
Front.Comput.Sci.
DOI

RESEARCH ARTICLE

Design and Formal Verification of a CEM Protocol
with Transparent TTP

Zhiyuan LIU 1, Jun PANG 2, Chenyi ZHANG3

1 School of Management Science and Engineering, Shandong Normal University, Jinan 250000, China
2 Faculty of Science, Technology and Communication, University of Luxembourg, Luxembourg 1359, Luxembourg

3 School of Information Technology and Electrical Engineering, University of Queensland, QLD 4072, Australia

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Abstract In certified email (CEM) protocols, TTP trans-

parency is an important security requirement which helps to

avoid bad publicity as well as protecting individual users’pri-

vacy. Cederquist et al. proposed an optimistic certified email

protocol, which employs key chains to reduce the storage re-

quirement of the trusted third party (TTP). We extend their

protocol to satisfy the property of TTP transparency, using

existing verifiably encrypted signature schemes. An imple-

mentation with the scheme based on bilinear pairing makes

our extension one of the most efficient CEM protocols satis-

fying strong fairness, timeliness, and TTP transparency. We

formally verify the security requirements of the extended pro-

tocol. The properties of fairness, timeliness and effectiveness

are checked in the model checker Mocha, and TTP trans-

parency is formalised and analysed using the toolsetsµCRL

and CADP.

Keywords fair exchange, CEM protocols, fairness, TTP

transparency, formal verification

1 Introduction

Certified email (CEM) protocols, as an extension of regular

email services, require that both senders and receivers be re-

sponsible for their roles in the email services. That means,

as a protocol successfully runs to the end, neither the sender

can deny the dispatch of the email, nor can the receiver deny

the receipt. Such requirements are usually implemented by

Received month dd, yyyy; accepted month dd, yyyy

E-mail: jun.pang@uni.lu

a non-repudiable evidence of origin(EOO) that is to be ac-

quired by the receiver, and anon-repudiable evidence of re-

ceipt (EOR) that is to be acquired by the sender. Both the

EOO and theEOR may serve as evidences in case of a dis-

pute, in order to prove the participation of the other party.

As a special class of fair exchange protocols [1], a CEM

protocol is supposed to guaranteefairnesswith respect to

non-repudiable evidences. Informally, at the end of a fair pro-

tocol run, either both parties acquire all the evidences, orno

party gets an evidence. Atrusted third party(TTP) might

be introduced to take charge of the whole procedure and to

provide undeniable records of submission (from the sender)

and delivery (to the receiver). However in this way, a TTP

may easily become a bottleneck, if she has to be involved in

a large number of CEM services. A better solution, so called

optimisticprotocols [2], helps to release this burden from a

TTP. In the optimistic protocols, a TTP is only required to be

involved in case of unexpected events, such as a network fail-

ure or one party’s misbehaviour, to restore fairness. In such

situations, a TTP may digitally sign some pieces of informa-

tion, which will be used later as evidences to guarantee that

the protocol ends in a fair state. If both the signer and the

receiver behave correctly and there is no presence of signifi-

cant network delays, a CEM protocol terminates successfully

without intervention of the TTP. A typical structure of an op-

timistic CEM protocol consists of anexchangesub-protocol,

an abort sub-protocol and arecoverysub-protocol. The ex-

change sub-protocol is executed by the communicating par-

ties to deliver an email as well as exchanging undeniable ev-

idences. The other sub-protocols are launched by a party to

2
Zhiyuan LIU et al. Design and Formal Verification of a CEM Protocol

contact a TTP to deal with awry situations.

We assume weaker attackers than the Dolev-Yao adver-

saries [3], in that we do not allow an attacker to block chan-

nels, forge messages or impersonate other users. Instead, we

assumeresilient channels between the communicating par-

ties, so that every message is guaranteed to arrive at its re-

ceiver eventually, which is especially critical to satisfaction

of the fairness requirement. In practice, resilient channels

can be guaranteed by physical devices, or be approximated in

non-resilient networks by means of software such as the SSL

protocol for Internet users. Our work is based on a general

concept of resilient channel that has abstracted away all de-

tailed implementations that are mentioned above. Forgeries

of messages are handled by the assumption on the crypto

strength used by the protocols. We also assume appropriate

authentication mechanisms that forbid impersonation of users

to happen in our scenario. More specifically, in our attacker

model we focus on the dishonest (or malicious) behaviours

of users in CEM protocols. A dishonest user may send out

a message if he gets enough information for generating the

message. He can even send messages after he is supposed to

stop. He can send out a wrong message, or withhold a mes-

sage that he is required to send out at a certain point. Fur-

thermore, a dishonest user may quit at any time, or refuse to

stop at a point where his role in the protocol is required to

stop. This type of attacker model is generally treated in the

analysis of fair exchange protocols, e.g., see [4–12], which

allows us to focus on the actual protocol design aiming to the

properties of fairness, timeliness and TTP-transparency,and

thus significantly reduces the complexities in the modelling

phase when using tools Mocha andµCRL/CADP.

TTP transparencystates that if a TTP has been contacted

to help in a protocol, the resulting evidences will be the same

as those obtained in the case where the TTP has not partici-

pated. In other words, by simply looking at the evidences, it

is impossible to detect whether the TTP has been involved or

not. Transparent TTPs are important and useful in practice,

for instance, to avoid bad publicity. Besides, in many situa-

tions, an institution does not necessarily keep the up-to-date

signatures or affidavits from all trusted services (especially

when a TTP, who is trusted by the two parties involved in the

protocol, maynot be trusted by an external judge who is to

verify the presented evidences). Moreover, this property also

ensures privacy of the participants for asking for help from

TTPs. In the context of CEM protocols, the use of a trans-

parent TTP was first proposed by Micali [13], followed by a

number of works [14–22], in which different cryptographic

schemes are used to achieve TTP transparency, such as in-

teractive proof of knowledge on the encrypted signatures,

Schnorr-like signature schemes, and RSA-based encryption

schemes.

In this paper, we focus on the development of a CEM pro-

tocol with a transparent TTP. Our starting point is the key

chain based protocol of Cederquist et al. [23]. The use of

key chains is to reduce TTP’s storage requirement. Our study

exposes a weakness in the original protocol, for which we

propose a fix. Later we extend Cederquist et al.’s proto-

col to satisfy TTP transparency, adopting a recently intro-

duced verifiably encrypted signature scheme [24]. We are

able to show, by a detailed comparison, that our protocol is

one of the most efficient CEM protocols satisfyingTTP trans-

parency, in addition to the other important properties such as

strong fairness, timeliness, andeffectiveness. Furthermore,

we show that our protocol satisfies the desired properties, by

incorporating formal verification techniques. The finite-state

model checker Mocha [25] is used to verify the properties

of fairness, timeliness and effectiveness, that are naturally

interpreted in alternating-time temporal logic (ATL) formu-

las with game semantics [26]. The verification of properties

expressed in ATL corresponds to the computation of win-

ning strategies. Another toolsetµCRL [27, 28] is used for

TTP transparency, which requires a comparison of observ-

able traces in various situations. TheµCRL toolset has the

ability of generating state spaces that can be visualised and

manipulated by the toolbox CADP [35] which acts as a back-

end ofµCRL. Preliminary results in this paper have been re-

ported [36,37].

Contributions. Our contributions are bifold. First we im-

prove the work of Cederquist et al., by fixing a weakness in

that version of the protocol and extending it to support TTP

transparency. We also measure the complexity of our proto-

col in terms of timing consumption comparable to RSA sig-

natures. The other contribution is the formal verification of

the security properties in Mocha andµCRL/CADP. In partic-

ular, to the best of our knowledge it is the first formal analysis

of TTP transparency in a symbolic way.

Structure of the paper. We introduce security properties

for CEM protocols in Sect. 2. The CEM protocol using

key chains is briefly described in Sect. 3. Our extension

with transparent TTP and its informal analysis are detailed

in Sect. 4. We compare our proposed protocol with some

state-of-the-art CEM protocols supporting TTP transparency

in Sect. 5. Formal verification of our protocol with Mocha

andµCRL is presented in Sect. 6. We conclude the paper in

Sect. 7.

Front. Comput. Sci.
3

2 Security Requirements

A CEM protocol needs to protect a participant who ishonest,

i.e., his behaviour strictly follows the protocol specifications.

To this point, for the sake of readability, we write Alice for

the sender and Bob for the receiver of an email. We assume

the communication channels areresilient, in the sense that

every message is guaranteed to reach its destination eventu-

ally. The following properties are typically required for an

optimistic CEM protocol. There are more properties, such as

confidentiality, stateless TTP, accountability, andhigh per-

formance, which we do not discuss in this work.

Effectiveness.If no error occurs then the protocol success-

fully runs till the end without any intervention from TTP.

Timeliness. Both Alice and Bob have the ability to eventu-

ally finish the protocol anywhere during the protocol execu-

tion. This is to prevent endless waiting of an honest party.

Fairness. Honest Alice (Bob) will get her (his) evidences,

provided that the other party gets the evidence from her (him).

The evidences can be used to convince an external judge (who

is not TTP) that Bob has received the mail, in Alice’s case, or

that Alice is the true sender of the message, in Bob’s case. A

protocol satisfiesstrong fairnessif every judgement on Bob’s

(Alice’s) non-repudiation can be made solely and indepen-

dently from Alice’s (Bob’s) evidences, i.e., it does not nec-

essarily involve TTP, nor the participation of Bob (Alice).If

besides Alice’s (Bob’s) evidences, either TTP or Bob (Alice)

needs to be contacted during the judgement, the protocol only

satisfiesweak fairness.

TTP transparency. If a protocol runs successfully to the

end, then the evidence that each participant obtains is of the

same format regardless of whether TTP is involved in the pro-

tocol execution or not.

3 A CEM Protocol using Key Chains

We describe the certified email protocol proposed by Ced-

erquist et al. [23]. It makes use of key chains to reduce

TTP’s storage requirement. Once a key chain is initialised

between two communication parties, the initiator can use any

key within the chain to encrypt messages. Each exchange

that uses the protocol to deliver an email (which may involve

a number of message passings) is called aprotocol round,

and one initialisation phase followed by a number of proto-

col rounds is called aprotocol session. Each protocol session

Fig. 1 A key chain.

belongs to a unique pair of communication parties. We focus

on the main idea of the protocol, with its details available in

the original paper [23].

We use{M}k to denote a messagemencrypted with a sym-

metric keyk, and (M)P to denote partyP’s signature on mes-

sageM. In practice a signature is always applied on a hashed

value, usually by a user’s private (or sometimes called, secret)

key.

3.1 Key chain generation

In optimistic CEM protocols, communicating parties will re-

quest TTP for help if the exchange process is disrupted. To

achieve (strong) fairness, the TTP often needs to store suffi-

cient amount of information, to have the ability to decrypt,re-

trieve or send out information for the protocol to finally reach

a fair state. In most existing CEM protocols, the initiator uses

either TTP’s public key [17] or a separate key [19] to encrypt

the email for each exchange. This first method normally re-

quires asymmetric key operations, which are more expensive

than symmetric key operations. The second method gives

TTP burden of storing information of exchanges, such as se-

cret keys, involved parties, hash values of email content and

so on [38]. The amount of information that TTP needs to

store blows up especially when there are a huge number of

protocol executions running in parallel, some of which are

between the same pair of sender and receiver.

To reduce the TTP’s burden of storing too much informa-

tion, the protocol [23] useskey chains. A chain of keys is

a sequence of keysK′0, . . . ,K
′
n (see Fig. 1), such thatK′i :=

H(Gi(K0)) for eachi ≥ 0, whereK0 is the seed,H : κ → κ

is a publicly known one-way collision-resistant hash function

andG : κ → κ is a publicly known acyclic function (κ is a key

domain).H andG functions are non-commutative, i.e., given

anH(Ki) for whichKi is unknown, it is infeasible to compute

H(G(Ki)).

4
Zhiyuan LIU et al. Design and Formal Verification of a CEM Protocol

3.2 Initialisation

To initialise a session, the initiator Alice (A) sends the key

chain seedK0 and the identity of the potential responder Bob

(B), together with a noncenc to the TTP (T). TTP will

check whether there already exists an entry〈A, B,K0, ⋆〉 in

her database indicating whether the key chain has been estab-

lished. If yes, TTP just ignores this request. Otherwise, TTP

will choose a session identitysid, send acert := (A, B, sid)T

to Alice, and store〈A, B,K0, sid〉 in her database.

3.3 Exchange sub-protocol

The ith protocol round in a protocol sessionsid is described

below. The round numberi is initially 0 and then can arbi-

trarily grow, and Alice incrementsi after each round.

1ex. A→ B : A, B,T, i, sid,h(K′i), {M}K′i ,EOOM , cert
2ex. B→ A : EORM

3ex. A→ B : K′i
4ex. B→ A : EORK′i

where EOOM := (B,T, i, sid,h(K′i), {M}K′i)A, EORM :=

(EOOM)B, EORK′ := (A,K′i , {M}K′i)B andh is just an ordi-

nary hash function.

At first, Alice sends out message 1ex to Bob. After re-

ceiving this, Bob checks the correctness of the signature on

EOOM andcert. If both are correct, Bob then commits him-

self to receiving the email by sending out message 2ex. When

Alice receives 2ex, she checks the signature onEORM. If cor-

rect, Alice will send outK′i to Bob. Upon receiving the key,

Bob checks whether this key matches the hash value of the

key that he received in message 1ex. If yes, Bob decrypts the

email and sends out a confirmationEORK′ to indicate that he

has received the key and the email.

3.4 Recovery sub-protocol

Both Alice and Bob have the right to run recovery sub-

protocol by showingEORM. The recovery sub-protocol is

mainly run with the aim of acquiring keyK′i or evidence

EORK′ with the help of TTP. Typically, Alice runs the re-

covery sub-protocol when she sends out keyK′i while not

receiving message 4ex, and Bob runs it when he sends out

EORM while not receivingK′i .

After receiving a recovery request from a partyp ∈ {A, B}

of the form:

1r . P→ T : fr ,A, B,h(K′i),h({M}K′i), i, sid,EORM

where fr is a flag used to identify the recovery request, TTP

checks several things such as correctness of signatures, iden-

tities, entries for the key chain. If all checks succeed, TTPcan

retrieveK0 and verify whetherh(H(Gi(K0))) matchesh(K′i).

If yes, TTP looks up the status of roundstatus(i), to check

whether roundi has been resolved or aborted. Essentially,

if status(i) has not been set, TTP will set it ash({M}K′i) and

send back arecovery token(A, B,h({M}K′i),K
′
i , i, sid)T to the

requester. If the round is aborted (status(i) = a), TTP will

send back anabort token(A, B,h({M}K′i),⊥, i, sid)T . If the

status is different fromh({M}K′i) or any of the above tests

fails, TTP will send back anerror message in the form of

(error, (error,mr)T), wheremr is the content of the message

in step 1r . This error message indicates a misbehaviour and

P can quit the protocol round.

3.5 Abort sub-protocol

Only Alice can abort, if presumably the current protocol

round has not yet been recovered. Typically, Alice may abort

if she does not receive message 2ex. To abort an exchange,

Alice sends TTP the following message:

1a. A→ T : fa,A, B, i, sid,h({M}K′i),abrt

where fa is a flag used to identify the abort request and

abrt is Alice’s signature on the abort request. After receiv-

ing this request, TTP checks several things such as correct-

ness of signatures, identities, entries for the key chain, and

status(i) to make decisions. Ifstatus(i) has not been ini-

tialised, TTP will set it as aborted (status(i) := a) and send

back an abort token. If the round is recovered, TTP checks

whetherstatus(i) = h({M}K′i). If yes, TTP will send back

a recovery token. Otherwise, an error message of the form

(error, (error,abrt)T) is sent back.

3.6 Evidences and dispute resolution

When a dispute occurs, two parties can provide evidences to

an external judge. For each protocol roundi, EOO (evidence

of origin) desired by Bob consists of

A, B,T,M, i, sid,K′i ,EOOM .

EOR (evidence of receipt) desired by Alice consists of

A, B,T,M, i, sid,K′i , cert,EORM ,EORK′ .

if it is obtained by running the exchange sub-protocol. If

Alice uses the recovery/abort sub-protocol, thenEORM and

EORK′ will be replaced by the recovery token. In this case,

EOR has the form of

A, B,T,M, i, sid,K′i , cert, (A, B,h({M}K′i),K
′
i , i, sid)T .

Front. Comput. Sci.
5

As already remarked [23], the protocol is not TTP transpar-

ent, due to the fact that an observer can tell whether TTP was

involved by simply checkingEOR.

3.7 A vulnerability of the protocol

We found a vulnerability in the protocol. This vulnerability

is mainly due to the form ofEORK′ that does not include any

information about the current protocol roundi. An EORK′ in

such form can be reused in different protocol rounds, which

causes a breach on fairness.

Fig. 2 depicts a scenario where dishonest Alice breaks

strong fairness of honest Bob by reusingEORK′ . This attack

requires multiple protocol rounds, which is sketched as fol-

lows. Alice first initiates an exchangei by sending out 1ex, in

which she usesK′i+1 instead ofK′i to encrypt the message, and

gets the correspondingEORM, then does nothing for roundi.

Alice initiates another roundi+1 with Bob, and behaves hon-

estly in order to acquire correctEORM andEORK′ for round

i + 1. The attack from Alice is based on the fact thatEORK′

used in both roundsi andi + 1 are of exactly the same form,

(A,K′i+1, {M}K′i+1
)B. At this moment, Alice has acquired all

the necessary evidences for roundi, leaving Bob in an unfair

state. If Bob initiates a recovery sub-protocol, TTP will send

back nothing but an error message because of the mismatch

betweenh(K′i) andh(K′i+1). As a result, for roundi, strong

fairness is broken. In order to fix this problem, we decide to

reviseEORK′ to be of the form (A, i,K′i , {M}K′i)B, by adding

the current protocol round numberi.

4 Protocol Design

We present an extension of the protocol in the previous sec-

tion to support transparency of TTP. Our approach requires

the usage of averifiably encrypted signature schemeto en-

code Bob’s commitment to receive the email in message 2ex.

Notations. We write (M)B|T for Bob’s verifiably encrypted

(partial) signature onM, by using the public key of TTP to en-

crypt Bob’s signature onM. Everyone can verify that (M)B|T

is authentic, but only TTP and Bob are able to ‘extract’ the

complete signature (M)B out of (M)B|T .

Exchange sub-protocol.The modified exchange sub-protocol

is as follows:

1ex. A→ B : A, B,T, i, sid,h(K′i), {M}K′i ,EOOM , cert

2ex. B→ A : EOR
1
2
M

3ex. A→ B : K′i
4ex. B→ A : EORM

B i+1 A B i

EOOM i
:= (B,T, i,sid,h(K ′i+1),{M }sK i + 1

)A

A,B,T, i,sid,h(K ′i+1),

EOOM i
,{M }sK i + 1

,cert

EOOM i + 1
:= (B,T, i +1,sid,h(K ′i+1),{M }sK i + 1

)A

A,B,T, i +1,sid,h(K ′i+1),

EOOM i + 1
,{M }sK i + 1

,cert

EORM i
:= (EOOM i

)B

EORM i

EORM i + 1
:= (EOOM i + 1

)B
Recover

EORM i + 1

K ′i+1

EORK ′i + 1
:= (A,K ′i+1,{M }sK ′i + 1

)B

EORK ′i + 1

Fig. 2 A vulnerability on the CEM protocol using key chains [23].

whereEOR
1
2
M := (EOOM)B|T . After receivingEOOM, Bob

sends out his partial signature onEOOM to show his commit-

ment to receive the email. If Alice further sends Bob the key

K′i , Bob will deliver a full signature back to Alice asEOR.

Abort and recovery sub-protocols.Alice is allowed to abort

provided that she has sent out message 1ex, but has not re-

ceived message 2ex from Bob. Once honest Alice and Bob

contact TTP, they are not allowed to continue the exchange

sub-protocol.

Alice is allowed to launch the recovery sub-protocol pro-

vided that she has sent out message 3ex, but has not received

message 4ex. Similarly, Bob can launch the recovery sub-

protocol if he has sent out message 2ex, but has not received

message 3ex. The first message of the recovery sub-protocol

for Alice is

1r
A. A→ T : fr ,A, B,h(K′i),h({M}K′i), i, sid,EOR

1
2
M ,EOOM

where fr is a flag used to identify the recovery request. The

first message of the recovery sub-protocol for Bob is

1r
B. B→ T : fr ,A, B,h(K′i),h({M}K′i), i, sid,EORM ,EOOM

On receipt of a message for recovery, TTP needs to

check (1) the correctness of (verifiably encrypted) signatures

on EOOM and EORM (EOR
1
2
M), (2) the identity of TTP,

and (3) whether there is an entry in its database matching

〈A, B, ⋆, sid〉. If all the above checks succeed, TTP will re-

trieveK0 and (4) check whetherh(H(Gi(K0))) matchesh(K′i).

If yes, TTP will look upstatus(i) for roundi.

6
Zhiyuan LIU et al. Design and Formal Verification of a CEM Protocol

• If status(i) has not been initialised, TTP will set

status(i) := h({M}K′i). Whenever necessary TTP con-

vertsEOR
1
2
M into EORM. After that, TTP sends out the

following messages.

2r . T → B : K′i
3r . T → A : EORM

• If status(i) = h({M}K′i), then TTP performs step 2r and

step 3r (again).

• If status(i) = a, TTP sends out the abort token to the one

that launched the protocol.

2r . T → A(B) : abrt, (abrt)T

If any of the tests (1), (2), (3) and (4) fails, TTP ignores the

recovery request and sends back an error message.

2r . T → A(B) : error, (error,mr)T

wheremr is the whole message received in step 1r
A or 1r

B.

Evidences and dispute resolution.When a disputation occurs,

two parties can provide evidences to an external judge. For

each protocol roundi, EOO (evidence of origin) desired by

Bob consists of

A, B,T,M, i, sid,K′i ,EOOM .

EOR (evidence of receipt) desired by Alice consists of

A, B,T,M, i, sid,K′i , cert,EORM .

4.1 Security Analysis

As a special feature, the key chain provides an opportunity

for Alice and TTP to have a predefined infinite list of sym-

metric keys. We assume thatK0, the seed of the chain, is a

secret between Alice and TTP during related protocol exe-

cutions. We restrict our attention to a single protocol round.

For multiple rounds a weakness related to key chains has been

identified and fixed, but the same vulnerability does not apply

in the revised protocol in whichEORK′i
is no longer used. In

the following we informally justify that the revised protocol

satisfies the claimed security properties.

Non-repudiation and fairness.If in round i Alice possesses

EORM, we need to show that Bob must receive{M}K′i , K′i
andEOOM in the same roundi. There are three cases.

1. Alice receivesEORM from Bob in message 4ex, i.e.,

only the exchange sub-protocol is launched and it suc-

cessfully runs to the end, during which Bob obtains

EOOM, {M}K′i andK′i .

2. Alice receivesEORM from message 3r by launching

the recovery sub-protocol herself, i.e., sending out 1r
A.

Then Alice must possessEOR
1
2
M from Bob’s message

2ex, which means Bob must have received 1ex and ob-

tained bothEOOM and{M}K′i . Then in the recovery sub-

protocol, TTP must have sent message 2r from which

Bob obtainsK′i .

3. Alice receivesEORM from message 3r by Bob launch-

ing the recovery sub-protocol. Then Bob must have re-

ceived 1ex and have shownEOOM to TTP, i.e., Bob ob-

tains bothEOOM and {M}K′i , and in message 2r Bob

receivesK′i from TTP.

Furthermore, in case of a dispute,EORM alone from Alice is

sufficient to prove that Bob has receivedM.

If in round i Bob possessesM, EOOM andK′i , we need to

show that (1) Alice must receiveEORM in the same roundi,

and (2) Alice is the true sender ofM. We know Bob can only

receive{M}K′i andEOOM from 1ex. There are two cases.

1. Bob receivesK′i from Alice, then the exchange sub-

protocol runs at least up to message 3ex. Bob may send

4ex to Alice which containsEORM. If Bob does not

send out 4ex, Alice can always getEORM from TTP by

launching the recovery sub-protocol.

2. Bob receivesK′i from TTP in the recovery sub-protocol.

No matter who lauched the recovery sub-protocol, Alice

getsEORM in message 3r (from TTP).

As to the authenticity of the messageM, Bob is able to con-

vince every third party thatM is indeed from Alice by ver-

ifying Alice’s signature onEOOM, after extractingM from

{M}K′i with Ki . Note thatK′i is also verified as its hashed value

is contained inEOOM too. Since presenting (M,EOOM ,K′i)

is sufficient for Bob to prove thatM is originally from Alice,

together with the aboveEORM case for Alice, the protocol

satisfiesstrong fairness.

Effectiveness.Suppose both Alice and Bob are honest, so that

they faithfully follow the protocol in roundi, and no error oc-

curs, e.g., there is no significant network delays. It is obvious

that only the exchange sub-protocol is launched, and it will

stop at a state in which Alice obtainsEORM, and Bob obtains

bothM andEOOM.

Timeliness. In round i Alice can always launch the abort

sub-protocol after she sends out message 1ex, so that TTP

will send back either an abort token orEORM depending on

whether a recovery message has already arrived at TTP or

not. Bob can launch the resolve sub-protocol any time after

he receives message 1ex and will get either an abort token or

Front. Comput. Sci.
7

K′i , depending on the communication between Alice and TTP.

The resilient channels between TTP, Alice and Bob guaran-

tees that the above procedures terminate in a timely manner.

Transparency of TTP.If the exchange sub-protocol success-

fully runs to the end, Alice’s evidence isEORM, and Bob’s

evidences areM, EOOM andK′i .

• Suppose the recovery sub-protocol is launched by Al-

ice, then Alice must have message 2ex which contains

EOR
1
2
M, and Bob must have message 1ex which contains

{M}K′i andEOOM. If TTP successfully verifiesEOOM

andEOR
1
2
M, TTP will convertEOR

1
2
M into EORM and

send it back to Alice. Consequently TTP sendsK′i to

Bob. In this case both Alice and Bob have the same evi-

dences as only the exchange sub-protocol is launched.

• Suppose the recovery sub-protocol is launched by Bob,

then Bob must have message 1ex. If TTP successfully

verifies EOOM and EORM, TTP will forward EORM

to Alice, and sendK′i to Bob, so that they get the same

evidences in this case too.

In the next section, we discuss a particular signature

scheme and our motivation to implement it in our protocol.

4.2 Verifiably Encrypted Signature Schemes

There is a variety of fair exchange protocols with verifi-

ably encrypted signatures (some of which are also called

convertible signatures) existing in the literature. Some of

the earliest, such as Asokan et al. [39], Bao et al. [40],

Boyed and Foo [41], and Camenisch and Damgård [42], ap-

ply interactive proof of knowledge on the encrypted signa-

tures, such that more message exchanges are required in the

protocols. Several later approaches use Schnorr-like signa-

ture schemes to wrap up signatures, such as by Ateniese

and Nita-Rotaru [16], or RSA-based encryption schemes,

such as by Markowitch and Kremer [14]. The GPS+RSA

scheme used in [14] has been shown an attack by Cathalo et

al. [43]. Another attack on fairness proposed by Bao [44]

is applicable on several of the signature schemes discussed

in [45]. More recently, pairing algorithms for solving the De-

cision Diffie-Hellman problem in Gap Diffie-Hellman groups

have been introduced to generate verifiably encrypted signa-

tures [24,46]. We briefly sketch the scheme of [24] below.

Let G1 be a cyclic additive group generated byP with

prime orderq, andG2 be a cyclic multiplicative group with

the same orderq. Let e : G1 × G1 → G2 be a pairing

operation satisfyingbilinearity, i.e., e(aX,bY) = e(X,Y)ab

for all X,Y ∈ G1 and a,b ∈ Zq. The signature scheme is

as follows. SupposeG1, G2, P, e, q and H are all pub-

licly available, whereH : {0,1}∗ → {0,1}λ is a crypto-

graphic hash function andλ is the length of the (private) key.

A user sets upx ∈ Zp as his secret key, andX = x · P

for the corresponding public key. A signature on message

M is S = 1
H(M)+x · P. To verify the signature, one only

needs to check ife(H(M) · P + X,S) = e(P,P), note that

e(H(M) ·P+ x ·P, 1
H(M)+x ·P) = e(P,P)(H(M)+x)· 1

H(M)+x , by bilin-

earity. To produce a verifiably encrypted signature, suppose

TTP has private keyy ∈ Zq and public keyY = y · P ∈ G1,

the new signature onM becomesS′ = 1
H(M)+x ·Y, with TTP’s

public key replacingG1’s group generatorP. To verify one

only needs to check ife(H(M) · P+ X,S′) = e(P,Y). TTP is

able to get the true signatureS by computingy−1 · S′, where

y−1 is the inverse of TTP’s private keyy (in G2). Note that

when applying this scheme to our extended protocol, both

e(P,P) ande(P,Y) can be precomputed, thus reduces compu-

tation cost for the whole session.

We choose the algorithm in [24] since it requires fewer

pairing operations than the algorithm in [46]. Moreover, there

exist efficient pairing algorithms that implements pairing op-

erations on elliptic curve-based point groups consuming time

comparable to that of the RSA signatures of the same secu-

rity level. It was studied in [47] that one 256-bit (prime field)

pairing operation takes about 15 million clock cycles on a

Core 2 Duo processor, which is the most expensive operation

in the signature scheme.1) According to [48], a 3072-bit RSA

encryption (with a small exponent) takes about 620,000 and

a decryption takes about 28.6 million cycles on a Core 2 Duo

processor.2) In practice, 3072-bit RSA signatures are of com-

parable security strength to 256-bit pairing-based signatures.

5 Comparison

Our protocol supports TTP transparency, i.e., on the com-

pletion of a protocol run, the final structure and contents of

the evidences possessed by both parties do not reveal whether

TTP has intervened in the protocol or not. There are a number

of CEM protocols in the literature (e.g. [14–22]) that supports

the transparency of TTP, as listed in Tab. 1. The protocol pre-

sented in this paper is the only one that satisfies strong fair-

1) One 256-bit (prime field) pairing operation takes roughly 43 times as
much as that of one point scalar multiplication [47], therefore, we ignore low
cost operations such as point scalar multiplication and inverse operation in
such signature schemes.

2) If we implement the exponentiation algorithm by using Chinese
Remainder Theorem, it will take roughly 22 million cycles with the
mpz_powm_sec() function on a Core 2 Duo processor [48], which is still
of comparable speed.

8
Zhiyuan LIU et al. Design and Formal Verification of a CEM Protocol

ness, timeliness and TTP transparency with a relatively low

cost, to our knowledge.

In the above table, if the correctness of a protocol does not

depend on any class of signature schemes, we write down that

the protocol isgeneric. In such cases, the particular signature

scheme is irrelevant, and the usage of verifiably encrypted

signatures or convertible signatures is not required. We use

“strong∗” to indicate that it is claimed in the paper that the

protocol satisfies strong fairness, but there exist attacksin the

literature showing that the claim is invalid. All the protocols

in the table satisfy TTP transparency, but they differ on other

security properties such as timeliness and fairness. We also

make comparisons on the number of messages as well as the

computational costs as required by the protocols. We write

“#msg” for the number of messages in the exchange sub-

protocol and “#op” for the amount of computation equivalent

to the number of RSA signature operations, i.e., we interpret

other cryptographic operations as the number of RSA signa-

tures referring to the best existing algorithms in the literature.

5.1 Timeliness

Only three protocols support timeliness (those of Wang [19],

Markowitch and Kremer [14] and ours). In most cases the

lack of timeliness is due to the fact that Alice is not allowed

to abort after the first message. This design may trap Alice

in a deadlock state, waiting forever on Bob’s reply, without

any effective ways to escape. Micali’s protocol [17] satisfies

weak timeliness by using acut-off time, which indicates a

deadline moment to resolve in a protocol run, in order to pre-

vent endless waiting. However, this might cause problems if

Alice and Bob cannot correctly estimate time differences be-

tween their local clocks and TTP’s clock. Furthermore, in a

real situation such a mechanism might enforce Bob to contact

TTP as early as possible instead of replying to Alice if Bob is

keen to proceed the current run.

5.2 Fairness

All the protocols except Wang’s satisfy (or claim to satisfy)

strong fairness. Wang’s protocol [19] is not strongly fair,

since when Alice is presenting Bob’sEOR from the second

message, an external judge has to contact either TTP or Bob

in order to confirm that Alice has not aborted in the current

run. If Alice has successfully aborted before Bob launches

the recovery sub-protocol, and Alice has received the second

message, Bob will not be able to obtain the key if Alice re-

fuses to send out the third message. Micali’s protocol [17]

and Imamoto and Sakurai’s protocol [15] are vulnerable to

replay attack if Bob colludes with an outsider [49]. Both pro-

tocols in the work of Markowitch and Kremer [14] are shown

to be unfair by Gürgens et. al [38], in the way that if Bob col-

ludes with an outsider, he is able to gain access to the mes-

sageM without sendingEORM back to Alice, by recovering

the other protocol run with the outsider.3) Moreover, the GPS

scheme used by the second protocol in [14] has been proved

insecure by Cathalo et al. [43]. Nenadić et al.’s protocol ap-

plies a particular RSA based verifiable encryption scheme,

which has been shown that Bob is able to send an invalid

partial signature which is undetectable by Alice and which

is not recoverable by TTP [20]. Nevertheless, the protocol

presented in [20] is also identified with a similar attack by

Hwang and Lai [22]. So far there exist no attacks on the fair-

ness of Ateniese’s protocol [16], Hwang et al.’s protocol [22]

and Liang et al.’s protocol [21].

5.3 Efficiency

We concentrate on the amount of computation time that is in-

volved in the exchange sub-protocol. The overloads of the

abort and recovery sub-protocols are not considered, as such

events are supposed to occur rarely. We defineone opera-

tion as one 3072-bit RSA signature operation. As to the RSA

scheme, the most time-consuming operation is modular ex-

ponentiation, and the ratio of the time taken for a modular

exponentiation operation to the time taken for a single mod-

ular multiplication is linearly proportional to the exponent’s

bit length [50]. Therefore, we ignore single modular multipli-

cations and the less time consuming algorithms such as sym-

metric encryption/decryption and hashing in protocols. For

pairing operations, in practice one 256-bit pairing operation

can be faster than generating one 3072-bit RSA signature.

As a conservative estimation we assume that verifying one

pairing-based signature, which is the most time-consuming

operation in pairing-based signature schemes, also takesone

operation. We omit the time used to generate a pairing-based

signature as well as that used to verify an RSA-based sig-

nature in the analysis. For generic protocols we assume the

RSA 3072-bit signature is used. In practice, they may choose

faster schemes such as those of 256-bit elliptic curve cryp-

tography (ECC) signatures.

From Tab. 1, we conclude that the first three generic

schemes are the most efficient, since they only need three

messages in the exchange sub-protocol and at most 4 oper-

ations in computation. Nevertheless, none of them achieves

3) This attack does not work on our key-chain based approach, because ev-
ery key chain is uniquely associated to a pair of sender and receiver. Bob and
the colluding party are unable to recover from TTP unless Alice is involved.

Front. Comput. Sci.
9

Protocol Scheme Fairness Timeli. #msg #op

IS02 [15] generic strong∗ No 3 4
Micali03 [17] generic strong∗ weak 3 4
Wang06 [19] generic weak Yes 3 2
MK01 [14] RSA-based strong∗ Yes 4 7
AN02 [16] RSA-based strong No 4 7

NZB04 [18] RSA-based strong∗ No 4 4
MLCL06 [20] RSA-based strong∗ No 4 8

HL08 [22] RSA-based strong No 4 6
LCLQ08 [21] bilinear pair strong No 4 5
Our protocol bilinear pair strong Yes 4 3

Table 1 An overview of CEM protocols satisfying TTP transparency.

TTP transparency, strong fairness and timeliness at the same

time. As to the other four RSA based protocols, the num-

ber of operations varies from 4 to 8. In our protocol, it takes

time equivalent to only 3 operations, since only 3 pairings

are required (Bob needs to verify Alice’s signature in mes-

sage 1ex, Alice needs to verify Bob’s signature in message

4ex and Bob’s encrypted signature in message 2ex). A signing

operation in pairing-based scheme takes negligible amount

of time. From Tab. 1, only our protocol achieves all the three

desirable properties – strong fairness, TTP transparency and

timeliness – with a relatively low cost.

6 Protocol Verification

We have shown that our extension is one of the most efficient

CEM protocols satisfyingTTP transparency, in addition to

the other important properties such asstrong fairness, effec-

tiveness, andtimeliness. The justifications to our claims are

carried out on a rather informal level. In this section, we

intend to put our analysis one step further, by incorporating

formal verification techniques.

It has been acknowledged that formal verification is impor-

tant for security protocols, because of the seriousness of se-

curity flaws. In this section, we apply model checking to au-

tomatically verify whether a given model of CEM protocols

satisfy some given specifications. To our knowledge, the lit-

erature of formal verifications of CEM protocols includes the

works of Kremer et al. [4], Cederquist et al. [51] and Abadi

and Blanchet [52].

To formally analyse whether a security protocol achieves

its design goals, first we have to specify the protocol in a for-

mal language, and then express specifications for the desired

properties. The model checker Mocha [25] allows specifica-

tion of models as concurrent game structures, and verification

of properties in ATL (Alternating-time Temporal Logic) [26]

formulas with game semantics, which is suitable for check-

ing properties such asfairness, effectivenessand timeliness.

For the analysis of TTPtransparency, our main idea is to

compare execution traces containing evidences acquired in

different situations. This methodology needs to put multiple

traces together, which is not supported in most of the exist-

ing model checkers, including Mocha. Therefore, a process

algebraic languageµCRL and its toolset [27,28] are used.

6.1 Mocha andµCRL

Mocha [25] is an interactive verification environment for the

modular and hierarchical verification of heterogeneous sys-

tems. Its model framework is in the form of reactive mod-

ules. The states of a reactive module are determined by vari-

ables and are changed in a sequence of rounds. Mocha can

check ATL formulas, which express properties naturally as

winning strategies with game semantics. This is the main rea-

son we choose Mocha as our model checker, since properties

such as fairness and timeliness specify a user’s ability to en-

force certain outcomes. Mocha provides a guarded command

language to model the protocols, which uses the concurrent

game structures as its formal semantics. The syntax and se-

mantics of this language can be found in [25]. Assuming a

finite setΠ of propositions, an ATL formula is one of the fol-

lowing:

• p for propositionsp ∈ Π.

• ¬φ or φ1 ∨ φ2, whereφ, φ1, andφ2 are ATL formulas.

• 〈〈A〉〉©φ, 〈〈A〉〉�φ, or 〈〈A〉〉φ1Uφ2, where A⊆ Σ is a set of

players, andφ, φ1 andφ2 are ATL formulas.

ATL formulas are interpreted over the states of a concur-

rent game structure that has the same propositions and play-

10
Zhiyuan LIU et al. Design and Formal Verification of a CEM Protocol

ers [26]. The labeling of the states of a concurrent game struc-

ture with propositions is used to evaluate the atomic formu-

las of ATL. The logical connectives¬ and∨ have the stan-

dard meaning. Intuitively, the operator〈〈A〉〉 acts as a selec-

tive quantification over those paths that the agents inA can

enforce. The path quantifiers© (next),� (globally) andU

(until) carry their usual meanings as in the logic CTL, and^φ

is defined astrueUφ.

µCRL is a language for specifying distributed systems and

protocols in an algebraic style. TheµCRL language and its

toolset have been applied to the analysis of distributed sys-

tems, e.g., see [29–31] and security protocols in particular,

e.g., see [32–34]. AµCRL specification consists of two parts:

one part specifies the data types, the other part specifies the

processes. The data part contains equational specifications;

one can declare sorts and functions working upon these sorts,

and describe the meaning of these functions by equations.

Processes are represented by process terms. Process terms

consist of action names and recursion variables with zero or

more data parameters, combined with process-algebraic op-

erators. Actions and recursion variables carry zero or more

data parameters. Intuitively, an action can execute itself, af-

ter which it terminates successfully. There are two predefined

actions:δ represents deadlock, andτ represents the internal

action.p.q denotes sequential composition, it first executesp
and thenq. p+q denotes non-deterministic choice, meaning

that it can behave asp or q. Summation
∑

d:D p(d) provides

the possibly infinite choice over a data typeD. The condi-

tional constructp ⊳ b ⊲ q, with a boolean data term, behaves

asp if b and asq if not b. Parallel compositionp‖q inter-

leaves the actions ofp andq; moreover, actions fromp and

q may synchronise into a communication action, if explic-

itly allowed by a predefined communication function. Two

actions can only synchronise if their data parameters are the

same, which means that communication can be used to cap-

ture data transfer from one process to another. If two actions

are able to synchronise, then in general we only want these

actions to occur in communication with each other, and not

on their own. This can be enforced by the encapsulation op-

erator∂H(p), which renames all occurrences inp of actions

from the setH into δ. Additionally, the hiding operatorτI (p)
turns all occurrences inp of actions from the setI into τ. The

µCRL tool set [27, 28] is a collection of tools for analysing

and manipulatingµCRL specifications. TheµCRL tool set,

together with the CADP tool set [35], which acts as a back-

end for theµCRL tool set, features visualisation, simulation,

LTS generation and minimisation, model checking, theorem

proving and state-bit hashing capabilities.

6.2 Verification in Mocha

We first give a sketch of the modelling techniques in Mocha’s

specification language and discuss how it can be used to de-

scribe our extended CEM protocol. Mocha also provides a

way to express the security properties of interest in ATL for-

mulas. A more detailed report can be found in [53].

6.2.1 Modelling the protocol in Mocha

Each participant is modelled as a player (in a game), with

the description of its behaviours using the guarded command

language of Mocha. On the top level we build two models for

each participanti, Pi andPiH, to represent the dishonest and

honest behaviours of that participant, respectively. The model

PiH for honest behaviour is strictly in accordance with the

protocol, i.e., it strictly follows what the player is supposed

to do as specified in the protocol. The dishonest modelPi

allows the player to cheat, such as sending out a wrong mes-

sage, or withholding a message the participant is required to

send out at a certain point. Furthermore, a dishonest model

may quit at any time, or refuse to stop at a point where its role

in the protocol is required to stop. Note that we do not model

outside intruders, as the environment in which the CEM pro-

tocol runs assumes that potential attacks are only from dis-

honest participants.

Communication is modelled by using shared variables, as

an abstract way of representing message passing. This en-

ables us to focus on the main design mechanism of the de-

signed protocol and limit the models of the protocol to a fea-

sible size for the model checker Mocha. Evidences (EOOand

EOR), key and Emails are encoded as boolean variables

which are initialised as false and updated by its sender. We

model the action of sending out an evidence, or a message

by a guarded command in which the sender resets the corre-

sponding variables as true at the time the message is sent out.

In the model for honest participantPiH, the guard consists of

all the conditions that needs to be satisfied strictly according

to the protocol, and the following action command represents

sending of the messages as specified in the protocol. In the

dishonest modelPi , more messages (in the form of guarded

commands) are allowed at each point of time, however the

guard still needs to contain information that is necessary to

make its following message passing possible. (That is, all

components of a message need to be available before the mes-

sage is constructed and sent.) As in each transition step, the

system nondeterministically picks up one guarded command

among all the enabled ones, this way of modelling allows the

dishonest model to exhaustively and repeatedly generate all

Front. Comput. Sci.
11

possible (both ‘legal’ and ‘illegal’) behaviours.

List. 1 gives the Mocha code describing the behaviours of

honest Alice. (In this language, comment lines are starting

with ‘—’) At first, Alice can do idle actions after she initiates

a protocol round by sending outEOOM. For honest Alice,

she mainly performs two kinds of actions in the exchange

sub-protocol, which includes sending evidence of origin and

the key. They are described instep(1) and (2).S tep(1) mod-

els the action of sendingEOOM, in which we use boolean

variableshk and pa_eoo to represent the hashed value of

K′i and the message (B,T, i, sid,h(K′i), {M}K′i)A signed by Al-

ice, respectively. Settinghk andpa_eooto true means Alice

has initiated a communication with Bob by sending out her

EOOM. S tep(2) says that if Alice has received the correct

verifiably encrypted message, namelypb_hal f eormhas be-

come true, she can setk as true, which represents the action

of sending out keyK′i . Except for the exchange sub-protocol,

Alice is also able to initiate the abort protocol if she does not

receive the verifiably encrypted signaturepb_hal f eormfrom

Bob. This abort requestA_abort_req is described instep(4),

in which the guard represents the requirements for asking for

abort from TTP, and the commands represent the behaviour of

contacting TTP for abort. Besides the abort sub-protocol, Al-

ice can also initiate the recovery sub-protocol which is mod-

elled in step(6). Recovery request is modelled as a boolean

variableA_recovery_req, and it will be set to be true if the

guard is satisfied, in which thek and pb_hal f eormare true

while pb_eormis false. Note that once honest Alice initiates

a recovery or abort sub-protocol with TTP, she will not con-

tinue the exchange sub-protocol. This mechanism is realised

by modelling a boolean variableA_contacted_T. Finally, Al-

ice can stop if she receives finalEORM from Bob (step(3))

or recovery token from TTP (step(7)). Abort token (step

(5)) can also make Alice stop the protocol round. In a similar

way, we model the honest behaviours of Bob.

Listing 1 Extracted honest model of Alice

−− i d l e a c t i o n wh i le no t s topped
[] ~ pa_s top & pa_eoo−>

−− (1) A l i ce sends EOO t o Bob
[] ~ pa_s top & ~ A_contac ted_T & ~pa_eoo
−> pa_eoo ’ := t r u e ; hk ’ := t r u e

−− (2) A l i ce sends ou t key
[] ~ pa_s top & ~ A_contac ted_T

& pb_ha l feorm & ~k
−> k ’ : = t r u e

−− (3) A l i ce s t o p s
[] ~ pb_s top & ~ A_contac ted_T

& pb_eorm & ~ pa_rece_eorm
−> pa_rece_erom ’ := t r u e

−− (4) A l i ce sends a b o r t r e q u e s t

[] ~ pa_s top & ~ A_contac ted_T
& pa_eoo & ~ pb_ha l feorm
−> A_contacted_T ’ := t r u e ;

A_abor t_req ’ := t r u e
−− (5) A l i ce s t o p s a f t e r r e c e i v i n g a b o r t token

[] ~ pa_s top & A_contac ted_T
& T_abor t_send_A
−> T_abor t_ token_A ’ := t r u e ;

pa_s top ’ := t r u e
−− (6) A l i ce sends r e c o v e r y r e q u e s t

[] ~ pa_s top & ~ A_contac ted_T
& k & pb_ha l feorm & ~pb_eorm
−> A_contacted_T ’ := t r u e ;

A_recovery_req ’ := t r u e
−− (7) A l i ce s t o p s

a f t e r r e c e i v i n g r e c o v e r y token
[] ~ pa_s top & T_recovery_send_A
−> pa_rece_eorm ’ := t r u e ;

pa_s top ’ := t r u e

List. 2 describes the behaviours of dishonest Alice, her

malicious behaviours are described as follows. At first Al-

ice is allowed not only to idle, but also to stop and to quit the

protocol at any time she wants. The behaviours of sending

EOOM and the key are specified instep(1) and (2).S tep(1)

models that Alice can send out her evidence of origin by set-

ting variablepa_eooto true at any time she wants, even if she

has already contacted TTP and is supposed to stop. Together

with pa_eoo, malicious Alice still has the choice of sending

out correct hashed keyhk or incorrect hashed keyhke. Simi-

larly, step(2) specifies that Alice can send out her key at any

time she wants. If the variablek is true, it means that the cor-

rect key has been sent out. Otherwise, it represents that Alice

has not sent out any key or the key that has been sent out

is wrong. Moreover,step(3) and (4) models that Alice can

contact TTP for abort or recovery as long as she has received

enough messages, but she does not set theA_contact_T as

true. The last two steps describe the situations when Alice

has receivedEORM or an abort token from TTP.

Listing 2 Extracted dishonest model of Alice

−− i d l e a c t o i n wh i le no t s topped
[] ~ pa_s top & pa_eoo−>

−− A l i ce s t o p s
[] ~ pa_s top & pa_eoo
−> pa_s top ’ := t r u e

−− (1) A l i ce sends EOO
−−sends c o r r e c t hashed key

[] ~ pa_s top & ~pa_eoo
& ~hk & ~hke
−> pa_eoo ’ := t r u e ; hk ’ := t r u e

−−sends i n c o r r e c t hashed key
[] ~ pa_s top & ~pa_eoo & ~hk & ~hke
−> pa_eoo ’ := t r u e ; hke ’ := t r u e

−− (2) A l i ce sends key
[] ~ pa_s top & ~k −> k ’ : = t r u e

12
Zhiyuan LIU et al. Design and Formal Verification of a CEM Protocol

−− (3) A l i ce sends a b o r t r e q u e s t
[] ~ pa_s top & pa_eoo
−> A_abor t_req ’ := t r u e

−− (4) A l i ce sends r e c o v e r y r e q u e s t
[] ~ pa_s top & pb_ha l feorm
−> A_reovery_req ’ := t r u e

−− (5) A l i ce r e c e i v e s a b o r t token
[] ~ pa_s top & T_abor t_send_A
−> T_abor t_ token_A ’ := t r u e

−− (6) A l i ce r e c e i v e s recov . token
[] ~ pa_s top & T_recovery_send_A
−> pa_rece_eorm ’ := t r u e

In a similar way, we can model the dishonest behaviours of

Bob.

List. 3 models the corresponding behaviours of TTP. TTP

is a special player that has to be modelled in a particular way.

It must be objective, and cannot act in collusion with proto-

col participants. We build the model for TTP that strictly fol-

low the protocol. For each protocol round, we use a variable

T_stateABto record the status of protocol.T_stateABhas

three possible values, which areabrt, recovandemptyrep-

resenting aborted, recovered and empty states, respectively.

After receiving recovery or abort request, TTP will behave

according to the values ofT_stateAB. The first part describes

how TTP deals with abort request from initiator Alice. TTP

sends out abort token to both Alice and Bob if the status is

emptyor abrt, and theT_stateABis also needed to be set as

abrt if the original status isempty. However, ifT_stateAB

is recov, which means the corresponding round has already

been recovered, then the correspondingEORM and key must

be sent to Alice and Bob respectively. Part two and three

models the behaviours of dealing with recovery requests from

Alice and Bob. If the TTP receives a recovery request and its

status isemptyor recov, then the required evidences or key

must be sent to Alice and Bob respectively. Otherwise, abort

token will be sent out.

Listing 3 Extracted model of TTP

−− (1) I f TTP r e c e i v e s a b o r t
r e q u e s t from A l i ce

[] A_abor t_ req
& (T_stateAB=a b r t)
& ~T_response_A
−> T_abort_send_A ’ := t r u e ;

T_abor t_send_B ’ := t r u e ;
T_response_A ’ := t r u e

[] A_abor t_ req
& (T_stateAB=empty)
& ~T_response_A
−> T_abort_send_A ’ := t r u e ;

T_abor t_send_B ’ := t r u e ;
T_response_A ’ := t r u e ;
T_stateAB ’ := a b r t

[] A_abor t_ req
& (T_stateAB= recov)
& ~T_response_A
−> T_recovery_send_A ’ := t r u e ;

T_recovery_send_B ’ := t r u e ;
T_response_A ’ := t r u e

−− (2) I f TTP r e c e i v e s r e c o v e r y
r e q u e s t from A l i ce

[] A_recovery_req
& (T _ s t a t e=empty)
& ~T_response_A−>
−> T_stateAB ’ := recov ;

T_recovery_send_A ’ := t r u e ;
T_recovery_send_B ’ := t r u e ;
T_response_A ’ := t r u e

[] A_recovery_req
& (T _ s t a t e= recov)
& ~T_response_A−>
−> T_recovery_send_A ’ := t r u e ;

T_recovery_send_B ’ := t r u e ;
T_response_A ’ := t r u e

[] A_recovery_req
& (T _ s t a t e=a b r t)
& ~T_response_A−>
−> T_abort_send_A ’ := t r u e ;

T_abor t_send_B ’ := t r u e ;
T_response_A ’ := t r u e

−− (3) I f TTP r e c e i v e s r e c o v e r y
r e q u e s t from Bob

[] B_ recovery_ req
& (T _ s t a t e=empty)
& ~T_response_B−>
−> T_stateAB ’ := recov ;

T_recovery_send_A ’ := t r u e ;
T_recovery_send_B ’ := t r u e ;
T_response_B ’ := t r u e

[] B_ recovery_ req
& (T _ s t a t e= recov)
& ~T_response_B−>
−> T_recovery_send_A ’ := t r u e ;

T_recovery_send_B ’ := t r u e ;
T_response_B ’ := t r u e

[] B_ recovery_ req
& (T _ s t a t e=a b r t)
& ~T_response_B−>
−> T_abor t_send_A := t r u e ;

T_abor t_send_B ’ := t r u e ;
T_response_B ’ := t r u e

Note that we also build a two-round protocol model which

can be used to represent multiple email delivery communica-

tions, and it is based on the one-round protocol model. De-

tails can be found in [53].

6.2.2 Expressing properties of the protocol in ATL

Given a CEM protocol with just two participants Alice and

Bob, the following expressions are suitable for honest partic-

ipant even if the other is dishonest. Actually, we only care

Front. Comput. Sci.
13

about fairness and timeliness for honest participant. As to

effectiveness, it requires that both participants must behave

honestly.

Effectiveness.If honest participants are willing to exchange

emails for receipts, then the protocol will terminate in a state

in which Alice has obtainedEOR and Bob has receivedEOO
andM without the involvement of TTP.

effectiveness≡ (〈〈PaH,PbH〉〉^ (EOO ∧ M ∧ EOR))

wherePaH andPbH represent honest participants Alice and

Bob, andEOR represents the evidence of receipt from re-

ceiver Bob. In addition, theEOO andM represents the evi-

dence of origin and the email content from Alice.

Timeliness. At any time, an honest participant has a strat-

egy to stop the protocol and thus to prevent endless waiting.

Timeliness for Alice and Bob is formulated as:

timelinessPa ≡ ∀� (〈〈PaH〉〉^Pa_stop)

timelinessPb ≡ ∀� (〈〈PbH〉〉^Pb_stop).

wherePaH andPbH represent the honest Alice and Bob, and

Pa_stop(Pb_stop) represents that Alice (Bob) has reached a

termination state of the protocol.

Fairness. A protocol is fair for honest Alice (PaH) if the

following is satisfied: whenever Bob obtainsPaH’s non-

repudiation evidence of origin (EOO) and email contentM,

PaH has a strategy to obtain Bob’s non-repudiable evidence

of receipt (EOR). In ATL, fairness for honest Alice can be

formulated as:

fairnessPaH ≡ ∀� ((EOO ∧ M)
⇒ 〈〈PaH〉〉^ (EOR)).

Similarly, fairness for Bob is formulated as below. If Alice

obtainsPbH’s EOR, honest BobPbH has a strategy to get

Alice’s EOR and email contentM.

fairnessPbH ≡ ∀� ((EOR)
⇒ 〈〈PbH〉〉^ (EOO ∧ M)).

6.2.3 Analysis

We have built three Mocha models,PaH ‖ PbH ‖ TT P,

Pa ‖ PbH ‖ TT P, and PaH ‖ Pb ‖ TT P, combining the

aforementioned formulas, to verify fairness, timeliness and

effectiveness of our CEM protocol. These properties were

successfully checked in Mocha.

6.3 Verification inµCRL

In this section, we give sketchs on how we model the protocol

in µCRL, and discuss how to check TTP transparency of the

protocol inµCRL. The detailed models and analysis can be

found in [53].

6.3.1 Modelling the protocol inµCRL

EachµCRL specification consists of two parts, abstract data

type definitions and behavioural specifications for partici-

pants. Since the execution of protocol mainly depends on

the exchange of messages, the contents of the data are not

treated in details, instead the data type used and correspond-

ing operations on it are captured. Therefore, we can simplify

the complex cryptographic primitives, such as encryption,de-

cryption and verifiable encryption of messages.

In our model, we abstract some data types from the pro-

tocol, which areBool, Key, Number, Item, Player, Status
andMessage. SortBool has the same meaning as the nor-

mal boolean type.Item is a simple data type with a con-

structord1, which represents the email content. As our ex-

tended CEM protocol is a key chain based protocol, sortKey
is modelled to represent the keys that belong to a key chain.

For simplicity, we just set two constructors for it. Corre-

spondingly, sortNumber is also defined to model the pro-

tocol round number. Moreover, to specify the protocol, we

assume that there are three processes which are Alice, Bob

and TTP respectively. Each of them is assigned with a unique

identity (A, B or T), which is described in sortPlayer. TTP

is an important player, which should be impartial. After re-

ceiving abort or recovery request, TTP will behave honestly

according to his recordstatus(i), for which we define a sort

Status.

sort Status
func aborted,recovered,empty → Status
map eq: Status × Status → Bool
var s1:Status
rew eq(s1,s1) =T

eq(aborted,recovered) =F
eq(recovered,aborted) =F
eq(empty,aborted) =F
eq(empty,recovered) =F

As the behaviour part of the model is mainly spec-

ified by the exchange of messages, defining an ap-

propriate data type for message is necessary, and

sort Message we defined is the type that meets

our requirements. The constructors for this sort are

boolm, itm, player, keym, pair, hash, sign, vesign, enc

14
Zhiyuan LIU et al. Design and Formal Verification of a CEM Protocol

and num. Since communications between partic-

ipants are modelled by messages, the constructors

boolm, itm, player, num and keym are defined to change

the corresponding data type into sortMessage. For exam-

ple, keym(k1) represents the action of transforming k1 with

type Key into Message. Many operations in the protocol

are also specified by means of message, such as signing and

verifiably signing messages, encryption, etc. The constructor

sign has parametersPlayer and Message, which is used

to model signing actions. For example,sign(A,m) means

that playerA has signed the messagem using his private

key. Another important action is how to partially sign the

message that can be verified by everybody. The verifiably

encrypted signature is formed by using signer’s private key

and TTP’s public key. Therefore, the constructorversign is

defined with parametersPlayer andMessage. An example

vesign(A,T,m1) shows out the verifiably encrypted message

signed by playerA using playerT’s public key. Finally, the

constructorpair is defined to connect messages.

sort Message
func boolm:Bool → Message

itm:Item → Message
player:Player → Message
num:Number → Message
keym:Key → Message
hash:Message → Message
sign:Player ×Message → Message
vesign:Player × Player ×Message→ Message
enc:Key ×Message → Message
pair:Message ×Message → Message

There exists two functionseq andkeq for sortMessage, of

which eq is used to compare whether two messages are the

same, and the outcome is a boolean type. For example, in

order to compare whether the two signed messages are the

same, we have the following equation:

eq(sign(p1,m1),sign(p2,m2)) =
if(eq(p1,p2),eq(m1,m2),F).

First, it will judge whether the two messages are signed by

the same player, and if so, a further comparison of messages

are conducted, or else, it will produce false as an outcome.

Another functionkeq is used to check whether the given key

is the right key for a particular protocol round. Normally,

it is used by TTP when dealing with recovery request. We

omit the detailed definitions of these two functions in the sort

specification ofMessage.

TTP transparency states that the final evidences do not re-

veal whether TTP has intervened in the protocol or not. The

main idea of checking TTP transparency is to compare traces

obtained from three different models after hiding all unnec-

essary actions, such as messages between TTP and the users,

as well as minimising the generated state space modulo weak

trace equivalence [54]. The three models are combinations

of (1) honest Alice and honest Bob, (2) honest Alice, mali-

cious Bob and TTP, and (3) malicious Alice and honest Bob

and TTP.

Participants are linked up by communication channels.

According to our assumption, the communications channels

are resilient, in the sense that every message is guaranteedto

reach its destination eventually. Therefore, by using the en-

capsulation and communication operators inµCRL, we are

able enforce the actions of participants Alice, Bob and TTP

to synchronise. Each participant is defined as a process. The

communications between them are composed by actions of

sending and receiving messages. For example, we define an

action for initiator Alice of sending a recovery request to TTP

in the form ofsendT(A,recover,T), whereA andT are the

identities of Alice and TTP respectively,recover is of data

type Message. Similarly, recvT(T,recover,A) represents

the action of receiving a recovery request from Alice. In this

way, we can define the behaviours of participants by actions

(act) parameterised with data. The main communications are

defined as follows.com represents the communication be-

tween Alice and Bob, andinitCom describes the initialisation

communication between them. Similarly, we also usecomT
to specify the communication between Alice (Bob) and TTP.

These synchronisations of actions are enforced by the encap-

sulation operator∂H. In µCRL language, this is captured by

a list of equations of the forms | r = c under the keyword

(comm).

comm send | recv=com
sendT | recvT=comT
initSend | initRecv=initCom

The honest and dishonest behaviours of the participants

resemble those in the Mocha models. In the following, we

present theµCRL models of honest Alice, dishonest Bob

and TTP separately. For instance, the behaviours of the

initiator (honest) Alice are modelled in a process with a

parameterkey, which initiates the CEM protocol by send-

ing evidence of originEOO to receiver Bob. The action

init_A(A,y,eoo,i,x,B) shows that Alice initiates a protocol

roundi for delivering an emaily to Bob using a keyx. Then

after receiving the verifiably encrypted message from Bob,

honest Alice will send out her key. If Bob’s final replyEOR
is correct, Alice will be sure that she has completed one email

delivery and successfully obtained the evidence of receipt.

Front. Comput. Sci.
15

Action evidence_A(A,y,eorm,i,x,B) reports that she has al-

ready obtained the evidence for protocol roundi which sends

email y with key x. The sketch of Alice’s behaviour is de-

scribed as follows.

Alice(x:Key)=
∑

y:Item
∑

i:Number
initSend(A,eoo,B).
init_A(A,y,x,i,B)
recv(B,halfeorm,A).
send(A,k,B).
recv(B,eorm,A).
evidence_A(A,y,eorm,i,x,B)

whereeoo represents the the first message 1ex for protocol

round i. The halfeorm and eorm represents Bob’s verifi-

ably encrypted signature and final signature.4) We need to

extend the above process when taking TTP into account to

cover when Alice can contact TTP and receive replies from

TTP, which we omit in the above specification.

We use two processes,Bob andBob1, to model the mis-

behaviours of Bob. Actually,Bob acts as the main pro-

cess, andBob1 with parametersKey, Item and Number
works as the sub-process forBob. At the very beginning,

Bob waits for the first message from Alice, using an action

initRecv(A,EOO,B) to report the receipt ofEOO. After that

he performs an actioninit_Bob to represent his involvement

in the protocol. Then he moves to processBob1, which spec-

ifies the misbehaviours.

Bob=
∑

x:Key
∑

y:Item
∑

i:Number
initRecv(A,eoo,B).
init_B(A,i,eoo,B).
Bob1(x,y,i)

Bob1 is a process that acts as a core part of processBob,

and it models Bob’s misbehaviours as stated before. From

the sketch of processBob1 in below, we can see that ma-

licious Bob has three choices after receiving the first mes-

sage from Alice. The first one would be that he honestly

sends out his verifiably encrypted message through the ac-

tion send(B,halfeorm,A). In this case, Bob still can choose

between whether to receive key from Alice or rerun pro-

cessBob1. If he prefers to receive the key, he will first get

his evidenceevidence_B(B,y,eoo,i,x,A) and then still face

two situations, one is to deliver his finalEOR, the other is

to return toBob1. The second choice for malicious Bob

is directly sending recovery request to TTP, which is repre-

sented withsendT(B,recoveryB,T). After that, Bob may re-

ceive abort token (recv_abort_B(x,y,i,A,B)), error message

4) The detailed specifications of the termseoo, halfeorm andeorm are
left out for the clarity of presentation.

(recv_error_B(x,y,i,A,B)), the desired keyrecvT(T,k,B), or

he just re-executesBob1. Malicious Bob still can perform

Bob1 even if he gets abort token or error message, and is sup-

posed to quit the protocol. We also model that Bob can quit

the protocol if he obtains all his expected evidences, such as

EOO in the first message and key. Moreover, the last choice

for Bob is the deadlock, which means he can quit the protocol

at any time he wants.

Bob1(x:Key,y:Item,i:Number)=
send(B,halfeorm,A).

(recv(A,k,B).
evidence_B(B,y,eoo,i,x,A).

(Bob1(x,y,i)
+ send(B,eorm,A))

+ Bob1(x,y,i))
+ sendT(B,recoveryBob,T).

((recv_abort_B(x,y,i,A,B)
+ recv_error_B(x,y,i,A,B)).

Bob1(x,y,i)
+ Bob1(x,y,i)
+ recvT(T,k,B).

evidence_B(B,y,eoo,i,x,B))
+ τ.δ

Similarly, honest Bob and dishonest Alice can be modelled

in µCRL as well.

We present the behaviours of TTP with an identityT
with parametersStatus by processTTP. Since TTP is a

fully trusted participant which cannot misbehave, we model

it strictly according to the protocol. TTP can deal with recov-

ery request from both Alice and Bob, and abort request only

from Alice.

From the sketch of TTP’s behaviour below, we can see

that the actionrecvT(B,recoveryB,T) is used to represent

receiving recovery request from Bob. In this case, Bob

will first check whether the key used in the protocol is

the right key in the key chain. If not, an error message

(error_B(x,y,i,eorm,A,B)) will be delivered to Bob. If yes,

TTP goes on checking his status for this protocol roundi. If

the status has already been set to beaborted, the abort to-

ken will be sent by actionsabort_B(x,y,i,A,B). However, if

the status isrecovered or justempty, the corresponding key

is sent out to Bob, and the status will be kept asrecovered.

Similarly, TTP receives recovery request from Alice by the

action ofrecvT(A,recoveryA,T).
The process of dealing with Alice’s recovery request

is similar to that of Bob. The main difference lies in

the message that sent to Alice if TTP is sure to help in

the recovery process. Actually TTP will first abstracts

the final EOR from the verifiably encrypted message and

16
Zhiyuan LIU et al. Design and Formal Verification of a CEM Protocol

then delivers it, which is simply represented by action

sendT(T,eorm,A). TTP can also accept Alice’s abort re-

quest stated byrecvT(A,abortA,T). After that, he checks the

TTP’s status to make decisions. If the status isrecovered,

then the finalEOR will be sent. Or else, abort token will be

sent by actionsabort_A(x,y,i,A,B), and after that, the status

for protocol roundi will be kept asaborted.

TTP(s:Status)=
∑

y:Item
∑

x:Key
∑

i:Number
recvT(B,recoveryB,T).

(error_B(x,y,i,eorm,A,B)
⊳ not(keq(x,i) ⊲

(abort_B(x,y,i,A,B)
⊳ eq(s,aborted) ⊲
sendT(T,k,B).
TTP(recovered)))

+ recvT(A,recoveryA,T).
(error_A(x,y,i,halfeorm,A,B)

⊳ not(keq(x,i) ⊲
(abort_A(x,y,i,A,B)
⊳ eq(s,aborted) ⊲
sendT(T,eorm,A).
TTP(recovered)))

+ recvT(A,abortA,T).
(recover_A(x,y,i,halfeorm,A,B)
⊳ eq(s,recovered) ⊲
(abort_A(x,y,i,A,B).
TTP(aborted))

After modelling the behaviours of honest and dishonest

agents and TTP, we put them in parallel to construct the

whole state spaces of models, including (1) honest Alice and

honest Bob; (2) honest Alice, dishonest Bob and TTP; (3)

dishonest Alice, honest Bob and TTP.

6.3.2 Analysis

Our way to check TTP transparency is by comparing traces of

getting evidences between system of only honest participants

and systems containing dishonest participants. After hiding

some actions (i.e., we keep those actions related to presenting

evidences and the starting of a protocol round) and reducing

the model (i.e., state space minimisation modulo weak trace

equivalence), we obtain a trace from the honest system that

is depicted in Fig. 3(a), which shows the situation of getting

evidences without TTP. Fig. 3(b) describes traces obtained

from the model containing honest Alice, dishonest Bob, and

TTP. We can find that Fig. 3(b) has an additional trace. Evi-

dences for both traces are of the same form, but the sequence

of getting them are different. However, this difference does

not affect the correctness of TTP transparency. When check-

ing the evidences possessed Bob and Alice, the only thing

that matters is the content of the evidences, and the number

of transitions (which might reflect the execution time) is irrel-

evant due to the asynchrony of the protocol model. Fig. 3(c)

depicts the traces obtained from the model containing dishon-

est Alice, honest Bob and TTP. We can find that this figure

has one more trace than Fig. 3(b). This extra trace describes

Alice’s malicious behaviours of using the key (k2) that does

not match the protocol round (i1). However, the occurrence

of this trace manifests that both Alice and Bob get their ex-

pected evidenceswithout the intervene of TTP. As if Alice or

Bob tries to contact TTP for recovery, they will just obtain er-

ror message instead of evidences. Therefore, this trace does

not reveal the involvement of TTP. By the above analysis, we

can draw a conclusion that our extended CEM protocol sat-

isfies TTP transparency. Note that in Fig. 3 we have omitted

the round numbers in action labels. We in fact also checked

models with two protocol rounds. The analysis of TTP trans-

parency is carried out in a similar way. Details can be found

in [53].

7 Conclusion

We have proposed a TTP transparent CEM protocol, as an

extension of Cederquist et al.’s protocol using key chains.To

achieve this, we used a verifiably encrypted signature scheme

based on bilinear pairing. Comparing to the existing CEM

protocols, ours is among the most efficient ones satisfying

strong fairness, timeliness, and TTP transparency. We have

formally verified the protocol. The verification was taken in

two steps. First, we checked fairness, timeliness and effec-

tiveness properties, using the model checker Mocha. Then

we have modelled the protocol in a process algebraic lan-

guageµCRL and used its toolsets together with CADP to

check TTP transparency. Our analysis shows that the pro-

tocol achieves the design goals.

In this paper, we have checked the protocol with a limited

number of rounds. In general, it is a hard problem to verify

the protocol with an arbitrary number of rounds. A possible

future direction is to study ways of abstraction [55] or to de-

velop new reduction techniques [56] for game-based model

checking, in order to analyse models in Mocha with more

protocols rounds. Another direction is to use an inductive ap-

proach, e.g. [57], to prove correctness of the protocols in a

more general setting.

The way to formalise TTP transparency in this paper relies

on an abstraction from the underlying cryptographic tech-

niques and the ability of the adversary. In the future, we

Front. Comput. Sci.
17

(a)

initCom(A,m,eoo,one,k1,B)

evidence_B(B,m,eoo,k1,A)

evidence_A(A,m,eorm,k1,B)

initCom(A,m,eoo,k1,B)

evidence_B(B,m,eoo,k1,A)

evidence_A(A,m,eorm,k1,B)

(b)

evidence_B(B,m,eoo,k1,A)

evidence_A(A,m,eorm,k1,B)

initCom(A,m,eoo,k1,B)

evidence_B(B,m,eoo,k1,A)

evidence_A(A,m,eorm,k1,B)

(c)

evidence_B(B,m,eoo,k1,A)

evidence_A(A,m,eorm,k1,B)

initCom(A,m,eoo,k2,B)

evidence_B(B,m,eoo,k2,A)

evidence_A(A,m,eorm,k2,B)

Fig. 3 The obtained traces.

would like to investigate this property in a more sophisticated

model, for example, it is interesting to see whether we can

interpret TTP transparency using the notion of static equiva-

lence in the applied pi calculus [58]. Another direction is to

extend the protocol furthermore, to cover other design goals

such as stateless TTP and accountability.

Acknowledgements The authors thank the anonymous referees for their
helpful comments. This work was finished while Zhiyuan Liu and Chenyi
Zhang were with the Faculty of Science, Technology and Communication
at University of Luxembourg. We thank Sjouke Mauw for discussions on
CEM protocols and David Galindo for discussions on verifiably encrypted
signature schemes. Especially, we thank Johann Großschädl for experimen-
tal results on comparing efficiency of pairing operations and RSA signature
operations.

References

1. J. A. Onieva, J. Zhou, and J. Lopez. Multiparty nonrepudiation: A

survey.ACM Computing Surveys, 41(1):1–43, 2008.

2. N. Asokan, M. Waidner, and M. Schunter. Optimistic protocols for fair

exchange. InProc. 4th ACM Conference on Computer and Communi-

cations Security (CCS), pages 7–17. ACM, 1997.

3. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE

Transactions on Information Theory, 29(2):198–208, 1983.

4. S. Kremer and J.-F. Raskin. A game-based verification of non-

repudiation and fair exchange protocols.Journal of Computer Security,

11:399–429, 2003.

5. B. Anderson, J. V. Hansen, P. B. Lowry, and S. L. Summers. Stan-

dards and verification for fair-exchange and atomicity in e-commerce

transactions.Information Sciences, 176:1045–1066, 2006.

6. R. Chadha, S. Kremer, and A. Scedrov. Formal analysis of multi-party

contract signing. Journal of Automated Reasoning, 36(1-2):39–83,

2006.

7. Y. Zhang, C. Zhang, J. Pang, and S. Mauw. Game-based verification

of multi-party contract signing protocols. InProc. 6th Workshop on

Formal Aspects in Security and Trust (FAST), volume 5983 ofLNCS,

pages 186–200. Springer, 2009.

8. M. Chen, K. Wu, J. Xu and P. He. A new method for formalizing

optimistic fair exchange protocols. InProc. 12th Conference on Infor-

mation and Communications Security (ICICS), volume 6476 ofLNCS,

pages. 251-265, Springer, 2010.

9. T. Gaber and N. Zhang. Fair and abuse-free contract signing proto-

col supporting fair license reselling. InProc. 4th IFIP International

Conference on New Technologies, Mobility and Security, 2001.

10. K. Chatterjee and V. Raman. Synthesizing protocols for digital contract

signing. InProc. 13th Conference on Verification, Model Checking,

and Abstract Interpretation (VMCAI), volume 7148 ofLNCS, pages.

152-168, Springer, 2012.

11. D. M. Williams, J. de Ruiter, and W. J. Fokkink. Model checking under

fairness in ProB and its application to fair exchange protocols. InProc.

9th Colloquium on Theoretical Aspects of Computing (ICTAC), volume

7521 ofLNCS, pages. 168-182, Springer, 2012.

12. Y. Zhang, C. Zhang, J. Pang, and S. Mauw. Game-based verification

of contract signing protocols with minimal messages.Innovations in

Systems and Software Engineering, 8(2): 111-124, 2012.

13. S. Micali. Certified email with invisible post offices, 1997. An invited

presentation at the RSA’97 conference.

14. O. Markowitch and S. Kremer. An optimistic non-repudiation proto-

col with transparent trusted third party. InProc. 4th Conference on

Information Security (ICISC), volume 2200 ofLNCS, pages 363–378.

Springer, 2001.

15. K. Imamoto and K. Sakurai. A certified e-mail system with receiver’s

selective usage of delivery authority. InProc. 3rd Conference on Cryp-

tology in India (INDOCRYPT), volume 2551 ofLNCS, pages 326–338.

Springer, 2002.

18
Zhiyuan LIU et al. Design and Formal Verification of a CEM Protocol

16. G. Ateniese and C. Nita-Rotaru. Stateless-recipient certified e-mail

system based on verifiable encryption. InProc. The Cryptographer’s

Track at RSA Conference 2002 (CT-RSA), volume 2271 ofLNCS, pages

182–199. Springer, 2002.

17. S. Micali. Simple and fast optimistic protocols for fair electronic ex-

change. InProc. 22th Annual Symposium on Principles of Distributed

Computing (PODC), pages 12–19. ACM, 2003.

18. A. Nenadíc, N. Zhang, and S. Barton. Fair certified e-mail delivery. In

Proc. 19th ACM Symposium on Applied Computing (ACM-SAC), pages

391–396. ACM, 2004.

19. G. Wang. Generic non-repudiation protocols supportingtransparent

off-line TTP. Journal of Computer Security, 14(5):441–467, 2006.

20. C. Ma, S. Li, K. Chen, and S. Liu. Analysis and improvement offair

certified e-mail delivery protocol.Computer Standards& Interfaces,

28(4):467–474, 2006.

21. X. Liang, Z. Cao, R. Lu, and L. Qin. Efficient and secure proto-

col in fair document exchange.Computer Standards& Interfaces,

30(4):167–176, 2008.

22. R.-J. Hwang and C.-H. Lai. Efficient and secure protocol in fair e-mail

delivery. WSEAS Transactions on Information Science and Applica-

tions, 5:1385–1394, 2008.

23. J. Cederquist, M. Torabi Dashti, and S. Mauw. A certified email proto-

col using key chains. InProc. 3rd Symposium on Security in Networks

and Distributed Systems (SSNDS), pages 525–530. IEEE, 2007.

24. F. Zhang, R. Safavi-Naini, and W. Susilo. Efficient verifiably encrypted

signature and partially blind signature from bilinear pairings. InProc.

5th Conference on Cryptology in India (INDOCRYPT), volume 2904

of LNCS, pages 71–84. Springer, 2003.

25. R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani,

and S. Tasiran. Mocha: Modularity in model checking. InProc. 10th

Conference on Computer Aided Verification (CAV), volume 1427 of

LNCS, pages 521–525. Springer, 1998.

26. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time tempo-

ral logic. Journal of ACM, 49(5):672–713, 2002.

27. S. C. C. Blom, W. J. Fokkink, J. F. Groote, I. A. van Langevelde,

B. Lisser, and J. C. van de Pol.µCRL: A tool set for analysing al-

gebraic specifications. InProc. 13th Conference on Computer Aided

Verification (CAV), volume 2102 ofLNCS, pages 250–254. Springer,

2001.

28. S. C. C. Blom, J. R. Calame, B. Lisser, S. M. Orzan, J. Pang, J.C.

van de Pol, M. Torabi Dashti, and A. J. Wijs. Distributed analysis

with µCRL: A compendium of case studies. InProc. 13th Conference

on Tools and Algorithms for the Construction and Analysis ofSystems

(TACAS), volume 4424 ofLNCS, pages 683–689. Springer, 2007.

29. J. F. Groote, J. Pang, A. G. Wouters. Analysis of a distributed system

for lifting trucks. Journal of Logic and Algebraic Programming, 55(1-

2): 21-56, 2003.

30. W. J. Fokkink, J. Pang, J. C. van de Pol. Cones and foci: A mechan-

ical framework for protocol verification.Formal Methods in System

Design, 29(1): 1-31, 2006.

31. J. Pang, W. J. Fokkink, R. Hofman, R. Veldema. Model checking a

cache coherence protocol of a Java DSM implementation.Journal of

Logic and Algebraic Programming, 71(1): 1-43, 2007.

32. J. Pang. Analysis of a security protocol inµCRL. In Proc. 4th Con-

ference on Formal Engineering Methods (ICFEM), volume 2495 of

LNCS, pages 396–400. Springer, 2002.

33. S. C. C. Blom, J. F. Groote, S. Mauw, A. Serebrenik. Analysing the

BKE-security Protocol withµCRL. In Proc. AMAST Workshop on

Real-Time Systems (ARTS), volume 139 ofENTCS, pages 49–90. El-

sever, 2006.

34. T. Chothia, S. M. Orzan, J. Pang, M. Torabi Dashti. A framework for

automatically checking anonymity withµCRL. In Proc. 2nd Sympo-

sium on Trustworthy Global Computing (TGC), volume 4661 ofLNCS,

pages 301-318. Springer, 2007.

35. J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and

M. Sighireanu. CADP – A protocol validation and verificationtool-

box. In Proc. 8th Conference on Computer-Aided Verification (CAV),

volume 1102 ofLNCS, pages 437–440. Springer, 1996.

36. Z. Liu, J. Pang, and C. Zhang. Extending a key-chain basedcertified

email protocol with transparent TTP. InProc. 6th IEEE/IFIP Sympo-

sium on Trusted Computing and Communications (TrustCom), pages

630–636. IEEE Computer Society, 2010.

37. Z. Liu, J. Pang, and C. Zhang. Verification of a key-chain based TTP

transparent CEM protocol. InProc. 3rd Workshop on Harnessing The-

ories for Tool Support in Software, ENTCS 274, pp 51-65. Elsevier,

2011.

38. S. Gürgens, C. Rudolph, and H. Vogt. On the security of fair non-

repudiation protocols.International Journal of Information Security,

4(4):253–262, 2005.

39. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of

digital signatures. InProc. 6th Conference on the Theory and Appli-

cation of Cryptographic Techniques (EUROCRYPT), volume 1403 of

LNCS, pages 591–606. Springer, 1998.

40. F. Bao, R. H. Deng, and W. Mao. Efficient and practical fair exchange

protocols with off-line ttp. InProc. IEEE Symposium on Security and

Privacy (S&P), pages 77–85, 1998.

41. C. Boyd and E. Foo. Off-line fair payment protocols using convertible

signatures. InProc. 4th Conference on the Theory and Application of

Cryptology and Information Security (ASIACRYPT), volume 1514 of

LNCS, pages 271–285. Springer, 1998.

42. J. Camenisch and I. Damg˚ard. Verifiable encryption, group encryption,

and their applications to separable group signatures and signature shar-

ing schemes. InProc. 6th Conference on the Theory and Application

of Cryptology and Information Security (ASIACRYPT), volume 1976

of LNCS, pages 331–345. Springer, 2000.

43. J. Cathalo, B. Libert, and J.-J. Quisquater. Cryptanalysis of a verifiably

committed signature scheme based on GPS and RSA. InProc. 4th

Conference on Information Security (ICISC), volume 3225 ofLNCS,

pages 52–60. Springer, 2004.

44. F. Bao. Colluding attacks to a payment protocol and two signature

exchange schemes. InProc. 10th Conference on the Theory and Appli-

cation of Cryptology and Information Security (ASIACRYPT), volume

3329 ofLNCS, pages 137–144. Springer, 2004.

45. G. Ateniese. Efficient verifiable encryption (and fair exchange) of dig-

Front. Comput. Sci.
19

ital signatures. InProc. 6th ACM conference on Computer and Com-

munications Security (CCS), pages 138–146. ACM, 199.

46. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate andver-

ifiably encrypted signatures from bilinear maps. InProc. 22th Con-

ference on the Theory and Applications of Cryptographic Techniques

(EUROCRYPT), volume 2656 ofLNCS, pages 416–432. Springer,

2003.

47. P. Grabher, J. Großschädl, and D. Page. On software parallel im-

plementation of cryptographic pairings. InProc. 13th Workshop on

Selected Areas in Cryptography (SAC), volume 5381 ofLNCS, pages

35–50. Springer, 2009.

48. J. Großschädl. Personal communications, 2010.

49. S. Gürgens and C. Rudolph. Security analysis of (un-) fair non-

repudiation protocols. InProc. 1st Internation Conference on Formal

Aspects of Security (FASec), volume 2629 ofLNCS, pages 229–232.

Springer, 2002.

50. D. Boneh. Twenty years of attacks on the RSA cryptosystem.Notice

of the American Mathematical Society, 46(2):203–212, 1999.

51. J. Cederquist, R. Corin, and M. Torabi Dashti. On the quest for impar-

tiality: design and analysis of a fair non-repudiation protocol. InProc.

7th Conference on Information and Communications Security(ICICS),

volume 3783 ofLNCS, pages 27–39. Springer, 2005.

52. M. Abadi and B. Blanchet. Computer-assisted verificationof a protocol

for certified email protocol.Science of Computer Programming, 58:3–

27, 2005.

53. Z. Liu. Extending a certified email protocol with TTP transparency

and its formal verification. Master’s thesis, University of Luxembourg,

2010.

54. R. Milner.A Calculus of Communicating Systems, volume 92 ofLNCS.

Springer, 1980.

55. T. A. Henzinger, R. Majumdar, F. Y. C. Mang, and J. F. Raskin. Ab-

stract interpretation of game properties. InProc. 7th Conference on

Statics Analysis Symposium (SAS). volume 1824 ofLNCS, pages 220–

239. Springer, 2000.

56. E. A. Emerson and K. S. Namjoshi. On reasoning about rings.Inter-

national Journal of Foundations of Computer Science, 14(4): 527-550,

2003.

57. L. C. Paulson. The inductive approach to verifying cryptographic pro-

tocols.Journal of Computer Security, 6(1-2): 85-128, 1998.

58. M. Abadi and C. Fournet. Mobile values, new names, and secure com-

munication. InProc. 28th Symposium on Principles of Programming

Languages (POPL), pages 104–115. ACM, 2001.

Zhiyuan Liu received her master de-

gree in computer science from Shan-

dong University in China and Univer-

sity of Luxembourg. She is currently a

lecturer in the School of Management

Science and Engineering at Shandong

Normal University. Her research fields
are verification and network security.

Jun Pang received his PhD in computer

science from Free University Amster-

dam in The Netherlands. He is cur-

rently a research scientist in the Com-

puter Science and Communications re-

search unit at University of Luxem-

bourg. His main research fields are for-

mal methods, security and privacy.

Chenyi Zhang received his PhD in

computer science from University of

New South Wales in Australia. He

is currently a research fellow in the

School of Information Technology and

Electrical Engineering at University of

Queensland. His main research fields

are formal methods and security.

