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Abstract

To disentangle the numerical contribution of modules to the system-
level behavior of a given biomodel, one often considers knock-out mu-
tant models, investigating the change in the model behavior when
modules are systematically included and excluded from the model ar-
chitecture in all possible ways. We propose in this paper a Boolean
approach for extracting conclusions about the role of each module from
the systematic comparison of the numerical behavior of all knock-out
mutants. We associate a Boolean variable to each module, expressing
when the module is included in the architecture and when it is not.
We can then express the satisfiability of system-level properties of the
full model, such as efficiency, or economical use of resources, in terms
of a Boolean formula expressing in a compact way which model archi-
tectures, i.e., which combinations of modules, give rise to the desired
property. We demonstrate this method on a recently proposed compu-
tational model for the heat shock response in eukaryotes. We describe
the contribution of each of its three feedback loops towards achieving
an economical and effective heat shock response.

1 Introduction

There is a sustained experimental and computational effort nowadays to-
wards building large, system-level models for biochemical processes, in-
cluding regulatory networks, signaling pathways, metabolic pathways, etc.
Models can encompass thousands of reactants and reactions, see [2]. On
this scale, understanding the details of the network, especially its regula-
tory mechanisms, becomes a considerable challenge. Applying a control-
theoretical analysis to a biological system can provide a systematic way to
identify the main regulatory components of a biological system, including

∗University of Helsinki, Computational Systems Biology Laboratory,
elena.czeizler@helsinki.fi

†Institute of Fundamental Technological Research, Polish Academy of Sciences, War-
saw, Poland, amizera@abo.fi

‡Department of Information Technologies, Åbo Akademi University, ipetre@abo.fi
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its feedforward and feedback mechanisms, see [5]. This, in turn, contributes
to the understanding of the reactivity, robustness and efficiency of the bi-
ological system. To disentangle the individual contribution of the various
components to the network, knock-out mutants are often useful to consider,
see [5]. The mutants are numerically compared to each other and to the
reference model in an effort to extract the individual contribution of each
mechanism to the overall behavior of the system.

We propose in this paper a novel approach for identifying the numer-
ical contribution of a component to the system-level behavior of a model.
The core technique we use throughout the paper is to associate a Boolean
variable to each of the components. For each knock-out mutant we write
a Boolean formula describing the presence or the absence of each compo-
nent (using the conjunction and the negation of Boolean variables). The
obtained Boolean formulas describe the architecture of the knock-out mu-
tant models. We can write a Boolean formula characterizing all mutant
architectures that exhibit a given property: we select all knock-out mutants
that exhibit that property and construct the disjunction of their associated
Boolean formulas. The formula thus obtained describes which components
must be present/absent and in which configurations in order for the system
to exhibit the desired property, thus helping elucidate the (qualitative) role
of the various components in the system-level properties of the full model.
In Section 5 we discuss the dependency of our analysis on the numerical
setups (kinetic rate constants and initial values) of the knock-out mutant
models.

We use as a case study in this paper a model for the heat shock response
introduced in [17]. We apply our approach to identify the contribution of
each of the three feedbacks of the model to having a response where the
level of misfolded proteins remains low, with a relatively low cost in terms
of transactivating the heat shock protein genes.

2 Method

Throughout this paper we consider a model M to consist of a list of m
species Σ = {A1, A2, . . . , Am} and n reactions ρ = {r1, r2, . . . , rn} of the
following form:

ri : si,1A1 + si,2A2 + ...+ si,mAm
ki−→ s′i,1A1 + s′i,2A2 + ...+ s′i,mAm,

where si,1, ..., si,m, s′i,1, ..., s
′
i,m are non-negative integers called the stoichio-

metric coefficients of ri and ki ≥ 0 is a real number called the kinetic rate
constant of ri. A number of different mathematical models can be associated
to M e.g., in terms of continuous or discrete variables, deterministic or non-
deterministic evolution, individual- or population-based, etc. We choose in
this paper a continuous, mass-action formulation, where to each variable Ai,
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1 ≤ i ≤ n, we associate a time-dependent function [Ai] : R+ → R+, with
[Ai](t) describing its concentration at time t. The dynamics of the system
is then described through a system of differential equations [14] in which,
for each reaction, we assumed the principle of mass action, originally intro-
duced in [8], [9]. In particular, for model M we obtain the following system
of ordinary differential equations (ODE):

d[Aj ]

dt
= −

n∑
i=1

(kiSi,j

m∏
k=1

[Ak]
Si,k) +

n∑
i=1

(kiS
′
i,j

m∏
k=1

[Ak]
Si,k), 1 ≤ j ≤ m.

Consider now a partition of the reaction set ρ = ρ0 ∪ ρ1 ∪ . . .∪ ρl, l ≥ 2,
i.e., ρi ̸= ∅ and ρi ∩ ρj = ∅ for all i ̸= j. Depending on the model under
study and the model property that is analyzed, different partitions could
be considered; for example, in the case-study discussed in this paper we
consider a control-based partition of the reaction-set which identifies and
isolates the three feed-back loops of the model, in addition to its basic,
open-loop architecture. For any index set I ⊆ {1, 2, . . . , l} we say that MI

is the submodel of M consisting of the reaction set ρ0 ∪
∪

i∈I ρi, where ρ0
is a set forming some elementary core of M that is to be included in all
submodels; an example here is the open-loop architecture of our case-study.
MI is also called a knock-out mutant of M in the sense that it is obtained
from M by removing some blocks from it.

The focus of our method is on describing the contribution of each of
the partition blocks to a “system-level” property of the full model. In more
details, we consider a property P that is decidable for model M and all of its
submodels. To describe which combinations of partition blocks are necessary
and sufficient for P to hold, we employ the following simple approach. For
each submodel MI we denote by µI its structure in terms of which partition
blocks are included/excluded in model MI , i.e.

µI =
∧
i∈I

ϱi ∧
∧
j ̸∈I

ϱj ,

where the presence of a Boolean variable ϱi indicates that the reaction set
in the partition block ρi are included in model MI , while that of a negation
ϱj indicates that the reaction set in ρj are not included in MI . Note that
this is a discrete, Boolean description of the architecture of a model MI that
is continuous in terms of its species dynamics. With these notations we can
now describe property P in terms of the partition blocks that are necessary
and sufficient for it to hold in the following way:

P =
∨
I∈IP

µI ,

where IP = {I ⊆ {1, 2, . . . , l} | P holds for model MI}. In other words,
P is described through a Boolean formula detailing which combinations of

3



including some of the modules of M and excluding others are necessary and
sufficient for P to hold. We apply this techniques in Section 4 to disentan-
gle the role of the three feedbacks of the heat shock response model being
efficient and economical.

3 Models

3.1 The eukaryotic heat shock response: a molecular model

The heat shock response (HSR) is an evolutionary-conserved global regula-
tory network found in virtually all living cells. It allows the cell to quickly
react to elevated temperatures by the induction of some proteins called heat
shock proteins (hsp). Exposure to raised temperature leads to protein mis-
folding, which then accumulate and form aggregates with disastrous effect
for the cell. Stress conditions can be caused not only by increased temper-
ature but also by other forms of environmental, chemical or physical stress,
such as addition of ethanol, heavy metals, pollutants, high osmolarity, star-
vation, etc.

The central role in the heat shock response is played by the heat shock
proteins (hsp), which act as chaperones for the misfolded proteins (mfp)
by forming hsp:mfp complexes and helping them to refold. In the model
presented in [17], the regulation of the heat shock response is done by con-
trolling the transactivation of the hsp-encoding genes. The transcription of
these genes is initiated by some specific proteins called heat shock factors
(hsf) that first dimerize (hsf2), then trimerize (hsf3) to finally bind to the
promoters of the hsp-encoding genes, called heat shock elements (hse). Af-
ter the trimers bind to the promoter sites (hsf3: hse) the transcription and
translation of the hsp-encoding genes starts, ultimately producing new hsp
molecules.

Once the level of hsp molecules is high enough, the transcription process
is turned off through a self-regulating mechanism. The hspmolecules seques-
trate the heat shock factors (hsp: hsf), thus preventing them to trimerize and
bind to the heat shock elements. The sequestration of the heat shock factors
by the heat shock proteins can be done in three different ways: by binding
to free hsf, by breaking dimers and trimers, and by unbinding hsf3 from the
DNA promoter sites with simultaneous breaking of the trimer. Once the
temperature increases, some of the proteins (prot) start to misfold, driving
hsp away from hsf. Thus, the heat shock response is quickly switched on
since the heat shock factors are again free and able to promote the synthe-
sis of more heat shock proteins. The reaction rules of the molecular model
introduced in [17] are presented in Table 1.

The model in Table 1 includes three mass conservation relations, see [17],
for the total amount of hsf, the total amount of proteins (other than hsp and
hsf) in the model, as well as for the total amount of hse: [hsf] + 2× [hsf2] +

4



Table 1: The molecular model for the eukaryotic heat shock response pro-
posed in [17].
Reaction Reaction
2 hsf � hsf2 [r1] hsp+ hsf3 → hsp: hsf +2 hsf [r7]
hsf + hsf2 � hsf3 [r2] hsp+ hsf3: hse → hsp: hsf +2 hsf + hse [r8]
hsf3 + hse � hsf3: hse [r3] hsp → ∅ [r9]
hsf3: hse → hsf3: hse+ hsp [r4] prot → mfp [r10]
hsp+ hsf � hsp: hsf [r5] hsp+mfp � hsp:mfp [r11]
hsp+ hsf2 → hsp: hsf + hsf [r6] hsp:mfp → hsp+ prot [r12]

Figure 1: The control structure of the heat shock response network.

3 × [hsf3] + 3 × [hsf3: hse] + [hsp: hsf] = C1, [prot] + [mfp] + [hsp:mfp] = C2,
[hse] + [hsf3: hse] = C3, for some mass constants C1, C2, C3.

3.2 The mathematical model

We associate with the molecular model in Table 1 a mathematical model in
terms of ordinary differential equations, where for each reaction we assume
the principle of mass action, see, e.g., [15]. We associate with each reactant
a continuous, time-dependant variable that gives its concentration level. For
each variable, its differential equation gives the cumulated consumption and
production rates of the reactant corresponding to it in the molecular model.
Thus, the dynamic behavior of the molecular model is described through
the set of all resulting differential equations. We list them in Table 2 and
refer to [17] for more details. For the numerical values of the kinetic rate
constants and of the initial values of the model we refer to [17] and [4].

3.3 A control-based modularization of the heat shock re-
sponse model

A control-driven analysis of the heat shock response model of [17] was in-
troduced in [3] to decompose the heat shock response model. The model
was divided into the following submodules: the plant, i.e., the process to be
regulated, the controller, i.e., the decision-making module, and the actua-
tor, i.e., the module which modifies the current state of the system, thus
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Table 2: The differential equations of the associated mathematical model of
the heat shock response ( [17]).

d[hsf]/dt = −2k+1 [hsf]
2 + 2k−1 [hsf2]− k+2 [hsf][hsf2] + k−2 [hsf3]− k+5 [hsf][hsp]

+ k−5 [hsp: hsf] + k6[hsf2][hsp] + 2k7[hsf3][hsp] + 2k8[hsf3: hse][hsp]

d[hsf2]/dt = k+1 [hsf]
2 − k−1 [hsf2]− k+2 [hsf][hsf2] + k−2 [hsf3]− k6[hsf2][hsp]

d[hsf3]/dt = k+2 [hsf][hsf2]− k−2 [hsf3]− k+3 [hsf3][hse] + k−3 [hsf3: hse]− k7[hsf3][hsp]

d[hse]/dt = −k+3 [hsf3][hse] + k−3 [hsf3: hse] + k8[hsf3: hse][hsp]

d[hsf3: hse]/dt = k+3 [hsf3][hse]− k−3 [hsf3: hse]− k8[hsf3: hse][hsp]

d[hsp]/dt = k4[hsf3: hse]− k+5 [hsf][hsp] + k−5 [hsp: hsf]− k6[hsf2][hsp]− k7[hsf3][hsp]

− k8[hsf3: hse][hsp]− k+11[hsp][mfp] + (k−11 + k12)[hsp:mfp]− k9[hsp]

d[hsp: hsf]/dt = k+5 [hsf][hsp]− k−5 [hsp: hsf] + k6[hsf2][hsp] + k7[hsf3][hsp]

+ k8[hsf3: hse][hsp]

d[mfp]/dt = ϕT [prot]− k+11[hsp][mfp] + k−11[hsp:mfp]

d[hsp:mfp]/dt = k+11[hsp][mfp]− (k−11 + k12)[hsp:mfp]

d[prot]/dt = −ϕT [prot] + k12[hsp:mfp]

influencing the activity of the plant. A sensor which measures the current
state of the system and sends this information to the controller. Further, as
presented in [16], based on the control-driven analysis three feedback mecha-
nisms responsible for the regulation of the process were distinguished within
the controller. This decomposition of the heat shock model is presented in
Table 3, where the reaction numbers refer to the reactions in Table 1. The
three identified feedback mechanisms and their points of interaction with
the mainstream process are depicted in Figure 1. We investigate in the
continuation the role of the three feedback mechanisms identified with the
control-driven approach in the overall behavior of the full model by applying
the method introduced in Section 2.

3.4 Knock-out mutant models

In order to disentangle the role of the feedback mechanisms within the full
model, we consider eight knock-out mutants obtained by eliminating from
the basic model all combinations of the feedbacks FB1, FB2, and FB3. In
accordance with the notation introduced in Section 2, we will denote each
of these mutants as MI , where I ⊆ {1, 2, 3} represents the set of indexes of
the feedbacks included in the model MI , i.e. FB1 = ρ1 = {[r5]+}, FB2 =
ρ2 = {[r6], [r7]}, FB3 = ρ3 = {[r8]}, and l = 3. To identify the individual
contributions of the three feedback mechanisms, we compare the dynamics
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Table 3: The control-based decomposition of the model in Table 1. We
denote the ‘left-to-right’ direction of reaction [r5] by [r5]+ and by [r5]− its
‘right-to-left’ direction.

Module and main task Reactions
Plant (protein misfolding and refolding) [r10], [r11], [r12]
Actuator (regulate the level of hsp) [r4], [r9]
Sensor (measure the level of hsp) —

Controller (modulate level of DNA binding) [r1], [r2], [r3], [r5]−

Feedback FB1 (sequestration of hsf) [r5]+

Feedback FB2 (dimer and trimer breaking) [r6], [r7]
Feedback FB3 (hsp-forced DNA unbinding) [r8]

of these eight models at 42◦C. We choose this temperature since at 42◦C the
experimental data shows a heat shock response both in terms of increased
level of misfolded proteins and in terms of transcription activity of the hsp-
encoding genes, see [17].

In our comparison of the numerical knock-out mutant models we aim to
focus on the differences stemming from the intrinsic dissimilarities in their
architectures and eliminate as much as possible differences coming from
unfavorable numerical setups chosen for the various models. For example,
we consider all knock-out mutants as viable alternatives for the heat shock
response model. We impose the following three constraints:

(1) The kinetic rate constants for the reactions of each of the eight knock-
out mutants should be chosen in such a way that the numerical pre-
diction for the time evolution of the level of hsf3: hse fits in with the
experimental data given in [13] on DNA binding of hsf3.

(2) The initial distribution of the reactants of each mutant should be cho-
sen in such a way that they form a steady state at 37◦C for that
particular model.

(3) For all knock-out mutants, the values of the mass constants C1, C2,
C3 are chosen to be identical to those of the reference model M1,2,3.

All three constraints come as natural consequences of the fact that we
consider all knock-out mutants as viable alternatives for the heat shock
model. As such, their dynamic behavior should be in agreement with the
existent experimental data and, at the same time, they should be in a steady
state in the absence of a heat shock, i.e., at 37◦C. Moreover, since they are
all models for the same biological process, they should all assume the same
values for the mass constants.
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4 Results

When comparing the performance of the eight alternative models we focused
on two aspects: the total amount of hsp and the total amount of mfp both
at 37◦C and at 42◦C. We were interested mainly in these two aspects since
a very high level of mfp indicates a non-effective response while a very high
level of hsp indicates a non-economical response.

We associated to each of the three feedback mechanisms a Boolean vari-
able, denoted by F1, F2 and F3, respectively. Then, for each knock-out
mutant we wrote a Boolean formula expressing which of the feedback mech-
anisms are present in the model, where we denoted by ∧ the conjunction op-
erator and by Fi the negation of the variable Fi. For example, to knock-out
mutant M1,2 we associated the Boolean formula F1∧F2∧F3 to express that
feedbacks FB1, FB2 are included in the model, while FB3 is not. Similarly,
we associated to mutant M2 the Boolean formula F1 ∧ F2 ∧ F3, indicating
that FB2 is included in the model, while FB1 and FB3 are not.

We considered all knock-out mutant models having a ‘low’ total amount
of hsp at 37◦C and at 42◦C, respectively. By writing the disjunction, de-
noted by ∨, of the formulas corresponding to these mutants we obtained a
Boolean formula describing the contribution of each feedback to achieving
the property: which feedbacks must be present in the model in order for it
to exhibit the desired property. We applied the same technique to describe
which models exhibit ‘low’ levels of mfp at 37◦C or at 42◦C.

We start our analysis with the mutant M0, which does not include any
of the three feedback mechanisms. The ODE mass-action model associated
to M0 shows that if the mutant starts from its steady state at 37◦C, then at
any temperature the differentials for [hsf], [hsf2], [hsf3], [hsf3: hse], [hse] and
[hsp: hsf] are zero. That is, those functions remain constant at their steady
state values independent of temperature. In particular, the DNA binding
level, i.e., hsf3: hse, remains constant even when we increase the temperature.
So, for no numerical setup, this mutant can provide numerical predictions in
agreement with the data from [13] if it starts from its steady state at 37◦C.
Thus, we discarded this knock-out mutant from our considerations.

For each of the mutants M1, M2, M3, M1,2, M1,3, and M2,3 we performed
parameter estimation to identify a numerical setup, i.e., a set of values for
the kinetic rate constants, that provides numerical predictions in accordance
with the experimental data of [13]. The results are shown in Table 6A of [4].
We then numerically estimated the steady state of each model at 37◦C;
the results are given in Table 6B of [4]. Finally, we numerically integrated
the mathematical model corresponding to each knock-out mutant starting
from its own steady state values. For the numerical integration we used the
software COPASI [10].

We chose empirically four numerical thresholds separating the ‘low’ and
‘high’ values for the total amount of: (i) hsp proteins at 37◦C; (ii) mfp

8



proteins at 37◦C; (iii) hsp proteins at 42◦C; and (iv) mfp proteins at 42◦C.
The thresholds we selected were the following: l37hsp = 8000, l37mfp = 3000,

l42hsp = 8 × 104, and l42mfp = 2.5 × 106, respectively, all in terms of number of
molecules. We plotted the behavior of each knock-out mutant model with
respect to these thresholds in Figure 2.
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Figure 2: (a) The total amount of hsp and mfp for each of the seven models
at 37◦C; (b) the maximal value for the total amount of hsp and mfp for each
of the seven models at 42◦C. Values on the axes are in terms of number of
molecules and should be interpreted as an average of a population of cells.

We considered the following four properties:

Property P1: Low level for the total amount of hsp at 37◦C. This property
is exhibited only by the mutants M1, M3, M1,2, M1,3, and M1,2,3. Using
the Boolean formulas expressing each mutant in terms of their feedback
structure, we constructed a Boolean formula for property P1. This is easily
obtained as a disjunctive formula (logical OR) among the Boolean formulas
for M1, M3, M1,2, M1,3, and M1,2,3: (F1 ∧ F2 ∧ F3) ∨ (F1 ∧ F2 ∧ F3) ∨ (F1 ∧
F2∧F3)∨(F1∧F2∧F3)∨(F1∧F2∧F3), which can be rewritten in a compact
form as:

F1 ∨ (F1 ∧ F2 ∧ F3). (1)

Thus, property P1 can be satisfied if and only if either feedback FB1 is
present (regardless of whether FB2 and FB3 are included or not) or feedback
FB3 is present while feedbacks FB1 and FB2 are absent.

Property P2: Low level for the maximal value of the total amount of hsp
at 42◦C. This property is exhibited again only by mutants M1, M3, M1,2,
M1,3, and M1,2,3. So, we obtained the Boolean formula

F1 ∨ (F1 ∧ F2 ∧ F3). (2)

Property P3: Low level for the total amount of mfp at 37◦C. This property
is exhibited only by the mutants M1, M3, and M1,2,3. So, in this case we
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obtained the Boolean formula

(F1 ∧ F2 ∧ F3) ∨ (F1 ∧ F2 ∧ F3) ∨ (F1 ∧ F2 ∧ F3). (3)

Property P4: Low level for the maximal value of the total amount of mfp at
42◦C. This property is exhibited by the mutants M1, M2, M1,2, and M1,2,3.
In this case, we obtained the Boolean formula

(F1 ∧ F3) ∨ (F1 ∧ F2 ∧ F3) ∨ (F1 ∧ F2 ∧ F3). (4)

Note that when defining the properties P1 and P3, we consider the total
amounts of hsp and mfp without referring to the maximal values, as in the
case of P2 or P4. This is due to the fact that P1 and P3 are considered at
37◦C, a temperature at which the system is in a steady state. Thus, the
total amounts are not changing in time.

To investigate which knock-out mutants can be both effective and eco-
nomic, we looked at the models that exhibit low levels for both hsp and
mfp. For a temperature of 37◦C, we considered the models that verify si-
multaneously properties P1 and P3. The Boolean formula describing these
architectures was easily obtained as a conjunctive formula (logical AND)
among the formulas for properties P1 and P3, which could then be rewritten
in a compact form as (F1∧F2∧F3)∨(F1∧F2∧F3)∨(F1∧F2∧F3). Since this
was identical with (3), we concluded that at 37◦C, once a mutant achieved
a low level for the total amount of mfp, it would also exhibit a low level for
the total amount of hsp. For the similar analysis at 42◦C we were interested
in the models that verify simultaneously properties P2 and P4. In this case,
the Boolean formula describing these architectures is F1 ∧ (F2 ∨ (F2 ∧ F3)).
This shows that to obtain low values for both hsp and mfp at 42◦C the
first feedback is essential. Moreover, only two types of mutant architectures
predicted this outcome: if both FB1 and FB2 were present in the model
(regardless of whether FB3 is included or not), or if FB1 was included while
FB2 and FB3 were not. Furthermore, it showed that the second feedback,
in addition to the first one, has a role in decreasing the levels of both hsp and
mfp at 42◦C. The second type of architecture, i.e., when FB1 was present
in the model while FB2 and FB3 were absent, showed that the first feed-
back alone is sufficient to ensure a low enough level of both hsp and mfp at
42◦C. However, when we compared the values predicted by M1 and M1,2,3,
see Figure 2(b), we noticed that the cumulative effect of the second and the
third feedbacks added to the first one is to further reduce the total level of
mfp.

We noticed that the Boolean formulas corresponding to properties P1

and P2 were identical. This means that once a knock-out mutant is able
to keep a low level of hsp at 37◦C, it will also be able to respond to heat
shock with a relatively low level of hsp. Moreover, this was the case only
for two types of mutant architectures: either when the feedback FB1 was
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present (regardless of whether FB2 and FB3 were included or not) or when
feedback FB3 was present while feedbacks FB1 and FB2 were absent. This
showed that the first and the third feedbacks have roles in lowering the level
of hsp both at 37◦C and at 42◦C. The first type of mutant architecture,
having the feedback FB1 present, was insensitive to the second and the
third feedbacks: whether they were included in the model or not did not
change the behavior of the model with respect to P1 and P2. The second
type of mutant architecture that satisfies the Boolean formula (1) showed
that in the absence of the first feedback, the third one is necessary to obtain
low levels of hsp both at 37◦C and at 42◦C.

If, on the other hand, we required low levels of mfp both at 37◦C and
at 42◦C, i.e., if we asked for properties P3 and P4 to be satisfied, then we
would see that the first feedback has to be present in the model. Otherwise,
i.e., if F1 = 0, the two Boolean formulas (3) and (4) become F2 ∧ F3 and
F2 ∧ F3, respectively, which obviously cannot be simultaneously satisfied.
This confirmed again our conclusion that the first feedback is essential for
the model to satisfy all four properties P1, P2, P3, and P4, i.e., for the model
to exhibit low levels for both hsp and mfp, both at 37◦C and at 42◦C.

5 Discussion

In this paper, we proposed a novel approach for the knock-out mutant model
comparison problem. There are several other methods for submodel compar-
ison in the literature, e.g., the mathematically controlled comparison [20] or
the local submodel comparison method [3]. The technique of mathematically
controlled comparison provides a structured approach for comparing several
alternative designs with respect to some chosen measures of functional ef-
fectiveness. However, this framework imposes one important constraint on
the alternative designs: they are allowed to differ from the reference design
in only one component. Moreover, the mathematical models both for the
reference design and for the alternative architectures are developed in the
framework of canonical nonlinear modeling referred to as S-systems, [18]
and [19].

In the case of the local submodel comparison the alternative designs
are considered submodels of the reference model. The underlying reaction
networks of these submodels are very similar (although not identical), and
both the biological constraints and the kinetics of the reactions are taken
from the reference model. To assure an unbiased comparison, i.e., to avoid
the situation where the submodel exhibits two intertwined tendencies of the
migration from a possible unstable state and the response to a stimulus, the
initial values of the reactants are chosen in such a way that they constitute
a steady state of that design in the absence of a trigger. For a detailed
review of these and other approaches we refer to [16].
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In our new approach proposed in this study we first associated a Boolean
variable to each of the three feedback mechanisms identified in [3] for the
reference model of the eukaryotic heat shock response. Then, for each knock-
out mutant we wrote a Boolean formula (using the conjunction and nega-
tion of the three introduced Boolean variables) characterizing its control
architecture, i.e., which of the three feedback mechanisms are present in the
model. As such, each of these formulas encompass time-independent proper-
ties of the models. This makes our approach very different from the Boolean
network framework for modeling biological systems, see [1], [11], [12], [21],
where one usually associates a Boolean variable to each species present in
the system. Boolean formulas are then used to simulate the time evolution
of the species. Moreover, in our approach the Boolean formulas associated
to each knock-out mutant are parameter independent, i.e., they are not in-
fluenced by the parameters used to describe the compared models. We also
introduced a Boolean formula characterizing all those mutant architectures
that exhibit a given behavioral property, e.g., low levels of hsp or mfp. This
can be easily obtained as a disjunctive formula (logical OR) of the Boolean
formulas describing the architectures of the mutants exhibiting the required
property. However, in order to perform numerical simulations of the models
we needed numerical setups for each of the knock-out mutants, i.e., specific
values both for the initial distribution of the reactants and for the kinetic
rate constants of the models. For the initial values of the variables, we chose
the approach proposed in [3] for the local submodel comparison method, i.e.,
we set them separately for each knock-out mutant in such a way that they
form a steady state for that particular model. Regarding the kinetic rate
constants in each of the knock-out mutants, one approach is to take them
from the reference model, see [3]. The idea in this case is to make the whole
comparison in the numerical setup of the reference model. Alternatively, we
proposed here to separately estimate the kinetic constants of each alterna-
tive model with respect to available experimental data. In other words, we
considered all models to be viable alternatives for the biological system and,
as such, we took for each of them a most favorable numerical setup.

Since the numerical setup giving a good model fit is in general not unique,
it means that our analysis is sensitive with respect to the choice of the
values for the kinetic constants. This is often the case when model fitting
is involved, see [2]. Repeating the analysis for several numerical setups (all
of them as good in terms of fitting the model to the experimental data)
would enrich the conclusions, by potentially showing that the same model
architecture can exhibit different properties depending on the numerical
setup. The conclusions of the analysis also depend on the numerical values
chosen for the thresholds l37hsp, l

37
mfp, l

42
hsp, and l42mfp.

It is crucial for our approach that all knock-out mutant models are con-
sidered in the analysis, i.e., all possible combinations ON/OFF of the model
components are included in the comparison. In this way, we obtain a com-
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plete characterization of the properties being analyzed in terms of all model
architectures that can exhibit those properties. For a large number of com-
ponents, this approach becomes quickly computationally challenging: for n
components to be analyzed, there are 2n knock-out mutant models to be
compared. Including in the comparison only a part of those mutants is also
possible but then the output of the method is partial: one only discovers
some of the architectures exhibiting the property of interest. However, we
notice that the exponential explosion problem is not caused by the size of
the considered model – in fact, the model itself can be large (e.g. in terms
of the number of reactants and reactions). The problem is about how many
components (Boolean variables) one considers. In other words, the practical
application of our method is not restricted by the size of the model but the
number of considered components. In fact, the control-driven decomposi-
tion enables a split of any model into a relatively small number of modules,
i.e., the following well-defined basic components: the plant, the sensor, the
actuator and the controller. In the case of the heat hock response model dis-
cussed in this paper, three feedback mechanisms were distinguished within
the controller and only their role was investigated. This provides a general
hint how one could avoid the potential problem of computational intractabil-
ity by taking the following hierarchical approach. In the first step, one would
perform a basic decomposition leading to components of well-defined role in
the whole system. In the second step, one would identify the elements of
interest within one of the higher-level, previously distinguished components.
In this way one could investigate the influence of each particular element on
the behavior of the component, which role in the whole system is in turn
well-defined. In consequence, our method would be applied to just some
subpart of the whole system with a smaller number of components and in
this way made computationally tractable.

The usefulness of our new method for disentangling the roles of submod-
ules in the overall behaviour of a biomodel is illustrated on the example
of a model for the eukaryotic heat shock response. The heat shock re-
sponse represents an exceptionally well-conserved regulatory network. It
involves all mechanisms that any regulatory network must include: a stress-
induced activations and a feedback regulation. As such, it can be regarded
as an archetype for a cellular regulatory process. The heat shock response
model presented in Section 3 is attractive to be considered as a case study
for the reason that it is a simple model which captures in mechanistic de-
tails all key aspects of regulation: the heat-induced protein misfolding, the
transactivation of the hsp-encoding genes, the chaperone activity of heat
shock proteins, and the repression of hsp transactivation once the stress is
removed. This justifies the claim that our approach is general, i.e., it is
applicable to virtually any biomodel describing a regulatory mechanism.

When we compared the numerical behavior of the knock-out mutants,
we chose a mathematical model formulation in terms of ordinary differential
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equations. However, our approach is independent of this formulation and
it would work equally well with other formulations, such as continuous-
time Markov chains and their numerical simulations based on Gillespie’s
algorithm, see [6, 7].

Our approach can be easily extended to a more refined analysis, where
the range of the properties to be analyzed is divided into more domains than
just ‘low’ and ‘high’. The range could in fact be divided into an arbitrarily
high number of intermediate domains, depending on the details of the case
study. A Boolean formula could be associated to characterize each of those
domains in a manner similar to that demonstrated in this paper.
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