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Abstract. Trust dilution and trust fusion are two operators that are
used to calculate transitive trust in a trust network. Various implemen-
tations of these operators already exist but are not fully motivated. In
this paper we define the basic properties of these two operators by de-
veloping a trust algebra. We evaluate several new and existing models
against the axioms of this algebra, amongst which a number of variations
of the Subjective Logic. The algebra enables the comparison of models
and gives more insight in the available recommendation models and their
properties.

1 Introduction

Trust transitivity is defined as the possibility to use trust information from other
entities in order to infer a trust evaluation to a given entity. Trust transitivity
is a key concept of recommendation systems and it attracts an ever increasing
interest in the very recent years [4, 6, 12, 13]. To date, we can identify two main
recommendation model families. The first is qualitative and uses, for instance,
modal logic [4]. The second, which is the focus of this paper, is quantitative and
defines special trust operators, named fusion and dilution operators, in order to
compute the resulting trust of a trust network [9, 14, 15].

Dilution is used to calculate the trust along trust chains. This operator com-
bines agent A’s trust in agent B with agent B’s trust in agent C, to derive
A’s trust in C. Fusion is used to compute the overall trust if there are different
sources of information. If agent A has two independent sources of information,
say B and D, on the trustworthiness of agent C, then B and D’s information
can be combined using the fusion operator.

In literature, several different definitions of fusion and dilution operators have
been proposed. These definitions are often mainly motivated by technical obser-
vations, rather than by strong and defendable intuition. Hence these definitions
can be hard to understand or to interpret from the point of view of an outsider.
Therefore, one of the main motivations for the current research is the lack of
determination of the intrinsic properties of these operators.

In order to judge whether dilution and fusion definitions provide a suitable
modeling of the phenomena, a description of these phenomena at a higher level
of abstraction is required. In addition, such abstraction will enable to compare
the relative merits of alternative definitions and extensions.

Hence, the first contribution of this paper is to develop a higher level of
abstraction in the form of a trust algebra. This algebra consists of a number of



defining properties of the fusion and dilution operators. One of the merits of
this approach is that these properties, stated in the form of equational axioms,
can be motivated from the domain of trust and recommendation. Therefore,
rather than proposing a new recommendation model, this paper aims at giving
formal guidelines to possible implementation of recommendation models as well
as a means for their comparison. To our knowledge, this approach was never
explored until now.

Such an algebraic approach has shown very beneficial e.g. in the realm of
parallel systems, in which the development and analysis of process algebras has
added to the understanding of the many different process models. Similarly, the
development of a trust algebra will help to understand the different trust models.

Using this approach, Subjective Logic (SL), as proposed in [9], can then be
seen as one of a number of possible (and plausible) models for the abstract alge-
bra. We consider the investigation of existing recommendation models, amongst
which SL, and the development of new models as one of the contributions of
this paper. Our study also reveals weaknesses in some of the models, and can
provide a valuable feedback for the establishment of future models.

The paper is structured as follows. In Sect. 2 we clarify some general defini-
tions and assumptions needed as a background for this research. In Sect. 3 we
present the trust algebra and some extensions as well as the motivation for the
rules composing this algebra. In Sect. 4 we show the applicability of the algebra
through the comparison of the canonical models (with three and four elements),
and Subjective Logic variations. As a result from the evaluation, we can prove
impossibility results in some models, show the limitations of others, and prove
the correctness of a newly crafted model. A summary of the results is provided
in a table at the end of Sect. 4. In the conclusion we interpret our results and
propose a number of interesting venues for future work.

2 Trust relations

Trust has been defined in several different ways. The definition of trust adopted
here, first formulated by Gambetta [5], is often referred to as “reliability trust”.
Thus, we define trust as the belief or subjective probability of the trustor that
the trustee will adequately perform a certain action on which the trustor’s wel-
fare depends. We also refer to the trustor and trustee as agents, which may be
humans or computer programs acting on the behalf of humans. Trust is hence a
quantifiable relation between two agents.

In literature, many factors have been identified that can be taken into account
when calculating the trust relation between two agents (see [1] for an overview).
These factors comprise e.g. the trustor’s personality, the trustee’s competence,
contextual information such as local norms and customs, and the opinions of
other agents. The introduction of opinions allows a trustor to take other agents’
opinions into account when determining the trustworthiness of a trustee, thus
yielding a trust network. We start off with the observation from [11] that there
are different notions of trust involved. First, we make a distinction between two
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variants of trust, viz. functional trust and referral trust. Functional trust is the
belief in an entity’s ability (and willingness) to carry out or support a specific
function on which the relying party depends. Referral trust is the belief in an
entity’s ability to recommend another entity w.r.t functional trust. The other
distinction is between two types of trust, viz. direct trust and indirect trust. A
direct trust relation occurs when the trustor trusts the trustee directly (without
intermediaries), e.g. based on past experiences between them. An indirect trust
occurs when the trustor trusts a trustee based on one or more opinions from
third parties.

By combining a trust variant with a trust type we can obtain functional
direct trust, functional indirect trust, referral direct trust, and referral indirect
trust. For example, Alice wants to know where to find a good car mechanic to fix
her car. She asks Bob’s opinion because he is knowledgeable about cars (direct
referral trust). Bob happens to know a good car mechanic (direct functional
trust). Bob then suggests Alice the name of this car mechanic (recommendation).
Alice can then bring her car to this car mechanic (indirect functional trust). We
can note that after this transaction, Alice will transform her indirect functional
trust into direct functional trust (since she will then have a direct experience
with the car mechanic).

In addition to these definitions we set a number of assumptions. First, we
assume that the trustor knows all trust relations between agents that are relevant
for her own trust calculations. In literature, this rather strong assumption is often
called perfect forward, as to indicate that all agents are willing to forward other
agents’ trust values without modification.

Further, we assume that each agent keeps track of his own functional and
referral trust in other agents. We will use the same domain for expressing trust
values of all variants and types of trust. In a given trust graph all trust relations
concern referral trust, except for the arrows directly ending at the trustee, which
concern functional trust. In the remainder of the paper, we will therefore not
explicitly mention the type of a given trust relation if it can be derived from the
context.

In literature, a distinction is made between two ways of composing trust
values, viz. fusion and dilution. Trust fusion occurs if there are multiple trust
paths from a trustor to a trustee, meaning that the trustee is recommended by
several agents. In order to calculate his trust in the trustee, the trustor then has
to fuse the trust values of these other agents. The fusion of trust values does not
necessarily lead to a higher level of trust. The dilution of trust occurs if there is
a trust chain from the trustor to the trustee. Every link in the chain reduces (or
dilutes) the overall trust of the trustor in the trustee implied by the trust chain.

3 A trust algebra

In this section we develop the algebra of trust expressions, which is the first
contribution of this paper. This abstract algebra is partly based on the more
concrete operators found in literature (see e.g. [14, 15, 8]).
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We develop our algebra in four layers. The first layer introduces the basic
constants and operators and their basic properties. The second layer provides
an extension of this algebra which allows us to compare trust expressions. In
the third layer we express the duality of belief and disbelief, while in the fourth
layer we treat the special case of full direct functional belief and disbelief.

Basic Fusion and Dilution Algebra. A trust expression is obtained by (re-
cursively) applying some trust operators to a number of trust atoms (or trust
values). See the upper frame of Fig. 1 for the signature of basic trust expres-
sions. The set of trust expressions is denoted by T and the set of trust atoms
by A. We consider two basic trust operators: trust fusion (denoted by + ) and
trust dilution (denoted by · ). The set of trust atoms is not specified in detail.
We require that it contains at least the three constants υ, β, and δ. Constant
υ denotes full uncertainty, i.e. the absence of any information that can help to
assess the trustworthiness of the trustee. Constant β denotes full trust of the
trustor in the trustee, without any uncertainty. Constant δ is the dual of β. It
denotes full distrust of the trustor in the trustee, without any uncertainty. We
use parentheses to disambiguate trust expressions.

An example of a trust expression is (β · β) + (υ · δ). This expresses that,
although the trustor has no direct trust relation with the trustee, he knows two
independent sources that have a direct functional trust relation with the trustee.
The trustor has full direct referral trust in the first source, who has full direct
functional trust in the trustee (β ·β). Further, the trustor is completely uncertain
whether to trust his second source or not. His second source does not trust the
trustee at all; he has full distrust in the trustee (υ · δ).

In order to simplify trust expressions we assume that the dilution operator ·
binds stronger than the fusion operator + . We will often omit the · operator
from expressions if no confusion can arise. In this way, the above example can
be simplified to ββ + υδ.

T set of trust expressions · : T × T → T dilution (operator)
A ⊆ T set of trust atoms υ ∈ A full uncertainty (constant)
x, y ∈ T variables β ∈ A full belief (constant)
+ : T × T → T fusion (operator) δ ∈ A full disbelief (constant)

(B1) x + y = y + x (C1) x + υ = x (C4) β + β = β (C6) δ + δ = δ
(B2) x + (y + z) = (x + y) + z (C2) x · υ = υ (C5) β · x = x (C7) δ · x = υ
(B3) x(yz) = (xy)z (C3) υ · x = υ

Fig. 1. Basic Fusion and Dilution algebra (BFD)

The properties of these constants and operators are expressed by a set of
axioms, which we call the Basic Fusion and Dilution (BFD) algebra (Fig. 1). The
first three axioms express properties of the basic operators. The fusion operator
is commutative (B1) and associative (B2), since the order in which the trustor
receives independent recommendations is irrelevant. Calculating transitive trust
along a trust chain is also associative, so dilution is an associative operator as
well (B3). However, dilution is not commutative. This can be seen by a simple
example. Assume that agent A fully trusts agent B’s opinion on agent C and
assume that B fully distrusts C. Then A should also fully distrust C. However,
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if we swap the values, i.e. A has full distrust in B, who fully trusts C, then A

should not necessarily (dis)trust C, so βδ 6= δβ.
Axioms C1–C7 define the properties of the three constants. The uncertainty

constant υ behaves like a zero element. Adding a fully uncertain opinion to an
opinion x does not give any extra information, so x + υ = x (axiom C1). By
combining this with axiom B1 we obtain the symmetric case υ+ x = x. Axioms
C2 and C3 express that full uncertainty in a trust chain annihilates any other
information in this chain, so x · υ = υ · x = υ. If we fuse full belief with itself, it
remains full belief (axiom C4). Axiom C5 expresses that the full belief constant
β behaves as a left-unit for dilution. This follows from the fact that if we fully
belief another agent, we adopt his opinion without any hesitation. Clearly, β is
not a right-unit, so we don’t have x·β = x. If A distrusts B and B trusts C, then
this does not mean that A should distrust C, δβ 6= δ. The disbelief constant δ
behaves similar to β in a fusion context: if we get our full disbelief confirmed by
another source, the fusion is still full disbelief (axiom C6). Finally, if we consider
the opinion of somebody whom we disbelief, it will give us no information at all,
so δ · x = υ (axiom C7). Obviously, the converse, x · δ = υ, does not hold, since
e.g. β · δ = δ. Later we will come back to expressions of the form x · β and x · δ.

Jøsang [11] also mentions interpretations which are different from the intu-
ition sketched above. If we assume that “the friend of my enemy is my enemy”,
then the interpretation of β as a right-unit would make sense. This interpre-
tation would also have consequences for axiom C7, since then we would have
δβ = δ. However, following Jøsang, we consider these interpretations as rather
exotic and we will leave them for future study.

It is important to notice that there exist expressions that are not equal (after
applying the axioms) to a constant. An example is β+δ which expresses that via
one route we obtain the information that the trustee can be trusted without any
uncertainty, while via another independent route we learn that the trustee must
be distrusted without any uncertainty. There are different ways to interpret the
fusion of such dogmatic opinions, some of which are discussed in [10]. In order
to allow for such different interpretations, we decided to not settle for a fixed
interpretation in the algebra. Alternative interpretations can then be expressed
by defining different models of the algebra.

As discussed by Jøsang [8] the fusion and dilution operators do not distribute.
For instance, xz + yz = (x + y)z is not a desired property, because in the left-
hand side of this equation the two occurrences of z represent two independent
opinions, which must both be taken into consideration in the fusion. Hence,
they will reinforce each other. However, in the right-hand side of the equation,
opinion z is only considered once. For the same reason, idempotence of the fusion
operator (x+ x = x), is not a required property either.

Comparing trust expressions. In the following, we impose some additional
structure on trust expressions by introducing a number of auxiliary operators.
The first extension of the basic algebra allows us to compare trust expressions.

In order to evaluate the results of a trust calculation, one must be able to
compare trust values. This will, for instance, allow one to select an agent that
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he considers most trusted for a specific task. Given the three-valued basis (υ,
β, δ) of our algebra, a one-dimensional measure on trust values will be insuffi-
cient. Therefore, we will introduce three different measures, one for each of the
components. These measures will be formally modeled as total orders on trust
expressions: ≤u, ≤b, and ≤d (see Fig. 2).

The inequality x ≤u y expresses that the uncertainty component in expres-
sion x is at most as high as the uncertainty component in y. The inequality
x ≤b y expresses that the belief component in expression x is at most as high
as the belief component in y. Likewise, the inequality x ≤d y expresses that the
disbelief component in expression x is at most as high as the disbelief component
in y.

≤u: T × T compare uncertainty(total order)
≤b: T × T compare belief (total order)
≤d: T × T compare disbelief (total order)

(T1) x ≤u υ (T4) υ ≤b x (T7) υ ≤d x (T10) x+ y ≤u x

(T2) β ≤u x (T5) x ≤b β (T8) β ≤d x (T11) x ≤u x · y

(T3) δ ≤u x (T6) δ ≤b x (T9) x ≤d δ (T12) y ≤u x · y

Fig. 2. Axioms for the total orders (TO)

Axiom T1 states that full uncertainty υ is the top element in the uncertainty
order ≤u, since it dominates all other elements. Axioms T2 and T3 state that full
belief β and full disbelief δ do not express any uncertainty, and hence they are
bottom elements. Axioms T4–T9 specify similar properties for the belief order (in
which β is the top element) and the disbelief order (in which δ is the top element).
Axiom T10 expresses a basic property of trust fusion, namely that uncertainty
does not increase if we receive more information on the trustworthiness of a
trustee. In presence of the symmetry axiom B1, this axiom is equivalent to
x+y ≤u y. Axioms T11 and T12 state a similar basic property for trust dilution:
along a trust chain, uncertainty can only grow. The set of axioms T1–T12 forms
the TO (for Total Order) extension of the BFD algebra.

The duality of belief and disbelief. The second extension of the algebra
serves to express the duality of belief and disbelief. In order to express this
duality, we introduce the inverse operator x (see Fig. 3). This operator swaps
the belief and disbelief components of a trust expression. Axiom I1 expresses the
basic inversion property. Distributivity of inversion over fusion is expressed in
axiom I2. This means that belief and disbelief are treated similarly when fusing
trust opinions. Distributivity of inversion over dilution, x · y = x · y, does not
hold, because in a trust chain belief and disbelief are not each other’s duals.
Axiom I3 states that if we have full uncertainty (so no belief nor disbelief), the
inverse operator has no effect. This also stresses that υ is a zero element.

Axiom I4 expresses the duality of belief and disbelief. In presence of axiom
I1 this axiom is equivalent to β = δ. Axioms I5 and I6 state that uncertainty
is orthogonal to belief and disbelief. Finally, axiom I7 states that the inverse
function swaps the belief and disbelief values of a trust expression. The set of
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axioms I1–I7 forms the INV (for INVerse) extension of the BFD algebra. Using

: T → T invert belief/disbelief (operator)

(I1) x = x (I3) υ = υ (I5) x ≤u x (I7) x ≤b y = x ≤d y

(I2) x+ y = x+ y (I4) δ = β (I6) x ≤u x

Fig. 3. Axioms for the inverse operator (INV)

the dilution and inverse operators we now have that one constant suffices to
define the other two. For instance, υ = δ · δ and β = δ (or υ = β · β and δ = β).
Further, by using I2 we achieve equivalence of axioms C4 and C6.

Full direct functional belief and disbelief. The third, and final, extension
of our algebra concerns the meaning of full direct functional belief and disbelief.
This means that we consider trust chains ending in β or δ, as in x · δ and x · β,
which capture the situation that the last agent in a chain has full belief or
disbelief in the trustee. Although it is tempting to set e.g. x ·β = x, we consider
this as a too strong axiom. The belief component of x · β is clearly identical to
the belief component of x, but their disbelief components are not. Therefore, we
weaken this axiom to x · β =b x (see axiom R1 in Fig. 4). Here we use x =b y

as a shorthand notationfor x ≤b y ∧ y ≤b x. Thus, x =b y means that trust
expressions x and y express equal belief. Likewise, we define =d and =u.

Intuitively, axiom R1 states that if the last element in a chain has full belief,
then belief of the whole chain is determined by the remainder of the chain.
Axiom R2 states that in this case there is no disbelief. If we consider a trust
chain ending in full disbelief, then the whole chain does not express any belief
(axiom R3) and the disbelief expressed in the whole chain is exactly the belief
that we have in the last agent before the trustee (axiom R4). We consider these
axioms as a separate module since they are of a less basic nature. The set of
axioms R1–R4 forms the RM (for Right Multiplication) extension of the BFD
algebra.

(R1) x · β =b x (R2) x · β =d β (R3) x · δ =b δ (R4) x · δ =d x

Fig. 4. Axioms for right-multiplication (RM)

In the remaining of the paper we will refer to combinations of the rules
of the basic algebra BFD and one or more of the extensions. For instance,
BFD+TO+INV denotes the algebra consisting of the basic rules of BFD, and
the extensions of TO and INV.

4 Models

In this section we investigate possible models of the algebra. First we look at
small models containing three and four elements, and next we consider some
models derived from the Subjective Logic. A distinguishing factor is the inter-
pretation of the term β + δ. The main purpose of this chapter is to show how
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trust evaluation algorithms can be validated. In particular, several published
variants of the Subjective Logic will be studied. We propose two new variants
of the Subjective Logic which satisfy a larger set of axioms than the existing
variants.

Given an algebra (Σ,E), consisting of a signature Σ and a set of equations
E, a model is a mathematical structure which interprets the sorts and functions
of Σ as sets and (total) functions on these sets. This interpretation must be such
that all equations of E are valid in the model. An equation t = t′ (where t and t′

are terms over the signature, possibly containing variables) is valid in a model if
for every instantiation of the variables the interpretation of t is the same element
as the interpretation of t′.

4.1 Three-element models

First, we investigate the canonical model of three distinct elements {b, d, u} with
interpretation β 7→ b, δ 7→ d, υ 7→ u. This interpretation does not uniquely define
the model, since there is still freedom in choosing a suitable interpretation of the
fusion and dilution operators. Nevertheless, in order to satisfy the axioms, there
is only little freedom left, namely in defining the outcome of b + d, which we
consider a parameter σ of the model. Thus, we introduce the class of possible
models M3(σ) in which σ ∈ {b, d, u} represents the fusion of b and d. The
interpretation of the operators is given in Fig. 5. The tables in this figure must
be read in the order “row-operator-column”. For instance, in the second table
we can look up the value of b · d by crossing the row labeled b (first row) with
the column labeled d (second column). This yields b · d = d. The fusion table
is determined, up to σ, by axioms B1, C1, C4, and C6. The dilution table is
fully determined by axioms C3, C5, and C7. The inversion table is determined
by axioms I1, I3, and I4.

+ b d u

b b σ b

d σ d d

u b d u

· b d u

b b d u

d u u u

u u u u

x x

b d

d b

u u

Fig. 5. The three-element models M3(σ)

Next, we investigate possible choices for σ. M3(u) is not a model of BFD,
because associativity of fusion yields the following derivation b = b + u = b +
(b+ d) = (b+ b) + d = b+ d = u. Thus M3(u) does not satisfy axiom B2.

On the other hand, a simple case distinction suffices to verify that M3(b)
and M3(d) are indeed models of BFD. Surprisingly, these are not models of
the extended algebra BFD+TO+INV (irrespective of the definition of the total
orders). Using axiom I2 we can, e.g., derive the following equality for M3(d):
b = d = b+ d = b+ d = d+ b = d.

The origin of the problem is in the requirement that belief and disbelief are
treated equally by the fusion operator (axiom I2), which cannot be realized with
three elements. By generalizing this reasoning we obtain the following impossi-
bility result.
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Theorem 1. There does not exist a (non-trivial) three-element model of BFD+
TO+ INV.

4.2 Four-element models

As a consequence of the previous observations, we investigate somewhat richer
models consisting of four elements {u, b, d, i}, where i denotes inconsistency or
contradiction. The element i is used to give a meaning to β + δ. The underlying
idea is that if we receive fully certain, but contradictory information, we cannot
combine this in a consistent way.

We interpret the constants as before (β 7→ b, δ 7→ d, υ 7→ u) and the operators
as in Fig. 6. The table for the fusion operator follows from the fusion axioms in
BFD. Observe that inconsistencies in a fusion are persistent (yielding e.g. i+u =
i). The table for the dilution operator has three parameters, π, ρ, and σ. The
other values are determined by the dilution axioms in BFD. The inequalities are
straightforward; they express the inconsistent nature of i by assigning it minimal
uncertainty, minimal belief and minimal trust.

We shall denote these models by M4(π, ρ, σ). They show some resemblance
with Belnap’s four-valued logic [2], but since the operators + and · are
different from logical conjunction and disjunction, M4(π, ρ, σ) is not isomorphic
to Belnap’s logic.

+ b d u i

b b i b i

d i d d i

u b d u i

i i i i i

· b d u i

b b d u i

d u u u u

u u u u u

i π ρ u σ

x x

b d

d b

u u

i i

u =b d =b i ≤b b

u =d b =d i ≤d d

b =u d =u i ≤u u

Fig. 6. The four-element models M4(π, ρ, σ)

Using tool support to exhaustively verify all possible instantiations of π, ρ and
σ, we found six different models satisfying all axioms: M4(u, u, u), M4(i, u, u),
M4(i, u, i), M4(b, d, i), M4(i, d, b), and M4(i, d, i). The last three models, how-
ever, require a simplified definition of the total order, viz. one in which all ele-
ments are equivalent (e.g. u =b d =b i =b b). The model M4(b, d, i) is isomorphic
to a model defined by Gutscher [7]. The variety of models implies that there
are several different ways to interpret the proliferation of inconsistencies in a
dilution context.

Theorem 2. M4(u, u, u), M4(i, u, u), and M4(i, u, i) are models of BFD+ TO+
INV+ RM.

Proof. We will sketch the proof for M4(i, u, i). Axioms B1, C1–C7, T1–T9, I1,
and I3–I6 follow easily by inspecting the tables. For instance, B1 follows from the
symmetry of the table for +. Axiom B2 x+ (y+ z) = (x+ y) + z follows from a
simple case distinction. If any of x, y or z equals i or u, then associativity clearly
holds. Next if x, y and z are all b or all d, then associativity is also simple. Finally,
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if there is at least one b and at least one d and no u, then the associativity holds
because the outcome is always i. The verification of axiom B3 (associativity of
dilution) follows in a similar way, but needs some more case distinctions. Axiom
T10 x + y ≤u x is true because every element of a row in the + table is ≤u-
dominated by the left-hand argument. A similar check of the · table suffices to
verify axioms T11 and T12. Axiom I2 follows from a straightforward verification
of all cases (ten cases, using symmetry of +). Axiom I7 clearly holds if x = u or
x = i because they are minimal w.r.t. ≤b and ≤d. If x = b or x = d it follows
from the duality of b and d. Axioms R1-R4 follow by simple inspection of the ·
table. ut

4.3 Subjective Logic

Subjective Logic [9] is a framework to compute the trust between two agents in
a trust network. In its simplest form, a trust value is represented by a triplet
(b, d, u), representing belief, disbelief, and uncertainty, respectively. These values
satisfy b, d, u ∈ [0, 1] and b+ d+ u = 1. Each such triplet can be represented as
a point in a triangle.

Coordinate b of point p = (b, d, u) (see

Disbelief Belief

p

B

1

U Uncertainty

0

D

1

1

0

0

b
d

u

Fig. 7. The SL triangle

Fig. 7) determines the (perpendicular) dis-
tance between p and side DU . Likewise, d
determines the distance between p and side
BU , and u the distance between p and BD.
Some examples: point B has coordinates (1,
0, 0) and represents full belief, the middle
point between B and D is (12 ,

1
2 , 0) and rep-

resents the fully certain opinion that there is
as much belief as disbelief in the trustee. In
this framework, the fusion and dilution operators are called consensus (notation
⊕) and conjunction (notation ⊗). Reformulated in our notation, the operators
are defined as follows.

(b, d, u)⊕ (b′, d′, u′) =

(

bu′ + b′u

u+ u′ − uu′
,

du′ + d′u

u+ u′ − uu′
,

uu′

u+ u′ − uu′

)

(b, d, u)⊗ (b′, d′, u′) = (bb′, bd′, d+ u+ bu′)

The fusion operator is undefined if and only if u = u′ = 0 (assuming u, u′ ∈
[0, 1]). This indicates that the fusion of two dogmatic opinions (e.g. (1, 0, 0) ⊕
(0, 1, 0)) is not straightforward. In order for the Subjective Logic to serve as a
model of our algebra, the definition of the fusion operator must be extended. We
investigate several extensions in the following sections.

The model SLγ Recent versions of the Subjective Logic [13, 10] use a limit
construction to define fusion for u = u′ = 0.

(b, d, 0)⊕ (b′, d′, 0) =

(

γb+ b′

γ + 1
,
γd+ d′

γ + 1
, 0

)
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According to [13], γ is defined by γ = lim
u,u′→0

(

u′

u

)

. It expresses the relative

dogmatism between the expressions (b, d, 0) and (b′, d′, 0) (or rather, between
the agents expressing these dogmatic opinions). The higher the value of γ, the
higher the relative weight of opinion (b, d, 0) in a fusion with (b′, d′, 0). The
“default value” of γ is 1, meaning that in general dogmatic values are averaged.
We shall denote this model by SLγ .

In [10] it is stated that “in case of dogmatic opinions the associativity of
the consensus operator does not emerge directly”. Indeed, taking γ = 1, we can
use associativity to derive (12 ,

1
2 , 0) = (1, 0, 0)⊕ (0, 1, 0) = (1, 0, 0)⊕ ((0, 1, 0)⊕

(0, 1, 0)) = ((1, 0, 0) ⊕ (0, 1, 0)) ⊕ (0, 1, 0) = (12 ,
1
2 , 0) ⊕ (0, 1, 0) = (14 ,

3
4 , 0). This

gives the following negative result.

Theorem 3. SLγ is not a model of the algebra BFD.

As a possible solution, Jøsang et al. [10] introduce an algorithm which can be
used to calculate the fusion of three or more dogmatic beliefs. Expressions like
((1, 0, 0)⊕(0, 1, 0))⊕(0, 1, 0) are interpreted by applying a ternary fusion operator
to these three arguments. This approach consists in fact of the introduction of
a collection of n-ary fusion operators, each of which is still not associative. An
additional problem, overlooked by the authors, is the fact that expressions must
first undergo some kind of normalization procedure before their algorithm can
be applied correctly. For instance, the expression (0, 1, 0)⊕ ((1, 0, 0)⊗ ((14 ,

3
4 , 0)⊕

(34 ,
1
4 , 0))) must first be reduced to (0, 1, 0) ⊕

(

(14 ,
3
4 , 0)⊕ (34 ,

1
4 , 0)

)

and not to

(0, 1, 0) ⊕
(

(1, 0, 0)⊗ (12 ,
1
2 , 0)

)

. The former expression equals ( 4
12 ,

8
12 , 0), while

the latter equals (14 ,
3
4 , 0). This normalization is not a simple innermost-first

rewriting, but must make use of the property (1, 0, 0)⊕ x = x, which coincides
with axiom C5 of our algebra.

We conclude by stating that, even though the authors claim associativity of
their logic, this is not the case for any of the interpretations they give. Hence,
SLγ is not a model of BFD.

The model SLc Based on the idea of taking the average of conflicting dog-
matic beliefs, we define the extension SLc. Elements of this model are four-
tuples (b, d, u, c), where b, d, and u play their usual role and c counts the
weight of a dogmatic opinion. Thus, we have the following set of trust atoms
A = {(b, d, u, c) | b, d, u ∈ [0, 1] ∧ c ∈ N

+ ∧ b+ d+ u = 1 ∧ (u = 0 ∨ c = 1)}. The
last condition means that only opinions with uncertainty equal to zero can have
a counter different from 1. Fusion and dilution are defined as follows.

(b, d, u, c)⊕ (b′, d′, u′, c′) =























(

bc+b′c′

c+c′
, dc+d′c′

c+c′
, 0, c+ c′

)

if u = u′ = 0

(b, d, u, c) if u = 0, u′ 6= 0

(b′, d′, u′, c′) if u 6= 0, u′ = 0
(

bu′+b′u
u+u′−uu′

, du′+d′u
u+u′−uu′

, uu′

u+u′−uu′
, 1
)

else

(b, d, u, c)⊗ (b′, d′, u′, c′) =

{

(b′, d′, u′, c′) if (b, d, u, c) = (1, 0, 0, c)

( bb′, bd′, d+ u+ bu′ , 1) else
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The first case of the fusion definition clarifies the role of the counter. If two dog-
matic views are combined, then the resulting belief is calculated as the weighted
average of the individual beliefs. The counter of the resulting trust value is the
sum of the counters of the individual trust values. The other three cases are
straightforward extensions of SL. For the dilution operator we treat the case
where the left operand equals (1, 0, 0, c) differently. The reason is that in this
case the resulting value must inherit the counter value of the right operand. This
is motivated by the fact that (1, 0, 0, c) acts as a left-unit for dilution (cf. axiom
C5 and the discussion on this axiom in the previous section).

We interpret the constants as follows: β 7→ (1, 0, 0, 1), δ 7→ (0, 1, 0, 1), υ 7→
(0, 0, 1, 1). The inverse operator is defined by (b, d, u, c) = (d, b, u, c), and the total
orders by: (b, d, u, c) ≤b (b

′, d′, u′, c′) ⇔ b ≤ b′, (b, d, u, c) ≤d (b′, d′, u′, c′) ⇔ d ≤
d′, and (b, d, u, c) ≤u (b′, d′, u′, c′) ⇔ u ≤ u′.

This model, which we call SLc, satisfies all axioms except (C4) β + β = β

and (C6) δ+ δ = δ. This is because the weight of β+β is higher than the weight
of β: (1, 0, 0, 1)⊕ (1, 0, 0, 1) = (1, 0, 0, 2).

However, SLc satisfies two weaker axioms T13 and T14 (see Fig. 8). We use
x=bdu y as a shorthand notation for x =b y ∧ x =d y ∧ x =u y. It easily follows
that axiom C4 implies T13 and that C6 implies T14. If we denote by BFD− the

(T13) β + β =bdu β (T14) δ + δ =bdu δ

Fig. 8. Weakening axioms C4 and C6

axiom system BFD minus axioms C4 and C6, we can formulate the following
theorem.

Theorem 4. SLc is a model of the algebra BFD−+TO+INV+RM+T13+T14.

Proof. Axiom B1 follows by observing the symmetry in the definition of the
fusion operator (e.g. bc+b′c′

c+c′
= b′c′+bc

c′+c
). The proof of axiom B2 consists of a case

distinction and a number of straightforward calculations. As an illustration, we
show the calculation for the first component b+1 of ((b, d, u, c) ⊕ (b′, d′, u′, c′)) ⊕
(b′′, d′′, u′′, c′′) if u 6= 0, u′ 6= 0.

b+1 =
bu′+b′u

u+u′−uu′
u′′ + b′′ uu′

u+u′−uu′

uu′

u+u′−uu′
+ u′′ − uu′

u+u′−uu′
u′′

=
(bu′ + b′u)u′′ + b′′uu′

uu′ + u′′(u+ u′ − uu′)− uu′u′′

The first component b+2 of (b, d, u)⊕ ((b′, d′, u′)⊕ (b′′, d′′, u′′)) is

b+2 =
b u′u′′

u′+u′′−u′u′′
+ b′u′′+b′′u′

u′+u′′−u′u′′
u

u+ u′u′′

u′+u′′−u′u′′
− u u′u′′

u′+u′′−u′u′′

=
bu′u′′ + (b′u′′ + b′′u′)u

u(u′ + u′′ − u′u′′) + u′u′′ − uu′u′′

It is easy to check that the resulting expressions are equal.
For axiom B3 (associativity of dilution) the most complex case is equality

of the third component. For instance, if (b, d, u) 6= (1, 0, 0), (b′, d′, u′) 6= (1, 0, 0),
and (b′′, d′′, u′′) 6= (1, 0, 0), the third component of (b, d, u, c) ⊗ ((b′, d′, u′, c′) ⊗
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(b′′, d′′, u′′, c′′)) is d+ u+ b(d′ + u′ + b′u′′). This is equal to the third component
of ((b, d, u, c)⊗ (b′, d′, u′, c′))⊗ (b′′, d′′, u′′, c′′), which is bd′+(d+u+ bu′)+ bb′u′′.

Axioms C1, C2, C3, C5, C7 and T1–T9 can be verified easily. For axiom
T10 we have to consider four cases, three of which are trivial. The fourth case
(u 6= 0, u′ 6= 0) is treated as follows: uu′

u+u′−uu′
≤ u ⇔ u′

u+u′−uu′
≤ 1 ⇔ u′ ≤

u+ u′ − uu′ ⇔ 0 ≤ u− uu′, which is true for u, u′ ∈ [0, 1]. The most interesting
case for axiom T11 is (b, d, u) 6= (1, 0, 0). We then have u ≤ d + u + bu′, which
holds for u, b, d, u′ ∈ [0, 1]. Likewise, axiom T12 follows from u′ = (d+u+b)u′ =
du′+uu′+ bu′ ≤ d+u+ bu′. The remaining axioms T13, T14, I1–I7, and R1–R4
are trivial. ut

The model SLi Finally, we will construct a model by extending SL with a
constant for inconsistency (as for the M4-models in Section 4.2). We define A =
{(b, d, u) | b, d, u ∈ [0, 1]∧ b+ d+u = 1}∪{i}. The fusion and dilution operators
are a merger of their definitions in SL and M4(i, u, i).

i⊕ (b, d, u) = (b, d, u)⊕ i = i⊕ i = i

(b, d, 0)⊕ (b, d, 0) = (b, d, 0)
(b, d, 0)⊕ (b′, d′, 0) = i if b 6= b′

(b, d, u)⊕ (b′, d′, u′) = ( bu′+b′u
u+u′−uu′

, du′+d′u
u+u′−uu′

, uu′

u+u′−uu′
) if u 6= 0 ∨ u′ 6= 0

i⊗ (1, 0, 0) = (1, 0, 0)⊗ i = i⊗ i = i

(b, d, u)⊗ i = i⊗ (b, d, u) = (0, 0, 1) if (b, d, u) 6=(1, 0, 0)
(b, d, u)⊗ (b′, d′, u′) = ( bb′, bd′, d+ u+ bu′)

We interpret the constants as follows: β 7→ (1, 0, 0), δ 7→ (0, 1, 0), υ 7→ (0, 0, 1).
The inverse operator is defined by (b, d, u) = (d, b, u) and i = i. The total orders
are given by:

(b, d, u) ≤b (b
′, d′, u′) ⇔ b ≤ b′ i ≤b (b, d, u)

(b, d, u) ≤d (b′, d′, u′) ⇔ d ≤ d′ i ≤d (b, d, u)
(b, d, u) ≤u (b′, d′, u′) ⇔ u ≤ u′ i ≤u (b, d, u)

This model, which we call SLi, satisfies all axioms. The proof follows the same
line of reasoning as the proof of Theorem 4.

Theorem 5. SLi is a model of the algebra BFD+TO+INV+RM.

All results of the current section are gathered in the table displayed in Fig. 9.
The result for M4 holds only for certain values of the parameters and the result
for SLc only for BFD−, T13, and T14.

BFD TO INV RM

M3(σ) X × × ×

M4(π, ρ, σ) and [7] X X X X

BFD TO INV RM

SL (incomplete model)
SLγ × × × ×

SLc BFD−

X X X

SLi X X X X

Fig. 9. Results of the evaluation of the models (X means satisfied)
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5 Related work

There are many existing models that propose ways to combine trust values or
more widely to combine opinions. In the simplest models, the trust values are
discrete or continuous values on a given interval (implying at least two elements
in the model, i.e. a bottom and a top element). This is the case for instance in
PGP [17].

Other models are taking the uncertainty into account, such as Subjective
Logic [9], Dempster-Shafer [14], or Yager [15] to name only a few. The uncertainty
level adds another dimension to the trust metrics and can profitably be used in
order to compute more accurate trust values. Subjective Logic was extended
several times, e.g. with a limit construction enabling the fusion of two fully
certain opinions [10], with an algorithm enabling the commutativity of the fusion
operator [10], with different operators definitions depending on the (partial)
dependence of the trust values [13].

Nevertheless, the combination of trust values in 3-elements models can also
lead to further questions. For instance, this raises the question on the dogmatic
belief composition [16]. The extension to a 4-element model such as Gutscher’s
[7] (or based on Belnap’s [2] or Bergstra’s [3] theories) seems to answer this issue
partially.

We noticed that the available models were developed in a bottom-up fashion,
i.e. starting from the model and showing which properties it satisfies or not. To
our knowledge, in the domain of trust, the development of a top-down approach
such as the algebra proposed in the current paper, is novel. This algebra takes
the fusion and dilution operators as a starting point since these are the common
point of all the available models with only differences in their naming (fusion
and dilution can respectively be referred to as consensus and recommendation in
some models). The developed algebra focuses specifically on the trust application
domain and all axioms of the algebra are motivated in this context. For this
reason, the algebra may or may not make sense for other domains.

6 Conclusion

Taking the Subjective Logic as a starting point, we developed an abstract al-
gebra expressing the basic properties of trust fusion and trust dilution. To the
core of this algebra belong the three absolute trust values β, δ, and υ. In a
modular way, we extended this core algebra with some auxiliary operators to
capture more properties of the operators involved. Since there are different ways
to fuse dogmatic beliefs (such as considering β + δ as an inconsistency), we de-
cided to not enforce one particular choice in the algebra. As a consequence, the
algebra is not complete for any of the models studied. This is also reflected in
the fact that the initial algebra (which we did not study in this paper) is not
particularly interesting. An interesting next step would be to extend the algebra
with additional properties (and possibly operators) that more precisely capture
certain interpretations of the fusion of dogmatic beliefs, as to develop complete
axiomatizations.
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We studied two types of models of this algebra: canonical models with only a
few elements, and models based on SL with an infinite number of elements. Partly
to our surprise, there is no three-element model of the full algebra, indicating
that the expression β + δ necessarily must be interpreted by a special fourth
element.

As expected, SL with a partially defined fusion operator cannot be considered
a model. This also applies to the SL model extended with a limit construction
presented in [13], in contradiction with its (unproven) claim of associativity.
More surprising is that the extension of SL with a limit construction is not a
model because it lacks associativity of fusion. This contradicts the (unproven)
claim of associativity in [13]. The algorithmic approach to associativity of fusion
proposed in [10] does not imply associativity of the (binary) fusion operator
either. In fact, while verifying the axioms of our algebra, it turned out that the
reduction of terms according to axiom C5 is an essential, but omitted, step for
the algorithm to work correctly. If this reduction step is not performed before
evaluating a trust expression, then the algorithm does not take all +-related
terms into account and gives the wrong result.

In order to overcome these problems, we experimented with two extensions
of SL. The first extension tries to achieve the same results as SL with a limit
construction by introducing a weight for dogmatic opinions. Due to this weight,
which can be any positive natural number, the collection of possible interpre-
tations of β becomes infinite and has no maximum element. As a consequence,
axiom C4 which states that β is maximum, becomes invalid. This extension of
SL satisfies a slightly weaker algebra. The second extension of SL concerns the
introduction of a special element expressing inconsistency. This is a model of the
full algebra.

In addition to this, the validation of the axioms of our algebra for SL also
gives more insight in the properties that SL satisfies. Whereas e.g. associativity
and commutativity have been discussed in detail by Jøsang et al., properties as
expressed in e.g. T10–T12 have not been mentioned explicitly.

The proofs presented here mostly consist of a number of straightforward case
distinctions. Rather than in the advanced level of the proofs, the complexity of
our work lies in the design. A slight modification of the definition of e.g. M4 or
SLi will already invalidate essential properties like associativity.

An important next step is to validate other extensions of SL that were pro-
posed in literature and to model other ways to deal with dogmatic beliefs. It is
also interesting to look at more practical models, such as the model underlying
PGP.

A particularly interesting model to investigate is the model of trust graphs
(or transitive trust networks [11]). An open question is the reduction of such
networks. Because not every trust graph can be represented as a trust expression,
our theory has to be extended (e.g. with the notion of recursive equations) to
deal with trust graphs.

Finally, we mention that our model does not consider dynamic aspects, such
as the possible decay of trust or the occurrence of events that influence opinions.
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Extending our algebra in this direction would also be an interesting topic for
future research.
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