
An EFSM-based intrusion detection system for
ad hoc networks

Jean-Marie Orset, Baptiste Alcalde, and Ana Cavalli

Institut National des Télécommunications GET-INT, Evry, France
{jean-marie.orset, baptiste.alcalde, ana.cavalli}@int-evry.fr

Abstract. Mobile ad hoc networks offer very interesting perspectives in
wireless communications due to their easy deployment and their grow-
ing performances. However, due to their inherent characteristics of open
medium, very dynamic topology, lack of infrastructure and lack of cen-
tralized management authority, MANET present serious vulnerabilities
to security attacks. In this paper, we propose an intrusion detection
scheme based on extended finite state machines (EFSM). We provide a
formal specification of the correct behavior of the routing protocol and
by the means of a backward checking algorithm, detect run-time viola-
tions of the implementation. We choose the standard proactive routing
protocol OLSR as a case study and show that our approach allows to
detect several kinds of attacks as well as conformance anomalies.

1 Introduction

In the recent years, one could assist to a spectacular growth in the use of wire-
less equipments. The number of mobile devices such as PDAs, mobile phones,
laptops, is also tremendously increasing. To ensure the connectivity between all
these devices, ad hoc networks appear to be a promising solution. An ad hoc
network is a collection of wireless mobile nodes which communicate together
without the assistance of any fixed nor central infrastructure. Thus, participants
must cooperate by acting as routers and forward messages to other nodes that
are not within the same radio range. MANET can be used in scenarios where no
infrastructure exists, or where the existing infrastructure does not meet appli-
cation requirements for different reasons such as security, cost or quality. They
also open new fields of applications in the domain of networking like battlefield
operations, sensor networks, emergency rescues or roaming networking.

Beside their enticing capabilities, ad hoc networks suffer from a great weak-
ness: due to their characteristics, they are much more vulnerable than wired
networks. Indeed, they rely on a open medium and have a very dynamically
changing topology. They trust others participants, can not rely on a fixed in-
frastructure to monitor the activity, to distribute keys or to manage security
policies. As a result, MANET are vulnerable to many kinds of attacks like pas-
sive eavesdropping, usurpation, routing disruption or denials of service (DoS).
Recently, many schemes have been proposed to secure the routing process in
MANET. Most of them are preventive: they rely on cryptographic mechanisms



for example, to authenticate participants within the network. Although they
present interesting potentials, they are often inspired by the techniques used in
traditional networks and are also not always well adapted to MANET (problem
to exchange keys, high resource consumption, etc...). Furthermore, they only
deal with limited aspects of the protocols. Thus, they do not allow to cope with
all threats (e.g. corrupted node revealing the key, wrong messages flooding, non
participation, etc...). Cryptographic mechanisms may help to identify the origi-
nators of an attack but if the attack is not detected, they remain useless. That
is why one not only needs to prevent attacks but also to detect the incorrect
behaviors in real time, in order to offer the network the opportunity to react
efficiently. This is the role of an intrusion detection system (IDS).

Many intrusion detection schemes have been proposed in wired networks.
However, the totally distributed context of MANET obliges to work out new
approaches. In addition, experience shows that protocols are often subjects to
design flaws which could further be exploited by an attacker to compromise the
network. The contribution we bring in this paper is the definition and application
of a specification-based approach (EFSM) to detect as well the anomalies in the
implementation of the protocol as attacks against the routing operation. We
chose the proactive ad hoc routing protocol OLSR as a case study. We thus
manually abstract a correct behavior of an OLSR node according to the RFC
[4]. Then, an algorithm analyzes all the messages exchanged locally by the nodes
and test the conformance to the specification in real time. By the following,
attacks are assimilated to violations of the specification. We illustrate that our
approach allows to detect several kinds of attacks, without requiring to maintain
an heavy scenario base on each nodes.

The remainder of the paper is organized as follows: section 2 describes related
works on security and intrusion detection in ad hoc networks. section 3 presents
the OLSR protocol as well as an overview of different attacks against ad hoc
routing protocols. section 4 detailed our specification based approach and the
passive testing algorithm used to perform the validation. Examples of application
are described in section 3. Finally, we present the future work and conclude the
paper in section 6.

2 Related work

2.1 Cryptographic schemes

In the recent years, most of the propositions to secure the routing process in
MANET make use of cryptographic mechanisms. In [5] for example, the authors
proposed the use of asymmetric cryptography to secure on-demand ad hoc net-
work routing protocols. However, nodes in an ad hoc network may not have
sufficient resources to verify asymmetric signatures. Thus, an attacker can triv-
ially flood a victim with packets containing invalid signatures. Although those
packets will be discarded, the verification will be prohibitively expensive for the
victim.



As for the OLSR protocol, the main contribution comes from [1]. The authors
proposed to rely on asymmetric cryptography to authenticate the originators of
messages but also on timestamp to verify their freshness and counter replay
attacks. In addition to the preceding drawbacks, there remains the problem of
key certification. Since there is no fixed infrastructure in MANET, nodes can
not rely on any certification authority to validate or revoke certificates.

The problem of these approaches is that even if the schemes are efficient and
correctly implemented, they do not allow to cope with compromised nodes, nor
authenticated nodes which deflect the normal operation of the routing process.
Moreover, the secure protocol may itself contains flaws which could be further
exploited by an attacker.

That is why many people propose to use intrusion detection schemes, as a
complementary protection, to detect all malicious behaviors.

2.2 IDS in ad hoc networks

One of the first worth proposals to develop IDS capabilities for MANET was
described in [8]. This paper presented a set of rules that identify several well
known attacks on MANET. Then, they developed a cluster-based detection ap-
proach in which a node is chosen to perform detection functions for all nodes
within a cluster. Although interesting, the cluster based concept induces some
security problems which need to be addressed.

One of the main drawback of all statistical based IDS is the high rate of false
alarms. To circumvent that problem, others people choose to rely on specification
based approaches to reduce the error margin in the detection of attacks.

2.3 Specification based IDS

Some researchers [7] proposed recently a solution based on an FSM-based spec-
ification to detect vulnerabilities in the AODV protocol. They used an FSM to
specify an AODV correct behavior and distributed networks monitor to detect
run-time violations on the specification. In addition to the fact that FSMs consti-
tute a too limited tool to manage the complexity of an ad hoc routing protocol,
some of the assumptions are too strong so that security aspects of the architec-
ture are not clearly addressed. Finally, in [3], the authors propose to extend the
preceding solution on several aspects. Firstly, they rely on EFSA to specify the
behavior of the AODV protocol. Then, they propose to use specification-based
and statistical approaches complementarily, in order to detect attacks that do
not directly violate the specification.

3 Attacks in ad hoc networks

3.1 The Optimized Link State Routing Protocol

The OLSR protocol is a link-state proactive protocol, based on the Open Shortest
Path First (OSPF) protocol and designed specifically for mobile ad-hoc networks.



OLSR manages to diffuse routing information through an efficient flooding tech-
nique. The key innovation of this protocol is the concept of Multi Point Relays
(MPRs). A node’s multipoint relay is a subset of its neighbors whose combined
radio range covers all nodes two hops away. In order for a node to determine its
minimum multipoint relay set based on its two-hop topology, periodic broadcasts
are required. Similar to conventional link-state protocols the link information up-
dates are propagated throughout the network. However in OLSR, when a node
has to forward a link update it only forwards it to its MPR set of nodes. Finally,
the distribution of topological information is realized with the use of periodic
topology control messages and as a result, each node knowing a partial graph of
the topology of the network that is further used to calculate the optimal routes.
OLSR is mostly preferred when the ad hoc network consists of a large number of
nodes and has a high density. One of the main advantages of the OLSR protocol
is that it does not make any assumption concerning the underlying link layer,
allowing it to be used in a variety of configurations.

3.2 Vulnerabilities

Currently, OLSR does not specify any special security measures. As a proactive
routing protocol, OLSR makes a target for various attacks. In OLSR, each node
is injecting topological information into the network through the transmission of
HELLO messages and, for some nodes, TC messages. If some nodes (malicious
or malfunctioning) inject invalid control traffic, network integrity may be com-
promised. Here are examples of situations that may occur due to lack of data
integrity functionality.

Identity usurpation By sending false HELLO messages, a node may pretend
to be another node. Then, the target node identifies the originator address as
from one of its neighbor. This may result in creating conflicting routes to the
node with the corresponding address, errors in the routing tables, link loss, etc...

Insertion of false control messages A node broadcasts a wrong HELLO
message claiming symmetrical links to non-neighbor nodes or to non-present
nodes. As a consequence, the node may be selected as an MPR and the traffic
between other nodes will be routed by itself. It can then discards all the traffic
or just the control messages (Hello, TC ) to disturb the routing operation.

Alteration of control messages A node may listen to the TC messages from
neighbors, add non existing nodes with symmetrical connectivity and replay the
packet by spoofing the originator. Then, the target node is designed as an MPR
whereas it is unable to reach the nodes. In the same manner, a node may also
include non-existing links (i.e. links to non-neighbor nodes) in a TC message.
That may yield routing loops and conflicting routes in the network.

Another alteration attack which has a great impact consists for an attacker,
to forward a TC message with a sequence number increased from x to x + i. By



the following, the receiver will stop to analyze and forwards packets from the
originator with sequence number lower than x + i.

As we can see, OLSR present several serious vulnerabilities which could lead
to paralyze the communications within the network. All the cited attacks hi-
jack the normal operation of the protocol and can not always be prevented by
classic authentication schemes. Indeed, such schemes only allow to verify the
origin of messages but not their relevance. By formally specifying the normal
operation of OLSR, we are able to detect many anomalies and intrusions on
the protocol since each one will be detected in real-time, as a violation of the
specification. Moreover, it is very difficult in MANET to establish a clear differ-
ence between a malicious behavior and normal operations in some circumstances
(battery sparing, presence of obstacles, very dynamic topology, etc...). By using
a formal specification, we allow to decrease consequently the margin of error in
the detection of attackers.

4 Description of the IDS

4.1 Motivation and assumptions

Intrusion detection techniques used in traditional (wired) networks can not be
applied directly to ad hoc networks. In wired architectures, the monitoring is
generally realized on routers or hubs. In ad hoc networks, there is no infrastruc-
ture nor single management entity, making it difficult to perform any kind of
centralized management or control. Hence, the intrusion detection has to be dis-
tributed to all nodes within the network. We also achieve the distribution of
the intrusion detection mechanism by implementing a Local Intrusion Detection
System (LIDS) on each node. A potential drawback of this approach could re-
side in the difficulty to correlate the traces of the different nodes. Indeed, if one
states that every node is an omnipotent observer that can see and monitor all
the traffic inside the network, one has to rely on strong assumptions such as
a global synchronization of nodes (to order the different traces) and a strong
authentication mechanism to ensure the integrity of the traces exchanged by
the different nodes. However in our approach, such complex mechanisms are not
required since one only needs to analyse the informations exchanged between
nodes of the same neighborhood. Indeed, the use of MPR relays in OLSR allows
to divide the network in different subsets. Thus, each node only needs to know
the messages locally, inside the MPR sets.

Considering the specification, our algorithm allows to detect errors in an ex-
haustive manner. Thus, we are able to detect violations which correspond to
conformance errors as well as violations which directly result from a security
attack. To characterize more precisely the real nature of the detected violation
(attack or error in the implementation itself) one may use a complementary in-
trusion detection scheme based on attack signatures. Accordingly, each time an
anomaly is raised, an algorithm is applied to check if this corresponds to the



pattern of any well-known attack. In that case, our approach is similar to misuse
detection schemes since it allows to efficiently detect instances of known attacks.
On the other hand, if the anomaly does not corresponds to any attack pattern,
it may either imply that one identified a new attack, either that one raised an
error in the implementation itself, what anyhow characterizes a potential flaw in
the routing protocol. Afterward, this analysis has to be performed by an expert
of this domain or by a dedicated algorithm. This is out of the scope of this paper.

What is important to keep in mind is that our approach allows to detect
truly innovative errors, compared to signature based schemes which are only
able to detect well known attacks. Another significant advantage is that there is
no false positive since one only considers the normal behavior described in the
specification. Thus, whatever the anomaly the algorithm raised, one can always
be sure it corresponds to a potential flaw.

4.2 Extended Finite State Machine

We chose to rely on the EFSM formalism because it suits very well to the analysis
of flows and allows to put constraints on the variables of the transitions.

Definition 1. An Extended Finite State Machine M is a 6-tuple M = < S, s0,
I, O, ~x, T > where S is a finite set of states, s0 is the initial state, I is a finite set
of input symbols (eventually with parameters), O is a finite set of output symbols
(eventually with parameters), ~x is a vector denoting a finite set of variables, and
T is a finite set of transitions. A transition t is a 6-tuple t =< si, sf , i, o, P, A >
where si and sf are the initial and final state of the transition, i and o are the
input and the output, P is the predicate (a boolean expression), and A is the
ordered set (sequence) of actions.

We manually derived the EFSM directly from the IETF specification [4]. The
verification process consists to map the traces of I/O events (messages received
and sent) recorded on each node, with the specification. To compare the traces
with the EFSM, we chose an approach based on backward tracking [2].

Another consequent advantage brought by the backward testing approach
is that it allows to consider that the traces can start at any moment of the
implementation execution, not only the initial state.

Given a trace from the implementation, our algorithm will detect three types
of errors:

– the output errors : when the output of a transition in the implementation
differs from the output of the corresponding transition in the specification.

– the transfer errors : when the ending state of a transition in the imple-
mentation differs from the ending state of the corresponding transition in
the specification.

– the mixed errors : a mix between the two errors defined above.



4.3 Overview of the Backward Checking Approach

The Backward Checking algorithm is an approach of passive testing on EFSMs
derived from the testing by determination of variables intervals. We consider
that we have a system under test on which we place an observation point. We
suppose that this observation point records the event traces respecting their
causal order. We assume that finding the order of these events is a well studied
and resolved problem.

The Backward Checking algorithm (cf. [2]) is composed of two main phases.
First, it follows a given event trace backward to find the possible initial config-
urations at the beginning of the trace.
Secondly, it starts from these configurations and explore backward, every pos-
sible path of the specification with help of pruning operation and a transition
choice strategy, to reduce as much as possible the search.

Fig. 1. Overview of Backward Checking

In the trace During the first phase, if an inconsistency is detected it means
that the event trace is not correct and that an error has been detected. If at
the end of the event trace analysis no inconsistency has been found, it means
the studied trace is possible with the obtained initial configuration. Then, the
second phase is launched, i.e. the exploration of the past of this trace.

In the past of the trace In the second phase, we try to confirm the intervals
in which the variables are defined according to the initial configurations. The
algorithm finishes with a positive answer (trace is valid) at the first confirmed
configuration, i.e. the first configuration in which every determinant variables
has been confirmed, or with a negative answer (invalid trace) if every branch of
the exploration tree leads to an inconsistency. One can say that this algorithm
is optimal in the way that it will be fast to say that there is no error, but slower



to say that there is one. This fact is coherent with reality because we suppose
that an error in an event trace is an exceptional behavior.
The different branches of the exploration tree are the possible successions of
transitions, taken in a backward manner from the initial configurations resulting
from the first phase.

4.4 OLSR Extended Finite State Machine

For the sake of simplicity, we decided not to specify all the functionalities of
OLSR. For example, we consider that each node has only one interface and also
that it can only claims one link to a same node. Since OLSR is a link state routing
protocol, we decided to model the behavior of every node according to its state
and its connectivity with its neighbors. Indeed, OLSR makes difference between
links depending if they are asymmetric or bidirectional and also between nodes,
depending if they are normal nodes or multipoint relays - what implies they
have a priori, a better connectivity. Our EFSM only represents the interactions
between two nodes. This implies there is a unique EFSM for each link between
two nodes. We reuse the notation of [3], i.e. we use the abbreviation obs and
cur to specify respectively the destination and the local node (obs stands for
observed node and cur for current node). The events which correspond to a
received packet are noted with a ’?’ while those with a ’ !’ relate sent packets.
The typical notation is also ”address - type of event - type of message - fields”.

Fig. 2. OLSR Extended Finite State Machine (see Appendix for details)

The goal of the first transition is to initialize all the timers and variables.
OLSR is a proactive protocol, so it needs to periodically send control messages



though the network to keep the link states updated. This is represented on the
figure by the timers HelloTimer and UpdateTimer which respectively time the
Hello message sending and the the link state updating. Normally, a node should
update its link state as soon as it receives a Hello message. However, we needed
two timers here, to specify the behavior of a node when he receives no message
(its connectivity may decrease). Thus, in the Initial state, the node uses the first
timer to perform its neighbor discovery. Since it has none actually, it sends an
empty Hello. It remains in the same state if it has received no message after the
specified second timeout.

By receiving a message from another participant, the node immediately goes
on the second state Asymmetrical, which means it has heard another node but
can not yet claim a symmetrical link with it. We also record the address of the
heard node in a list of asymmetrical neighbors to further verify if one can right-
fully pass in the next state. From that state, a node may:
- receive no message and return in the preceding
state after the timeout

- receive another Hello message from the same
node and remain in that state

- receive an Hello message from a node

If the sending node has recorded it as an asymmetrical one (use of the con-
stant ASYM ), one can pass in the Symmetrical state. But this is only plausible
if the current node previously sent an empty Hello message, what can be ver-
ified by the mean of the variable SentHello, which must be set to true. This
precaution allows to avoid that malicious nodes claim non-existent links. The
sending node could also have directly recorded it as a symmetrical neighbor (use
of constant SYM ). In that case, that node must have been recorded previously
in the asymmetrical list(AsymList).

Once it reaches the symmetrical state a node has to advertise its neighbors.
Hence, it may:

– send a Hello message to claim a symmetrical link with the observed node
– advertise that it chose the observed node as one of its MPR nodes (by using

the constant MPR)
– send data to one of its MPR, to be forwarded
– receive Topology Control messages (only if the sender has been previously

chosen as a MPR)

As for the receiving, if the node only receives empty Hello after a certain
time (it is not seen anymore), it goes back in the asymmetrical state, since it
can still listen nodes. If it is claimed by the observed node as an asymmetrical
or a symmetrical node, it stays in its state. Finally, the node can be chosen as a
MPR (the constant MPR is used). If so, it records the address of the sender in
its MPR selectors list (MprSelList).



When a node finally reaches the MPR state, he has to keep on advertising
periodically its MPR selectors. From now, it has also the responsibility to for-
ward data from selectors. To do that, it just has to ensure that the message
really comes from one of its MPR selectors, what can be easily verified by ex-
amining the list MprSelList. The second function of MPR nodes is to generate
the link state messages. The representation we choose allows easily to verify
that this kind of message can only be sent by an MPR node, as specified in
[4]. Finally, depending on the received messages, the node will eventually reach
another state. If it keeps on being claimed as a MPR node by the same neighbor,
it stays in that state. If it is claimed only as a symmetrical node, it will become
again a simple symmetrical neighbor, regarding the sender. As for the preceding
state, if it receives message in which it can find its own address, it goes back to
the asymmetrical state. Finally, if after the timer expires it has not received any
message, it goes back to the initial state. In both cases, the lists are flushed and
the timer are reset.

One has to note that there is an EFSM for each connection between two
participants. Thus, a node could be in the MPR state regarding one node and
be in a SYM or ASYM state with relation to another one.

5 Detecting Attacks

To test the effectiveness of our approach, we applied our violation detection
algorithm to the traces corresponding to the two attacks described in section 3.

5.1 Hello message insertion

Let us recall that in this scheme, an attacker advertised a non-existent symmetri-
cal link to its neighbors, thus perturbing their routing table calculation process.
According to our notation (see Appendix), the corresponding trace is also:

HelloTimerOut / cur!Hello()
UpdateTimerOut
obs?Hello()
UpdateTimer
obs?Hello(cur) with cur=SYM

Here is how our algorithm proceeds to verify the trace: starting from the last
event, it determines which could be the corresponding transitions. By examin-
ing the different possible transitions, one observes that this event can match
the transitions 8, 15 and 17, which respectively start from the states A, S and
M. These are the only transitions which correspond to the reception of a Hello
message claiming a symmetrical link. Here, we have also three state possibilities
with the following parameters:



State: A; Parameters: cur=SYM, obs∈AsymList
State: S; Parameters: cur=SYM
State: M; Parameters: cur=SYM, obs∈MprList

At that time, the algorithm shifts on the preceding event (UpdateTimer)
and searches within the EFSM, all the transitions containing that event, which
can lead to the states A, S or M. By looking into the list of all transitions,
one can immediately verify that there is none which satisfy the requirements.
The algorithm also raises a transfer error violation, that reveals the trace does
not corresponds to the specification. From this anomaly, one may bring out two
conclusions. Either we consider the implementation is correct and thus, there is
a security attack in the network, either one considers that the implementation
needs to be validated and we also exhibit a conformance error.

5.2 MPR usurpation

Let us now consider the second attack in which an attacker sends Topology
Control messages without having been elected as a MPR. A corresponding trace
would have the pattern:

cur!Hello(obs) with obs=MPR
cur!Hello(obs) with obs=SYM
obs!TC(cur) with cur=MPRSEL

This is an example of trace where a node keeps on claiming to be a MPR
node after having been demoted as a simple symmetrical one. The current node
elects the observed one as a MPR (and may perform some transitions). Then,
it demotes the observed node (after having recalculated its routing table for ex-
ample) but keeps on receiving TC messages from it.

The process is then the same than for the previous attack. The algorithm
searched for a transition which corresponds to the emission of a TC message
with the variable ’cur ’ set to ’MPRSEL’. It appears that this event match the
transition 14. This transition leads to state with the predicate obs∈MprList. So
now, the algorithm shifts to the previous event (cur!Hello(obs) with obs=SYM )
and searches backward all the transitions that contained it, which also reach the
state A. By checking all the possible transitions in the EFSM, it appears that
only the transition 11 matches. Nevertheless, the transition 11 has, as an effect,
to remove the address of the observed node from the MprList of the current
node. That is in total opposition with the predicate of the transition 14. The
algorithm also raises this time, an output error and discloses a new anomaly.
Again, it can result from a dysfunction in the observed node or a willful security
attack.

Note that this scheme is quite similar to the case where a node falsely ad-
vertises symmetrical links through the TC messages. Both anomalies will be
identically detected.



Thus, it appears that our approach allows to detect several kinds of typical
attacks on the OLSR protocol. These attacks are not taken into account in the
original specification of the protocol and could constitute a serious risk if one is
not able to detect them.

6 Conclusions and further work

We proposed a specification based approach that rely on the use of extended
finite state machines to detect attacks on the OLSR protocol. The use of EFSM
makes possible to analyze in depth, the messages exchanged between nodes. We
applied a backward checking algorithm to detect violations on the specification.
This approach brings a significant benefit on the quickness of the verification
process, what is crucial in the context of run-time verification. We then, applied
our algorithm to detect flaws on the OLSR protocol and showed that it makes
it possible do detect several kinds of anomalies.

We plan to integrate this approach and this algorithm in a complete IDS in-
frastructure. We also envisage to use in a complementary way, a signature analy-
sis tool to detect attacks that can not yet be easily detected by a specification-
based approach(e.g. DoS. attacks).

References

1. Cédric Adjih, Thomas Clausen, Philippe Jacquet, Anis Laouiti, Paul Mühlethaler,
and Daniele Raffo. Securing the olsr protocol. In Proceedings of IFIP Med-Hoc-Ned,
pages 125–134, 2003.

2. B. Alcalde, A. Cavalli, D. Chen, D. Khuu, and D. Lee. Network protocol system
passive testing for fault management - a backward checking approach. In Formal
Techniques for Networks and Distributed Systems - FORTE 2004, pages 150–166,
Madrid, Spain, september 27-30 2004. Springer.

3. Yi an Huang and Wenke Lee. Attack analysis and detection for ad hoc routing
protocols. In Proceedings of the 7th International Symposium on Recent Advances
in Intrusion Detection (RAID’04), 2004.

4. Thomas Clausen and Phillipe Jacquet. IETF RFC 3626: Opti-
mized Link State Routing Protocol (OLSR). The Internet Society
http://www.ietf.org/rfc/rfc3626.txt, 2003.

5. B. Dahill, B. Levine, E. Royer, and C. Shields. A secure routing protocol for ad hoc
networks, 2001.

6. Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Ariadne: A secure on-demand
routing protocol for ad hoc networks. In Proceedings of the Eighth Annual Inter-
national Conference on Mobile Computing and Networking MobiCom 2002, pages
12–23, 2002.

7. Chin-Yang Tseng, Poornima Balasubramanyam, Calvin Ko, Rattapon Limprasitti-
porn, Jeff Rowe, and Karl Levitt. A specification-based intrusion detection system
for aodv. In SASN ’03: Proceedings of the 1st ACM workshop on Security of ad hoc
and sensor networks, pages 125–134, New York, NY, USA, 2003. ACM Press.

8. Yongguang Zhang, Wenke Lee, and Yi-An Huang. Intrusion detection techniques
for mobile wireless networks. Wirel. Netw., 9(5):545–556, 2003.



Appendix

Here are the different transitions corresponding to the EFSM of the figure 4.4.
P are used to denote predicates while A stand for actions. Uppercase variables
denote constants and are used to specify the nature of a node depending if it is
asymmetrical, symmetrical, a MPR node or a MPR selector.

1. A: reset SentHello, HelloTimer, UpdateTimer, TcTimer; clear AsymList,
MprSelList, MprList

2. HelloTimerOut / cur!Hello()
A: set SentHello=true; set HelloTimer

3. UpdateTimerOut
A: reset UpdateTimer ; set SentHello=false

4. obs?Hello()
A: reset UpdateTimer ; Add(obs,AsymList)

5. UpdateTimerOut
A: reset UpdateTimer; Remove(obs,AsymList)

6. HelloTimerOut / cur!Hello(obs)
A: set obs=ASYM; reset HelloTimer

7. obs?Hello()
A: reset UpdateTimer

8. obs?Hello(cur)
P: (cur=ASYM AND SentHello=true) OR (cur=SYM AND obs∈AsymList)
A: reset UpdateTimer

9. obs?Hello()
A: reset UpdateTimer; reset SentHello; remove (obs,MprList)

10. UpdateTimerOut
A: reset UpdateTimer; Remove(obs,AsymList); reset SentHello; remove(obs,MprList)

11. HelloTimerOut / cur!Hello(obs)
A: set obs=SYM; reset HelloTimer; remove(obs,MprList)

12. HelloTimerOut / cur!Hello(obs)
A: set obs=MPR; reset HelloTimer; add(obs,MprList)



13. cur!Data()
P: obs∈MprList

14. obs?TC(cur)
P: cur=MPRSEL AND obs∈MprList

15. obs?Hello(cur)
P: cur=SYM OR cur=ASYM
A: reset UpdateTimer

16. obs?Hello(cur)
P: cur=MPR
A: Add(obs,MprSelList); reset UpdateTimer; reset TcTimer

17. obs?Hello(cur)
P: cur=SYM OR cur=ASYM
A: reset UpdateTimer; Remove(obs,MprSelList)

18. HelloTimerOut / cur!Hello(obs)
A: set obs=MPRSEL; reset HelloTimer

19. TcTimerOut / cur!TC(obs=MPRSEL)
A: reset TcTimer

20. obs?Data() / cur!Data()
P: obs∈MprSelList

21. obs?Hello(cur)
P: obs∈MprSelList AND cur=MPR
A: reset UpdateTimer

22. obs?Hello()
A: reset UpdateTimer; clear MprSelList

23. UpdateTimerOut
A: reset updateTimer; clear AsymList; clear MprSelList; reset SentHello


