉k, 〈{ϕ2 | ϕ′
2}〉k, which are encrypted with the same key, are related via extra

randomness n. The proof is keyed (literally) to a designated verifier a by means of
the designated verifier’s public key pk(a). The class of terms is extended as follows.

ϕ ::= . . . | dzp(〈{ϕ1 | ϕ′
1}〉k, 〈{ϕ2 | ϕ′

2}〉k, pk(a))

Note that a DZP does not include the randomness n. This makes the zero knowledge
aspect of the proof explicit: the proof does not give any information concerning n.
However, to construct a DZP, this randomness is needed.

For readability, we omit the structure of the re-encryption when it is not relevant.
Thus, we will write a DZP as dzp(ϕ,ϕ′, pk(a)), for terms ϕ,ϕ′ which are both re-
encryptions.

The derivation rules are extended as follows for DZP’s.

(generate DZP) K ⊢ 〈{ϕ1 | ϕ2}〉k, n, pk(a)
=⇒ K ⊢ dzp(〈{ϕ1 | ϕ2}〉k, 〈{ϕ1 | (ϕ2, n)}〉k, pk(a))

(fake DZP) K ⊢ 〈{ϕ1 | ϕ′
1}〉k, K ⊢ 〈{ϕ2 | ϕ′

2}〉k, K ⊢ sk(a)
=⇒ K ⊢ dzp(〈{ϕ1 | ϕ′

1}〉k, 〈{ϕ2 | ϕ′
2}〉k, pk(a))

(extract terms) K ⊢ dzp(ϕ,ϕ′, pk(a))
=⇒ K ⊢ ϕ ∧K ⊢ ϕ′ ∧K ⊢ pk(a)

Given a term 〈{ϕ1 | ϕ′
1}〉k, a nonce n, and a public key pk(a), an agent can derive a

DZP for agent a that proves that 〈{ϕ1 | (ϕ′
1, n)}〉k is a re-encryption of the original

term. Any agent can generate fake DVP’s with himself as designated verifier, as
captured by the second derivation rule. Faking is only possible with an agent’s secret
key, ensuring that no other agent can create a fake DZP for an agent.

A DZP can be deconstructed as follows.

ϕ ⊑ dzp(ϕ,ϕ′, pk(a))
ϕ′ ⊑ dzp(ϕ,ϕ′, pk(a))
sk(a) ⊑ dzp(ϕ,ϕ′, pk(a))

Reinterpretation of a DZP depends on the reinterpretability of the terms.

ρ(dzp(ϕ,ϕ′, k)) = dzp(ρ(ϕ), ρ(ϕ′), ρ(k))

The functions handling voter controllable variables are extended as follows.

vars(v, dzp(ϕ,ϕ′, k)) = vars(v, ϕ) ∪ vars(ϕ′)
freshvars(v, dzp(ϕ,ϕ′, k)) =

dzp(freshvars(v, ϕ), freshvars(v, ϕ′), freshvars(v, k))

Extensions to process syntax. Agents can make decisions based on a proof.
Thus, we introduce a new choice construction, that of checking a proof. The class of
Processes is extended as follows.

P ::= . . . | P1 ⊳ chkprf (dzp(ϕ,ϕ′, k))⊲ P2
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The free variables of a process of the above form are defined as follows.

fv(P1 ⊳ chkprf (dzp(ϕ,ϕ′, k))⊲ P2) = fv(P1) ∪ fv(P2) ∪ fv(dzp(ϕ,ϕ′, k))

The definition of substitution is also extended to the new choice construction.

σ( P1 ⊳ chkprf (dzp(ϕ,ϕ′, k))⊲ P2 ) =
σ(P1)⊳ chkprf (dzp( σ(ϕ), σ(ϕ′), σ(k) ))⊲ σ(P2)

Finally, process transformation is extended to the new process structure.

Θi(v, P1 ⊳ chkprf (dzp(ϕ,ϕ′, k))⊲ P2) =
Θi(P1)⊳ chkprf (dzp(ϕ,ϕ′, k))⊲Θi(P2)

Extensions to semantics. The new process structure introduced above expresses
a choice based on a proof. To make this choice, we introduce the predicate Correct ,
which, given a proof and a key, determines whether the proof seems correct with
the supplied key. However, Correct cannot distinguish between fake DZP’s and real
DZP’s.

Correct(dzp(〈{ϕ1 | ϕ′
1}〉k, 〈{ϕ2 | ϕ′

2}〉k, pk(a)), k′) =
{

false if k′ = sk(a) ∧ ϕ1 6= ϕ2

true otherwise

Thus, all DZP’s seem correct, even false ones, except when checked with the right
key. This expresses the designated verifier aspect of evaluating such proofs. As a
consequence, whether an agent accepts a proof depends not only on the apparent
correctness of the proof, but also on whether or not the agent possesses the right key.

The semantic rules for evaluating DZP’s are specified as agent level semantic rules,
and are given below. Note that an agent will reject a proof if the agent does not know
the necessary key, or (when he does know the necessary key) if the proof is fake.

(correct DZP)

(KI , knwv, P1)
ev−→ (K ′

I , knw
′
v, P )

prf = dzp(〈{ϕ1 | ϕ2}〉k, 〈{ϕ1 | ϕ′
2}〉k, pk(v))

knwv ⊢ sk(v) knwv ⊢ prf Correct(prf , sk(v))

(KI , knwv, P1 ⊳ chkprf (prf )⊲ P2)
ev−→ (K ′

I , knw
′
v, P )

(fake DZP)

(KI , knwv, P2)
ev ′

−−→ (K ′
I , knw

′
v, P

′)

prf = dzp(〈{ϕ1 | ϕ′
1}〉k, 〈{ϕ2 | ϕ′

2}〉k, pk(a))
knwv ⊢ prf knwv 6⊢ sk(a) ∨ ¬Correct(prf , sk(a))
(KI , knwv, P1 ⊳ chkprf (prf )⊲ P2)

ev ′−−→ (K ′
I , knw

′
v, P

′)
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4.6.4 Summary

This section extended the framework of Chapter 4 to capture several primitives that
are used in voting systems. The extensions capture the following primitives:

• homomorphic encryption,

• blind signatures,

• re-encryption,

• shared secret decryption,

• designated verifier zero knowledge proofs.

These extensions make modelling specific voting systems easier and ensure that the
models are close to the original system specification. In the rest of this chapter, we
freely use the above extensions if and when relevant.

4.7 Discussions

This section discusses how the privacy definitions of the framework extend to privacy
with respect to voting authorities, and how the definitions relate to the notions of
receipt-freeness and coercion-resistance.

4.7.1 Privacy from voting authorities

The framework of this chapter assumes that the intruder is an outside observer. As
such, the privacy measurements of the framework do not extend to privacy with
respect to voting authorities. However, this is easily achieved by letting the authority
acts as the intruder.

4.7.2 Receipt-freeness

Receipt-freeness, as introduced by Benaloh and Tuinstra [BT94], captures ways for
a voter to reduce the privacy of how she voted. The framework captures receipt-
freeness by specifying the desired class of conspiring behaviour. From the hierarchy
in Figure 4.2, we conclude that conspiring behaviour of type 2c models the most
conspiring behaviour in the system. Any knowledge possessed by the voter is shared as
soon as possible with the intruder. Nevertheless, this does not preclude 2c-conspiracy-
resistant voting systems. For example, designated verifier proofs still force privacy
on the voter, as the intruder has no way to determine if a designated verifier proof
forwarded by the voter is fake or not.

4.7.3 Coercion-resistance

Coercion-resistance, as introduced by Juels, Catalano and Jakobsson [JCJ05], cap-
tures ways for a voter to reduce the privacy of how she interacts with the voting
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system. There is confusion in literature about the difference between the notions of
coercion-resistance and receipt-freeness, and with good cause: if the voter can prove
how she voted, the coercer can force her to produce this proof. Conversely, if there is
no such proof, the coercer cannot force this proof. Thus, the susceptibility of a voter
to be forced to vote in a specific way is equivalent to her ability to prove that she
voted in that specific way. Succinctly put:

Proving ability = coercion susceptibility.

The notion of coercion-resistance as introduced by Juels et al. extends beyond reduc-
ing privacy of the vote. In their view, coercion-resistance encompasses the following:

• receipt-freeness: the voter proves how she voted to the intruder.

• forced abstention: the intruder prevents the voter from voting.

• simulation attacks: the voter gives her private keys to the intruder, who votes
in her stead.

• forced random voting: the intruder forces the voter to vote for a random
entry in a list of encrypted candidates. Note that the intruder does not need to
know which candidate is chosen, as long as it is a random choice. This attack
(if applied to many voters) forces a more uniform distribution of votes instead
of the actual distribution of votes. Such a strategy benefits candidates with less
than average votes at the cost of harming candidates with more than average
votes.

Receipt-freeness is captured by the framework, as explained above.

Forced abstention. To capture forced abstention, we extend the range of γ with
an “abstention” candidate ⊥. This candidate embodies all votes, that do not affect
the result (we do not distinguish between abstention and malformed voting). The
extended set is referred to as C⊥. Using these extensions, the intruder can force voter
v with conspiring behaviour i to abstain, iff

cg iv(VS, γ) = {⊥}.

Simulation attack. In a simulation attack, the intruder casts a vote himself. Sim-
ulation attacks are resisted if the intruder cannot tell if the vote he cast affects the
result or not. While the type of voter behaviour necessary for a simulation attack
is modelled by the framework (type 2 behaviour), intruder voting is not. Therefore,
we extend the domain of γ to include the intruder int . The extended set is referred
to as Vint . The intruder’s choice group cg int then captures the intruder’s unsureness
about his own vote. Using this, a system is simulation-attack-resistant if the intruder
cannot tell whether his vote is counted or not, i.e.

{⊥, γ(int)} ⊆ cg int(VS, γ).
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Forced random voting. In forced random voting attacks, the intruder forces the
voter to vote randomly. This means that whenever the voter process can make a
choice, either conditionally or non-deterministically, the intruder instructs the voter
how to proceed. This can be expressed in terms of the framework by rewriting every
process P that denotes a choice. Let ∆rnd be a process transformation function for
forcing choices. Then we have, for any process P such that P = P1 + P2 and for any
process P such that P = P1 ⊳ ϕ1 = ϕ2 ⊲ P2,

∆rnd(P ) = ir(var).∆rnd(P1) ⊳ var = true ⊲ ∆rnd(P2),

where var is a fresh variable and true is a constant term ∈ Terms .

Coercion resistance. Thus, coercion attacks can be captured in the framework as
well. However, we keep these latter attacks separate, as these attacks are fundamen-
tally different from the privacy-reducing conspiratory model.

4.8 Conclusions

This chapter investigated related work on formalising privacy in voting and found
that a quantified approach to privacy was missing in literature. To this end, a for-
mal framework for modelling voting systems was introduced, in which voter-privacy
can be quantified. Furthermore, various models of voter conspiracy were discussed
and formalised in the framework. Finally, we analysed receipt-freeness and coercion-
resistance on the basis of the newly established formalisation of voter-privacy.

In the next chapter, we investigate how to use the framework to determine the voter-
privacy of systems such as those surveyed in Chapter 3.
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Application

This chapter illustrates how apply the concepts introduced in Chapter 4. The purpose
of this chapter is to serve as an example of how these concepts can be applied to
study privacy in voting systems. To this end, we study three cases: an application to
a voting scheme (FOO92) that relies on blind signatures, an application to a voting
system (Prêt à Voter) that relies on physical ballots and using a quantified approach
to understand the relationship between privacy and verifiability in a voting system
(3BS).

Extended notation To ease readability, we extend the notation as follows. For
D = {d1 , . . . , dn}, and processes Pd1 , . . . , Pdn , we denote the non-deterministic choice
between any Pdi , i ∈ D as

∑

d∈D Pd. With abuse of notation,

∑

d∈D

Pd = Pd1 + · · ·+ Pdn .

5.1 Determining the privacy of FOO92

In this section, we apply the framework to the FOO92 scheme [FOO92]. In this
scheme, there is one registrar R, who verifies eligibility of voters, and one counter C,
who collects and counts the votes. There are three main phases in the scheme: the
registration phase, in which encrypted votes are marked as admissible; the voting
phase, in which encrypted votes are cast via an anonymous channel; and the opening
phase, in which the encryption keys of the votes are communicated. The use of phases
is crucial for FOO92. If phase synchronisations are omitted, a voter would register
and then immediately send her committed vote to the counter over an anonymous
channel, without any other voter registering in between. As no other voter could
submit this committed vote, the intruder can link it to the voter (as first detailed
in [KR05]). As a consequence, it is required that the registration phase may not
overlap with the voting phase. A similar reasoning prohibits overlaps between the
voting phase and the opening phase.

5.1.1 FOO92 description

In our modelling, we distinguish three phases in the FOO92 scheme (see Figure 5.1):
a registration phase, a voting phase, and an opening phase. The registration phase
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sk(R), pk(v)

Registrar R

pk(R), sk(v), b, c, γ(v)

Voter v

pk(R), L = ∅

Counter C

{[[{γ(v)}c]]b}sk(v)

verify signature

{[[{γ(v)}c]]b}sk(R)

phase(end registration)

verify signature

deblind

cv := {γ(v)}c
cvs := {cv}sk(R)

cv, cvs

verify signature

L := L ∪ {(ℓ, cv, cvs)}
inc(ℓ)

phase(end voting)

publish(L)

phase(end publish)

ℓ, c

Figure 5.1: The FOO92 scheme

begins when the voter sends her signed, blinded, committed vote to the registrar. The
registrar signs the blinded and committed vote if the voter is an eligible voter, and
sends this to the voter. This ends the registration phase.

In the voting phase, the voter undoes the blinding and sends the committed, registrar-
signed vote via an anonymous channel (indicated by the dashed arrow in Figure 5.1)
to the counter. This ends the voting phase.

In the opening phase, the counter first publishes the list L of all received votes. Then,
each voter sends the key she used to the counter, together with the index ℓ of her
vote in L. The counter can so open up all entries in L, and calculate the result.

5.1.2 Modelling FOO92 in the framework

The commitments in FOO92 are modelled as encryption using a nonce c ∈ Nonces .
In the framework, the publishing of the final result serves to limit the possible choice
functions. However, as we can see in Figure 5.1, the publication does not carry new
information for the intruder. As such, we choose to omit this action in modelling the
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voter.

The various phases of FOO92 are ended by phase events, which use the descriptive
labels end registration, end voting ∈ N. We introduce an auxiliary publish phase
(with label end publish ∈ N), during which the list of received, committed votes is
published. We denote the generic initial knowledge (the set of public keys of all
agents) as knw0. This includes the public keys of the registrar R, the counter C and
every voter v ∈ V.
We omit the specific index ℓ in the modelling, as it is not needed. Then, publication of
L is modelled as a public communication of L from counter C to registrar R. To ensure
that all voters synchronise on this publication, we introduce a publication phase. The
only event in the publication phase is the publication of L.

Voter template

Every voter behaves the same, but uses different keys for signing, blinding and com-
mits. We describe a template ProcV that describes all voter processes. This template
provides a generic voter process, generalised over voter identity id, the signing key
skv, the blinding key b and the commit key c.

The voter process is modelled as follows for voter v with private key sk(v), blinding
factor b and commitment key c (following Figure 5.1). First, voter v sends her signed,
committed and blinded vote {[[{vc}c]]b}sk(v) to the registrar R (recall that vc is a
variable that captures the voter’s vote γ(v) when the scheme is instantiated with a
choice function γ). Next, she receives her committed and blinded vote back, signed
by the registrar with his private key sk(R). This completes the registration phase. In
the voting phase, she unblinds her vote to obtain a registrar-signed vote {{vc}c}sk(R).
This she sends, accompanied by the unsigned version, over an anonymous channel to
the counter C. That completes the voting phase. In the publication phase, she need
not take any action. After the publication phase, she sends the used commitment key
c over an anonymous channel to C.

Note that this abstracts away from specific indexes ℓ in the list of received, committed
votes L from Figure 5.1. An index is not private information. They do not need to
be modelled to capture privacy, so we omit them. This only affects the final voter
communication: she now communicates c instead of ℓ, c. Abstracting in this fashion
implies that counter C must try each received key with all received votes to establish
the result.

The full voter template is captured by ProcV with variables skv, b, comn, id.

ProcV (skv, b, c, id) = s(id, R, {[[{vc}c]]b}skv) .
r(R, id, {[[{vc}c]]b}sk(R)) .
ph(end registration) .
as(id, C, ({vc}c, {{vc}c}sk(R))) .
ph(end voting) .
ph(end publish) .
as(id, C, c) . δ

Note that the voter’s choice (denoted by vc) is left unspecified.
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Given a specific signing key sk(v), blinding key b and commit key c for a specific voter
v, the voter’s initial state is then modelled as

({sk(v), b, c} ∪ knw0, ProcV (sk(v), b, c, v)).

Registrar process

The initial knowledge of the registrar consists of its private key and knw0. The
registrar is modelled as a process ProcR, as follows.

During the registration phase, the registrar R accepts signed messages from every
voter. Upon receipt of a signed, blinded message {ϕ}sk(v) from voter v, the registrar
countersigns the message {ϕ}sk(R) and returns this countersigned message. Note that
the registrar cannot undo the blinding of the message. As such, the registrar does
not know what he is signing. Hence, each voter’s blinded, committed vote is received
by the registrar in a fresh variable blindcomvote. The registrar will countersign any
voter’s vote, which we denote by quantifying the receive and corresponding send
events over

∑

v∈V (as introduced in Section 4.6).

The registrar can move to end the registration phase with a ph(end registration)
event at any moment. After this, the scheme moves to the voting phase, during
which the registrar has no tasks (except for ending the phase, in concert with all
other authorities). This is followed by the publication phase. The only event in this
phase is the communication of the list of registrar-signed, committed votes L from the
counter to the registrar. After this, the phase is ended, which signifies the end of the
registrar’s activities.

Due to the way we model the registrar below, he will accept multiple signed votes from
a single voter for registration. However, this is not a problem, as the voter processes
(modelled by the ProcV template) do not send in multiple votes for registration. As
we are only considering voter processes as defined by ProcV , no voter tries to register
multiple votes in our setting. As such, we omit the check for duplicate registration.

ProcR =
∑

v∈V

r(v,R, {blindcomvote}sk(v)) . s(R, v, {blindcomvote}sk(R)) . ProcR

+ ph(end registration) . ph(end voting) . r(C,R, L) . ph(end publish) . δ

Counter process

The counter is modelled as a process ProcC . The counter operates in three phases:
vote collection (modelled by process VotCol), key collection (modelled by process
KeyCol) and publication (Pub).

The counter only begins to become active after the registration phase. Then, the
counter starts collecting committed votes using the process VotCol . These votes are
sent over an anonymous channel to the counter. The committed votes are received in
a variable comvote, and only accepted if signed by the registrar. If accepted, the vote
is added to list L.

At any time, the voting phase can end. The next phase is the publication phase, during
which the counter publishes the full list of received votes by sending L to the registrar.
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After this, the publication phase ends and the counter starts collecting keys using the
process KeyCol . Keys are received over an anonymous channel into a variable k, and
are stored in list KL. Ending this phase does not require synchronisation with any
other agent, thus, at any moment, the counter can halt (δ).

ProcC = ph(end registration) . VotCol(emptylist)
VotCol(L) = ar(C, (comvote, {comvote}sk(R))) .

VotCol( (L, (comvote, {comvote}sk(R))) )
+ ph(end voting) . Pub(L)

Pub(L) = s(C,R, L) . ph(end publish) . KeyCol(L, emptylist)
KeyCol(L,KL) = ar(C, k) . KeyCol(L, (KL, k)) + δ

5.1.3 Privacy of FOO92

We claim that FOO92 has a non-trivial choice group (i.e. a choice group of size greater
than one), but is not conspiracy-resistant. In other words, FOO92 offers vote privacy,
but is not resistant to coercion attacks. In order to prove this, we first prove that
in any non-trivial setting (i.e. any election with the possibility of a non-unanimous
result), there exists a choice function γ1 such that the choice group of FOO92 and γ1
contains more than one element.

Lemma 2 (privacy of FOO92). Suppose |V| > 1 and |C| > 1. Then, for any choice
function γ1, such that there exist voters va, vb ∈ V such that γ1(va) 6= γ1(vb), we have
|cg(FOO , γ1)| > 1.

Proof. According to Definition 14, the choice group of FOO92 for a given choice
function γ1, cg(FOO , γ1), is defined as {γ2 | γ1 ≃FOO γ2}. This similarity between
choice functions is defined (in Definition 13) as follows.

∀t ∈ Tr(FOOγ1) : ∃t′ ∈ Tr(FOOγ2) : t ∼ t′ ∧
∀t′ ∈ Tr(FOOγ2) : ∃t ∈ Tr(FOOγ1) : t′ ∼ t.

To prove that such choice functions γ1 such that |cg(FOO , γ1)| > 1 exist, we take such
a choice function γ1, and a trace ta ∈ Tr(FOOγ1) and show that there exists a choice
function γ2 6= γ1 such that there exists a trace tb ∈ Tr(FOOγ2) for which ta ∼ tb.

Let γ1 be any non-trivial choice function, i.e. any choice function for which there are at
least va, vb ∈ V and ca, cb ∈ C, va 6= vb and ca 6= cb (possible due to |V| > 1, |C| > 1),
such that γ1(va) = ca and γ1(vb) = cb. Consider the choice function γ2 such that
γ2(va) = γ1(vb), γ2(vb) = γ1(va) and ∀v ∈ V \ {va, vb} : γ2(v) = γ1(v).

We now examine traces ta ∈ Tr(FOOγ1) and tb ∈ Tr(FOOγ2) such that all agents
execute their events in exactly the same order in ta and tb, except that after the
first phase event, vb executes in tb whenever va executes in ta, and vice versa (i.e.
their executions are swapped from ph(end registration) onwards). Note that, for
every trace ta ∈ Tr(FOOγ1), there exists such a trace tb ∈ Tr(FOOγ2) and vice
versa. Furthermore, note that after the first phase event, the voters only engage in
anonymous communication.

We will prove that ta ∼ tb, and thus γ2 ≃FOO γ1. This implies that γ2 ∈ cg(FOO , γ1)
and thus that |cg(FOO , γ1)| ≥ 2.
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First, observe that for all events by agents other than va, vb, which are not communi-
cation events with va, vb, ta and tb are exactly the same. Furthermore, we only focus
on the send/receive events of agents va, vb. If these can be reinterpreted, so can the
corresponding receive/send events by other agents.

In trace ta, we first focus on the send/receive events of voter va. Suppose va was
instantiated as ProcV (sk(va), bva, cva, va). The intruder has the following view of
the events in ta and the events that occur at the same index in tb (labelled for
convenience):

obstr(ta) obstr(tb)
...

...
1. s(va,R, {[[{ca}cva]]bva}sk(va)) s(va,R, {[[{cb}cva]]bva}sk(vb))

...
...

2. r(R, va, {[[{ca}cva]]bva}sk(R)) r(R, va, {[[{cb}cva]]bva}sk(R))
...

...
ph(end registration)

...
...

3. as(C, ({ca}cva, {{ca}cva}sk(R))) as(C, ({ca}cvb, {{ca}cvb}sk(R)))
...

...
4. as(C, cva) as(C, cvb)

...
...

Note that a trace does not need to describe a full execution of the scheme. It can
consist of any number of labels. Thus, ta may not contain all of these events. But as
we pick tb to match the order of execution of events in ta, it also lacks the appropriate
events and thus is similar.

Below we describe a reinterpretation ρa such that ρa(ta) = tb (which does not need to
reinterpret events 1 and 2). Note that for all agents a, pk(a) ∈ KI , and that cva ∈ KI

due to event 4 above. However, this is not true for the blinding key: bva 6∈ KI . This
is because only va knows bva, and she does not communicates this key. Therefore,
the intruder cannot undo the blinding in events 1 and 2. Thus, he is not aware of
the inner contents of the messages of events 1 and 2. With this in mind, we have the
following reinterpretation.

ρa(({ca}cva, {{ca}cva}sk(R))) = ({ca}cvb, {{ca}cvb}sk(R)) event 3

ρ(cva) = cvb event 3,4

By treating the events of vb in trace ta similar as above, we extend ρa as follows.

ρa(({cb}cvb, {{cb}cvb}sk(R))) = ({cb}cva, {{cb}cva}sk(R))

ρ(cvb) = cva

Thus, we have ρa(ta) = tb. In a similar fashion, we can construct ρb such that ρb(tb) =
ta. As we did not specify any restrictions on ta, this holds for any ta ∈ Tr(FOOγ1),
which proves ∀t ∈ Tr(FOOγ1) : ∃t′ ∈ Tr(FOOγ2) : t ∼ t′. The proof for the other
conjunct, ∀t ∈ Tr(FOOγ1) : ∃t′ ∈ Tr(FOOγ2) : t ∼ t′, is equivalent.
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Given that FOO92 has non-trivial choice groups, we can determine the impact of
voter conspiracy. We claim that FOO is not conspiracy-resistant.

Lemma 3 (non-conspiracy-resistance of FOO92). For any non-trivial setting (i.e.
|V| > 1, |C| > 1), the following holds:

1. FOO is not conspiracy resistant for conspiring behaviour of type 1.

2. FOO is not conspiracy resistant for conspiring behaviour of type 2.

Proof.
Type 1 conspiracy. Conspiracy-resistance of FOO with respect to conspiring behaviour
of type 1 is defined as (Definition 18):

∀v ∈ V, γ ∈ V → C : cgv(Θ1(v,FOO), γ) = cgv(FOO , γ).

This compares the regular FOO scheme with a version where the process Pv of one
voter v is transformed according to Θ1(v, Pv). This process transformation prepends
an is(v, knwv) before any δ process. This leads to the following transformation for
a conspiring voter v with blinding key b, commit key c and signing key sk(v) (the
differences with the regular voting process are emphasised in this font):

Θ1(v,ProcV (sk(v), b, c, v)) = s(v,R, {[[{vc}c]]b}sk(v)) . r(R, v, {[[{vc}c]]b}sk(R)) .
ph(end registration) .
as(v, C, ({vc}c, {{vc}c}sk(R))) .
ph(end voting) .
ph(end publish) .
as(v, C, c) . is(v, knwv) . δ

By Lemma 2, there exists a choice function γ1 such that |cg(FOO , γ1)| > 1 (i.e.
a non-unanimous vote). Then, there are at least γ1, γ2 ∈ cg(FOO , γ1), such that
γ1 6= γ2. Thus, there is at least one voter va, for which γ1(va) 6= γ2(va). Consequently,
{γ1(va), γ2(va)} ⊆ cgva(FOO , γ1).

We prove that γ2(va) 6∈ cgva(Θ1(va,FOO), γ1). Let ca = γ1(va) and cb = γ2(va). As
for Lemma 2, we consider a trace ta, but in this case ta ∈ Tr(Θ1(va,FOO)γ1).

obstr(ta)
...

1. s(va,R, {[[{ca}cva]]bva}sk(va))
...

2. r(R, va, {[[{ca}cva]]bva}sk(R))
...

3. as(C, ({ca}cva, {{ca}cva}sk(R)))
...

4. as(C, cva)
...

5. is(va, knwva)
...
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Due to event 4 and the conspiring voter’s event 5, we have cva, bva ∈ Kta
I . As

such, the intruder can open the blinding in events 1 and 2. Thus, we have that any
reinterpretation ρ of event 1 obeys the following.

ρ(s(va,R, {[[{ca}cva]]bva}sk(va)))
= s(va,R, ρ({[[{ca}cva]]bva}sk(va)))
= s(va,R, {[[{ca}ρ(cva)]]ρ(bva)}sk(va))

As the intruder possesses bva and cva, he can open the blinding and see ca in this
message. Since ca ∈ C, the intruder cannot reinterpret ca in message 1 at all (see
Definition 11). Hence, there is no reinterpretation with any trace in which va votes
for cb.

Type 2 conspiracy. Lack of conspiracy-resistance of FOO92 for conspiring behaviour of
type 2 follows directly from the lack of conspiracy-resistance for conspiring behaviour
of type 1.

Whereas a type 2 conspiring voter shares her knowledge immediately, a type 1 con-
spiring voter ends by sharing her knowledge. In the case of a type 2 conspiring voter,
cva ∈ Kta

I for any trace with at least one event of voter va. As such, no occurrence
of message 3 in a trace can be reinterpreted. This contrasts with type 1 conspiracy,
where message 3 can be reinterpreted as long as neither message 4 nor message 5
occur in the trace (this can happen for traces of partial execution).

5.1.4 Discussion

While FOO92 has non-trivial choice groups, it cannot offer conspiracy-resistance.
The application of the framework to FOO92 used an extension (blind signatures) and
resulted in a proof of a positive result (Lemma 2) and a proof of a negative result
(Lemma 3). Lemma 2 proves that FOO92 offers privacy, while Lemma 3 proves that
FOO92 does not enforce privacy. Voters can nullify their privacy in FOO92. The
problem is that a voter can reveal her blinding factor bva, which uniquely identifies
the voter and is the only secret keeping her vote private.

This prompts the question of how to introduce conspiracy-resistance in FOO92. There
are two messages preventing conspiracy-resistance in FOO92. In message 1, the vote is
kept private by blinding with a blinding factor known only to the voter. The contents
of this message can thus be revealed by the voter, meaning that it can no longer be
reinterpreted. Furthermore, message 3 sends the vote of the voter encrypted with a
key known only by her (at that specific point in the trace). A voter who shares this
key in a timely fashion with the intruder (i.e. any time before message 4) prevents
reinterpretation of this message, even if message 4 does not occur in the trace.

One possible way to mitigate these two problems is to use a trusted computation
device, as proposed by Burmester et al. [MBC01] and by Baudron et al. [BFP+01].
The voter could send an encrypted vote to the trusted device. The trusted device
would then re-encrypt and blind the vote. In this fashion, the voter would not possess
secrets to share. However, the trusted device should prove to the voter that it has
performed its operations correctly (e.g. along the lines of the re-encryption proofs
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of [HS00]. This introduces further communication between trusted device and verifier.
To ensure that none of these additional communications can be leveraged by the voter
to reduce privacy, any proposed solution in this direction should be fully specified and
verified using the framework.

The above application of the framework to FOO92 illustrates how to use the frame-
work to determine privacy of a voting scheme. In the next section, we illustrate ways
to accounts for physical and procedural aspects of voting systems in such an analysis.
To this end, we apply the framework to Prêt à Voter, an end-to-end verifiable voting
system.

5.2 Voter-controlled privacy of Prêt à Voter

The Prêt à Voter voting system [Rya05], PaV for short, was one of the first end-
to-end verifiable systems (cf. Chapter 3). Since then, the system has been revised
and extended. Currently, the name covers a whole family of voting systems, includ-
ing variants using decryption mixes [Rya05, CRS05], a variant using re-encryption
mixes [RS06], a variant accounting for Single Transferable Votes [Hea07], and other
extensions [XSH+07, LR08b, Rya08]. In this section, we focus on establishing the
voter-controlled privacy of the main concepts of PaV. As the voter interaction has
not changed much (in fact, conformance with existing voter experience was a main
design goal of PaV), we use the version of Chaum, Ryan and Schneider [CRS05] as a
basis for this section.

Note that PaV is a voting system designed for paper ballots, marked in voting booths.
The security of the system partly hinges on physical security measures, such as voter
isolation (in the voting booth), and hard-to-duplicate messages (which are printed on
official paper). In modelling PaV, we translate these physical measures into concepts
that our modelling language can handle – i.e. cryptographic operations on messages.
In this fashion, modelling PaV serves as an example of how any voting system which
uses similar physical properties can be captured in the framework.

PaV incorporates various procedures that ensure that the involved voting authorities
cannot learn how the voter voted, while providing verifiability. As the standard
application of the framework focuses on an outside intruder, we will not incorporate
these procedures in our model.

The purpose of the analysis below is twofold. On the one hand, it serves to illustrate
how paper ballots and procedural steps may be dealt with in an analysis using the
framework. This provides the essential underpinnings for application of the frame-
work to end-to-end verifiable systems and to paper ballot systems. On the other hand,
the analysis serves to determine the control a voter has in PaV over her privacy, with
respect to an outsider. For this latter reason, the analysis is focused on voter inter-
action. Understanding the source of this control will aid in adapting PaV for remote
voting. Note that the voter interacts with paper ballots and with PaV procedures, so
this focus does not detract from the first purpose.
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5.2.1 Description of PaV

We distinguish three roles in PaV: voters, who vote; registrar(s), who supply voters
with their ballots; and counter(s) (dubbed tellers in the PaV literature), who (jointly)
create the ballots and count the votes.

The actions in PaV occur in three distinct phases: setup, vote-casting and counting.
Below, each phase is discussed in order.

Setup phase

In the setup phase, the counters create the ballots. Ballots have a traditional appear-
ance: a left-hand side listing candidates, and a right-hand side where the voter can
mark her preference. To create a ballot, the counters use a given base ordering of the
candidates. They jointly permute this order (in [CRS05], this is a cyclic shifted or-
der). This permuted order constitutes the left-hand side of the ballot. The right-hand
side has space to mark the voter’s preference(s). At the bottom of the right column,
below the row containing the last candidate, there is a string. This string encodes
the candidate ordering and is called an onion. Figure 5.2 is an example of a (filled
in) PaV-ballot that was derived from the base order “North, South, East, West” by
cyclically shifting the order once.

West

North

South

East
√

3ei82Lk

Figure 5.2: A PaV-ballot voting for East

The counters create more ballots than voters, and seal each ballot in an envelope.
The sealed envelopes are given to the registrars. Thus, the registrar is not aware of
the contents of any ballot.

Vote-casting phase

In the vote-casting phase, voters cast votes as follows. The voter arrives at the election
office. She proves her identity to the registrar, and selects a sealed envelope from the
available choice of sealed envelopes. She takes the envelope with her into the voting
booth and opens the envelope. Inside the envelope, she finds a ballot resembling the
one shown in Figure 5.2.

The voter places a mark on the ballot in the right column, next to the candidate she
prefers. Then, the two columns are separated and the left-hand side is destroyed.
This can be done inside the booth to ensure privacy of the ballot, or it can be done in
front of the election officials (without showing the column) to ensure correct execution
of this step.
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Outside the booth, the voter receives a certified copy of the right-hand side column,
and casts her vote by submitting the original column. Submitting the column can
be done in different ways, for example by dropping the column into a ballot box, by
feeding the strip to a device (as in [CRS05]), or by handing the strip to the registrar.
Even in the latter case, the registrar does not learn how she voted. For example,
in Figure 5.2, the right-hand column by itself does not reveal that this is a vote for
“East”.

Counting phase

In the counting phase, the registrar ensures that the cast votes are received by the
counters. To determine for which candidate a vote counts, the counters decrypt the
onion on the vote via a mix network. This mix network is verifiable using randomised
partial checking [JJR02]. Each Mixer uses two mixes to mix the cast votes, a left mix
and a right mix (see Figure 5.3). The results of each mix are published. Verifiability
of the entire mixing process is achieved by revealing for each vote in the intermediate
mixed set either where it originated from (revealing the link to the input), or where it
ended up (revealing the link to the output). The choice of which link to reveal is made
by another agent, after the Mixer has mixed the votes and published the intermediate
and final result. As the Mixer cannot predict which links are to be revealed, he has no
choice but to correctly execute the mixing. The mixing process is shown in Figure 5.3
for three ballots.

Figure 5.3: Randomised partial auditing of one Mixer

The ballots are normally also reordered, i.e. the first ballot in the input could be
linked to the third ballot in the intermediate result, and the second ballot in the
output. As this would only complicate the graphical representation, this shuffling has
been omitted in Figure 5.3.

The ballot, as cast by the voter, is published by the registrar. Although the decryption
linking ballot and candidate is protected by a mix network, this still poses a privacy
problem. If the vote is published immediately after the vote was cast, then the
intruder can link the ballot to the voter. On the other hand, if the registrar publishes
all received votes in one go, a voter can predict one ballot (the one she cast) and thus
prove that she voted (though not for whom). In either case, it is clear that the voter
cast a vote.
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Registrar v Counter

generate ballots
fill envelopes

envelopes

end setup phase

authenticate, pick envelope i

envelope i

enter booth

open envelope
mark choice

separate columns
destroy left column

leave booth

copy of marked column

receipt of marked column

end voting phase

publish vote

compute results

Figure 5.4: Elections with PaV

Overview of PaV elections

Figure 5.4 represents the entire PaV voting process, in the setting where the left-hand
column is destroyed inside the voting booth and the right-hand column is handed to
the registrar to cast the vote. In Figure 5.4, there is only one instance of the registrar
and the counter. As the standard application of the framework measures privacy
with respect to an outside intruder, there is no need to have multiple registrars or
authorities. Thus we focus on the interaction from the voter.

5.2.2 Modelling PaV

This section describes how PaV(as shown in Figure 5.4) is modelled in the framework.
The version of PaV shown in Figure 5.4 relies on several physical properties to attain
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{πv, {πv}pk(C)}pk(v), sk(R)
Registrar

sk(v)

v

sk(C)

counter

{v}sk(v)
{πv, {πv}pk(C)}pk(v)

ℓ = πv(γ(v))

ℓ, {πv}pk(C)

{ℓ, {πv}pk(C)}sk(R)

Figure 5.5: Model of voter interaction in PaV

security. Specifically, the voter’s privacy is protected by the following physical and
technical measures:

• Authentication proves that the voter is allowed to vote.
This is modelled using digital signatures to prove identity.

• Envelopes hide the candidate order from everyone but the voter.
This is modelled by encrypting the candidate order and the onion with the
voter’s public key.

• The voter chooses one envelope. No one but the voter can distinguish that
envelope from other envelopes.

• A voting booth provides a private environment in which the envelopes are
opened. No one can observe the actions inside the voting booth.

• The ballot lists the candidates in a random order (a random permutation
in [Rya05], a cyclically shifted order in [RS06]).

As we focus on privacy with respect to an outside intruder, we will omit the measures
that ensure privacy against insiders. In particular, choosing an envelope is not needed.
Furthermore, as we only examine voter interaction, and as there is no interaction in
the voting booth, the booth is also omitted from the model. This leads to modelling
the actions in PaV as depicted in Figure 5.5, which incorporates the following:

• The permutation of the candidate order is modelled as πv, a bijection of type
C → {1, . . . , |C|}. Since we do not model the voter choosing an envelope, we
assume that the assignment of permutations to orders is predetermined by the
system. For ease of notation, we denote the candidate order resulting from
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permutation πv as πv as well. The index of the voter’s candidate γ(v) is denoted
as πv(γ(v)).

• The onion on a ballot is modelled as an encryption of the permutation with the
counter’s public key, i.e. {πv}pk(C).

As for FOO92, we denote the generic initial knowledge (the set containing the public
keys of all agents) as knw0. This includes the public keys of the registrar R, the
counter C and every voter v ∈ V.

Voter template

As in the analysis of FOO above, we have every voter executing the same actions,
but with different keys and a different choice. Thus, we model these actions as a
template ProcV , which generalises over the voter’s identity and her secret key sk(v).
The voter’s choice is left unspecified as vc. The voter template is defined as follows.

ProcV (id, skv) = s(id, R, ({id}skv)) .
r(R, id, {πid, onion}pk(id)) .
s(id, R, (πid(vc), onion)) .
r(R, id, {πid(vc), onion}sk(R)) · δ

A specific voter v with key pair sk(v), pk(v) is then modelled as

({id, sk(v), pk(v)} ∪ knw0,ProcV (v, sk(v))).

Registrar process

As discussed above, the analysis involves only one registrar. The initial knowledge
of the registrar consists of its private key, the set of assigned envelopes and generic
initial knowledge knw0. We will denote the envelope assigned to voter v as envelopev.
The registrar’s actions are modelled by process ProcR, as follows.

ProcR =
∑

v∈V

r(v,R, ({v}sk(v))) · s(R, v, envelopev) · r(v,R, (vot, onion)) .

s(R, v, {vot, onion}sk(R)) · s(R,C, {vot, onion}sk(R)) · ProcR

Counter process

Note that the counter has no interactions with the voter (cf. Figure 5.5). Furthermore,
we note that all the actions of the counter are duplicated in the interaction between
voter and registrator, except for the sending of those envelopes the voter does not
choose. As such, we omit the counter in this limited modelling of PaV.

Limitations of the PaV model

First of all, the above model is focused on voter interaction. It is not a complete
modelling of PaV, but suffices to show how the salient details (such as paper ballots,
and envelopes) of voter interaction in PaV could be modelled in the framework.
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In addition, the model does not capture the provision that the voter destroys the left
column of the ballot. In terms of the framework, this would equate to there being no
evidence that πv was used, that is, no link with the envelope. However, a conspiring
voter would not destroy the link, unless the system enforced this. Enforcement is done
via procedural means in PaV. Therefore, we expect to find that the cryptographic
measures of PaV by themselves are insufficient to guarantee privacy in the analysis
below, and thus we expect the analysis will find a privacy risk.

5.2.3 Voter control of privacy in PaV

We claim that the above model of the technical aspects of PaV offers privacy, but
does not enforce privacy. Thus, auxiliary procedures and physical requirements are
necessary to ensure resistance to coercion.

To prove privacy of PaV, we prove that in any non-trivial setting, the choice group of
any non-trivial choice function γ1 contains more than one element. This implies that
PaV does offer at least some privacy in non-trivial settings.

Lemma 4 (privacy of PaV). Suppose |V| > 1 and |C| > 1. Then for any choice
function γ1 such that there are voters va, vb ∈ V for whom γ1(va) 6= γ1(vb), we have
|cg(PaV , γ1)| > 1.

Proof. The proof unfolds similar to the proof of Lemma 2. Thus, we take a choice
function γ1 and a trace ta ∈ Tr(PaV γ1) and show that there exists a choice function
γ2 6= γ1 such that there exists a trace tb ∈ Tr(PaV γ2) for which ta ∼ tb.

We pick va, vb ∈ V, ca, cb ∈ C, and γ1, γ2 such that ca 6= cb and γ1(va) = γ2(vb) = ca

and γ1(vb) = γ2(va) = cb. We examine traces ta ∈ Tr(PaV γ1) and tb ∈ Tr(PaV γ2),
where every agent (including va, vb) executes in the same order. As a receive event
reveals no more information than the corresponding send event, we need only consider
one of the two. We choose to focus on the send/receive events of voter va. For the
send/receive events where the voter is not involved, we focus on the counter.

In trace ta, we first focus on the send/receive events of voter va. Suppose va was
instantiated as ProcV (va, sk(va)). The intruder has the following view of the events
in ta and the events that occur at the same index in tb (labelled for convenience):

obstr(ta) obstr(tb)
...

...
1. s(va,R, {va}sk(va)) s(va,R, {va}sk(va))

...
...

2. r(R, va, {πva, {πva}pk(C)}pk(va)) r(R, va, {πva, {πva}pk(C)}pk(va))
...

...
3. s(va,R, (πva(ca), {πva}pk(C))) s(va,R, (πva(cb), {πva}pk(C)))

...
...

4. r(R, va, {πva(ca), {πva}pk(C)}sk(R)) r(R, va, {πva(cb), {πva}pk(C)}sk(R))
...

...
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The events of voter vb = ProcV (vb, sk(vb)) are equivalent for the obvious substitution.
Notice that events 1 and 2 are equivalent in ta and tb. Furthermore, notice that the
difference between event 3 in ta and in tb is πva(ca) vs. πva(cb). The same holds
for event 4. Thus a reinterpretation that interprets πva(ca) as πva(cb) suffices to
reinterpret ta as tb with respect to the events of voter va. The similar case is made
for voter vb. Below we describe the reinterpretation ρa such that ρa(ta) = tb.

ρa(πva(ca)) = πva(cb) voter va, event 3
ρa(πvb(ca)) = πvb(cb) voter vb, event 3

Thus, we have ρa(ta) = tb. As we made no restrictions on ta, we derive ta ∼ tb from
this in the same fashion as in the proof for Lemma 2.

Lemma 5 (voter-controlled privacy of this model of PaV). For any non-trivial setting
(i.e. |V| > 1, |C| > 1), the following holds:

1. PaV is not conspiracy resistant for conspiring behaviour of type 1.

2. PaV is not conspiracy resistant for conspiring behaviour of type 2.

Proof. The proof follows the lines of the proof of Lemma 3. Here, we only highlight
the important differences with that proof.

The rewriting operation for type 2 conspiracy leads to the following voter process.

Θ1(v,ProcV (v, sk(v))) = is(v, knwv) · s(v,R, ({v}sk(v))) .
r(R, v, {πv, onion}pk(v)) .
s(v,R, (πv(vc), onion)) .
r(R, v, {πv(vc), onion}sk(R)) · δ

In type 2 conspiracy, sk(v) ∈ knwv. Therefore, the intruder can open message 2
{πv, {πv}pk(C)}pk(v), and thus the intruder knows which permutation πv was used.
Given knowledge of πv, events 3 and 4 cannot be reinterpreted.

The same reasoning holds for type 1 conspiracy (which shares final knowledge). Fur-
thermore, in type 1 conspiracy, πv ∈ knwv. Thus, the voter can share the candidate
order directly with the intruder. Note, however, that a voter-supplied candidate order
πv can be reinterpreted unless there is proof that the voter received this order. In this
case, event 2 can supply this proof, but only if the intruder can “open the envelope”,
that is, decrypt the message, or if the intruder can recreate the envelope using πv.

5.2.4 Discussion

While the proof of Lemma 4 shows that PaV can offer a degree of privacy, the proof
of Lemma 5 indicates that the permutation πv, in this model of PaV, is a source of
privacy concerns. There are two possible reasons for this: the model is incorrect, or the
system has a weakness. In this case, both reasons are applicable. Modelling envelopes
as public-key encryptions ties a permutation πv to a specific voter via message 2. This
link also present in the actual PaV. However, there the risk of exposing this link is
mitigated by procedural means (shredding πv).
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This has an impact on adapting PaV for remote voting, such as via the Internet. While
cryptography can be easily used in a remote voting setting, a remote voting setting
lacks a controlled environment and thus cannot enforce such a procedure. This means
that using PaV in a remote voting setting like this carries a privacy risk: the candidate
order can be linked to a voter. To avoid this, communication of the candidate order
to the voter should be reexamined. One approach is to prove the candidate order to
the voter using designated verifier proofs. To prevent any information leakage, such
proofs should be communicated over untappable channels. In addition, to ensure that
only the voter learns the candidate order, it is imperative that the candidate order
is shuffled by multiple, independent parties. A voting system along these lines was
proposed before PaV’s inception by Hirt and Sako [HS00]. The fact that our sketched
approach converges on their work supports the feasibility of this approach.

The analysis of PaV illustrates that the framework can be used to determine privacy
voting systems that incorporate physical as well as procedural measures. Furthermore,
the analysis indicated the privacy risks of PaV, which hamper its use for remote
voting. Combining this insight with the knowledge of privacy primitives as discussed
in Section 3.1 enabled us to sketch a possible direction for adapting PaV to a remote
voting setting. In the next section, we illustrate how the concept of choice groups
enables quantified reasoning about privacy. This is done by means of the 3BS voting
scheme, which provides an interesting trade off between privacy and verifiability.

5.3 Privacy and verifiability

In Chapter 3, we saw that various voting schemes approached reconciling privacy and
verifiability in a flawed manner. Verifiability seems contrary to privacy: verifiability
requires some matching between voters and votes, which seems detrimental to privacy.
This section offers a high-level reasoning, using the concept of choice groups, of how
these two security principles interact.

Chevallier-Mames et al. [CFS+06] show that universal verifiability is incompatible
with privacy properties, specifically, with unconditional privacy and receipt-freeness.
They show that in their setting,

• verifiability and unconditional privacy cannot be achieved simultaneously (in
their setting) unless all voters vote, and

• verifiability and receipt-freeness cannot be simultaneously achieved.

Their basic setting does not incorporate phases and lacks assumptions on communi-
cation (such as untappable channels). This substantiates the conjecture of Hirt and
Sako [HS00] that physical assumptions are necessary to ensure receipt-freeness.

Chevallier-Mames et al. define unconditional privacy as follows: the distribution of
votes is independent of any publicly available information except for the result of the
election. The authors show that in their setting, this is not compatible with universal
verifiability.

However, there is room to reconcile a form of privacy with verifiability – even without
physical assumptions. The framework presented in this chapter quantifies privacy.



98 Chapter 5 Application

One of the advantages of the framework is that privacy-reducing attacks can now
also be distinguished. Thus, while unconditional privacy may not be achievable, we
conjecture that it is possible to satisfy universal verifiability while retaining some
privacy, more specifically, while still satisfying |cg(VS)| > 1.

To support this, we examine the 3BS system [RS07], which reduces, but not nullifies,
privacy and provides a certain level of assurance, but not full verifiability.

5.3.1 Privacy and verifiability in 3BS

We briefly recapitulate the 3BS system. In 3BS, a vote is split over three single
ballots (see Figure 5.6), which together form one Threeballot. Each ballot carries a
unique identifier. To vote for a candidate, a voter ticks two boxes in the row of that
candidate; every other candidate-row only receives one tick mark. The voter is free
to place the ticks in any column, as long as there is one row with two ticked boxes
(her choice) and all other rows have one ticked box.

ballot 1a ballot 1b ballot 1c
North ◦ North • North ◦
South • South ◦ South ◦
East • East ◦ East •
West ◦ West ◦ West •
$xY63#bZ[ ’@a0^U 3G< ]Lw%4!r;}

Figure 5.6: A Threeballot in favour of “East”

Upon casting the vote, the Threeballot is validated to be correctly formatted (i.e. one
line with two marks, all other lines have one mark). If the Threeballot is formatted
correctly, it is separated into three ballots. The voter selects one of the ballots, which
the system copies and certifies. This is a full copy, meaning that it includes the
voter’s marks as well as the ballot identifier. The voter takes home this certified copy
(a receipt), and all three ballots are added to the set of received ballots. No one,
can register which ballot the voter copies (the system does not retain this either).
After elections, the set of all cast ballots is made public. The result is determined
as follows: the number of marks per candidate are summed up, and the number of
voters is subtracted (as every voter is obliged to mark every candidate once by the
format).

Verifiability

The receipt, which carries the unique identifier, allows the voter to verify that one
of her three individual ballots is in the set of cast ballots. The intruder could try to
modify or delete (attack) a ballot from the set. However, no one knows which of the
three ballots was chosen to copy as a receipt. So, if the intruder attacks a ballot, his
attack is detectable if the attacked ballot happens to have been copied. The attack
is not detectable, if there is no receipt for the ballot. Verifiability is thus no longer
absolute.



5.3 Privacy and verifiability 99

More precisely, consider an election with n voters casting a Threeballot. Then, we
have a set with 3n ballots. Of these, 2n are not receipts. If the intruder attacks one
ballot, the chance of that ballot not having been copied as a receipt is 2n

3n . After this,
there are 3n−1 ballots of interest to the intruder left. 2n−1 of these are not receipts.
Hence, the chance of the intruder attacking a second ballot which was not a receipt
is 2n−1

3n−1 . The chance that both ballots are not receipts is thus 2n
3n · 2n−1

3n−1 . In general,
if the intruder removes k ballots, the chance of him not choosing a receipt is

k−1
∏

i=0

2n− i

3n− i
=

(

2n
k

)

(

3n
k

) .

Note that this is bounded by ( 23 )
k from above (the largest term in the expansion of

the product) and by ( 2n−k+1
3n−k+1 )

k from below (the smallest term in the expansion of the
product). Therefore, the chance of the intruder affecting k ballots without affecting
a receipt is at most ( 23 )

k, which is less than 1% for k ≥ 12. While 3BS does not offer
absolute verifiability, it does offer a reasonable form of verifiability.

Privacy

Next, we turn to privacy of the 3BS system. Given the specific way of voting in 3BS,
only a limited subset of the cast ballots can form a valid Threeballot with a given
receipt (to be more precise, only those ballots combined with the receipt such that
there is only one row with two tick marks). For example, consider a receipt with a tick
mark for every candidate. This can only be matched with one entirely blank ballot,
and one ballot containing precisely one tick mark. Moreover, the entire set of received
ballots consists only of valid Threeballots. As a result, some valid combinations can
be ruled out as Threeballots. This is because these combinations leave an inconsistent
set of ballots: a set in which at least one ballot does not form a valid combination
with any two of the other ballots. Thus, some valid combinations must consist of
ballots from more than one Threeballot.

Conspiring voters. An obvious attack on vote privacy, already pointed out by the
designer, is to agree a priori with the intruder on how to fill in the ballots (captured
by class b conspiracy). The intruder can then easily verify if all three ballots are cast.
However, the voter may collude with other voter(s) to ensure that together, they cast
the required ballots.

For example, suppose the intruder instructs voter va to produce one blank ballot, one
ballot marking every candidate and one ballot marking only c3. This seems a vote for
c3. However, with the aid of voter vb, voter va can satisfy the intruder requirement
and remain free to vote c2, while vb votes c1, as shown in Figure 5.7. Note that c3
received 0 votes in Figure 5.7. Thus, even with this level of conspiracy, the choice
group of the voter may contain more than one element, i.e. |cgv(Θb(v, 3BS ), γ)| is
not necessarily 1.

Another possibility is for the voter to reveal her receipt after the elections (class 1
conspiracy). As mentioned above, not every combination of three ballots constitutes
a valid Threeballot. For example, in Figure 5.7, some of the possible combinations
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ballot va ballot va′ ballot va′′

c1 • c1 ◦ c1 ◦
c2 • c2 ◦ c2 •
c3 ◦ c3 • c3 ◦
id va id va′ id va′′

ballot vb ballot vb′ ballot vb′′

c1 • c1 • c1 ◦
c2 • c2 ◦ c2 ◦
c3 • c3 ◦ c3 ◦
id vb id vb′ id vb′′

Figure 5.7: Faking conspiracy in 3BS

result in valid Threeballots, other combinations are invalid. In Table 5.1, we show
a few combinations, their validity, the preferred candidate of the combination and
whether the remaining ballots constitute a valid Threeballot as well.

combination valid vote for remainder valid

va va′ vb′ yes c1 yes
va va′ va′′ yes c2 yes
vb va′ vb′′ yes c3 no
va va′ vb no
va va′ vb′′ no

Table 5.1: Validity of various possible Threeballots

Note that the two ways shown in Table 5.1 to construct two valid Threeballots are
the only possibilities to assign every ballot in the set to valid Threeballots. All other
combinations leave the set of remaining ballots in an inconsistent state. As such, the
intruder does not need the results to infer that no voter voted c3.

If voter va shares her receipt, the intruder can classify the set of ballots according to
which pairs of ballots together with the receipt constitute valid Threeballots. This
rules out all valid Threeballots that do not contain the receipt. Thus, this reduces the
set of ballots attributable to the voter, and so reduces her privacy. In the setting of
Figure 5.7, a receipt of ballot va′′ determines precisely who voted for which candidate.
In this case, the choice group of the conspiring voter cgv(Θ1(v, 3BS ), γ) is reduced to
a singleton.

As pointed out in [RS07], 3BS can also be used in elections where voters are allowed
to vote for multiple candidates. In this case, a Threeballot may contain multiple
rows with two tick marks. This means that the number of ballots forming a valid
Threeballot with a given receipt is increased. As the number of valid combinations
directly affects privacy, voter privacy is improved. In the framework, this improvement
is precisely captured by the size of choice groups.

3BS’s approach to privacy is based on the idea of dividing voter-privacy up into
various parts, and only give the voter control over one part. Even though the link
between the voter’s part of privacy and other parts cannot be severed completely, it
can be successfully obscured.
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Concluding remarks

3BS shows that it is possible to combine a certain level of privacy with a certain level
of verifiability. Thus, by sacrificing some privacy, some verifiability can be achieved.
However, the trade-off between these two is not made precise yet. This is where
the framework presented in this chapter comes in: for any system that proposes a
trade-off between the two, the framework makes the effects on privacy explicit.

5.4 Conclusions

This chapter served to illustrate how to use the framework and the concepts intro-
duced in Chapter 4 to reason about and determine privacy the framework to voting
systems and voting schemes. To this end, we determined the privacy of the FOO92
scheme, we examined privacy for the Prêt à Voter system and discussed the trade-off
between privacy and verifiability inherent in 3BS.

The FOO92 voting scheme offers privacy, which the framework captures as a non-
trivial choice group. Furthermore, FOO92 is not resistant to voter conspiracy. The
identification of the weaknesses enabled us to sketch an approach to improving FOO92.

The PaV voting system relies on several procedures and physical measures to ensure
privacy. The analysis of PaV clearly points out weaknesses in the technical measures
to ensure privacy. The analysis indicates that this privacy weakness is centered on
enforcing the secrecy of the candidate order on the ballot. Using this insight, we can
think of ways to mitigate this in remote voting settings. We find that our adaptions
to PaV for remote voting lead to a system remarkably similar to the one proposed by
Hirt and Sako.

Privacy seems to be at odds with verifiability. Using the concept of choice groups, we
examined the 3BS system. The 3BS system provides an interesting trade-off between
verifiability and privacy. By reasoning about privacy in a quantified manner, it is
evident that while privacy is not nullified, it is reduced in 3BS.

These analyses show how the concepts and the framework of Chapter 4 improve the
understanding of privacy in voting, and how this improved understanding may be
used to improve voting systems.
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6

Introduction to DRM

This part of the thesis investigates the domain of Digital Rights Management (DRM),
and the security problems relevant to it. The analysis in this chapter results first de-
fines the concept of a DRM system and its core stakeholders. The incentives of the
core stakeholders give rise to high-level security properties. The interaction between
the core stakeholders is captured by an iteratively refined process model. The combi-
nation of the resulting generic process model with the established security properties
for the core stakeholders leads to a set of core security requirements for DRM systems.

We conclude by noting that DRM systems have focused on a client-server setting,
but that the concept of DRM does not require this. As such, requirements which can
be addressed by assumptions in a client-server setting, need to be ensured in other
settings.

6.1 Introduction

There is a precarious balance between dissemination of information (to the general
public) and stimulation of innovation and art. The easier it is to spread new infor-
mation, the less possibilities to profit there will be for innovators to reap the fruits of
their labor. On the other hand, spreading innovation and art is considered beneficial
to society.

The introduction of computers has had a profound impact on this balance. With
computers, it is trivial to create a perfect copy of content – a term used to indicate a
work of art, such as music, literature, movies, etc. This, coupled with the widespread
availability of broadband Internet connections, means that completely new venues
for spreading content to the public at large have come into existence. This enables
a business model, that consists of selling and delivering digital versions of content
online. The main point of concern for such a business is to prevent unsanctioned
redistribution of the delivered content.

DRM systems address this goal. The purpose of a DRM system is to enable trade
in digital content by governing access to the content. Access control is regulated by
licenses, and content is only accessible under the terms of a license for that content.

In recent years, there has been a strong push into the research and development of
areas encompassed by DRM, such as secure storage [SV02], traitor-tracing [KY03,
SW02], watermarking [CBM01], fingerprinting [HK02, PT01] and tamper resistant
code [HMST02, CA02]. There have also been various proposals for models of DRM
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systems such as a wide, encompassing functional model [Gut03], and various pro-
posals of systems with specific properties, such as domain-based DRM [PKCT04],
and interoperability [OMA04, SNB+03]. In fact, a quick look at the three most re-
cent ACM DRM conferences [YKS06, YKS07, HJ08] reveals a variety of subtopics in
DRM research, ranging from watermarking to legal aspects, from software protection
to biometric authentication, from rights expression languages to formal models.

This diversity in the field has led to a situation where there is no uniform view of
the core security requirements for a DRM system. Even works proposing systems
tends to focus upon enabling specific properties (such as interoperability). Often,
requirements ensuring core DRM functionality receive a lesser treatment or are not
even made explicit. Thus, the set of requirements that ensure core DRM functionality
is scattered.

There are several reasons to make this core explicit. The first and foremost reason
is that security is an enabling factor for DRM systems. DRM systems are designed
to provide a solution for a security problem. An understanding of (the justification
for) the core security requirements is crucial for fundamental comprehension of the
security of DRM systems. Without a list of core requirements, it is unclear if all
requirements are addressed properly by a system – it is even unclear if research ef-
forts are covering all core requirements. Moreover, knowledge of the core security
requirements is instrumental in the construction and verification of DRM systems.
Such knowledge enables developers to better understand the consequences of security
trade offs. In practical systems, such trade offs between desired features and security
requirements are not uncommon.

This chapter uses a structured approach to identify core security requirements and
provide a justification for them. The goal of this chapter is focused on the security
aspects of the design of DRM systems and our aim is to systematically derive core
security requirements for DRM systems. Although there is a wealth of methodologies
supporting system analysis and design, the methodologies for deriving security re-
quirements are only at their infancy. Therefore, our research will start by identifying
some useful methodologies and combining their strengths. In order to provide a base
for the found security requirements, we describe a model which limits itself to the core
processes of a DRM system. The generic nature of this core model of DRM function-
ality implies that requirements found for it are applicable to most DRM systems. The
extensibility of this core model indicates that it can be augmented to accommodate
additional functionality, and, therefore, that this model suffices for our needs.

The rest of this document is organised as follows: Section 6.2 details the approach
we use to arrive at our security requirements, resulting in a list of security properties
and a generic process model of DRM systems. These form the basis of the security
requirements in Section 6.3. We summarise the chapter and present the research
question for this part of the thesis in Section 6.4.

Note. In recent times, the idea of using DRM to govern access to content is be-
coming more and more obsolete, and more and more companies are abandoning the
use of DRM for this purpose. However, tentative attempts are being made to apply
DRM concepts in other areas, such as electronic health records (see e.g. [NZJK06])
and ubiquitous computing (see e.g. [FSS05]). However, in order for such reapplica-
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tions of DRM to be successful, it is paramount that the underlying requirements of
DRM are understood, as these are to be incorporated in new fields. Thus, while the
original purpose for DRM is being abandoned, the technology is not – and that makes
understanding the requirements more important than before.

6.2 Domain analysis

To establish the core security requirements of DRM systems, we establish the de-
sired security properties by a domain analysis and use these as the foundations for
the security requirements of DRM systems. Note that in a DRM system, involved
parties do not seek to reach a common goal, but have selfish stances. As a necessary
consequence, the analysis examines each involved role carefully.

The domain analysis consists of three steps. The first step establishes core stakehold-
ers and their incentives. The second step is to derive the desired security properties
from the incentives. Finally, the third step is to derive a process model. The process
model is to capture the core operations occurring in DRM systems.

6.2.1 Establishing stakeholders and their incentives

The first step in deriving the security requirements is a stakeholder analysis. The
purpose of this step is to determine the individuals (or roles) who have an interest
in using a DRM system, and their incentives for participating. An understanding of
their incentives is important, as these incentives lead to security requirements.

To establish the stakeholders and their incentives, a method similar to and inspired by
several existing methodologies from the field of Information Systems has been used.
We base our research on a variety of methodologies, such as domain analysis (see
e.g. [Pri90]), stakeholder analysis (for an overview see [Pou99]), system decomposition
(see e.g. [Som04]). Normally, these methods assist in designing a system. However,
our goal here is not to design a system, but to focus upon a system’s security aspects.
Parts of these methods are accordingly adapted to capture the security aspects of
DRM systems.

The domain analysis identifies the three core tasks of a DRM system to be content
creation, distribution and usage. As a result, the core stakeholders of DRM systems
are the content creator (e.g. media companies, artists, etc.), the distributor (e.g.
stores) and the user. Table 6.1 depicts the core stakeholders.

Stakeholder Role
Content creator Creation of content
User Acquisition of content
Distributor Intermediary between users and content creators

Table 6.1: Core stakeholders for DRM systems

Each of these stakeholders has their own, specific incentives for using DRM. As noted
before, DRM systems enable trade of digital content by providing users with re-
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stricted, license-controlled access to content. This observation together with a gen-
eralisation of the stakeholders’ roles leads to the following formulation of the core
functionality of a DRM system.

Concept 2 (DRM system). A DRM system is a system that allows users to access
digital content according to access conditions as specified in a license. Licenses and
content are distributed by distributors, who in turn acquire content from content
creators.

The above description distinguishes three types of core participating roles: the content
creator, who creates content; the distributor, who licenses content; and the user1, who
desires access to content. Some other roles, such as network operator, are necessary
for an operational DRM system. However, their impact on the functioning of the
system does not touch upon the core of the system. Thus, we do not study their
security requirements in this chapter. As such, network security and e-commerce
security are out of the scope of the current description.

The analysis indicates that the roles of content creator and distributor are executed
by companies (e.g. media companies). As companies are legal entities, they are firmly
embedded in a legal framework and thus there exist numerous non-technical solutions
to ensure that companies adhere to access agreements. This observation holds less
for individual persons, which allows for an asymmetry in DRM systems: there are
fewer deterrents to prevent individuals from circumventing agreements than there are
deterrents preventing companies. Hence for individuals strict technological enforce-
ment of access agreements between them and companies is necessary. This leads to
a natural tendency in DRM development to focus on enforcing access control at the
user’s side, and to focus less (or not at all) on access control at the distributor’s side.

Each of the core roles has various reasons for taking part in a DRM system, and thus
related security concerns. Below, the incentives are outlined per role.

Content creator incentives

The role of content creator is executed by stakeholders that create content, such as
media companies. They do not seek interaction with users directly, but are satisfied
with leaving this to an intermediary – i.e. a distributor. DRM can be used to enforce
the conditions set on content by the content creator for the distributor. However,
this can also be dealt with by non-digital means (contracts, agreements between
companies). Content creators use DRM technology to support new business models.
For instance, they can create a bundle of desired content and other content. Such a
bundle could increase the value of the content for users (for example, by including the
‘making of’ footage), or it could increase revenue for the content creator (for example,
by including commercials). Additionally, using DRM technology it is possible to offer
a revenue-generating alternative for traditional downloading. This means that DRM
technology can open a new market. Finally, offering content online in a digital version
means that the per-content overhead costs are low - there is no need for plastic casing,
a colourful cover, etc.

1We prefer the computer science term ‘user’ over terms such as ‘customer’ and ‘consumer’.
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Distributor incentives

The distributor binds content to access conditions specified in a license. This role
saves content creators the overhead of negotiating directly with their customers. The
distributor can use DRM technology to offer tailor-made access to content to users.
On top of that, overhead compared to selling physical media is substantially reduced,
because digital content takes up little physical space and the presentation of the
content can also be done digitally. By offering a clearly legitimate and known-quality
alternative for downloading, the distributor can open up a new market. And lastly, as
content is bound to a license created by the distributor, access to content distributed
in this way will comply with the access conditions set by the distributor.

User incentives

Users will be drawn to DRM systems because DRM systems offer a legitimate, known-
quality alternative to more dubious sources of content. Ease of use is an important
consideration in this regard: if use of the system or acquisition of content becomes
bothersome, a user might turn back to other sources.
Another advantage that DRM systems can offer users is the possibility to restrict the
access to (and thus the cost of) content to precisely what the user wishes.
For users, it is important that DRM offers an improvement upon aspects of existing
content distribution channels, otherwise there is no incentive for users to switch to
a DRM distribution channel. This can, for example, be in terms of ease of use or
availability. Such improvements can be offset by deterioration of other aspects –
privacy concerns could turn users away from a DRM system.

6.2.2 Security properties per core role

The second step of the problem analysis consists of deriving the desired core security
properties of each core stakeholder, by transforming the incentives into security prop-
erties of the system. The high-level properties of this section are then made precise
as concrete security requirements in Section 6.3.

For each core role in DRM systems a translation of the stated incentives into desired
properties is provided. There are various security solutions that come into play in
this process (such as a payment infrastructure). We confine our examination to the
core of a DRM system, i.e. those required by the core roles for basic functionality of
a DRM system, as described in the above concept.

As the intent of this section is to establish which security properties are desired for
DRM systems, properties outside the scope of DRM systems (such as those governing
negotiations between parties, those governing the privacy of the business operations
of distributors, etc.) are not considered below. Properties of DRM systems that are
not security related (e.g. functional properties) are also not examined.
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Security properties for the content creator

Of paramount importance for content creators is that they receive compensation for
access to content they create. Since digitising content facilitates widespread copying
of content, content creators need to be assured that the DRM system that safeguards
their content will only allow access in exchange for compensation.

Ensuring that the distributor complies with the terms set by the content creator is
arranged outside of the DRM system (e.g. by contracts). As DRM systems focus
on enforcing access control at the user’s side, the specific security requirements of
content creators are delegated to distributors. Hence, content creators require simply
that access occurs only via the system. More precisely:

• (c1.) Content is only accessible by untampered components created by the
official system developers, under the conditions of a valid license issued by a
bona fide distributor.

Security properties for the distributor

The distributor acts as an intermediary between users and content creators. The
content creator has delegated responsibilities for content protection to the distributor.
The role of the distributor is to distribute content and rights to users. The conditions
under which a user has access to content are specified in a license. Naturally, a
distributor expects the DRM system to enforce this license. Furthermore, it is in
the distributor’s interest to be able to deliver what users want, when they want it
– otherwise they may opt for an alternative distributor. Finally, attacks disrupting
or twisting communications with users must be prevented. The above is formulated
more precisely as follows.

• (d1.) Content is only accessible by a renderer with a valid license issued to
that renderer, originating from the distributor, under the terms stated in that
license.

• (d2.) The DRM system precisely delivers the content that has been requested,
with the license as requested, in the correct format, at the desired time to the
user.

• (d3.) No other party can disrupt or alter the distributor’s side of communica-
tions with the user.

Security properties for the user

Users have the option of using traditional distribution channels and using a DRM
system. In order for a DRM system to be appealing to users, it is important that a
user has the impression that the benefits of using DRM outweigh any more negative
aspects compared to traditional distribution (e.g. a purchase in a store). Users will
thus expect to be able to download content anywhere, at any time. When buying
content through traditional channels, users can remain anonymous (up to a certain
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degree) – in a digital setting it is much easier to link data to users, violating their
privacy. Finally, in traditional distribution, a user is in control of her side of the trade
communications (which content, accessible under which conditions, for which price,
when does she hand over money, . . . ) when negotiating a purchase. This should also
hold in a DRM setting. Expressing these points exactly leads to the following list.

• (u1.) The user can precisely acquire a consumable form of the content that the
user desires, at the moment the user desires it.

• (u2.) Neither content nor licenses can be linked to the user.

• (u3.) No other party can disrupt or alter the user’s side of communications with
the distributor.

Note that property u1 coincides with property d2. From here on, these two properties
are treated as one property.

The complete list of all security properties is depicted in Table 6.2 below. Together,
these properties form a solid foundation for the core functionality of DRM systems
– and therefore, they also provide sound underpinnings for the security properties of
DRM systems. These properties are necessary for DRM systems. Sufficiency depends
on the completeness of the descriptions in Section 6.2.1, and on correctness of the
translation of these incentives into the expressed security properties.

content creator
c.1 Content is only accessible by untampered components created by the

official system developers, under the conditions of a valid license issued
by a bona fide distributor.

distributor
d1. Content is only accessible by a renderer with a valid license issued to

that renderer, originating from the distributor, under the terms stated
in that license.

d2. Precisely deliver what has been requested, in a consumable form, at the
desired time for the licensee.

d3. No other party can disrupt or alter the distributor’s side of communica-
tions with the user.

user
u1. Precisely acquire a consumable form of the content that the user desires,

at the moment the user desires it.
u2. Neither content nor licenses can be linked to the user.
u3. No other party can disrupt or alter the user’s side of communications

with the distributor.

Table 6.2: Security properties as desired per role

We take the view that all security properties stated in Table 6.2 are essential to satisfy
the incentives of the core stakeholders. However, not all DRM systems will necessarily
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seek to address all of the security properties desired by users. For example, there are
no compelling reasons for distributors to ensure user privacy (requirement u2). On
the contrary, usage data is valuable for creating profiles (which can then be sold).
We believe, however, that privacy is an important security, especially in e-commerce
systems. Therefore, we feel that the inclusion of privacy as a core incentive is justified.

6.2.3 Conceptual process model

The second step of the problem analysis consists of the development of a conceptual
process model. This model relates the basic processes in the DRM system to each
other, and can be refined to provide a basis for identifying security requirements.
This process model is then combined in Section 6.3 with the list of security properties
to establish core security requirements of DRM systems.

To ensure that the model is applicable to as many DRM systems as possible, it must
be as generic as possible. In order to derive such a generic model, we start with
one component for the three core roles in a DRM system: the content creator, the
distributor and the user, see Figure 6.1. Components for non-core roles are left out
as they can be introduced when necessary, as such additions constitute refinements
of the core model. The resulting model is subsequently refined to incorporate various
specifics of DRM systems.

The model of Figure 6.1 is read as follows: the creation process creates content, which
is forwarded to the distributor. The distribute process distributes the content to the
user. The rendering process at the user side renders the content.

create distribute render

�



�
	content creator

�



�
	distributor

�



�
	user

- -

Figure 6.1: Basic process model

The first refinement to this model is instigated by the observation that for content
to be enjoyed by users, it is eventually transformed into an analogue form. This
means that there exist two variants of content: digital content (which the system is to
protect), and analogue content (which a user can consume). As all DRM systems deal
with both variants, the generic model can be refined to incorporate this distinction
without harming its generality. This results in splitting the rendering process into
two processes: one process to convert digital content to analogue content (content
rendering), and one process to extract the digital content from the DRM bundle
(extract). This refinement is depicted in Figure 6.2. Note that in general, rendition is
the final step in the process. Hence, content rendering is depicted as the last process
in the model.

The next refinement is prompted by noting that DRM-protected content cannot be
accessed without a license. This does not imply that a license must be bundled
with the content in all cases, or even that a license must exist when the content
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�



�
	content creator

�



�
	distributor

�



�
	user

create distribute extract
content

rendering
- - -

Figure 6.2: Model incorporating rendering of content

is protected. It suffices that the resulting content is not accessible without a valid
license. To express the possibility of licenses and protected content existing separately,
the distribution process is further refined into two parts. The content protection part
provides the user with protected content, while the license creation part provides
the user with a license for protected content. This leads us to the conceptual model
depicted in Figure 6.3.

�



�
	content creator

�



�
	distributor

�



�
	user

create bind license

create license

extract
content

rendering
- - -

?
?

Figure 6.3: Generic process model of DRM

This generic process model now incorporates the core roles and models the core pro-
cesses in a DRM system. The model can be refined to comply with virtually all
existing DRM architectures. For example, additional roles like content issuer and
license issuer can be incorporated to comply with the functional architecture of the
Open Mobile Alliance DRM architecture [OMA04].

The goal of this chapter is to establish core security requirements of DRM systems.
As further refinements constrain the applicability of the model, further refining the
model would detract from the core of DRM systems. As such, the model is not further
refined.

6.2.4 Results of the problem analysis

The problem analysis has provided two results: a list of security properties desired by
the core stakeholders, and a conceptual process model of the processes taking place
in a DRM system. Taken together, these results elucidate security requirements of
the core functionality of a DRM system.

Completeness of these descriptions has a large impact on which security requirements
are found. After all, the more complete the incentives and the core processes are
described, the more complete the derived security requirements will be. The methods
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we adapted to arrive at the given descriptions support a systematic derivation of
security requirements, but do not guarantee completeness of the results. Despite
this, we believe that, due to the systematic approach, the descriptions are sufficiently
exhaustive for our goals.

6.3 Core security requirements

In this section, the security properties are used as a basis for establishing the secu-
rity requirements per stakeholder upon the generic process model. Both the process
model and the incentives were deliberately kept widely applicable, so that the derived
security properties and requirements are generically applicable to the setting of DRM
systems. In this way, further detailing of the model will instigate further detailed
security requirements.

To refine the security properties, we applied a technique based on Schneier’s attack
trees [Sch00]. We adapted this technique to result in objective trees, which enable
systematic analysis of defensive aspects of a system. The results of this systematic
analysis are presented below.

6.3.1 Security requirements for the content creator

The desired security properties for the content creator have been established as follows
in the previous section:

• (c1.) Content is only accessible by untampered components created by the official
system developers, under the conditions of a valid license issued by a bona fide
distributor.

In Figure 6.3, we see that the creator’s role in the system is limited to communicating
content to the distributor. As noted earlier, DRM systems can be asymmetric: the
relationship between a content creator and a distributor is not on par with the relation
between a distributor and a user. To support this asymmetry in our generic security
requirements, we have chosen not to mention security requirements twice (once for
the content creator and once for the distributor), but to only formulate them for the
distributor. As mentioned in the introduction, to model a symmetric DRM system it
suffices to refine the requirements and the process model.

As can see from Figure 6.3, the content creator communicates the content to the
distributor. That means, that in order to uphold property c1, the end-point of this
communication must be an authenticated distributor (c1.1 ), that the content must
be protected during communication (c1.2 ), and that the system ensures the security
of the content from that point on (c1.3 ). Note that this latter requirement coincides
with the first property for the distributor.

6.3.2 Security requirements for the distributor

Each of the established security properties for the distributor is analysed below to
arrive at security requirements. The first property was stated as:
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c1. content inaccessible unless authorized

c1.1. access allowed for authenticated distributors

c1.2. protected communication with distributor

c1.3 objective tree for requirement d1

Figure 6.4: Objective tree for property c1

• (d1.) Content is only accessible by a renderer with a valid license issued to that
renderer, originating from the distributor, under the terms stated in that license.

This property of the distributor is equivalent to property c1 of the content creator.
This property governs the fundamental protection of content in a DRM system. Con-
tent protection requires secrecy of content. In terms of the generic process model
(Figure 6.3), the provided content must remain inaccessible for anyone and any com-
ponent except the ones specifically allowed to access the content. Furthermore, suc-
cessful completion of the user-side process only happens in compliance with a valid
license, and only by valid, authenticated components.

In concrete terms, the user side components are secured against attacks (d1.1 ). Fur-
thermore, security breaches in the user process must be constrained in scope (d1.2 ).
This means that breaches must not be generically applicable to all installations (pre-
vent Break Once, Run Everywhere, d1.2a), and that it must be possible to update
system components (d1.2b). To ensure that content is not leaked, the processing com-
ponents all need to be authenticated. Hence, components may only forward content
to authenticated components (d1.3 ) and all keys used must remain secret (d1.5 ).
Finally, the user side process may only render content if all terms of an appropri-
ate license have been met (d1.4 ). These requirements are depicted succinctly in the
objective tree for property d1 in Figure 6.5. Together, these requirements provide
content protection in the generic process model.

Security property d2 coincides with security property u1 and is treated with the
other user security properties. Hence, we turn to the final security property for the
distributor, which was expressed as:

• (d3.) No other party can disrupt or alter the distributor’s side of communica-
tions with the user.

As we can see in Figure 6.3, the distributor’s side of communications with users occurs
after binding licenses to content. Thus, d3 is upheld if content is only sent when the
distributor desires so (which he does in exchange for receiving compensation, i.e. fair
exchange d3.1 ), if the user cannot falsely deny having received content (d3.2 ), and if
the communication channel cannot be influenced (d3.3 ). The resulting objective tree
is depicted in Figure 6.5.
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d1. content inaccessible
unless allowed

d1.1. user side is secured against
attacks

d1.2. impact of system breaks
is constrained

d1.2a. prevent BORE
d1.2b. updatable system

components

d1.3. only designated components
have access

d1.4. rendition only when
compliant with valid license

d1.5. user-side keys remain secret

d3. safe and secure communications

d3.1. fair exchange

d3.2. non-repudiation

d3.3. secure channel

Figure 6.5: Objective tree of properties d1 and d3

6.3.3 Security requirements for the user

Below, the security properties as desired by the user are analysed and security re-
quirements are derived from them. Once again, the generic process model is used as
a base to match the stated properties against and objective trees are established to
uncover security requirements.

The first security property as desired by the user of a DRM system was established
in Section 6.2.2 as:

• (u1.) Precisely acquire a consumable form of the content that the user desires,
at the moment the user desires it.

This property concerns the delivery capabilities of the system, or, the receiving side of
the communication channel between distributor and user in Figure 6.3. In effect, this
property states that the communication channel must be available (u1.1 ), integer (i.e.
undisruptable and incorruptible, u1.2 ), and that the delivered content and license are
those, that were requested (u1.3 ). The latter requirement, and the need to acquire a
consumable form of the requested content, cannot be imposed by the channel. They
imply that the communication partner (the distributor) must be trusted. Hence
it is important that the user is convinced that the party at the other end of the
communication channel is indeed the party she trusts, i.e. the distributor. This is
achieved by having the distributor authenticate himself to the user (u1.4 ).

The second security property for users of DRM systems is:

• (u2.) Neither content nor licenses can be linked to the user.

This property ensures the privacy of a user using a DRM system. The privacy prop-
erty breaks down according to the generic process model: the user’s privacy must be
ensured by all parts interacting with the user. In the generic process model (Fig-
ure 6.3), these are the distributor, the communication channel from the distributor



6.3 Core security requirements 117

u1. correct, timely delivery

u1.1 distributor availability

u1.2 integrity of communications

u1.3 delivery matches request

u1.4 authenticated distributor

Figure 6.6: Objective tree for property u1

to the user and the user processes of the DRM system. The distributor must handle
all personal data he receives with care, and within the limits set by the user (u2.1 ).
(Note that EU directive 95/46/EC, the EU directive on “the protection of individuals
with regard to the processing of personal data and on the free movement of such data”
only allows personal data to be kept when necessary for system execution, meaning
that this requirement is an EU directive.) Furthermore, the communication channel
must not leak private user information u2.2 ). Finally, the user side of the DRM sys-
tem must ensure user privacy as well (u2.3 ). The resulting objective tree is depicted
in Figure 6.7.

u3. order control

u3.1. no content/license order
without user authentication

u3.2. payment only upon with
user consent

u3.3. fair exchange

u2. privacy

u2.1 distributor respects privacy

u2.2 private communications

u2.3 user side respects privacy

Figure 6.7: Objective tree for properties u2 and u3

The final security property for the user is formulated as:

• (u3.) No other party can disrupt or alter the user’s side of communications with
the distributor.

This property, which is abbreviated as “order control” in Figure 6.7, ensures that the
system may only act on the intentions of the user, and not otherwise. In the generic
model, this property imposes requirements on the user side of communication between
user and distributor. Communication between these parties consists of two distinct
parts: the negotiations on compensation for contents and rights on the one hand,
and the delivery of content and license on the other. To ensure not other party can
act in the user’s stead, the user is required to authenticate herself using her private
authentication data for both these parts (u3.1 ). Secondly, to safeguard negotiations,
compensation (payment) for content only occurs intentionally (u3.2 ). Finally, the
user only pays in exchange for the requested items (u3.3 ). The resulting objective
tree is shown in Figure 6.7.
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6.3.4 Consequences

The security requirements established in the previous section have some consequences,
which are mentioned below.

It follows from the requirements derived from the distributor’s desired security prop-
erties (d1, d2 and d3) that the components on the user’s side should function as a
trusted computing base. More specifically, requirements d1.1 and d1.2 require the
user-side to be secure, and to remain secure throughout the lifetime of the system. In
effect, this requires the system to be able to adapt to attacks.

The points following from property u2.1 indicate that the distributor should at the
very least provide a privacy statement. Requirement u1.3 implies that the distributor
provides a security policy.

Requirements d3.1 and u3.3 underline the distributor’s and user’s need to trust that
they will receive their rightful due (payment for the distributor, content for the user)
in exchange for their goods. If this is not a mutual exchange, the question arises of
who receives his due first. How is the second party assured that the first party will
deliver if they already received their goods? In effect, users and distributors require
an assurance of fair exchange for them to be willing to engage in trade.

Fair exchange in DRM systems is hardly studied. In traditional client-server settings
(the focus for most DRM-related research), fair exchange is addressed by the dis-
tributor’s reputation: the user knows the distributor and trusts in his reputation to
provide the content. Consequently, the user is willing to pay before she has received
content. As the goal of a DRM system is to enable trade in digitised contents, it
seems reasonable that a distributor who uses a DRM system would indeed deliver
contents. Nevertheless, the reputation assumption is almost never made explicit in
DRM-related literature in client-server settings. As there is little research into DRM
systems outside this setting, fair exchange is an open problem for DRM systems.

6.4 Summary

The core security requirements of DRM systems are scattered and unclear. To address
this, this chapter established the core security requirements of DRM systems by means
of combining a stakeholders’ incentives analysis with a generic process model.

Of the resulting list of requirements, requirement u3.3, fair exchange, is hardly stud-
ied. This is due to the focus on client-server DRM systems, where fair exchange for
the client is dealt with by the server’s reputation for correct behaviour. However,
this leaves unaddressed how to ensure fairness in an environment without a priori
known reputations, such as a peer-to-peer setting. In an extreme case, every peer
could also act as a redistributor of content, without having an established reputation.
Such a setting encompasses the case where a peer is an original distributor and thus
seeks to build a reputation. It also encompasses the case where the only incentive for
distributing is direct benefit to the distributor.

However, fairness is not the only requirement for DRM systems. DRM systems must
safeguard access to content in order to act as successful trade-enabling systems. To
this end, they must be rigorously secure. Earlier in this thesis, we already argued that
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a rigorous approach to security requires methodology with mathematical precision,
such as formal methods. But formal security is not enough, due to requirement d1.2 :
a DRM system must also be practically secure.

Thus, the question is raised whether a formally and practically secure DRM system
that enables fair exchange is feasible. To address this question, we execute a feasibility
study, charged as follows.

Research question II. Is a formally and practically secure DRM system that enables
content redistribution possible?

The question is addressed in the next chapter by surveying existing work in DRM in a
peer-to-peer setting. From this survey, we base our feasibility study on a basic system
that aims to provide redistribution. First, the system and its goals are formalised
and verified using model-checking. The flaws discovered by the formal analysis are
addressed in a new scheme. Furthermore, we introduce contingency procedures to
provide practical security. The new system is verified using model-checking to ensure
it satisfies the proposed goals.





7

Fair exchange in DRM

From the previous chapter, the question of enabling and ensuring secure and fair
content redistribution in a peer-to-peer environment emerged. In this chapter, this
question is addressed by designing and analysing the security of a peer-to-peer DRM
system enabling fair exchange.

7.1 Introduction

As noted in the previous chapter, users require fair exchange in order to be willing
to trade. In a peer-to-peer (P2P) setting, users may trade with other users that are
unknown to them. Thus, fair exchange should be ensured. Furthermore, the trading
must ensure that usage rights are not infringed upon, to ensure that providers are
willing to participate. Access control (which ensures adherence to usage rights) has
been recognised as an open problem for P2P systems in [DGY03]. The possibilities
of P2P networks for content distribution have led to various research efforts, though
few (to date) have researched fair exchange in this setting.

In the early proposal of Grimm and Nützel [GN02], content is distributed via a P2P
system. Their system does not enforce access control, but uses rewards to entice users
to compliance. However, this incentive is based on reselling. A user who does not
engage in reselling, thus has no incentive to pay for content.

This is followed by Iwata, Abe, Ueda and Sunaga [IAUS03], who sketch various models
for leveraging the advantages of P2P distributions. They distinguish two licensing
models for P2P systems: licenses are bundled with the content, and rewritten by
users, or licenses are obtained from a central server. They discuss the possibility of
resale on an high level, but do not detail a system for this.

Reti and Sarvar propose the DiMaS system [RS04b, RS04a]. This system uses P2P
distribution as a means to lower the costs and load of distribution over users. Li-
cense acquisition is done via a central server. Such a stance is seen more often in
DRM-related literature, e.g. in the system proposed by Chong and Deng [CD06] and
in Music2Share, a system proposed by Kalker, Epema, Hartel, Lagendijk and Van
Steen [KEH+04]. Similar to DiMaS, [CD06] and Music2Share seek to address the
bandwidth bottleneck of distributing content by leveraging P2P distribution, while
keeping licensing centralised. In contrast, we believe that the idea that users will
distribute protected content via P2P exchange for free, and then pay via the DRM
system for accessing the content, is optimistic. Furthermore, it also does not leverage
the full potential of P2P connectivity.

121
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The potential for resale has been recognised by Adelsbach, Rohe and Sadeghi. Their
work focuses only on formalising rights. They formalise rights and rights trans-
fer [ARS05] such that rights can be transferred, although using rights is not part
of their model.

Krishnan Nair, Popescu, Gamage, Crispo and Tanenbaum propose a DRM system
that allows resale. Their system [NPG+05] is based on trusted client devices. In
their system, users can also act as content redistributors. This allows users not only
to buy rights to use specific content, but also to redistribute content and rights in
a controlled manner. Recognising that this is technically challenging to security, the
main goal of [NPG+05] is to enable content redistribution while resisting systematic
distribution rights violation. Similarly, Chu, Su, Prabhu, Gadh, Kurup, Sridhar and
Sridhar propose a system that enables reselling of rights [CSP+06]. Each right to
access (view) content once is represented in this system by a “ticket”. Users receive
(some) “credits” upon purchasing tickets, and these credits may be traded for tickets
with other users. In contrast, the system proposed by Nair et al. abstracts away from
both payment and rights. As such, the link between them (i.e. payment for rights) is
to be ensured by the system, while the exact amount of payment for a specific set of
rights is left open. Such a more generic approach is more flexible, as both payments
and rights can be done to an implementer’s pleasing (e.g. peer-to-peer payments could
be done by credits, but also in cash).

The generic nature of the system by Nair et al., hereafter referred to as the NPGCT
system, is appropriate for an initial feasibility study. Hence, we base our feasibility
study on this approach.

7.1.1 Approach to study feasibility

This chapter approaches the feasibility study in three stages. First, we formally
specify the protocols of the NPGCT system. A formal analysis of our specification
revealed two security flaws: a rights-replaying flaw and a problem with fair exchange
between users. We propose an extended scheme, dubbed Nuovo DRM, to address
these issues. A formal specification and verification of Nuovo DRM is subsequently
presented and (a finite model of) the scheme is shown to indeed achieve its design
goals.

Secondly, to study the feasibility of a formally secure DRM system, we present the
used state-of-the-art formal tools and techniques to handle the problem of verifying
the security of DRM schemes. We use the µcrl process algebraic language [GP95]
and tool set [BFG+01] to specify the protocol participants and the intruder model.
The expressive power and flexibility of the µcrl language compares favourably to
other specification languages. These factors enable us to keep the formalisation close
to the actual implementation. Due to the complexity, the size of the scheme and
the branching nature of the protocols, generating the state space is a time-consuming
process. Several approaches to handle this so-called “state space explosion” exist, such
as counter-based abstractions [PXZ02] or parametrised abstraction techniques [PV04].
These techniques are not straightforwardly applicable to our problem however, as
they focus on abstracting away state details, which in a DRM setting amounts to
abstracting away rights and content – exactly the main points of interest. In order
to address state space generation, we resorted to a distributed instantiation of the
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µcrl tool set [BCL+07] to generate and minimise the corresponding state spaces.
In particular, since the Nuovo DRM scheme is highly non-deterministic due to the
presence of several fall-back scenarios, with the inclusion of an intruder model to the
system, it easily runs into the limits of single-machine state space generation. To
the best of our knowledge, we are the first to formally verify a whole DRM scheme.
Moreover, we adapt the standard formal Dolev-Yao intruder model [DY83] to reflect
the restricted behaviour of compliant devices in DRM systems (which are not under
full control of the intruder, even if owned by the intruder).

Finally, to ensure a practically secure DRM system, we present a set of mitigation
strategies that ensure that the assumptions of the formal verification are reasonably
upheld in practice.

7.1.2 Related work in fair exchange

Nuovo DRM introduces an optimistic fair exchange protocol. This class of proto-
cols was introduced in [Aso98] and since then have attracted much attention. The
closest fair exchange protocol to our scheme is perhaps the probabilistic synchronous
protocol [AGGV05], in that it too relies on trusted computing devices in exchange.
In contrast to [AGGV05], the optimistic fair exchange protocol in Nuovo DRM is a
deterministic asynchronous protocol that achieves strong (as opposed to probabilis-
tic) fairness, but, as a drawback, it relies on impartial agents to secure unsupervised
exchanges.

The formal analysis of Nuovo focuses on analyzing transactional properties of DRM
schemes. There are several works in literature on model checking (usually small in-
stances of) optimistic fair exchange protocols, such as [GRV03, KR01, SM02]. What
makes our study unique is the size of the system that is automatically analysed as
well as the capturing of some DRM-specific features of the system, like compliant de-
vices, in the model. Constraint solving for checking fair exchange protocols proposed
in [KK05] can detect type-flaw attacks, but is restricted to checking safety properties.
Theorem-proving approaches to checking fairness of protocols [AB03, BP01, ES05]
can provide a complete security proof at the cost of heavy human intervention, and
thus cannot be easily integrated into the protocol design phase.

7.1.3 Structure of this chapter

We start by explaining the notations and (cryptographic) assumptions used in Sec-
tion 7.2. Section 7.3 summarises the NPGCT scheme, which provides the basis for
our refined scheme. Section 7.4 presents the Nuovo DRM scheme, its assumptions, its
goals and its protocols. Nuovo DRM is then formalised in Section 7.5. This model is
formally analysed in Section 7.6 and shown to achieve its goals. In Section ?? several
mitigation procedures are discussed. Finally, Section 7.8 summarises the chapter.

7.2 Assumptions and notations

Throughout the paper, the following assumptions are used.
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Trusted devices assumptions. A compliant device is a tamper-proof hardware de-
vice that, though possibly operated by malicious owners, follows only its certified
software. We assume that compliant devices are able to locally perform atomic
actions: multiple actions can be logically linked in these devices, such that either
all or none of them are executed. They also contain a limited amount of secure
scratch memory and non-volatile storage. These requirements are typically met
by current technologies. A legitimate content provider, (albeit abusively) re-
ferred to as trusted third party (TTP), is assumed impartial in its behaviour
and eventually available to respond to requests from compliant devices.

Cryptographic assumptions and notations. In our analysis cryptographic oper-
ations are assumed to be ideal à la Dolev-Yao [DY83]. We assume access to a
secure one-way collision-resistant hash function h; therefore h(x) uniquely de-
scribes x. A messagem encrypted with symmetric keyK is denoted {m}K , from
which m can only be extracted using K. Notations pk(X) and sk(X) denote
the public and private keys of entity X, respectively. In asymmetric encryption
we have {{m}sk(X)}pk(X) = {{m}pk(X)}sk(X) = m. Encrypting with sk(X)
denotes signing and for convenience we let m be retrievable from {m}sk(X).

Additionally, the following notation is used:

d1 , d2 compliant devices
P trusted, legitimate content provider
owner(d1 ) owner of device d1
c ∈ Cont an content item from the set of all content
h(c) a unique descriptor of item c

r ∈ Rgts one right from the finite set of all possible rights
Rd1 (c) the rights stored on device d1 for content c

It is assumed that the unique descriptors of all c ∈ Cont are publicly known.

7.3 The NPGCT DRM scheme

The NPGCT scheme [NPG+05] by Nair et al. was proposed as a DRM-preserving
digital content redistribution system where a user can act as a content redistributor,
without this adversely affecting the protection offered by the DRM scheme. In this
section we briefly describe the NPGCT scheme and then present the results of its
formal analysis. For a detailed specification of NPGCT see [NPG+05].

7.3.1 NPGCT protocols

The NPGCT scheme describes two types of exchanges: a provider-to-client (P2C)
exchange, to distribute content from provider P to client d1 , and a client-to-client
(C2C) exchange for client d1 to resell content to another client d2 .
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Provider-to-client exchange (P2C)

This exchange is initiated by the owner of d1 who wishes to buy item c with rights r
from provider P . From [NPG+05]:

1. d1 → P : Request content
2. d1 ↔ P : Mutual authentication, [payment]
3. P → d1 : {c}K , {K}pk(d1), r, σ,Λ

σ=meta-data of c, Λ={h(P, d1 , c, σ, r)}sk(P )

Step 2 in the protocol serves as a placeholder for a multi-stage authentication protocol.
Furthermore, in the protocol, Λ acts as a certification that d1 has been granted rights
r and helps in proving d1 ’s right to redistribute c to other clients. Additionally, Λ
binds the meta-data σ to content c, which prevents masquerading attacks on c.

Client-to-client exchange (C2C)

This exchange is initiated by the owner of d2 who seeks to buy c with rights r′ from
d1 , for which d1 holds certificate Λ. From [NPG+05]:

1. d2 → d1 : Request content
2. d1 ↔ d2 : Mutual authentication
3. d1 → d2 : {c}K′ , {K ′}pk(d2), Rd1 (c), r

′, σ,Λ,Λ′

Λ′ = {h(d1 , d2 , c, σ, r′)}sk(d1)
4. d2 : Verifies σ, Λ′ and Rd1 (c) using Λ
5. d2 → d1 : ψ, [payment]

ψ = {h(d1 , P, {c}K′ , σ, r′)}sk(d2)

By sending ψ, d2 acknowledges that it has received c with rights r′ from d1 , while Λ
and Λ′ form a certificate chain that helps to prove that d2 has been granted rights r′.
The acknowledgment ψ was intended to be used in C2C-dispute resolution, although
that notion is not further explored in [NPG+05].

7.3.2 Results of formally analysing NPGCT

As part of our work, we formally specified and checked the NPGCT scheme. In this
section, we present the results of this analysis. The assumptions of the scheme, the
security goals it was tested against, their formalisation, the protocol specification tool
set and the model checking technology used here are similar to those used for Nuovo
DRM, which are discussed in the following sections.

Two security flaws in the NPGCT scheme were revealed by our analysis. First, it
was found that in the P2C (and similarly the C2C) protocol, a malicious user can
feed rights from a previous session to the trusted device by replaying step 3. This
replay is possible because freshness of the authentication phase is not extended to
guarantee freshness of step 3 (delivery of the content-right bundle). This flaw allows
d1 to accumulate rights without paying P for it. As a remedy, fresh nonces from the
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authentication phase can be used in Λ to ensure the freshness of the whole exchange,
c.f. Section 7.4.

Second, in the C2C protocol, payment is not bound to the request/receive messages
exchanged between two devices. Thus, once d2 receives c in step 3, the owner of d2
can avoid paying d1 by quiting the protocol. Since this exchange is unsupervised, the
owners of compliant devices are forced to trust each other to complete transactions.
While it is reasonable to extend such trust to a legitimate content provider, it should
not be assumed for potentially dishonest device owners in C2C exchanges. (Note that
fairness in exchange is not a goal of NPGCT.)

7.4 The Nuovo DRM scheme

This section describes the proposed changed to the NPGCT, dubbed Nuovo DRM,
which in particular addresses the security concerns identified in Section 7.3.2. This
section provides an informal description of Nuovo DRM’s goals, assumptions and
protocols.

7.4.1 Nuovo’s goals

The aim of Nuovo DRM is to enable content redistribution whilst resisting system-
atic content pirating. Hence, Nuovo DRM provides a secure DRM scheme which
encompasses content redistribution. The security of the system is to address normal
DRM security concerns as well as security concerns introduced by content redistri-
bution. This is captured by the goals below. We require the Nuovo DRM system to
achieve these goals (which are the same as those used to analyse the NPGCT system
in Section 7.3.2):

G1 (effectiveness). A system provides effectiveness if it terminates successfully
when used by honest participants in a secure environment. For a DRM system,
this means that a desired content-right bundle is exchanged for the correspond-
ing payment order. Effectiveness is a sanity check for the functionality of the
protocol and is therefore checked in a reliable communication system with no
attacker.

G2 (secrecy). No party may learn any c ∈ Cont not intended for him. Usually,
content is encrypted for intended receivers. Nuovo DRM (similar to NPGCT)
limits the distribution of protected content by encrypting them for intended
compliant devices. In this situation, secrecy is attained if DRM-protected con-
tent never appears unencrypted to any known non-compliant device. Secrecy
covers requirements d1.3, d1.4, d1.5, and u2.2 from Chapter 6.

G3 (resisting content masquerading). Content masquerading occurs when con-
tent c is passed off as content c′, for c 6= c′. Preventing this attack ensures
that an intruder cannot feed c′ to a device that has requested c. Resistance to
content masquerading covers requirement u1.3 from Chapter 6.
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G4 (strong fairness). Assume Alice owns an item cA and Bob owns an item cB .
Informally, strong fairness states that if Alice and Bob run a protocol to ex-
change their items, in the end either both or neither of them receive the other
party’s item [PVG03]. Strong fairness usually requires the items exchanged in
the system to be strongly generatable: in Nuovo DRM, a content provider can
provide the exact missing content if the exchange goes amiss. Strong fairness
also guarantees timeliness, which informally states that, in a finite amount of
time, honest protocol participants can safely terminate their role in the protocol
with no help from malicious parties. Strong fairness covers requirements d3.1,
d3.2 and u3.3 from Chapter 6.

Note that the goals from Chapter 6 not covered by the above goals are covered by
the mitigation procedures in Section 7.7. The exceptions are requirements u2.1, u2.3
(privacy) and u3.2 (payment only with user consent), that only apply to parts of a
DRM system that Nuovo DRM does not specify.

Properties of systems can be divided into two classes: safety properties, stating un-
wanted situations do not happen, and liveness properties, stipulating desired events
eventually happen (for a formal definition of these property classes see [Lam77]).
Goals G1 (secrecy) and G2 (resistance to content masquerading) are safety proper-
ties, while strong fairness is a liveness property. Liveness properties require resilient
communication channels (assumption A2 below) to hold (for an in-depth discussion
of fairness in exchange, see [Aso98]).

7.4.2 Assumptions of Nuovo DRM

The following assumptions are made regarding the working of Nuovo DRM. Note
that assumptions A1 and A2 limit the power of the intruder, as explained further in
Section 7.5.2.

A1 (Trusted devices). We assume that devices are compliant. However, owners
of compliant devices are untrusted. They may collude to subvert the protocol.
They can, in particular, arbitrarily switch off their own devices (the “crash
failure model” in distributed computing terminology).

A2 (resilient communication). We assume an asynchronous resilient communi-
cation model with no global clock, i.e. the communication media deliver each
transmitted message intact in a finite but unknown amount of time. Resilience
is necessary when aiming for fairness [FLP85], and is realisable under certain
reasonable assumptions [BCT96].

A3 (PKI hierarchy). There exists a hierarchy of public keys, with the public key of
the root authority embedded in each compliant device and available to content
providers. Using such an infrastructure, a device can prove its identity or verify
other devices’ identities without having to contact the root. Identities d1 , d2
and P implicitly refer to these authentication certificates issued by the trusted
authorities.
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A4 (price negotiations). Protocol participants negotiate the price of content in
advance. In Nuovo DRM, the price of the content being traded is bundled with
the requested rights.

7.4.3 Nuovo DRM protocols

As in NPGCT, our scheme consists of two main protocols: a provider-to-client ex-
change for provider P and client device d1 and a client-to-client exchange for clients
d1 and d2 . These protocols derive from the NPGCT schemes, but are updated to
incorporate authentication and strong fairness. Strong fairness requires a recovery
sub-protocol for the client-to-client exchange.

Provider-to-client exchange (P2C)

The owner of d1 wants to buy item c with rights r from content provider P . Here
d1 and P , but not owner(d1 ), are assumed trusted. The P2C exchange is shown in
Figure 7.1.

1. owner(d1 ) → d1 : P, h(c), r
2. d1 → P : d1 , nd1
3. P → d1 : {nP , nd1 , d1}sk(P )

4. d1 → P : {nd1 , nP , h(c), r, P}sk(d1)
5. P → d1 : {c}K , {K}pk(d1), {r, nd1}sk(P )

Figure 7.1: P2C exchange: d1 buying content from provider P

In the first step, the hash of the desired content c (retrieved from a trusted public
directory), rights r and the identity of a legitimate provider P are fed to the compliant
device d1 . Following assumption A4, owner(d1 ) and P have already reached an
agreement on the price. Whether P is a legitimate provider can be checked by d1
and vice versa (see assumption A3). In the second step, d1 generates a fresh nonce
nd1 and sends it to P , which will continue the protocol with step 3 only if d1 is a
compliant device. The message of the fourth step completes the mutual authentication
between d1 and P . This message also constitutes a payment order from d1 to P . After
receiving this message, P checks if r is the same as previously agreed upon (assumption
A4) and only if so, stores the payment order (for future/immediate encashing) and
performs step 5 after generating a random fresh keyK. When d1 receives the message
of step 5, it decrypts {K}pk(d1), extracts c and checks if it matches h(c) from the
first message and if nd1 is the same as the nonce from the second message. If these
tests pass, d1 updates Rd1 (c) with r, i.e. r is added to Rd1 (c). Note that Rd1 (c) is
not necessarily r: d1 could already have some rights associated with c, for instance,
acquired from an earlier purchase. Since we abstract away from rights semantics (as
discussed in Section 7.1.2), updating rights is left unspecified here.
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Client-to-client exchange (C2C)

The owner of d2 wants to buy item c with rights r′ from another compliant device
d1 . This exchange can be seen as a fair exchange protocol where d1 and d2 want
to exchange a content-right bundle for its associated payment such that either both
or neither of them receive their desired items. In deterministic protocols, however,
achieving fairness has been proven to be impossible without a TTP [EY80]. Assuming
that most participants are honest and protocols go wrong only infrequently, it is
reasonable to use protocols which require TTP’s intervention only when a conflict has
to be resolved. These are called optimistic fair exchange protocols [Aso98] and contain
two sub-protocols: an optimistic sub-protocol which is executed between untrusted
devices, and (if a participant cannot finish his protocol run) a resolve sub-protocol
with a designated TTP. The resolve sub-protocol either nullifies any outstanding
commitments (an abort) or completes the exchange (recovery). In Nuovo DRM,
if neither party terminates successfully, nothing is exchanged and no outstanding
commitments are left. Hence, no particular “abort” protocol is necessary. The C2C
exchange thus consists of an optimistic fair exchange protocol and a recovery protocol.

Optimistic fair exchange sub-protocol. The C2C protocol uses the content
provider P as the TTP. Figure 7.2 depicts the optimistic exchange sub-protocol.

1. owner(d1 ) → d1 : d2 , h(c), r′

2. d1 → d2 : d1 , nd1
3. d2 → d1 : {n′d2 , nd1 , d1}sk(d2)
4. d1 → d2 : {nd1 , n′d2 , h(c), r′, d2}sk(d1)
5. d2 → d1 : {c}K′ , {K ′}pk(d1), {r′, nd1}sk(d2)

Figure 7.2: C2C exchange: d1 buying content from d2

In step 4, the purchasing device d1 commits to the exchange by sending a signed
message to the selling device d2 . During step 5, d2 updates the right associated with
c (reflecting that some part of Rd2 (c) has been used for reselling c) and stores the
payment order signed by d1 in an atomic action. Note that the atomicity of these
actions is necessary to guarantee that d2 does not store the payment order without
simultaneously updating the right Rd2 (c).

In this protocol, message 5 may not arrive. For example, due to a malicious owner(d2 )
that aborts the protocol, or due to a hardware failure. In such cases, d1 has already
committed to the exchange via the message of step 4, but did not receive the content.
To prevent such unfair situations for d1 , we provide a recovery mechanism to obtain
the lost content.

Recovery sub-protocol. The goal of the recovery sub-protocol (Figure 7.3) is to
bring a compliant device d1 , which committed to a C2C exchange (message 4 of the
C2C exchange) but did not receive the content it requested (message 5), back to a
fair state. Device d1 can start a recovery session with the content provider P at
any time after sending message 4 in the C2C protocol. The device does so by taking
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action resolves(d1 ) instead of receiving the content at step 5. If a connection with
the provider is not available, d1 saves the current state and simply waits until it
becomes available. Once the recovery protocol has been initiated, d1 ignores any
further messages from the optimistic run of C2C. The purpose of the recovery is to
ensure that d1 receives content c and rights r′ that owner(d1 ) wanted (and ostensibly
paid for).

5r. d1 : resolves(d1 )
6r. d1 → P : d1 , n′d1
7r. P → d1 : {n′P , n′d1 , d1}sk(P )

8r. d1 → P : {n′d1 , n′P , 〈nd1 , n′d2 , h(c), r′, d2 〉, r′′, P}sk(d1)
9r. P → d1 : {c}K′′ , {K ′′}pk(d1), {r′′, n′d1}SK(P )

Figure 7.3: C2C recovery: d1 recovering a failed exchange

In the recovery protocol, d1 and P behave as if d1 is purchasing the content-rights
bundle (c, r′′) from P using the P2C protocol, except that, in message 8r, d1 reports
the failed C2C exchange it had with d1 .

The way P resolves payments of failed exchanges is discussed in more detail in Sec-
tion 7.7.1. Note that while payment details fall beyond the scope of our formal
analysis, the recovery protocol does not.

One can argue that the recovery sub-protocol may also fail due to lossy communi-
cation channels. As a way to mitigate this, persistent communication channels for
content providers can be built, e.g., using an FTP server as an intermediary. The
provider would upload the content, and the device would download it from the server.
In order to guarantee fairness, such resilient communication channels are generally
unavoidable [Aso98] (c.f. assumption A2).

As a final note, we emphasise that only trusted devices are considered here (assump-
tion A1). These protocols can be trivially attacked if the devices are tampered with
(e.g. a corrupted d1 would be able to initiate a recovery protocol even after a success-
ful exchange). Methods for detecting circumvented devices and resisting systematic
content pirating are described in Section 7.7.

7.5 Formalisation of Nuovo DRM

In this section we describe the steps followed to formally verify that Nuovo DRM
achieves its design goals. Our formal approach is based on finite-state model check-
ing [CGP00], which (usually) requires negligible human intervention and, moreover,
produces concrete counterexamples, i.e. attack traces, if the design fails to satisfy
a desired property. It can therefore be effectively integrated into the design phase.
However, a complete security proof of the system cannot, in general, be established
by model checking. For an overview on formal methods for verifying security proto-
cols see [Mea03]. As we base our approach on finite-state model-checking, our formal
verification must have a finite number of states and thus necessarily concerns a lim-
ited instance of the system. Our formal verification can be seen as a sequence of
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steps: first, we specify the protocol and the intruder model in the µcrl process alge-
braic language and generate the corresponding model using the µcrl tool set (version
2.17.12). Second, we state the desired properties in the regular (alternation-free) µ-
calculus, and, finally, check the protocol model with regard to the properties in the
cadp tool set. These steps are described in detail below.

To highlight important processing steps in the protocols, we now introduce several
abstract actions. These are used in the formalisation process to define desired be-
haviours of the protocol.

request(d1 , h(c), r, P ) Executed at step 4 in both the P2C and (with appropriate
parameters) the C2C protocols by the receiving device, this action indicates the
start of the exchange from the receiving device’s point of view.

paid(P, h(c), r, d1 ) Executed at step 5 of the P2C protocol by P , this action indicates
reception of the payment order and sending of content to d1 .

update(d1 , h(c), r, P ) Executed after accepting the message of step 5 of the P2C pro-
tocol by d1 , this action indicates the successful termination of the exchange
from d1 ’s point of view.

request(d2 , h(c), r′, P ) Executed at step 8r of the C2C recovery protocol by d2 .

paid(P, h(c), r′, d2 ) Executed at step 9r of the C2C recovery protocol by P .

update(d2 , h(c), r′, P ) Executed after acceptance of the message of step 9r of the C2C
recovery protocol by d2 .

7.5.1 Modelling language

The complex structure of Nuovo DRM calls for an expressive specification language.
We have formalised the Nuovo DRM scheme in µCRL, a language for specifying and
verifying distributed systems and protocols in an algebraic style [GP95]. The formali-
sation is available online1. A µcrl specification describes a labelled transition system
(LTS), in which states represent process terms and edges are labelled with actions.
The µcrl tool set [BFG+01, BCL+07], together with cadp [FGK+96] which acts as
its back-end, features visualisation, simulation, symbolic reduction, (distributed) state
space generation and reduction, model checking and theorem proving capabilities.

We model a security protocol as the asynchronous composition of a finite number of
non-deterministic named processes. These processes model roles of participants in the
protocol. Processes communicate by sending and receiving messages. A message is a
tuple m = (p; c; q), where c is the content of the message and p and q are the identities
of the apparent sender and intended receiver process, respectively (this allows the
network to route the message to its destination). In denoting communication activity
of a message, we omit the active process. That is, sending of message m = p; c; q is
denoted as sender p performing the action send(q; c), while receiving this message is
denoted as receiver q performing the action recv(p; c). Apart from send and recv,
all other actions of processes are assumed internal, i.e. not communicating with other

1http://www.cs.vu.nl/paradiso/formal.php
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p ::= a ∈ A | pa · pb | pa + pb | pa ⊳ b⊲ pb | δ.

Figure 7.4: Abbreviated syntax of µCRL process terms

participants. These actions typically symbolise security claims of protocol participants
(e.g. update in Section 7.4.3). Below, we provide a brief introduction to µCRL, which
suffices to understand the formal protocols.

µCRL syntax

In a µcrl specification, processes are represented by process terms, which describe
the order in which the actions may happen in a process. A process term p consists
of action names and recursion variables (in Figure 7.4, these names and variables
are from the set A) combined by process algebraic operators. The operators ‘·’ and
‘+’ are used for the sequential and alternative composition (“choice”) of processes
pa and pb, respectively. The process expression pa ⊳ b ⊲ pb, where b is a term of
type Bool, behaves like process pa if b is true, and like process pb if b is false.
The predefined action δ represents a deadlock, i.e. from then on, no action can be

performed. The process
∑

d∈∆

P (d), where ∆ is a (possibly infinite) data domain,

behaves as P (d1) + P (d2) + · · · .

7.5.2 System model

In this section, we show the specification a device buying content in the P2C protocol,
the specification of a device buying content in the C2C protocol and the specification
of a device recovering a failed C2C exchange. The remaining specifications are the
communicating counterparts to these, and thus omitted.

d1(Ω, nd1 ) =
∑

r∈Rgts
c∈Cont

recv(owner(d1 );P, h(c), r) · send(P ; d1 , nd1 ) ·

∑

n∈Nonce

recv(P ; {n, nd1 , d1}sk(P )) ·

send(P ; {nd1 , n, h(c), r, P}sk(d1)) · request(d1 , h(c), r, P ) ·
∑

K∈Key

recv(P ; {c}K , {K}pk(d1), {r, nd1}sk(P )) ·

update(d1 , h(c), r, P ) · d1(Ω ∪ {〈c, r〉},nxt(nd1 ))

Figure 7.5: Nuovo P2C: device d1 buying content from provider P

In the µcrl specification of Figure 7.5, we specify the role of the compliant device in
the P2C protocol of the Nuovo DRM scheme.
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In this specification, Rgts ,Nonce and Key represent the finite set of rights, nonces
and keys available in the protocol, respectively. The set Ω is d1 ’s local collection of
content-right bundles, nd1 denotes the nonce that is available to d1 in the current
protocol round, and the function nxt : Nonce → Nonce, generates a fresh random
nonce, given a seed. Note that any discrepancy in the received content is automatically
detected in this code: in the last message, if the first part does not agree with the
initial h(c), the message will not be accepted.

The specification of Figure 7.5 is the formalisation of the communication of device d1
in Figure 7.1. The µcrl specification of the provider’s role in the P2C exchange is
the logical counterpart of this communication. As such, we omit it here.

d1(Ω, nd1 ) =∑

r∈Rgts
c∈Cont

recv(owner(d1 ); d2 , h(c), r) · send(d2 ; d1 , nd1 ) ·

∑

n∈Nonce

recv(d2 ; {n, nd1 , d1}sk(d2)) · send(d2 ; {nd1 , n, h(c), r, d2}sk(d1)) ·

request(d1 , h(c), r, d2 ) ·
∑

K∈Key

recv(d2 ; {c}K , {K}pk(d1), {r, nd1}sk(d2)) ·

update(d1 , h(c), r, d2 ) · d1(Ω ∪ {〈c, r〉},nxt(nd1 ))

+ RESOLVE(Ω, nd1 , (nd1 , n, h(c), r, d2 ))

Figure 7.6: Nuovo C2C: device d1 buying content from device d2

In the µcrl specification in Figure 7.6, we detail the part of the client process that
handles buying content in the C2C protocol. This part of the client process is similar
to the P2C exchange, up to the request abstract action. Then, the process can
continue in two different ways. Either the request is fulfilled, and the process continues
similar to the P2C protocol, or the process initiates the recovery protocol to resolve
a failed exchange. The recovery protocol is fully detailed in Figure 7.7. As such, it is
represented by RESOLVE(Ω, nd1 , (nd1 , n, h(c), r, d2 )) in Figure 7.6.

In case the C2C exchange fails after the request action has been executed, the request-
ing device will execute the recovery protocol from Figure 7.3, which is modelled in
Figure 7.7. The recovery protocol largely resembles the P2C protocol, except that the
failed C2C exchange is reported. A new nonce n′ is generated for this new exchange,
and the resolving device reports the failed exchange (by sending (nd1 , n, h(c), r, d2 )
as part of the request for content). Note that under the trusted devices assumption
(A1), no device will lie to the provider about a failed exchange.

In formalising the recovery protocol, we chose to have the provider recover using the
originally requested rights r. As such, there is no counterpart in the formalisation to
r′′ from Figure 7.3.



134 Chapter 7 Fair exchange in DRM

RESOLVE(Ω, nd1 , (nd1 , n, h(c), r, d2 )) = resolves(d1 ) ·
∑

r∈Rgts
c∈Cont

send(P ; d1 , nd1 ) ·

∑

n′∈Nonce

recv(P ; {n′, nd1 , d1}sk(P )) ·

send(P ; {nd1 , n′, (nd1 , n, h(c), r, d2 ), P}sk(d1)) ·

request(d1 , h(c), r, P ) ·
∑

K∈Key

recv(P ; {c}K , {K}pk(d1), {r, nd1}sk(P )) ·

update(d1 , c, r, P ) · d1 (Ω ∪ {〈c, r〉},nxt(nd1 ))

Figure 7.7: Nuovo recovery: device d1 recovering with provider P

Communication models

We consider two different communication models. The first is a synchronous commu-
nication model that is used to verify the effectiveness property (goal G1). No intruder
is present in this model and all participants are honest. A process p can send a mes-
sage m to q only if q can at the same time receive it from p. The synchronisation
between these is denoted com(p,m, q), which formalises the “p→ q : m” notation of
Sections 7.3 and 7.4.

The second model is an asynchronous communication model used to verify the proper-
ties G2–G4. In this model, the intruder has complete control over the communication
media. When a process p sends a message m with the intention that it should be
received by q, it is in fact the intruder that receives it, and it is only from the intruder
that q may receive m. The communications between participants of a protocol, via
the intruder, are thus asynchronous and, moreover, a participant has no guarantees
about the origins of the messages it receives.

Intruder model

We follow the approach of Dolev and Yao to model the intruder [DY83], with some
deviations as described below. The Dolev-Yao (DY) intruder has complete control
over the network: it intercepts and remembers all transmitted messages, it can en-
crypt, decrypt and sign messages if it knows the corresponding keys, it can compose
and send new messages using its knowledge and can remove or delay messages in
favour of others being communicated. As it has complete control over communication
media, we assume it plays the role of the communication media. All messages are
thus channelled through the intruder. Under the perfect cryptography assumption,
this intruder has been shown to be the most powerful attacker model [Cer03]. In our
formalisation, this intruder is a non-deterministic process that exhausts all possible
sequences of actions, resulting in an LTS which can subsequently be formally checked.
Note that the intruder is not necessarily an outside party: it may be a legitimate,
though malicious, player in the protocol.
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The intruder model used here is different from the DY intruder in two main aspects.
These differences stem from the characteristics of the DRM scheme and its require-
ments:

• Trusted devices significantly limit the power of the intruder. The formalisa-
tion ignores the possibility of tampering trusted devices (per assumption A1,
mitigation strategies are discussed in Section 7.7). The intruder can, however,
deliberately turn off its (otherwise trusted) devices. This is reflected in our
model by allowing intruder-controlled devices to non-deterministically choose
between continuing or quitting the protocol at each step, except when perform-
ing atomic actions. Therefore, in the model, all non-atomic actions a of the
devices operated by the intruder are rewritten with a + off . Note that the in-
truder cannot violate the atomicity of actions for compliant devices. We verify
the protocols in the presence of this enriched intruder model to capture possible
security threats posed by these behaviours.

• As the intruder can block communications, liveness properties do not hold in
the DY model. In order to achieve fairness, essentially a liveness property
(see Section 7.4.1), optimistic fair exchange protocols often rely on a “resilient
communication channel” (RCC) assumption, see for example [KMZ02]. The
RCC assumption guarantees that all transmitted messages will eventually reach
their destination, provided a recipient for them exists [Aso98]. The behaviour
of our intruder model is limited by the RCC assumption, in that it may not
indefinitely block the network. Since the intruder is a non-deterministic process
in our model, in order to exclude executions that violate the RCC assumption,
we impose a fairness constraint on the resulting LTS. Informally stated, the
fairness constraint ensures that each process in the system is given a fair chance
to execute (see [CGP00]). To denote communications not required by the RCC
assumption, we use the action modifier ⋄ on regular communication actions
(in actions send⋄ and com⋄). A protocol has to achieve its goals even when
executions containing com⋄ actions are avoided. A formal treatment of these
issues is found in [CT06].

As a minor deviation from DY, the intruder process performs the abstract action
revealed when it gets access to a non-encrypted version of any DRM-protected content,
to indicate violation of the secrecy requirement (G2). This action is of course not
triggered when the intruder merely renders an item using its trusted device, which is
a normal behaviour in the system.

In the µcrl specification in Figure 7.8, Agent represents the set of all honest par-
ticipants of the protocol and Msg represents the set of all messages. Set X is the
intruder’s knowledge set. Set Y models the set of messages that still have to be
delivered. The set operators ∪ and \ have their usual meanings. The set synth(X)
represents the (infinite) set of messages that the intruder is able to synthesise from
the messages in set X, e.g. by applying pairing, signing and so on. For a complete
description of this model please refer to [CT06].
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I(X,Y ) =
∑

p∈Agent
m∈Msg

recv(p,m, I) · I(X ∪ {m}, Y ∪ {m}) +

∑

p∈Agent
m∈Msg

send(I,m, p) · I(X,Y \ {m})⊳m ∈ Y ⊲ δ +

∑

p∈Agent
m∈Msg

send
⋄(I,m, p) · I(X,Y )⊳m ∈ synth(X) \ Y ⊲ δ +

∑

c∈Cont

revealed(c) · δ ⊳ c ∈ synth(X)⊲ δ

Figure 7.8: Nuovo intruder model

7.5.3 Formalisation of Nuovo’s goals

The design goals of Nuovo DRM (G1–G4) are formalised in the regular µ-calculus,
which is fully described in [MS03]. This logic covers the Nuovo DRM’s design goals
in its entirety, both safety and liveness, and naturally incorporates data parameters
that are exchanged in the protocols. The alternation-free fragment of the regular
µ-calculus can be efficiently model checked [MS03], and all the formulae that we have
verified are in this fragment. The relevant part of this logic is presented below (for
full details, see [MS03]).

α ::= a ∈ A | ¬α | α1 ∧ α2 | α1 ∨ α2

β ::= α | β1 · β2 | β∗

ϕ ::= F | T | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | 〈β〉ϕ | [β]ϕ | µX.ϕ

Figure 7.9: Partial syntax of regular µ-calculus, adapted from [MS03]

The (relevant part of the) syntax of regular µ-calculus is presented in Figure 7.9.
Regular µ-calculus consists of regular formulae and state formulae. Regular formulae
describe sets of traces, and are built upon action formulae and the standard regular
expression operators. We use ‘.’, ‘∨’, ‘¬’ and ‘∗’ for concatenation, choice, comple-
ment and transitive-reflexive closure, respectively, of regular formulae. The syntax
of regular formulae as used in the next sections is ranged over by β in Figure 7.9.
Variable a ranges over primitive actions from the set A, such as send and recv. In
addition to this, the following notation is used: F denotes no action (F = a ∧ ¬a), T
denotes any action (T = ¬F), and the wild-card action parameter − represents any
parameter of an action (e.g. com(−,−,−) represents any communication action).

State formulae, which express properties of states, are constructed from propositional
variables, standard Boolean operators, the possibility modal operator 〈· · · 〉 (used here
in the form 〈β〉T to express the existence of an execution of the protocol for which
the regular formula β holds), the necessity modal operator [. . .] (used here in the form
[β]F to express that, for all executions of the protocol, the regular formula β does not
hold) and the minimal and maximal fixed point operators µ and ν. A state satisfies
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µX.G iff it belongs to the minimal solution of the fixed point equation X = G(X),
where G is a state formula and X a set of states. The symbols F and T are also
used in state formulae. In state formulae they denote the empty set and the entire
state space, respectively. The syntax of state formulae as used in the next sections is
ranged over by ϕ in Figure 7.9.

Goals expressed in µ-calculus

This section describes the requirements stated by Nuovo DRM’s goals G1–G4 in the
regular µ-calculus. Below, the intent of these goals is captured formally. This serves
to familiarise the reader with the core formal expressions used in Section 7.6, where
the goals are fully formalised.

G1 (effectiveness). Effectiveness means that each purchase request is inevitably
responded to, and each received item is preceded by its payment. The first
requirement is encoded by stating that after a request occurs in a trace, a
matching update action must eventually follow. For a device d1 requesting
content c from provider P with rights r, this is formalised as follows:

[T∗ · request(d1 , c, r, P )] µX.(〈T〉T ∧ [¬update(d1 , c, r, P )]X)

The second requirement is encoded by stating that no update action occurs
without a preceding, matching paid action. For a device d1 updating with
content c and rights r received from provider P , this is formalised as

[(¬paid(P, c, r, d1 ))∗ · update(d1 , c, r, P )]F

G2 (secrecy). G2, and the following goals, are checked in presence of an intruder.
Secrecy is achieved when the intruder never acquires unprotected content. As
mentioned in Section 7.5, the abstract action revealed(c) denotes the intruder
learning unprotected content c. Hence, this action should never occur. This is
formalised as

[T∗ · revealed(c)]F

G3 (resisting content masquerading). Content masquerading occurs when a de-
vice accepts a bundle of content and rights it did not request. Non-occurrence
of this situation is formalised for device d1 and content c, rights r from P as

[(¬request(d1 , c, r, P ))∗ · update(d1 , c, r, P )]F

G4. (strong fairness). Strong fairness must hold for each participant. Thus, it
breaks down into the following cases for provider P , devices d1 , d2 , content c
and rights r:

• Strong fairness for P .
No compliant device receives protected content, unless the corresponding
payment has been made. This means that a device does not update without
paying, and that no device can replay an update event. Formalised with
respect to device d1 , rights r and content c:

[(¬paid(P, c, r, d1 ))∗ · update(d1 , c, r, P )]F ∧
[T∗ · update(d1 , c, r, P ) · (¬paid(P, c, r, d1 ))∗ · update(d1 , c, r, P )]F
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• Strong fairness for device d2 when buying from provider P .
If device d1 pays for content, it will eventually receive it. Expressed for
buying content c and rights r from provider P :

[T∗ · request(d2 , c, r, P ) · (¬(update(d2 , c, r, P )))∗]
〈(¬com⋄(−,−,−))∗ · (update(d2 , c, r, P ))〉T

• Strong fairness for device d2 when buying from reselling device d1 .
Buying content c and rights r from a reselling device d1 is treated similarly,
except that recovery is taken into account. To resolve a failed exchange,
a TTP is needed. As there are only finitely many TTP’s in the model,
the intruder can occupy all of them, preventing other agents from reaching
them. Such a denial of service attack can be mitigated in practice (e.g.
by placing time limits on transactions with a TTP). Here, we abstract
away from timing aspects and use the action lastttp to indicate that the
intruder has exhausted all TTPs in the model. As long as this action has
not occurred, there is at least one TTP available. Thus, the first part of
the expression describes a C2C exchange, and the second part the recovery
protocol:

[T∗ · request(d2 , c, r, d1 ) · (¬(resolves(d2 ) ∨ update(d2 , c, r, d1 )))∗]
〈(¬com⋄(−,−,−))∗ · (resolves(d2 ) ∨ update(d2 , c, r, d1 ))〉T

∧
[(¬lastttp)

∗ · request(d2 , c, r, d1 ) · (¬lastttp)
∗ · resolves(d2 )·

(¬(update(d2 , c, r, P ) ∨ lastttp))
∗]

〈(¬com⋄(−,−,−))∗ · update(d2 , c, r, P )〉T

Note that the strong fairness notion that is formalised and checked here
subsumes the timeliness property, because when d2 starts the recovery
protocol (which it can autonomously do), it always recovers to a fair state
without any help from d1 .

• Strong fairness for device d2 when reselling content to device d1 .
No compliant device receives content, without a corresponding payment.
This case is equivalent to fairness for the provider.

7.6 Analysis results

In this section we describe the results obtained from the formal analysis of the Nuovo
DRM scheme. Our analysis has the following properties: the intruder is allowed to
have access to unbounded resources of data (like fresh nonces), should it need them
to exploit the protocol. We consider only a finite number of concurrent sessions of the
protocol, i.e. each participant is provided a finite number of fresh nonces to start new
exchange sessions. Although this does not, in general, constitute a proof of security
for a protocol, in many practical situations it suffices. As security of cryptographic
protocols is not decidable (e.g. see [CS02]), a trade-off has to be made between com-
pleteness of the proofs and their automation. Our analysis method is fully automatic,
evaluating specific use cases in specific settings (as detailed below). Following [DY83],
we assume perfect cryptography and do not consider attacks resulting from weaknesses
of the cryptographic primitives used in protocols. Type-flaw attacks (attacks based
on confusion of the type of a specific field in a message) are also omitted from our
analysis. Such attacks are can be prevented [HLS00].
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Our formal analysis consists of two scenarios. A scenario explicitly describes one
specific execution of the protocol, with specific actors, specific assumptions and a
specific intruder model. The first scenario verifies effectiveness (G1) while using the
synchronous communication model of Section 7.5.2, in absence of an intruder. The
second scenario uses the asynchronous communication model of Section 7.5.2 and the
modified DY intruder model of Section 7.5.2 to verify the remaining properties (G2-
G4). Both scenarios operate under the assumptions of Section 7.4.2. Both scenarios
describe a setting with two compliant devices d1 and d2 , three different pieces of
content and two different rights, the first right allowing to resell the second. In the
second scenario, the devices are controlled (but not tampered) by the intruder of
Section 7.5.2. Below, P , as before, represents the trusted content provider. The
formulae in the following results use abstract actions to improve the readability of the
proved theorems. These actions are explained in Sections 7.4.3 and 7.5.2. A complete
formalisation of these actions can be found in [JKT06].

We require that Nuovo satisfies its design goals for these scenarios.

Lemma 6. Nuovo DRM achieves design goals G1-G4 in scenarios S0 and S1.

Note that effectiveness (G1) is only applicable in scenario S0, and that as scenario S0

does not have an intruder, it suffices to verify that goals G2–G4 hold in scenario S1.
Below, we set about proving this lemma.

7.6.1 Honest scenario

Scenario S0 describes the interaction between one provider P and two devices (d1
and d2 ). The communication network is assumed operational and no malicious agent
is present. The scenario runs as follows: device d1 is ordered to buy an item and
reselling rights from P . Then, d1 resells the purchased item to d2 . As this scenario
is only intended as a sanity check for the protocol, we believe correct behaviour in
this scenario with two devices running multiple instances of the protocol is strong
supporting evidence for that in general. For that reason, as well as the increased
computational load of having more devices, we limited this scenario to only two
devices. The scenario was checked using the Evaluator 3.0 model checker from the
cadp tool set, confirming that it is deadlock-free, and effective as specified below.

Result 1. Nuovo DRM is effective for scenario S0, meaning that it satisfies the
following properties:

1. Each purchase request is inevitably responded.

∀c ∈ Cont , r ∈ Rgts.

[T∗ · request(d1 , c, r, P )] µX.(〈T〉T ∧ [¬update(d1 , c, r, P )]X) ∧
[T∗ · request(d2 , c, r, d1 )] µX.(〈T〉T ∧ [¬update(d2 , c, r, d1 )]X)

2. Each received item is preceded by its payment.

∀c ∈ Cont , r ∈ Rgts. [(¬paid(P, c, r, d1 ))∗ · update(d1 , c, r, P )]F ∧
[(¬paid(d1 , c, r, d2 ))∗ · update(d2 , c, r, d1 )]F
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7.6.2 Dishonest scenario

Scenario S1 describes the interaction of an intruder I, two compliant devices d1 and
d2 , and three providers. The intruder controls the communication network and is
the owner of devices d1 and d2 . The intruder can instruct the compliant devices to
purchase items and rights from the provider P , exchange items between themselves
and resolve a pending transaction. Moreover, the compliant device d1 can non-
deterministically choose between following or aborting the protocol at each step, which
models the ability of the intruder to turn the device off (see Section 7.5.2, “intruder
model”). We model three concurrent runs of the content provider P , and three
sequential runs of each of d1 and d2 . Although this is again a limited setting, the
intruder capabilities are as strong as in a setting with more devices. Adding more
devices would increase the number of honest users, not increase the capabilities of the
intruder. This reasoning coupled with the computational power necessary to handle
the generation of the state space directed us to limit the scenario thusly. The resulting
model was checked using the Evaluator 3.0 model checker from the cadp tool set
and the following results were proven.

Result 2. Nuovo DRM provides secrecy in scenario S1, i.e. no protected content is
revealed to the intruder.

∀c ∈ Cont . [T∗ · revealed(c)]F

Result 3. Nuovo DRM resists content masquerading attacks in S1, ensuring that a
compliant device only receives the content which it has requested.

∀c ∈ Cont , r ∈ Rgts. [(¬request(d1 , c, r, d2 ))∗ · update(d1 , c, r, d2 )]F ∧
[(¬request(d2 , c, r, d1 ))∗ · update(d2 , c, r, d1 )]F ∧
[(¬request(d1 , c, r, P ))∗ · update(a, c, r, P )]F ∧
[(¬request(d2 , c, r, P ))∗ · update(a, c, r, P )]F.

In addition, the intruder cannot feed the self-fabricated content c0 to compliant de-
vices:

∀r ∈ Rgts. [T∗ · update(d1 , c0, r, d2 )]F ∧
[T∗ · update(d2 , c0, r, d1 )]F ∧
[T∗ · update(d1 , c0, r, P )]F ∧
[T∗ · update(d2 , c0, r, P )]F.

Result 4. Nuovo DRM provides strong fairness in S1 for P , i.e. no compliant device
receives protected content, unless the corresponding payment has been made to P .

∀a ∈ {d1 , d2}, c ∈ Cont , r ∈ Rgts.

[(¬paid(P, c, r, d1 ))∗ · update(d1 , c, r, P )]F
∧ [(¬paid(P, c, r, d2 ))∗ · update(d2 , c, r, P )]F
∧ [T∗ · update(d1 , c, r, P ) · (¬paid(P, c, r, d1 ))∗ · update(d1 , c, r, P )]F
∧ [T∗ · update(d2 , c, r, P ) · (¬paid(P, c, r, d2 ))∗ · update(d2 , c, r, P )]F

Result 5. Nuovo DRM provides strong fairness in S1 for d2 , as formalised below.
(Note that strong fairness for d1 is not guaranteed here, as it can abort the protocol
prematurely. A protocol guarantees security only for the participants that follow the
protocol.)

1. As a client: if a compliant device pays (a provider or reseller device) for a
content, it will eventually receive it.



7.7 Nuovo DRM mitigation procedures 141

∀c ∈ Cont , r ∈ Rgts. [T∗ · request(d2 , c, r, P ) · (¬(update(d2 , c, r, P )))∗]
〈(¬com⋄(−,−,−))∗ · (update(d2 , c, r, P ))〉T

∧
∀c ∈ Cont , r ∈ Rgts.

[T∗ · request(d2 , c, r, d1 ) · (¬(resolves(d2 ) ∨ update(d2 , c, r, d1 )))∗]
〈(¬com⋄(−,−,−))∗ · (resolves(d2 ) ∨ update(d2 , c, r, d1 ))〉T ∧

[(¬lastttp)
∗ · request(d2 , c, r, d1 ) · (¬lastttp)

∗ · resolves(d2 )·
(¬(update(d2 , c, r, P ) ∨ lastttp))

∗]
〈(¬com⋄(−,−,−))∗ · update(d2 , c, r, P )〉T

2. As a reseller: no compliant device receives a content from a reseller device,
unless the corresponding payment has already been made to the reseller.

∀c ∈ Cont , r ∈ Rgts.

[(¬paid(d2 , c, r, d1 ))∗ · update(d1 , c, r, d2 )]F ∧
[T∗ · update(d1 , c, r, d2 ) · (¬paid(d2 , c, r, d1 ))∗ · update(d1 , c, r, d2 )]F

The proof of Lemma 6 is based on the above Results 1–5. We now prove Lemma 6
using Results 1-5.

Proof. (Lemma 6)

• G1 is achieved based on Result 1;

• Result 2 implies G2;

• Result 3 guarantees achieving G3;

• Results 4 and 5 guarantee G4.

Note that Lemma 6 does not prove that Nuovo DRM achieves its design goals in all
possible scenarios. It does support and provide credence for this statement.

This lemma underpins the security of Nuovo DRM from a formal point of view. The
next section outlines procedures to ensure that use of Nuovo DRM in practice will
remain close to scenario’s S0 and S1.

7.7 Nuovo DRM mitigation procedures

To fully address the research question, Nuovo DRM must address security from a
practical stance as well as from a formal point of view. Nuovo DRM’s security, as
formally analysed above, is based on assumptions A1–A4. However, practical DRM
systems such as iTunes (by Apple) and Windows Media DRM (by Microsoft) have
illustrated time and again that DRM systems cannot rely on such assumptions, but
must provide mitigation strategies for when the system’s security is breached. In
this section, mitigation procedures for Nuovo DRM are introduced and discussed.
As noted in Section 7.4.2 and explained in the discussion of the intruder model in
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Section 7.5.2, assumptions A1 (tamper-proof devices) and A2 (resilient communica-
tions) limit the power of the intruder. The mitigation procedures thus should address
violations of these assumptions.

This section begins with a procedure addressing non-resilient communications in peer-
to-peer exchanges. The procedure details how the provider resolves failed peer-to-peer
exchanges. Next, we focus on non-compliant devices. A tampered device violates as-
sumption A1, and may access all its content without respecting the associated rights.
There is no way to prevent content being accessed on the compromised device. How-
ever, interactions between compliant and non-compliant devices can be minimised.
We describe two procedures to support this: one procedure to detect compromised
devices and one procedure to minimise interactions between compliant and detected,
compromised devices.

7.7.1 Resolving C2C disputes at the TTP

We define price : Rgts → N. Given a r ∈ Rgts , price(r) denotes the price that has been
assigned to r (see assumption A4). In the recovery protocol, the provider will agree to
resolve a failed C2C exchange for right r′′ (steps 8r, 9r) iff price(r′′) ≥ price(r′) (from
step 8r); below we see why this condition is necessary. In line with assumption A1,
we only consider compliant devices that need to recover – the device cannot lie about
price(r′) and price(r′′). In practice, resellers will usually propose prices which are
lower than the main vendor’s price for buying that single item, hence automatically
satisfying this requirement.

We require P to maintain a persistent log of the resolved disputes. Assume that d2
tries to recover from an unsuccessful exchange with d1 . As a result of the atomicity of
d1 ’s actions in the optimistic sub-protocol, only the following situations are possible:
Either d1 has updated Rd1 (c) and has the payment order of message 4 of C2C (which
it is thus entitled to have), or d1 does not have the payment order and has not updated
Rd1 (c). In the latter case, the combination of the failed optimistic protocol and its
subsequent resolution simply boils down to a P2C exchange. If d1 owns the payment
order from d2 , two different cases are possible:

1. If d2 recovers before d1 tries to encash the payment order, P will pay d1 , as
d2 has already paid P . Since price(r′′) > price(r′), P can always pay d1 its
share of the transaction. Therefore, the actual payment to P in this particular
exchange sums up to price(r′′) − price(r′). Note that although the net price P
is paid for selling c to d2 in this particular exchange is too low, it is indeed fair
because P has already been paid by d1 when d1 bought the right to resell c.

2. If d2 recovers after d1 has encashed the payment order, P will not charge d2 ,
because d2 has already paid the price to d1 and d1 has updated the right
Rd1 (c), for which it has already (directly or indirectly) paid P .

Note that d1 and d2 cannot collude to cheat P by d1 offering item c to d2 for an
extremely low price and then resolving the request to P . To make this clear, consider
the following use case:

• Cost of buying song c for playing only, directly from P = $1.00.



7.7 Nuovo DRM mitigation procedures 143

• Cost of buying song c for 50 resell rights from P = $0.80 × 50 = $40.

• Cost of buying song c for playing only, from reseller d1 = $0.90.

First, this scenario describes a viable business model: d2 would rather buy c from
d1 than directly from P because of the $0.10 difference. d1 has incentive to act as
reseller since it can make a profit of $(0.9-0.8) × 50 if all the songs are sold. P would
rather make one sale of 50 rights to d1 than sell to 50 d2 s directly, to avoid all sorts of
administration, processing and other per-transaction costs (it is common for services
such as MasterCard or PayPal to have per-transaction charges consisting of a fixed
part and a part dependent to the transaction).

If d1 offers c to d2 for $0.01 and they resolve it to P , P would transfer the money from
d2 ’s account to d1 ’s without being paid in this exchange (P would accept resolving
such unnecessary disputes to assure its customers that in case of real problems, they
can resort to P ). However, d1 is the one who actually loses money. P ’s profit was
already made when the resell rights were sold to d1 , and d2 has exploited a very
good offer on c. If this scenario is repeated enough, d1 will sell contents for $0.01×
50 = $0.50. At the end of the day, d1 paid $40 − $1.00 − 0.50 = $38.50 more than
the market price for c.

Seeing that the TTP cannot be cheated by compliant devices, even if their owners are
colluding, the provider can safely be considered a TTP. The provider’s interests are
not harmed, and the role of TTP allows it to offer an extra service to its customers.

7.7.2 Detection of compromised devices

The security of Nuovo DRM hinges on the compliance of the certified user devices.
However, it is reasonable to assume that over time, some of these devices will be
compromised. In this section, we examine how to detect compromised devices. As
in [NPG+05], the proposed mechanism aims at detecting powerful attackers and sys-
tematic content pirating, rather than occasionally misbehaving users. Hence, we con-
sider a device to be compromised if it misbehaves frequently. So instead of compliance
checks, the aim is to detect devices exhibiting deviant behaviour.

Nuovo DRM enables content redistribution in a controlled manner. In addition to
regular attacks on DRM systems, Nuovo DRM has to consider attacks on content
redistribution as well. Regular attacks and countermeasures are already discussed
in [NPG+05]. This leaves attacks on content redistribution. As compliant devices will
not misbehave, only compromised devices can perform such attacks. A compromised
device can attack content redistribution phase in two ways. First, it can overuse a
right to resell content; secondly, it can try to avoid paying for content it receives (by
not having sufficient funds). These are discussed in order.

Fund exchange during content redistribution is clearly a crucial point of attack. Suc-
cessful attacks would undermine users’ confidence in the system and the benefit to
the attacker is clear: acquire more funds and spend less funds, respectively. In order
to address this, we introduce the following assumptions (for compliant devices) on
funds, which so far have not been considered.

A5 (device funds). When a compliant device signs a payment order, the payment
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order is cash-able. This can be accomplished, for instance, by providing each
compliant device with some credit, which can be spent and recharged.

A6 (traceability of funds). The banking system (responsible for encashing pay-
ment orders) cooperates with content providers to catch malevolent users. For
the sake of simplicity, the content provider and the bank are considered as one
and the same entity.
Note this assumption may not be universally acceptable, e.g. due to geographical
diversity of content providers and banking systems used by customers. Never-
theless, the required degree of collaboration makes the assumption practically
tenable.

First, consider an overuse of reselling rights. To detect large scale overselling, the
provider reconstructs the chain of sold rights. This is possible because of assumption
A6 – to acquire payment for sold rights, devices need to contact the provider.

To this end, the provider maintains a directed weighted graph G = (V,E) for each
sold content-right combination, that may be resold. Each node v ∈ V represents a
device and the weighted edges of the graph (E : V ×V → N) represents right transfers
between two compliant devices. For each v ∈ V , weight difference is the difference
between outgoing weight and incoming weight. Formally:

∆(v) =
∑

v′∈V

E(v, v′)−
∑

v′∈V

E(v′, v) (7.1)

Let U ⊆ V be the set of nodes that have sold a content-rights bundle, but have not
yet encashed the payment order. If vc is a compromised device which engages in
large scale overselling, after a reasonable amount of time, the provider will detect vc’s
behaviour by noting that the weight difference of vc plus the number of yet-to-cash
rights are positive, i.e.

∆(vc) +
∑

u∈U

∆(u) > 0 (7.2)

By putting time limits on encashing payment orders, a provider can control the time
bound on detecting compromised devices. Such an approach requires the payment
orders to be timestamped by the device issuing the order. Timestamps of compliant
devices can be trusted, and the overhead to check the timestamp against the time
limit is very small. Hence this solution scales well with the size of the system.

Secondly, a compromised device can refuse to pay for the content it receives. Accord-
ing to assumption A5, user devices are provided with (and thus aware of) credits.
Therefore, the second attack could easily be detected by the banking entity (col-
laborating with the providers) when a device signs a payment order without having
enough credit for that, as a compliant device would not cause this error.
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7.7.3 Isolating compromised devices

Given that cheating – and thus compromised – devices are detected, countermeasures
can be taken. Confiscation of the compromised device is of course preferred. However,
in practice this will not always be possible. Instead, a Device Revocation List (DRL),
containing public keys of detected compromised devices, can be used to limit interac-
tions of compliant devices with them. To ensure correct working of device revocation,
soundness of this DRL is required – no compliant device is ever listed on the DRL.

Completeness of the DRL also seems desirable: all compromised devices are listed
on the DRL. However, as more and more compromised devices are detected, such a
list could grow quite large over time. Given that not all devices are equally likely to
interact, there is a trade-off between effectiveness and size of the DRL stored on a
compliant device.

Considering these two properties immediately gives rise to two alternative ways of
distributing the DRL: optimising effectiveness and optimising size, respectively. Op-
timising effectiveness of the DRL is done by keeping the complete DRL and updating
it at all possible opportunities. In this case, each devices has a complete copy of the
DRL. Optimising size of the DRL is done by adding only those compromised devices
with which a device has had contact with earlier – only check neighbours.

Below we examine these two distribution schemes, and propose and refine variants that
aim to balance these two consideration. Furthermore, estimates for the effectiveness
and size of the per-device stored DRL are established. The following notation is used
below:

drl The main DRL, as kept by P

drld1 the DRL as kept by device d1

nghbrd1 the list of devices with which device d1 has had contact. To keep the size of
this list within reasonable bounds, it is reset after each contact with the provider
that updates the DRL.

Updates of variables are denoted as a′, b′, c′ := a, b, c, where the left-hand side denotes
the variables a, b, c after the update and the right-hand side expresses the current
values. Contact between two parties a and b is denoted as a ↔ b, irrespective of
which contact is initiated (P2C, C2C, recovery).

complete copy: Each device keeps a copy of the entire DRL. Updates:
- on d1 ↔ P : drl ′d1 := drl .
- on d1 ↔ d2 : drl ′d1 ,nghbr

′
d1 := drld1 ∪ drld2 , nghbrd1 ∪ {d2}.

neighbour-check: A device only lists those revoked devices, with which it has had
contact. Updates:
- on d1 ↔ P : drl ′d1 := nghbrd1 ∩ drl .
- on d1 ↔ d2 : nghbr ′d1 := nghbrd1 ∪ {d2}.

The next scheme strikes a balance between the two approaches above. On contacting
the provider, it updates as neighbour-check (remembering the old list, however). On
contact with another device, it updates as complete copy.
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propagated list: Each device includes the DRL of all devices it has contacted. Up-
dates:
- on d1 ↔ P : drl ′d1 := (drld1 ∪ nghbrd1 ) ∩ drl .
- on d1 ↔ d2 : drl ′d1 ,nghbr

′
d1 := drld1 ∪ drld2 , nghbrd1 ∪ {d2}.

Depending on the interconnectivity of devices, the entire DRL could quickly reside on
each device (in accordance with the “six degrees of separation” idea, which roughly
states that everyone is at most six handshakes away from every other person on the
planet). In this case, propagated list would be a complex version of complete copy.
A size-limiting refinement of propagated list is to forward not simply all incoming
DRLs, but only forward those devices on the DRL with which a device has had
contact itself. To this end, the per-device DRL is partitioned in two: self d1 lists
those revoked devices, with which d1has had contact. restd1 accumulates the DRLs
learned from other devices. So drld1 = self d1 ∪ restd1 . With this in mind, propagated
list is refined as follows.

restricted propagation: each device includes the DRL of all devices it has con-
tacted, but does not propagate this further. Updates:
- on d1 ↔ P : self ′d1 := nghbrd1 ∩ drl .
- on d1 ↔ d2 : rest ′d1 ,nghbr

′
d1 := restd1 ∪ self d2 , nghbrd1 ∪ {d2}.

Note that, given the partitioning of the DRL into two, another approach is to validate
the received DRLs before further propagation. Thus, drld1 = self d1 , which is updated
as described below.

validated propagation: propagated lists are only included after validation against
the provider’s DRL. Updates:
- on d1 ↔ P : self ′d1 := (self d1 ∪ restd1 ∪ nghbrd1 ) ∩ drl .
- on d1 ↔ d2 : rest ′d1 ,nghbr

′
d1 := restd1 ∪ self d, nghbrd1 ∪ {d2}.

Remark that validated propagation is a sanitised version of propagated list. Hence,
this distribution model is not considered further.

Of the above schemes, restricted propagation seems to offer the best trade-off of list
length versus usefulness of the DRL. On a further note, the impact of a corrupted
DRL can be limited if each device cleans its DRL every time it contacts the provider
(drld1 := drld1 ∩ drl). This would also allow the provider to “un-revoke” devices.

To get a feeling for the inherent effectiveness and list size of a given distribution
scheme, the distribution schemes are examined in the following setting.

Use case

Given the number of devices n = 107 and the fraction of compromised devices
e = 10−3 (i.e. the number of compromised devices is in the order of 104). Assume
that compliant devices interact via a (very regular) network structure, each device
interacting with k other devices, that no two neighbours interact with each other
(thus the number of unique neighbours of second degree is k · (k − 1)). Figure 7.10
depicts one node in such a network, where k = 4.
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Figure 7.10: One node in a network of k = 4 neighbours

Furthermore, assume that the secure memory of a device can hold a list of at most
10 id’s (due to memory limitations). Below, we calculate for each distribution scheme
how many unique devices a device may interact, to still restrict interactions with
compromised devices.

complete copy: Each device needs to store the complete DRL of all compromised
devices. This DRL will eventually consist of e ·n = 104 entries. This list cannot
be stored in secure memory.

friends-check: Each device needs to store only those compromised devices it encoun-
tered, i.e. the list size is e · k. For a maximum list size of 10, this distribution
scheme can accommodate interconnections of up to k = 104.

propagated list: After every interaction, the DRL can only grow. Given the ex-
tremely regular, totally connected network of the use case, this means that
eventually, every revoked device will be listed. The time it takes for this to hap-
pen depends on the degree of separation. Within the setting sketched above,
the degree of separation is approximately logn

log k−1 .

restricted propagation: The restricted propagation scheme will only revoke com-
promised devices that interact with a device or with a neighbour of the device.
The number of entries in the per-device DRL depends on the number of neigh-
bours k as follows: e · k · (k − 1). For a maximum list size of 10 this means
10−3 · (k2 − k) ≤ 10, which is approximately k2 ≤ 104. Hence this suffices for
interacting with up to 100 different, unique devices.

In order to measure the effectiveness of a distribution method, we consider how lim-
iting a scheme is for a compromised device. This is equal to the number of compliant
devices which lists a compromised device – i.e., the number of devices that will not
interact with a compromised device. Note that due to our over-approximation that
a compromised device (or its owner) is aware of which devices know it is compro-
mised and can contact any other device, compromised devices may be considered to
be uniformly distributed throughout the set of devices. Hence, the number of devices
not interacting with a specific compromised device is equal to the average size of the
per-device DRL. Given the uniformity assumption, this metric is equal to the size of
the list, which was discussed above.
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7.8 Summary

Vulnerabilities in the NPGCT DRM system were identified and addressed. Besides
this, several procedures were introduced for detection and revocation of compromised
devices. The extended system, Nuovo DRM, is inherently complicated (as many other
DRM schemes are) and, thus, error prone. This calls for expressive and powerful
formal verification tools to provide a certain degree of confidence in the security and
fairness of the system. We have analysed and validated our design goals on a finite
model of Nuovo DRM. This is of course no silver bullet: our formal verification is
not complete as it abstracts away many details of the system.

To support a practical implementation of Nuovo DRM, the possibility of compromised
devices has to be taken into account. To this end, procedures for both detection and
revocation of compromised devices are introduced by Nuovo DRM. The distribution
of revocation lists was discussed, and several alternative distribution models were
compared.

As future work, we are considering several extensions to the formal analysis. For
example, the accountability of the provider, which is taken as non-disputable in this
study, can be verified. Additionally, possible privacy concerns of customers and the
payment phase can be incorporated into the formal model.

The comparison of the various distribution models for revocation lists (especially the
effectiveness of said models) is strongly influenced by the assumed uniformity of the
network of connected devices. As future work, we intend to investigate the notion of
effectiveness in a less uniform setting.
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Conclusions

In this chapter, we review the results that were achieved in this thesis. The main
lesson from both parts of the thesis is that we need a structured approach to the
study of security.

Our studies of the security of electronic voting and of digital rights management began
with an analysis of each domain and its requirements. In both these domains, some
requirements interact with each other. This underlines the necessity of understanding
the context of a security requirement before studying the requirement itself.

In addition, in voting (Chapter 3) we found that some systems do not achieve security,
despite arguments and even proofs of security. To prevent these pitfalls, reasoning on
security must be done in a mathematically precise format. The security objectives
as well as the intruder capabilities must be included in this format. Only in this
way can we truly ensure that a security requirement can be satisfied. However, in
DRM (Chapter 7), we noted that a formal approach is based on certain assumptions.
In practice, such assumptions can be violated. Technical measures can ensure the
desired security, however, it is often not possible to technically enforce the correct
use of technical measures. This means that technical measures alone do not suffice
to achieve security in a deployed system. They must be supported by physical means
such as tamper-proof devices, and by procedural means such as mitigation procedures.

Thus, understanding security requires a structured approach, which begins with an
understanding of the context. This is followed by formalising the desired security
objectives and the intruder capabilities. This underlies a theoretical understanding
of security, but for security requirements to be satisfied in practise, the theoretical
approach must be supported by physical and procedural means.

The rest of this chapter provides detailed conclusions for each of the two parts of the
thesis.

8.1 Privacy in voting

In Chapter 2, we analysed the domain of voting. From this domain analysis we derived
a set of core security requirements for voting systems. Comparison with existing
terminology in literature highlighted a confusion surrounding privacy. Accordingly,
the following research question was posed.

Research question I. Investigate and improve understanding of privacy in voting.

151
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We addressed this question by first investigating the understanding of privacy in
Chapter 3. There, we described mechanisms that are used to introduce support for
privacy in voting systems. Furthermore, we provided a survey of voting systems
focusing on receipt-free and end-to-end verifiable voting systems. In the survey, we
saw that several claims of receipt-freeness were proven false by newer works.

This led us to see where understanding of privacy can be improved. In Chapter 4, we
set out to provide an improved formalisation of privacy in voting. We took note of
the formalisations by Delaune, Kremer, and Ryan and saw that their formalisations
are qualitative in nature. Any attack where privacy is not nullified is not captured
by their approach. In our view, the only way to detect even the most subtle privacy
attacks is to capture every reduction of privacy. Therefore, we designed a formal
framework that is able to compute the exact set of candidates a voter may have voted
for in a given situation.

We proposed several models of voter conspiracy, that cover the standard communica-
tion assumptions found in literature (as found in Chapter 3). The framework views
privacy in a quantified manner, which enables to detect receipts which reduce, but not
nullify privacy. We discussed how the framework captures and extends the notions of
receipt-freeness and coercion-resistance. The chapter ended with a discussion on the
relation between privacy and verifiability, which was illustrated by the 3BS system.

We illustrated the application of the concepts and framework in Chapter 5. The main
contributions of this chapter is to illustrate how the concepts and framework improve
understanding in voting. This was done by analysing two voting systems using the
framework, identifying privacy weaknesses in either, and providing suggestions for
improvement. Furthermore, the concepts of Chapter 4 were used to understand the
trade off between privacy and verifiability inherent in the ThreeBallot voting system.

Thus, by means of a formalisation of the notion of privacy we have achieved the goal
of investigating and improving the understanding of privacy in voting.

8.1.1 Future work

There are several directions in which this work can be extended. First of all, applica-
tion of the framework is a complex process, as evidenced in Chapter 5. An automated
approach of this process is a logical next step. Given that the process language was
deliberately chosen to remain close to process algebras such as ACP and µCRL, we
are considering an implementation based on µCRL or mCRL2.

Another issue is the question of decidability. The basis of our knowledge modelling
is decidable, as proven by Baskar et al. However, we have yet to investigate whether
this holds for the integrated models of the privacy primitives.

Furthermore, while the framework quantifies privacy, it does not take into account
various probabilistic aspects of voting systems. For example, the distribution of votes
in the result is related to the chance that a voter voted for a candidate in the voter’s
choice group. Another example are probabilistic aspects of voting systems, such as
mixing in mixnets. Here, the framework assumes mixnets work perfectly. However,
this assumption can be violated by some mixnets. A mixnet may be biased, in that
certain ways of shuffling are more likely than others. A next step is to enrich the
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quantitative aspect of the framework with probabilities, so that such a bias is taken
into account.

In addition, the increased understanding of privacy is to be used for designing voting
systems. There are two directions in which this can be taken. On the one hand, we
seek to design voting systems that offer robust privacy, even in the face of strong
coercion (type 2c). On the other hand, we are interested in voting systems that
explore the inherent trade-off between verifiability and privacy further.

Apart from technical extensions of the framework, we are also interested in extending
the concepts of the framework themselves. In the discussion on the 3BS system in
Chapter 5, we saw that a coalition of voters has a greater ability to protect itself than
an individual voter. A future direction is to further investigate and characterise the
defensive abilities of coalitions.

Finally, voting systems provide an illustration of systems where enabling privacy is not
sufficient – they must enforce privacy. The notion of enforced privacy can be carried
over to other domains, such as electronic health care records or online auctions.

8.2 Fairness in digital exchange

In the second part of the thesis, we focused on DRM systems. In Chapter 6, we
analysed the domain of DRM systems. There is no established consensus on security
requirements for DRM systems, instead, the requirements were scattered throughout
literature. From our analysis, we derived a set of core security requirements for
DRM systems. First and foremost, they must provide security. This security must
extend beyond a formal analysis – it must account for situations that deviate from
the assumptions of the formal analysis. We found that one of the core requirements,
fair exchange, was traditionally satisfied by the assumption of a client-server setting.
Enabling fair exchange in non-client-server settings, such as a peer-to-peer setting,
had not been studied in-depth.

In a peer-to-peer setting, the assurance of fair exchange enables content redistribution.
Accordingly, the following research question was posed:

Research question II. Is a formally and practically secure DRM system that enables
content redistribution possible?

This question was addressed in Chapter 7 by introducing Nuovo DRM, which enables
content redistribution. Nuovo DRM was designed to satisfy the following goals:

• Effectiveness: the system functions correctly.

• Secrecy: no content is leaked.

• Resistance to content masquerading: it is impossible to pass one item of content
off as another item.

• Strong fairness: No exchange of items between two parties can leave one party
without its item and the other with two items.
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These goals were formalised in regular µ-calculus, and the system was modelled in
µCRL. A finite instance of the system was verified via model-checking and found to
satisfy the formalised goals.

The verification relies upon several assumptions, most notably the assumption of
tamper-proof devices. As these assumptions cannot be guaranteed, we introduced
several procedures that mitigate the effects of any breaking of the assumptions. The
proposed mitigation procedures are the following:

• Resolution of client-to-client dispute.

• Detection of compromised devices.

• Isolation of compromised devices.

In conclusion, the goal of investigating the feasibility of a formally and practically
secure DRM system was achieved by proposing such a system, formally verifying its
security and proposing procedures to provide practical security.

8.2.1 Future work

There are several directions in which we wish to develop Nuovo DRM further. One of
these is an actual implementation of Nuovo DRM. This has been successfully executed,
but these results are outside the context of the work in this thesis.

Nuovo DRM, like other DRM systems, treats the content provider as a trusted source.
An interesting extension is to investigate incorporating accountability of the provider.

Nuovo DRM, as described, abstracts away from rights semantics. Formalisation of
rights expression languages is a heavily studied subject in DRM research. To the best
of our knowledge, there has not yet been a formal verification of a DRM system that
accounted in full detail for the formal rights language used. An extension of this is
to incorporate the proposed revocation list mechanism in the formalisation.

Finally, the payment infrastructure is not detailed in Nuovo DRM. However, to com-
ply with the mitigation procedures, such a payment scheme must satisfy several re-
quirements. We have not investigated which payment schemes would satisfy the
requirements, and what impact such a scheme has on the system.
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[GN02] R. Grimm and J. Nützel. A friendly peer-to-peer file sharing system with
profit but without copy protection. In Proc. 2nd Workshop on Innovative
Internet Computing Systems, LNCS 2346, pages 133–142. Springer, 2002.



160 Bibliography

[GP95] J. F. Groote and A. Ponse. The syntax and semantics of µCRL. In Algebra
of Communicating Processes ’94, Workshops in Computing Series, pages
26–62. Springer, 1995.

[GRV03] S. Gürgens, C. Rudolph, and H. Vogt. On the security of fair non-
repudiation protocols. In ISC ’03, LNCS 2851, pages 193–207. Springer,
2003.

[Gut03] S. Guth. A sample DRM system. In Digital Rights Management: Techni-
cal, Economical, Legal and Political Aspects, LNCS 2770, pages 150–161.
Springer, 2003.

[Hea07] J. Heather. Implementing stv securely in pret a voter. In CSF, pages
157–169, 2007.

[Her97] M. A. Herschberg. Secure Electronic Voting over the World Wide Web.
Master’s thesis, Massachusetts Institute of Technology, 1997.

[Hir01] M. Hirt. Multi-Party Computation: Efficient Protocols, General Adver-
saries, and Voting. PhD thesis, ETH Zurich, 2001. Reprinted as vol. 3
of ETH Series in Information Security and Cryptography, ISBN 3-89649-
747-2, Hartung-Gorre, 2001.

[HJ08] G. L. Heileman and M. Joye, editors. Proc. of the 8th ACM Workshop on
Digital Rights Management 2008. ACM, 2008.

[HJP05] E. Hubbers, B. Jacobs, and W. Pieters. RIES - internet voting in action.
In Proc. 29th Computer Software and Applications Conference, vol. 1,
pages 417–424. IEEE Computer Society, 2005.

[HJS+08] E Hubbers, B Jacobs, B Schoenmakers, H. Van Tilborg, and B. De Weger.
Description and analysis of the RIES internet voting system. Technical
report, Eindhoven Institute for the Protection of Systems and Information
(EiPSI), 2008.

[HK02] J. Haitsma and T. Kalker. A highly robust audio fingerprinting system.
In Proc. 3rd Conference on Music Information Retrieval. IRCAM, 2002.

[HLS00] J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw at-
tacks on security protocols. In Proc. 13th Computer Security Foundations
Workshop, pages 255–268. IEEE Computer Society, 2000.

[HMST02] B. Horne, L. Matheson, C. Sheehan, and R. E. Tarjan. Dynamic self-
checking techniques for improved tamper resistance. In Security and pri-
vacy in digital rights management, LNCS 2320, pages 141–159. Springer,
2002.

[HS00] M. Hirt and K. Sako. Efficient receipt-free voting based on homomorphic
encryption. InAdvances in Cryptology – EUROCRYPT 2000, LNCS 1807,
pages 539–556. Springer, 2000.



Bibliography 161

[IAUS03] T. Iwata, T. Abe, K. Ueda, and H. Sunaga. A DRM system suitable
for P2P content delivery and the study on its implementation. In Proc.
9th Asia-Pacific Conference on Communications, vol. 2, pages 806–811.
IEEE, 2003.

[JCJ05] A. Juels, D. Catalano, and M. Jakobsson. Coercion-resistant electronic
elections. In Proc. 2005 ACM Workshop on Privacy in the Electronic
Society, pages 61–70. ACM, 2005.

[JJR02] M. Jakobsson, A. Juels, and R. L. Rivest. Making mix nets robust for
electronic voting by randomized partial checking. In Proc. 11th USENIX
Security Symposium, pages 339–353. USENIX, 2002.

[JKT06] H. L. Jonker, S. Krishnan Nair, and M. Torabi Dashti. Nuovo DRM
paradiso. Technical Report SEN-R0602, Centrum voor Wiskunde en In-
formatica, Netherlands, 2006.

[JM07] H. L. Jonker and S. Mauw. Core security requirements of DRM systems.
In Digital Rights Management – An Introduction, pages 73–90. ICFAI
University Press, 2007.

[JM09] H. L. Jonker and S. Mauw. Discovering the core security requirements of
DRM systems by means of objective trees. In Handbook of Research on
Secure Multimedia Distribution, pages 71–85. IGI Global, 2009.

[JMP09a] H. L. Jonker, S. Mauw, and J. Pang. A formal framework for quantifying
voter-controlled privacy. Journal of Algorithms in Cognition, Informatics
and Logic, 64(2-3):89–105, 2009.

[JMP09b] H. L. Jonker, S. Mauw, and J. Pang. Measuring voter-controlled privacy.
In Proc. Conference on Availability, Reliability and Security 2009, pages
289–298. IEEE Computer Society, 2009.

[Jon04] H. L. Jonker. Security of Digital Rights Management systems. Master’s
thesis, Eindhoven University of Technology, 2004.

[JP06] H. L. Jonker and W. Pieters. Receipt-freeness as a special case of
anonymity in epistemic logic. In Preproceedings WOTE, 2006.

[JV06] H. L. Jonker and E. P. de Vink. Formalising Receipt-Freeness. In Proc. 9th
Information Security Conference, LNCS 4176, pages 476–488. Springer,
2006.

[JV07] H. L. Jonker and M. Volkamer. Compliance of RIES to the proposed
e-voting protection profile. In A. Alkassar and M. Volkamer, editors,
Proc. 1st Conference on Voting and Identity, LNCS 4896, pages 50–61.
Springer, 2007. Bochum, Germany.

[KEH+04] T. Kalker, D. H. J. Epema, P. H. Hartel, R. L. Lagendijk, and M. van
Steen. Music2Share - Copyright-compliant music sharing in P2P systems.
Proceedings of the IEEE, 92(6):961–970, 2004.



162 Bibliography
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Summary

Security Matters: Privacy in Voting and Fairness in Digital Exchange

Security matters. In the real world, there are various basic mechanisms that provide
security. The digital counterparts of these basic mechanisms have been studied and
are now well understood. Understanding of more complex security notions has yet to
mature. This thesis studies two complex security notions: privacy in voting and fair-
ness in digital exchange. To facilitate the two different domains, the thesis discusses
each notion in its own part.

Part I: Privacy in Voting

Voting systems have been evolving for years, incorporating new procedures and new
countermeasures to detected problems. When the field of voting emerged in the 80s
as a research area in computer science, it was not straightforward to transform these
procedures and countermeasures into clearly specified, exact requirements necessary
in computer science. Thus, requirements for voting systems had to be rediscovered in
computer science over the years.

Without a high-level overview of the field, it remains unclear whether the set of re-
quirements covers all desired properties. To this end, we analysed the domain of
voting (cf. Chapter 2). The analysis resulted in a set of high-level security require-
ments for voting systems. Amongst these is the requirement All voters are free to cast
their votes. Privacy is an essential ingredient to ensure this: if no one can determine
how a voter voted, no one can hold that voter accountable for her vote. Ensuring
privacy thus prevents any restrictions on freedom targeted to specific voters. Unfor-
tunately, the concept of privacy is not well understood in the field of voting. There
are various terms which all cover an aspect of privacy. We set out to investigate and
improve the understanding of privacy in voting.

To investigate current understanding of privacy in voting, we surveyed a number of
voting system proposals from literature (cf. Chapter 3). We found that while every
system claims some form of privacy, several of these claims were dubious and, in
several cases, these claims were broken by later works. In addition, the way privacy
is specified varies from system to system. There is no unique notion of privacy in
voting. This lack of consensus became more apparent when the risk of vote selling
was introduced. In vote selling, privacy prevents a voter from proving how she voted,
which means that selling her vote is impossible. Thus, a vote seller will actively try
to reduce her privacy. Voting systems should prevent voters from doing so. However,
failing a consensus on privacy, it is unclear how to expand the notion of privacy
to incorporate vote selling. Thus, it is unclear how to verify that systems enforce
sufficient privacy to prevent vote selling. This necessitates a new understanding of
privacy.
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To this end, we introduce a formal framework that determines precisely for whom a
voter could have voted (cf. Chapter 4). By comparing a regular voter with a voter
who tries to reduce her privacy, we can determine if a voter can reduce her privacy
and if so, by how much. In this fashion, the privacy of a voter was quantified. Several
existing notions of privacy were easily captured in this way. But the preciseness of
the framework extends beyond that: it also can detect partial loss of privacy.

In order to show how the framework and the ideas it embodies improve understanding
of voting, we apply the framework and its concepts in Chapter 5. The framework is
used to ascertain the privacy of a purely theoretical scheme (FOO92), and of an
actually implemented voting system (Prêt à Voter), and the concept of choice groups
is used to discuss the relation between privacy and verifiability in the 3BS voting
system. Using the framework, we prove that FOO92 offers privacy to voters, but it
does not enforce it: vote selling is possible. The framework also clarifies the reasons
for this, and based on this indication, we sketch a possible approach for improving
privacy of FOO92. The Prêt à Voter voting system uses paper ballots and a voting
booth. With the help of the framework, the impact of these physical measures on
privacy is made explicit. Thus, we can reason about adapting Prêt à Voter for remote
voting, where such measures are not necessarily possible. Finally, the 3BS system uses
a novel way to provide a trade off between privacy and verifiability. Using the concept
of choice groups, we gain a better understanding of how much privacy is sacrificed.

Part II: Fairness in Digital Exchange

There exist various forms of controlling access to items. This is for example necessary
in trade – without scarcity of items, there is no need to trade for them. With the
advent of the Internet, a large-scale distributed system, the question of how to enforce
access control to digital items in a distributed environment emerged, as a way to enable
online trade. One answer was to distribute access control together with the controlled
items. This is what Digital Rights Management (DRM) sets out to achieve. As such,
DRM is to enable online trade in digital items.

Again, a high-level view of the field is necessary to obtain some certainty that the
set of requirements for DRM systems covers all desired aspects. In Chapter 6, the
domain of DRM is analysed, resulting in a set of security requirements. We highlight
two requirements: the impact of breaks is constrained and fair exchange. The fair
exchange of two items a and b between two parties ensures that either a and b both
switch owners, or neither does. In the usual client-server (client-seller) setting of
DRM systems, fair exchange is only ensured for the seller: the seller receives the
(assurance of) payment and then proceeds to deliver. Recently, the idea of DRM has
emerged in other settings, such as a peer-to-peer (client-to-client) setting. In such a
setting, guaranteeing fair exchange for both seller and buyer becomes an important
prerequisite for trading.

In Chapter 7, we develop Nuovo DRM. Nuovo DRM is a secure DRM system that
enables fair exchange and constrains the impact of breaks. As claims of security
must be substantiated, we do so using formal methodology. We formalise the goals
of Nuovo DRM and verify (using model checking) that these goals are achieved by
an abstract model of Nuovo DRM. In addition to that, we present several procedures
that mitigate the effects of breaks.



Samenvatting

Security Matters: Privacy in Voting and Fairness in Digital Exchange

Veiligheid is belangrijk. In de echte wereld zijn er verschillende basismechanismes
die voor veiligheid zorgen. De digitale evenknieën van deze basismechanismes zijn in
de informatica uitvoerig bestudeerd en worden tegenwoordig goed begrepen. Com-
plexere veiligheidsbegrippen worden daarentegen nog niet goed begrepen. Dit proef-
schrift bestudeert twee complexe security begrippen: anonimiteit in stemsystemen en
eerlijkheid in digitale uitwisseling. Het proefschrift wijdt een apart deel aan ieder van
deze twee domeinen.

Deel I: Anonimiteit in stemsystemen

Stemsystemen zijn in de loop der jaren geëvolueerd en omvatten inmiddels allerlei
maatregelen en procedures tegen fraude. Toen het onderzoeksgebied van elektronisch
stemmen in de jaren 80 ontstond in de informatica, was er geen eenvoudige vertaling
van deze procedures en maatregelen naar eenduidig gespecificeerde, exacte eisen (zoals
nodig in de informatica) voorhanden. Dit leidde tot het gestaag herontdekken van
eisen aan stemsystemen in de informatica.

Echter, zonder een overzicht van het onderzoeksgebied blijft het onduidelijk of de
herontdekte eisen alle gewenste aspecten afdekken. Dientengevolge analyseerden we
het gebied van elektronisch stemmen in Hoofdstuk 2. De analyse resulteerde in een
verzameling eisen voor stemsystemen. We richtten ons op de eis alle stemmers zijn
vrij hun stem uit te brengen. Anonimiteit is een essentiële voorwaarde voor deze
vrijheid: een stemmer kan niet aansprakelijk gehouden worden voor haar stem, als
haar stem anoniem is. Het garanderen van anonimiteit voorkomt dus beperkingen van
de stemvrijheid die gericht zijn op individuele stemmers. Helaas blijkt anonimiteit
niet goed te worden begrepen. Zo zijn er verschillende termen, die allen bepaalde
delen van anonimiteit wel dekken, en andere delen niet. We stellen het doel om het
begrip van anonimiteit in stemmen te onderzoeken en te verbeteren.

Ten eerste onderzochten we in Hoofdstuk 3 het huidige begrip van anonimiteit, door
middel van een literatuurstudie van stemsystemen. Hoewel ieder systeem beweert
een vorm van anonimiteit te bieden, blijkt echter dat sommige van deze beweringen
dubieus waren, en in een aantal gevallen zijn deze zelfs later weerlegd. Daarbovenop
bleek dat de wijze waarop anonimiteit is gespecifiëerd, variëert van systeem tot sys-
teem. Er is geen uniek, eenduidig concept van anonimiteit in stemsystemen. Dit
gebrek aan consensus werd nog duidelijker, toen het verkopen van stemmen werd
herkend als een veiligheidsrisico. Als een stemmer anoniem is, kan ze niet aan de
stemmenkoper bewijzen hoe ze heeft gestemd, en dus kan ze haar stem niet verkopen.
Een stemmer die haar stem wil verkopen, zal dus proberen om haar anonimiteit te
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verminderen. Stemsystemen dienen dit te verhinderen. Door het gebrek aan een
overeenstemming over het begrip anonimiteit is het onduidelijk hoe men kan bepalen,
of een systeem genoeg anonimiteit garandeert om stemmenverkoop te verhinderen.
Er is dus een beter begrip van anonimiteit nodig.

Hiertoe introduceren we een formeel framework in Hoofdstuk 4, dat precies bepaalt
op welke kandidaat een stemmer gestemd zou kunnen hebben. Door een reguliere
stemmer te vergelijken met een stemmer die haar anonimiteit probeert te reduceren,
kunnen we vaststellen of, en in hoe verre, een stemmer haar anonimiteit kan vermin-
deren. Op deze wijze is de anonimiteit van een stemmer gekwantificeerd. Bestaande
anonimiteitsbegrippen laten zich eenvoudig vertalen naar het framework. Maar de
precisie van het framework streeft bestaande begrippen voorbij: ook partieel verlies
van anonimiteit wordt gedetecteerd.

We tonen een aantal toepassingen van het framework en de onderliggende begrippen
in Hoofdstuk 5, om te verduidelijken hoe deze zaken het begrip van anonimiteit ver-
beteren. Het framework wordt toegepast op een theoretisch stemsysteem, het FOO92
systeem, en op een bestaand systeem, het Prêt à Voter systeem. Het begrip keuze-
groep wordt gebruikt om de complexe relatie tussen anonimiteit en verifieerbaarheid
in het 3BS systeem te verhelderen. Met behulp van het framework wordt duidelijk
dat FOO92 anonimiteit aanbiedt, maar niet afdwingt: verkopen van stemmen is mo-
gelijk. Het framework maakt inzichtelijk waar FOO92 versterkt dient te worden.
Aan de hand hiervan suggereren we een mogelijke verbetering van FOO92. Het Prêt
à Voter systeem maakt gebruik van een stemhok en papieren stembiljetten. Dankzij
het framework wordt de impact van deze bouwstenen op anonimiteit verduidelijkt.
Hierdoor wordt het mogelijk om te redeneren over het aanpassen van Prêt à Voter
voor thuisstemmen, waar dit soort fysieke maatregelen niet mogelijk zijn.

Deel II: Eerlijkheid in digitale uitwisseling

Er zijn verschillende manieren waarop gecontroleerde toegang tot objecten wordt
bewerkstelligd. Gecontroleerde toegang is bijvoorbeeld noodzakelijk voor handel – als
iedereen bij alle objecten kan, is er geen reden tot handel. Met de opkomst van het
Internet, een grootschalig gedistribueerd systeem, rees de vraag hoe toegangscontrole
van digitale objecten gewaarborgd kan worden om online handel mogelijk te maken.
Eén antwoord was om toegangscontrole samen te voegen met de digitale objecten.
Dit is het doel van Digital Rights Management (DRM).

Ook voor dit onderzoeksdomein is een overzicht nodig om te verzekeren dat de verza-
meling eisen aan DRM systemen alle gewenste aspecten omvat. In Hoofdstuk 6 wordt
het DRM-domein geanalyseerd. Dit levert een verzameling eisen op, waarvan we ons
hoofdzakelijk richten op de eisen de impact van succesvolle aanvallen wordt beperkt
en eerlijk oversteken. Eerlijk oversteken van twee objecten a en b tussen twee partijen
garandeert dat of a en b beide van eigenaar wisselen, of dat geen van de twee van
eigenaar wisselt. Eerlijk oversteken voorkomt dus de situatie waarin na afloop één
partij zowel a als b bezit. In de gebruikelijke client-server (klant-verkoper) context
van DRM systemen is eerlijk oversteken enkel gegarandeerd voor de verkoper: pas
na ontvangst van (garantie van) betaling wordt geleverd. Recentelijk is een andere
context, peer-to-peer (klant-klant) verkend voor DRM. In een dergelijke context is de
garantie van eerlijk oversteken een belangrijke voorwaarde voor handel.
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In Hoofdstuk 7 ontwikkelen we Nuovo DRM. Nuovo DRM is een veilig DRM sys-
teem dat eerlijk oversteken mogelijk maakt en de impact van succesvolle aanvallen
beperkt. Aangezien beweringen van veiligheid onderbouwd dienen te worden, doen
we dit gebruikmakend van formele methoden. De doelen van Nuovo DRM worden
geformaliseerd en met behulp van model checking verifiëren we dat een abstract model
van Nuovo DRM deze doelen bewerkstelligt. Daarnaast presenteren we verschillende
procedures die de impact van hacks verminderen.





Curriculum Vitae

2009 Research Fellow in the Formal Methods and Security group of
Prof. Dr. S. Schneider, Faculty of Engineering and Physical Sci-
ences, University of Surrey, United Kingdom.

2007–2009 Ph.D. student in the Security and Trust of Software Systems
Group of Prof. Dr. S. Mauw, Faculty of Science, Technology and
Communication, University of Luxembourg, Luxembourg.

2004–2008 Ph.D. student in the Formal Methods group of Prof. Dr. J.C.M.
Baeten, Department of Mathematics and Computer Science,
Eindhoven University of Technology, the Netherlands.

1996–2004 M.Sc. degree in Computer Science, Eindhoven University of Tech-
nology, the Netherlands. Title of Master’s thesis: Security of
Digital Rights Management Systems. Supervisors: Dr. S. Mauw,
ir. A.T.S.C. Schoonen, ir. J.H.S. Verschuren.

1989–1996 Secondary school: Lorentz Lyceum, Eindhoven, the Netherlands.
Born on 9th of August, 1978 in Eindhoven, the Netherlands.

175



Titles in the IPA Dissertation Series since 2005
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