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motivation

Why?

■ why is security needed?

■ why do we need an independent proof?

■ why formal methods?
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security needed

One example: undue influence

Elections must be fair !



TU Darmstadt, 30 June 2010 Proving Security of Voting Systems - p. 4/25

independent assurance needed

Nedap: “our voting machines are not computers... They cannot
play chess”.
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why formal?

Vendor: “This is a very secure product, and should be certified.”
. . .
Chaos Computer Club: “It should not be certified!! It’s insecure!”

We need an unambiguous security proof.
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what is a voting system?

A voting system runs on:

■ hardware, running
■ software, implementing
■ a communication protocol, based on
■ cryptosystems, relying on
■ mathematical theory.

We focus on the communication protocol, and ignore the other
layers.
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communication

■ public channels

■ anonymous channels
sender remains anonymous.

■ untappable channels
No one but sender and recipient learns anything, not even that a
communication occurred.

Conjecture (from 2000): without untappable channels or a
voting booth, receipt-freeness cannot be achieved together with
verifiability.
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how to prove security

Two approaches:

■ Computational model
Answers of the form: “There is a (non-)negligable chance ...”

■ Symbolic model
Answers of the form: “here is an attack” or “secure”

There are various methods in either approach.
Detailed explanation of one method in this lecture.
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generic proof approach

■ Option 1:
1. understand security notion
2. model system + environment (intruder!)
3. define security notion as property of system
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generic proof approach

■ Option 1:
1. understand security notion
2. model system + environment (intruder!)
3. define security notion as property of system

■ Option 2:
1. . . .
2. . . .

2b. model “ideal” behaviour
3. define security notion as relation between these two
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notions of privacy

■ vote-privacy :
no outside observer can determine how voter v voted.

■ receipt-freeness/coercion-resistance :
no observer can determine how v voted, even if v is cooperating
with the observer.
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intruder/environment modelling

The intruder:

■ controls the (public) network,

■ perfect cryptography assumption,

■ anonymous channel: intruder cannot determine sender,

■ untappable channel: intruder is unaware.

Furthermore: closed-world assumption: what is not explicitly
stated as true, is false.
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this lecture

Option 1:

1.
√

understand privacy
2. model system

determine system behaviour
3. determine privacy as a property of system behaviour

Option 2:

1. . . .
2. model system + conspiring voter
3. determine difference in conspiring privacy and previous privacy

There are other ways to determine privacy, this lecture explains
only one way.
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modelling systems

A voting system:

■ consists of a set of agents
■ who communicate
■ terms
■ containing their preferred candidate

So: formalisation of terms, communication =⇒ system behaviour
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terms

Term ϕ:

■ v ∈ V , c ∈ C, k ∈ Keys , n ∈ Nonces

■ encryption: {ϕ′}k
■ pairing: (ϕa, ϕb).
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terms

Term ϕ:

■ v ∈ V , c ∈ C, k ∈ Keys , n ∈ Nonces

■ encryption: {ϕ′}k
■ pairing: (ϕa, ϕb).

Communication events:

• va sending ϕ to vb: s(va, vb, ϕ)

• vb receiving ϕ from va: r(va, vb, ϕ)

• anonymously: as(va, vb, ϕ), ar (vb, ϕ)

• untappable: uc(va, vb, ϕ)
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system behaviour

System behaviour = list of events.
This is called a trace.

Example:
trace t = s(va, vb, ϕ) · r(va, vb, ϕ) · as(va, vb, ϕa) · . . .
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system behaviour

System behaviour = list of events.
This is called a trace.

Example:
trace t = s(va, vb, ϕ) · r(va, vb, ϕ) · as(va, vb, ϕa) · . . .

Remarks:

■ order may vary (parallel events, choice in executing events)
■ anonymous and untappable communications not (completely)

observable
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system behaviour

System behaviour = list of events.
This is called a trace.

Example:
trace t = s(va, vb, ϕ) · r(va, vb, ϕ) · as(va, vb, ϕa) · . . .

Remarks:

■ order may vary (parallel events, choice in executing events)
■ anonymous and untappable communications not (completely)

observable

obstr(ǫ) = ǫ

obstr(ℓ · t) =











obstr(t) if ℓ = uc(a, a′, ϕ)

as(x, ϕ) · obstr(t) if ℓ = as(a, x, ϕ)

ℓ · obstr(t) otherwise
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how voters vote

How voters vote is given by a choice function γ. For each voter
v ∈ V , γ returns v’s preferred candidate γ(v).

Example. V = {va, vb}, C = {c1, c2, c3}.

■ γa(va) = γa(vb) = c1.
■ γb(va) = c1, γb(vb) = c2.
■ etc.

Assumption: The way voters vote (i.e. which γ is used) is
independent of the voting system.
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determining privacy

Privacy question:

Can the intruder tell for a given trace t, if voters voted
according to γa or according to γb?

Let’s try, for t from VSγa :
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determining privacy

Privacy question:

Can the intruder tell for a given trace t, if voters voted
according to γa or according to γb?

Let’s try, for t from VSγa :

■ t = s(va,A, ca) · . . . · s(vb, A, cb)? no privacy.
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according to γa or according to γb?
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Privacy depends on intruder’s knowledge.
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reinterpretation

The intruder can mistake a term ϕ for another term ϕ′ as follows:

Definition 1 (reinterpretation) Let ρ be a permutation on the set
of terms Terms and let KI be a knowledge set. The map ρ is a
semi-reinterpretation under KI if it satisfies the following.

ρ(p) = p, for p ∈ C ∪Keys ∪ V
ρ((ϕ1, ϕ2)) = (ρ(ϕ1), ρ(ϕ2))

ρ({ϕ}k) = {ρ(ϕ)}k, if KI ⊢ ϕ, k ∨KI ⊢ {ϕ}k, k−1

Map ρ is a reinterpretation under KI iff it is a semi-reinterpretation
and its inverse ρ−1 is a semi-reinterpretation under ρ(KI).
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indistinguishability

Intruder can mistake trace t for t′, notation t ∼ t′, iff he can
mistake all the terms in t for terms in t′, in the same order.
Formally:

∃ρ : obstr(t′) = ρ(obstr(t)).
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indistinguishability

Intruder can mistake trace t for t′, notation t ∼ t′, iff he can
mistake all the terms in t for terms in t′, in the same order.
Formally:

∃ρ : obstr(t′) = ρ(obstr(t)).

Definition 3 (choice indistinguishability) For voting system VS,
choice functions γa, γb are indistinguishable, γa ≃VS γb, iff

∀t ∈ Tr(VSγa) : ∃t′ ∈ Tr(VSγb) : t ∼ t′ ∧
∀t ∈ Tr(VSγb) : ∃t′ ∈ Tr(VSγa) : t ∼ t′
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measuring

Definition 4 (choice group) Choice group of a given choice
function γ:

cg(VS, γ) = {γ′ | γ ≃VS γ′}.

Choice group for a given voter v:

cgv(VS, γ) = {γ′(v) | γ ≃VS γ′}.

Using choice groups, we can define privacy.
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example definitions of privacy

Definition 5 (privacy I) Voting system VS is private for choice
function γ and voter v iff

cgv(VS, γ) = set of all candidates who received ≥ 1 vote.

Or:
Definition 6 (privacy II) Voting system VS is private for choice
function γ and voter v iff

|cgv(VS, γ)| > 1.

We can test whether a particular voting system complies with a
specific privacy definition
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conspiring voter

Privacy safeguards:

■ voter-secrets (keys)
■ untappable channels

A voter may:
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■ untappable channels

A voter may:

1. share all her secrets after the elections,
2. begin by sharing all her secrets,
3. share everything she receives from an untappable channel,
4. let the intruder determine what to send over an untappable
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conspiring voter

Privacy safeguards:

■ voter-secrets (keys)
■ untappable channels

A voter may:

1. share all her secrets after the elections,
2. begin by sharing all her secrets,
3. share everything she receives from an untappable channel,
4. let the intruder determine what to send over an untappable

channel.

Denote this as cg1v(VS, γ), cg2

v(. . .), . . ..
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privacy for conspiring voters

classical definition of receipt-freeness:

∀v, γ :
∣

∣cg1v(VS, γ)
∣

∣ > 1.
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privacy for conspiring voters

classical definition of receipt-freeness:

∀v, γ :
∣

∣cg1v(VS, γ)
∣

∣ > 1.

improved definition:
Compare conspiring behaviour with normal behaviour!

Voting system VS is conspiracy-resistant iff

∀v ∈ V , γ ∈ V → C : cg iv(VS, γ) = cgv(VS, γ),
for i ∈ {1, 2, 3, 4}.
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Summary

■ Option 1:
1. understand security notion
2. model system + environment (intruder!)
3. define security notion as property of system
=⇒ privacy
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Summary

■ Option 1:
1. understand security notion
2. model system + environment (intruder!)
3. define security notion as property of system
=⇒ privacy

■ Option 2:
1. . . .
2. . . .

2b. model “ideal” behaviour
3. define security notion as relation between these two
=⇒ privacy for conspiring voter
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final slide

Thank you for your attention.

Questions?
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