
Attribute Decoration of Attack–Defense Trees

Alessandra Bagnato1, Barbara Kordy2, Per Håkon Meland3, Patrick Schweitzer2

1TXT e-solutions
alessandra.bagnato@txt.it

Corporate Research Division, TXT e-solutions, I–16100 Genoa, Italy

2University of Luxembourg,
{barbara.kordy,patrick.schweitzer}@uni.lu

SnT, University of Luxembourg, 6, rue Coudenhove–Kalergi, L–1359 Luxembourg, Luxembourg

3SINTEF
per.h.meland@sintef.no

SINTEF ICT, SP Andersens vei 15 B, N–7465 Trondheim, Norway

Abstract

Attack–defense trees can be used as part of threat and risk analysis for system development
and maintenance. They are an extension of attack trees with defense measures. Moreover, tree
nodes can be decorated with attributes, such as probability, impact and penalty, to increase
the expressiveness of the model. Attribute values are typically assigned based on cognitive
estimations and historically recorded events.

This paper presents a practical case study with attack–defense trees. First, we create an
attack–defense tree for an RFID-based goods management system for a warehouse. Then, we
explore how to use a rich set of attributes for attack and defense nodes and how to assign and
aggregate values to obtain condensed information, such as performance indicators or other
key security figures. We discuss different modeling choices and trade-offs. The case study led
us to define concrete guidelines that can be used by software developers, security analysts and
system owners when performing similar assessments.

1 Introduction
The security of any sufficiently valuable system is not static. To keep a system secure, it has to be
protected against an increasing number of threats of growing complexity. As defenses are added
to the system, more sophisticated attacks break these defensive measures anew. To cope with the
resulting, intricate systems, a formal modeling and evaluation approach become indispensable.

One of the formal approaches to assess a system’s security is the attack–defense tree (ADTree)
methodology. ADTrees focus on the interaction between two types of players, attackers and
defenders, while keeping the complexity of the formalism at a minimum [Kordy et al., 2011b]. They
are a compromise between attack trees, which are too restrictive in their modeling capabilities,
and petri-nets, where modeling is quite intricate and computationally complex. ADTrees retain
the easily understandable tree structure and are therefore especially useful in an interdisciplinary
work environment, where an intuitive understanding of the system is as important as formal
foundations. ADTrees even allow a rough first assessment of a system’s security purely based on
the visual representation of the scenario, making it easy to spot missing or redundant defenses. The
theoretical aspects of the ADTree methodology have already been extensively studied in [Kordy
et al., 2010, 2011a,b].

The purpose of this paper is to present experiences and provide practical recommendations on
the use of attributes in ADTrees. Attributes are the part of the ADTree formalism that allows

1

quantitative analysis, something that is of great value for risk analysis either during planning,
development or maintenance of a system. There are numerous security attributes to be found in
the literature today, and through a case study we show how a selection of them can be applied,
how values are assigned to nodes and how they are used for quantitative analysis. Knowing which
attributes to choose and how to estimate their values is a non-trivial challenge and is addressed in
detail. Attributes are used to answer questions such as: Is it possible to attack the system? How
much would it cost to prevent one or all attacks or implement one or all defenses? How long does
it take to secure the entire system? We are interested in extending these answerable questions to
bivariate questions, i.e., questions where inputs from attackers and defenders are needed. This,
for example, includes questions such as: Given a limited defense budget, can the defender at least
defend against some attacks? How does the scenario change in case of a power outage?

The case study was based on an operational Radio-Frequency Identification (RFID) system
for goods management in a warehouse, taking technical, physical and social engineering aspects
into account. There were four players from both academia and industry involved, taking roles as
defenders and attackers.

The rest of the paper is structured as follows. This sections continues with a summary of
the theoretical foundations of ADTrees and concludes with a short literature review on related
work. In Section 2, we review some of the attributes that can be found in the literature and
elaborate on different calculation methods. In Section 3, we present the case study scenario and
the corresponding ADTree. Section 4 shows the attribute decoration and calculation of values
for the ADTree. The results of the case study are discussed in Section 5 and we conclude and
synthesize our recommendations in Section 6.

1.1 ADTrees
ADTrees [Kordy et al., 2011a] were introduced by Kordy et al. and are an extension of attack
trees [Schneier, 1999, Mauw and Oostdijk, 2005] with defense nodes. An ADTree is a node-labeled
rooted tree describing the measures an attacker might take in order to attack a system and the
defenses a defender can employ to protect the system. ADTrees allow the system modeler to
repeatedly interleave attack and defense components. Consequently, an ADTree has nodes of
two opposite types, attack nodes and defense nodes, and can be seen as a game between two
players: an attacker and a defender. The root node of an ADTree represents the main goal of the
attacker. Every node of an ADTree may have one or more children of the same type representing
a refinement of the node’s goal into sub-goals. The refinement of a node is either disjunctive or
conjunctive. The goal of a disjunctively refined node is achieved when at least one of its refining
children’s goals is achieved. The goal of a conjunctively refined node is achieved when all of its
refining children’s goals are achieved. Nodes which do not have any children of the same type
represent basic actions. Every node may also have one child of the opposite type, which represents
a countermeasure. Thus, an attack node may have several children which refine the attack and one
child which defends against the attack. A defense node in turn may have several children which
refine the defense and one child, being an attack node, which counters the defense. We understand
countermeasures in a general sense, i.e., countermeasure ranges from a complete prevention of the
parent’s goal over a possible prevention to a weak mitigation.

The semantics of an ADTree is the following. The attack tree, obtained from an ADTree
by removing all subtrees rooted in defense nodes, represents how an attacker can attack a given
system taking all existing defensive measures into account. The remaining parts of an ADTree,
i.e., all defense nodes, their refinements, counterattacks, and so on, represent possible measures
that can be put in place in order to defend against the original attack on the system, or attack the
newly introduced defenses, and so on. This means that the existing defensive mechanisms are not
explicitly depicted in an ADTree, whereas, the original attack tree already represents how they
should be overcome.

We depict attack nodes by circles and defense nodes by rectangles. Refinement relations are
indicated by solid edges between nodes, and a countermeasure is connected to the countered
node using dotted edge. In addition, a conjunctive refinement of a node is depicted by an arc

2

which connects the node’s edges to its children of the same type. We illustrate the attack–defense
language by giving an ADTree, depicted Figure 1. The root of the tree depicts the main goal of the
attacker. It is disjunctively refined into two subgoals. The Disjunctive Subgoal 1 is countered by
a countermeasure, whereas the Disjunctive Subgoal 2 is conjunctively refined into two subgoals. A
more extensive ADTree, where the main goal is a Denial of Service (DoS) attack on an RFID-based
management system, is detailed in Section 3.1 and is depicted in Figures 4–7.

Main Goal

Disjunctive
Subgoal 1

Counter-
measure

Disjunctive
Subgoal 2

Conjunctive
Subgoal 1

Conjunctive
Subgoal 2

Figure 1: The remove tag subtree

1.2 Related Work
The literature on attack trees is abundant. Piètre-Cambacédès and Bouissou [Piètre-Cambacédès
and Bouissou, 2010] have given a historical overview on graphical representations of computer
attacks, such as fault trees [Vesely et al., 1981], threat trees [Amoroso, 1994] and privilege
graphs [Dacier and Deswarte, 1994], and how these representations lead Schneier to coin the
term attack tree [Schneier, 1999].

Many authors treat how to add different kinds of values to attack tree nodes. In Schneier’s
terms [Schneier, 1999] these values are called attributes. In 1999, he proposed how to analyze the
costs and the success probability of an attack with the help of attack trees. Since then, many
authors have followed in his footsteps proposing extensions to attack trees and attributes, as well
as describing case studies. For instance, Amoroso [Amoroso, 1994], Mauw and Oostdijk [Mauw
and Oostdijk, 2005], Buldas et al. [Buldas et al., 2006], Li et al. [Li et al., 2009], and Tanu and
Arreymbi [Tanu and Arreymbi, 2010] demonstrate how an attack tree can be parametrized with
different kinds of values and how to deduce aggregated results. Moore et al. [Moore et al., 2001]
include attacks related to social engineering and physical entering of premises and Saini et al. [Saini
et al., 2008] show examples from multiple systems. Baca and Petersen [Baca and Petersen, 2010]
have extended attack trees with countermeasure graphs with an example from open-source appli-
cation development, while Bistarelli et al. [Bistarelli et al., 2006], Edge et al. [Edge et al., 2006]
and Roy et al. [Roy et al., 2011] have extended attack trees with a notion of defense nodes for the
leaves of the trees.

There also exists a number of deeper studies and experience reports with attack tree based
methods applied to real-life systems. Some notable examples are Henniger et al. [Henniger et al.,
2009], who have conducted a study using attack trees and a variety of node attributes for vehicle

3

communications systems, Abdulla et al. [Abdulla et al., 2010] with an analysis on the GSM
radio network, and Tanu and Arreymbi [Tanu and Arreymbi, 2010] using vulnerability tree, fault
tree and attack tree analysis on a mobile SCADA system for a multiple tank and pump facility.
Byres et al. [Byres et al., 2004] treat another SCADA case study related to a MODBUS protocol
for critical infrastructures. All these work show that attack tree based methodologies constitute a
very useful tool for modeling threats and analyzing vulnerabilities of complex systems.

Finally, steps have been made to compare and combine attack tree based models with other
modeling techniques in order to obtain a better and more complete way for representation and
analysis of threats and vulnerabilities. For instance, Opdahl and Sindre [Opdahl and Sindre,
2009] compare misuse cases with attack trees. They use a class room experiment to gather ex-
perimental data and determine which method models the scenario more accurately. According to
this study, using attack trees for finding threats is more effective than the use of misuse cases.
Moreover, the authors conclude that the perception of a used technique is not correlated with
the actual performance of that technique. A similar approach has been proposed by Diallo et al.
in [Diallo et al., 2006], where a comparative evaluation of the common criteria, misuse cases and
attack trees is presented. Based on the results obtained in these works, Tøndel et al. suggest
in [Tøndel et al., 2010] to combine misuse cases and attack trees, in order to represent possible
threats, attacks and mitigating countermeasures. This suggestion is made with reuse of models in
mind, and is supported by an online repository of security models developed within the SHIELDS
project [SHIELDS, 2008-2010]. The results and experiences from the related work have been taken
into account when designing the formal treatment of attributes for ADTrees. As ADTrees are the
only approach that is formal and allows for interleaved attacks and defenses, the ideas needed to
either be formalized or extended to include a notion of interleaving.

2 Background of Attributes
In order to analyze an attack–defense scenario, we use quantitative measures called metrics or
attributes. Some attributes, e.g., costs, probability, appear frequently in the context of attack
trees, others can rarely be found. In this section, we provide background information about
attributes and related calculation methods. For readability, we always write attribute names in
bold font.

2.1 Attribute Overview
Attributes for Attack Trees. In [Schneier, 1999], Schneier proposes decorating leaf nodes of
attack trees with the values expressing the component’s costs in order to deduce the cheapest
attack. A similar approach applies to metrics such as probability, severity, impact, and con-
sequence. According to Schneier, all of these attributes can be combined or conditioned, in order
to identify the cheapest low-risk attack, attacks that cost less than a given amount of money, or
cheap, highly successful attacks where only medium skill is needed, etc.

Other researchers extend this catalog of attributes with further metrics. Edge et al. [Edge
et al., 2006] introduce protection costs; Byres et al. [Byres et al., 2004] use detectability which
illustrates how easily a defender can discover an attack and difficulty which specifies the needed
skill of the attacker. As suggested by Henniger et al. [Henniger et al., 2009], attack time— which
models an amount of time needed to perform an attack — may be considered independent of an
attacker’s skill, costs or resources. Attacks that a defender cannot really protect himself against
can be annotated as unmitigatable. Instead of modeling constraints as additional child nodes
of a conjunctive node, we can use attributes, such as requires an insider or needs electricity.
These and similar attributes merely depict a choice between two options and can therefore be
modeled with Boolean values, as suggested by Schneier [Schneier, 1999]. We subsume Boolean
attributes under the keyword special skill. A formal treatment of attributes for attack trees, that
guarantees compatibility with underlying semantics, was first described by Mauw and Oostdijk
in [Mauw and Oostdijk, 2005].

4

Attributes for Defense Nodes. Traditionally, attack trees only consider attributes directly
related to attacks or attackers. With ADTrees we can also cover attributes that quantify defenses
and their behavior. Many attributes related to attacks can straightforwardly be extended to
encompass defenses. For instance, costs can refer to costs of performing an attack or costs
of performing a defense. Similarly probability of success, probability of occurrence,
required skill level, number of possible countermeasures and many more can be adapted.
Other attributes might only make sense for either attacker or defenders, such as penalty which a
law-abiding defender would never have to worry about, or response time where a defender might
be depended on the response time of a third party. The usefulness of distinguishing between
attributes for attack and defense nodes becomes apparent, once we look at questions related to
attributes such as social costs (addition of attacker’s as well as defender’s costs) or attributes
where values for one player have a direct consequence on values for the other player, as in the
case of satisfiability or probability. In addition, defense nodes and their associated attribute
values allow us to answer bivariate questions, such as how much does a defender have to spend on
defenses, if he knows that the attacker has a low skill level.

Meta-attributes. Attributes themselves are the main ingredient to perform a quantitative anal-
ysis with the help of ADTrees. However, when associating attribute values with nodes, we might
still want to distinguish between the associated values, even if the values themselves are the same.
For example, an RFID security expert would associate a medium probability of occurrence to a
DoS attack and is very confident about that, whereas a person working in computer forensics
would also associate a medium probability to the node, but would probably be less confident
about it. This additional information, describing an attribute value we call a meta-attribute. An
example is confidence, which indicates how certain a decorator is, when associating an attribute
value with a given node. Another meta-attribute is coverage, which expresses the number of
people who have associated an attribute value with a given node. Meta-attributes are suitable to
be used in combination with any attribute. Using meta-attributes allows us to model the desired
properties more accurately, and to improve their quantification. Meta-attributes constitute one
of the novelties of the methodology used in the current case study, as they have not yet been
mentioned in the context of attack trees nor attack–defense trees in the existing literature.

Value Domains. Attribute values can range over diversified types of mathematical domains.
One can consider Boolean values, values from a nominal scale, e.g., Low, Medium, and High, real
numbers or even discrete or continuous probability distributions. If data is available, the prob-
ability distribution could be estimated from histograms. Meta-attributes can also be quantified
using the values from any of possible domains. For example, the pair (4.23, 2) could be a possible
value for costs of attack with the meta-attribute confidence, where the domain is modeled as
the product space of the real numbers and a nominal scale from 1 to 5. Instead of a single value,
it is also possible to associate sets of values to the nodes. For example, if we know that the attack
costs are not High, we could associate the set {Low, Medium} to the corresponding node.

2.2 General Calculation with Attributes
Attributes provide a powerful analysis tool for vulnerability scenarios. They help us estimate
which attacks may happen with a high probability and which countermeasures should be applied.
However, to get useful insights from the analysis, it is necessary to have accurate values associated
with all the nodes of an ADTree. One possibility is to ask experts to provide the values. Another
strategy is to involve several people, such as the system owner, developers and administrators, to
perform the task. In any case, this process can be very time consuming, costly and highly error-
prone, depending on the tree complexity and the number of attributes. Thus, numerous approaches
have been proposed, allowing us to deduce values for one node, based on values already associated
with other nodes, or to combine values for several attributes in order to deduce the value for
another attribute. In this section, we give a brief overview of the calculation methods already
present in the literature.

5

As pointed out by Schneier [Schneier, 1999] in the case of attack trees, the most intuitive
calculation procedure on attack trees is the bottom-up approach. The idea is to only associate
attribute values with the basic actions and then deduce the values corresponding to the refined
nodes from the values associated with their children. The functions which are used to calculate
the value for a parent node depend on the type of the corresponding refinement. The bottom-
up approach presents several advantages. First of all, we only have to decide on values for a
small amount of nodes, which reduces the time necessary for the attribution of values. Moreover,
estimation of values for basic actions should be feasible in most cases, since such actions can be
easily understood and quantified (if this is not the case, a node should be refined further). Finally,
this approach is suitable for evaluation of a large number of attributes and it can be automated.
A formal framework for the bottom-up approach for attribute evaluation on attack trees has
been developed in [Mauw and Oostdijk, 2005]. This approach has been extended to ADTrees by
Kordy et al. [Kordy et al., 2011a], where Example 5 illustrates the calculation procedure.

It is also possible to define a new attribute by combining several existing attributes. Such com-
binations allow us to estimate values corresponding to more complex properties, for which it would
be difficult to provide values directly. As an example, Edge et al. [Edge et al., 2006] have defined
a variant of a risk attribute for attack trees based on the formula risk = (probability/costs) ∗
impact. A similar approach has been used in [Jürgenson and Willemson, 2008], where the costs,
success probability, gain and penalty attributes have been combined in order to define a new
attribute called the exact expected outcome of the attacker. Henniger et al. [Henniger et al.,
2009] combine the attributes elapsed time, expertise, knowledge of system, window of
opportunity and required equipment, in order to deduce the required attack potential.
Finally, Fung et al. [Fung et al., 2005] show how the difficulty level associated to the non-refined
nodes can be used to estimate the survivability in the root node.

It is also important to observe how multiple attributes relate to each other and how the values
for one attribute may influence the values for another one. For instance, the costs associated with
a given attack component can be used to estimate the corresponding probability of occurrence
value, i.e., to deduce how probable it is that an action will take place. This is of particular
importance, when we have some specific knowledge about the attacker. For instance, if we know
that the attacker has a limited budget we can deduce that, with a high probability, he will not
perform actions which are more expensive than a certain threshold. Moreover, attribute values
can be used to check soundness of a scenario. Rational reasoning lets us deduce that attack
components, which require a higher investment than the potential gain of the attacker, do not
have to be considered, because in such case the attack would be unprofitable for the attacker.
Similarly, as pointed out by Herley [Herley, 2009], the protection costs of a threat should not be
greater than the benefit gained by following a security advice. Indeed, such a protection would
do more harm than good, from an economic point of view. Furthermore, if the protection costs
is greater than the impact of an attack, economically speaking the protection causes more harm
than the attack it addresses.

Moreover, in the case of ADTrees, the values associated with the components of one player may
influence the values for the other player. For instance, if the satisfiability value of an action for
the attacker is True, then it follows that the satisfiability of this action for the defender is False,
and vice versa. A similar property holds for probability: if the attacker is successful at a node
with probability p, then the defender is successful at this node with probability 1 − p. However,
such a relation does not exist for all attributes. For instance, when considered in isolation, the
attacker’s costs has no impact on the defender’s costs.

Finally, properties quantified with Boolean values are well suited to model hypothetical sce-
narios. As an example, let us consider the attribute electricity needed, which evaluates to True
at every component which requires electricity, e.g., cameras, and to False otherwise. Using this
attribute, we can model what happens if we experience a power outage, by projecting the sce-
nario on its part evaluated to False. This would allow us to check whether the existing defensive
measures would also be sufficient in emergency situations.

6

3 An RFID-based Goods Management System
In this section, we describe the setting of RFID-based goods management system and the creation
of a corresponding ADTree model. The system had already been subject of a threat assessment
as a part of the EU-funded project SHIELDS [SHIELDS, 2008-2010]. Therefore, we already had
attack trees and misuse case diagrams describing potential threats and countermeasures as an
initial starting point. In order to extend this work and capture threats related to technical,
physical and social engineering, we did a more thorough analysis of the conceptual design of the
RFID-based goods management system, the physical layout of the warehouse where it is deployed
and how people are involved in the work processes. We also made use of other relevant attack
trees, such as Mirowski et al. [Mirowski et al., 2009], to supplement the creation.

In this case study we have chosen to provide detailed examples from the physical and social
engineering world and illustrate the ADTree formalism on them. Obviously, this is not a restriction
on the formalism, and the presented methodology can be readily applied in other fields, such as
risk management or software engineering. We believe that it is easier to relate to these tangible
examples than to fields that require expert knowledge to even understand the depicted scenario.
In the following sections we draw up general purpose guidelines that can be easily modified to the
field of application by adapting the set of suitable attributes as well as possibly changing their
value domain.

3.1 Setting
In order to perform a realistic case study, we selected an already deployed and operational system
named the Warehouse Information Management System (WIMS) with special focus on one of
its components, the Warehouse Loading Docks Management Application (WaLDo). This system
manages all incoming and outgoing goods to and from a warehouse, keeping track of orders,
goods location, picking lists, shipping notifications, etc. The warehouse is a highly automated
environment where all goods can be electronically identified using RFID tags. Figure 2 gives a
high level overview of the system itself.

The WaLDo application controls all goods that cross the loading docks of the warehouse. The
physical warehouse is equipped with RFID enabled loading docks. All RFID readers conform
to the EPCGlobal specifications and are managed via an Application Level Event (ALE) service
that provides a web service interface to upper layer applications like WaLDo. Additionally, the
warehouse has an information management system able to interact with the company Enterprise
Resource Planning (ERP) system, the integrated software application that manages the entire
company information flow and resources, to process universal business language documents like
Picking Lists, used to specify which material is to be shipped to whom, and Advanced Shipping
Notification (ASN) documents, used to specify which goods are expected to be received.

In order to properly analyze potential threats, we also consider the environment in which
the system operates. Figure 3 depicts the physical premises, the equipment and the workspaces
inside the warehouse. The WaLDo application operates in a warehouse where eight employees are
working. The size of the warehouse building is 500m2. It contains RFID enabled forklifts, shelves
for goods and three loading docks with RFID readers, which can only be opened from the inside.
All goods pass in and out through the loading docks and are registered by the RFID readers.
The building also has one room for computer servers, one administrative office, one security room
containing two Closed-Circuit Television (CCTV) monitors and a fuse box, one bathroom, one
corridor, a main entrance and an emergency exit. The warehouse is surrounded by a fence that
encloses the entire area. The fence has two gates, one for trucks and one for employees, which can
only be opened remotely from the security room. The area inside the fence has a parking place
where trucks can wait before unloading their goods and where the employees can park their cars.
The warehouse is equipped with a high-speed Internet connection and a wired LAN Ethernet.
The Ethernet network connects the servers with the RFID readers of the loading dock. In total,
there are seven surveillance cameras that are linked to external security services, monitoring both
the inside and the outside of the warehouse. Cameras 1, 5 and 6 monitor the shelves within the

7

Figure 2: WIMS Deployment Diagram

WaLDo building, Camera 2 monitors the main entrance gates, Camera 3 monitors the parking
areas, Camera 4 monitors the loading docks and Camera 7 monitors the warehouse’s main door.
Each day between 10 and 20 trucks deliver goods to or from the warehouse. The drivers load
the goods on and of their trucks by accessing the warehouse through the docks. Though we are
not specifying exactly what kind of goods are stored in the warehouse, we assume they are worth
stealing (else the security assessment would be pointless).

3.2 The ADTree Model
The information given in the previous section served as a basis to create an ADTree that we
then used for attribute decoration. First, an initial tree was suggested by one player. This tree
was then independently examined by the other players who suggested improvements which were
merged with the tree through several iterations. We limited the scope by focusing on one high-
level attack–defense scenario, namely disrupting the RFID-based part of the system by preventing
communication between a specific tag and a specific reader. Each player spent roughly three
hours on the tree creation phase, later only minor refinements were necessary. We did not have
an automated method of combining trees, however the trees were small enough to do a visual
comparison in order to reveal missing or similar nodes.

The top goal node of the high level tree model, shown in Figure 4, is called “RFID DoS Attack”.
In order to achieve this goal, an attacker has six options. He can “remove the tag”, “disable the
tag”, “overload the tag”, “disable the reader”, “disable the backend” or “block the communication”
between all tags and all readers. Even though we initially refined all children, we chose to continue
the case study by only refining the nodes “remove tag” and “block communication”. The refinements
are depicted in Figures 5 and 7. We deliberately chose to analyze an incomplete tree to reflect
that, in most use cases, the modeling time is limited which invariably will lead to incomplete trees.

To physically remove the RFID tag an attacker can either remove the tag himself, or he can
convince someone else to remove the tag. In the first case, he either can “infiltrate the building” or
he has to “infiltrate the organization” and thereby gain legitimate access. Infiltrating the building
can be achieved by “breaking and entering”, as detailed in Figure 6, by “posing as a truck driver”,
by executing a “postal Trojan attack” or by staging a “visitor attack”. A postal Trojan attack
can be achieved when the attacker “hides in a box” and this box is sent to the warehouse. The

8

Figure 3: Floor plan

owner of the warehouse could defend against Trojan mail by employing a “sniffer dog” that can
detect humans in the incoming goods. The attacker, in turn, could confuse the dog using decoy
rats or pepper spray. If the attacker decides to execute a “visitor attack” he can “come as visitor”
during daytime and “hide in the bathroom” until everyone else has gone home. The defender could
anticipate such an attack and “track visitors” on the warehouse premises. Tracking the visitors can
be accomplished by “escorting the visitors”, by requiring visitors to “register in a visitor’s log”, by
using a more supervised attended visitor’s log, or by installing “presence detectors on the premises”.
A visitor could chose to overcome the defense “register in a visitor log” by “faking a log entry”.
In that case, the warehouse owner should switch to “register in an attended visitor’s log”. If the
attacker decides that he wants to infiltrate the organization, he can try to “get hired as warehouse
staff”, “pose as warehouse employee”, or simply “buy the warehouse” (we deliberately added some
extreme nodes to the tree to try and provoke some extreme attribute values). The defender could
protect himself against any infiltration by performing “background checks” on everyone he works
with.

If the attacker chooses to convince someone else to removed the tag, he can “bribe”, “threaten”,
“blackmail” or “trick” this person. In the first case, he has to “identify a corruptible subject” and
then he has to actually “bribe the subject”. The warehouse owner could defend against bribery
by “thwarting the employees” from receiving bribes, by providing mandatory “security awareness
trainings” or ”threatening to fire the employees” in case of infringement. Provided the attacker
wants to trick another person into removing the tag, he can either “send false replacement tags”
or he can place a “false management order” to replace the tags. Fake orders can be done by
“infiltrating the management” and “ordering replacement tags”. A defender can prevent this kind
of trickery by mandatory “security awareness training courses”. Last, a defender could prevent any
kind of removal of the RFID tag by using a “stronger adhesive”, i.e., attaching the tag in a way

9

RFID
DoS

Attack

Remove
Tag

Figure 5

Disable
Tag

Overload
Tag

Disable
Reader

Disable
Backend

Block
Communi-

cation

Figure 7

Figure 4: An ADTree for RFID DoS attack

that it cannot be removed.
If an attacker decides to remove the tag himself by breaking and entering he must ”get onto

the premises” and “get into the warehouse”, undetected by the installed cameras. To get onto the
premises, an attacker can “climb over the fence” or he can “enter through the gate” for employees
undetected by Camera 2. To prevent attackers from climbing over the fence, the defender could
install “barbed wire” on the fence. An attacker, in turn, could circumvent the barbs by guarding
against them, which he could achieve by either throwing a “carpet over the barbs” or by “wearing
protective clothing”. The attacker also has to get into the warehouse. He can accomplish that
by “entering through the door” undetected by Camera 7 or “entering through the loading dock”
undetected by Camera 4. The defender could prevent an attacker from entering through the main
door by monitoring the door with biometric sensors. Another defensive measure would be to install
and monitor the premises with additional security cameras. These new cameras would monitor
the parts of the property not yet covered, but could be rendered useless if an attacker disables
them. Disabling could be done by shooting a strong laser at the cameras or by “video looping
the camera” feed. Alternatively, guards patrolling the premises could protect against this kind of
threat.

10

R
em

ov
e

T
ag

R
em

ov
e

T
ag

Se
lf

In
fil

tr
at

e
B

ui
ld

in
g

B
re

ak
in

g
an

d
E

nt
er

in
g

F
ig

ur
e

6

P
os

e
as

a
T
ru

ck
D

ri
ve

r

P
os

ta
l

T
ro

ja
n

A
tt

ac
k

H
id

e
in

a
B

ox

B
e

Se
nt

to
th

e
W

ar
e-

ho
us

e

Sn
iff

er
D

og

C
on

fu
se

D
og

D
is

tr
ac

t
D

og
w

it
h

R
at

s

Sp
ra

y
P
ep

pe
r

V
is

it
or

A
tt

ac
k

C
om

e
as

V
is

it
or

H
id

e
in

B
at

hr
oo

m

T
ra

ck
V

is
it
or

s

E
sc

or
t

V
is

it
or

s

R
eg

is
te

r
in

V
is

it
or

’s
Lo

g

Fa
ke

Lo
g

E
nt

ry

A
tt

en
de

d
V

is
it
or

’s
Lo

g

A
tt

en
de

d
V

is
it
or

’s
Lo

g

P
re

se
nc

e
D

et
ec

to
rs

on
P

re
m

es
isIn
fil

tr
at

e
O

rg
an

i-
sa

ti
on

G
et

H
ir

ed
as

W
ar

eh
ou

se
St

aff

P
os

e
as

W
ar

eh
ou

se
E

m
pl

oy
ee

B
uy

th
e

W
ar

eh
ou

se

B
ac

k-
gr

ou
nd

C
he

ck

O
th

er
P
er

so
n

R
em

ov
es

T
ag

B
ri

be

Id
en

ti
fy

C
or

ru
pt

ib
le

Su
bj

ec
t

B
ri

be
Su

bj
ec

t
T

hw
ar

t
E

m
pl

oy
ee

s

Se
cu

ri
ty

A
w

ar
en

es
s

T
ra

in
in

g

T
hr

ea
te

n
to

F
ir

e
E

m
pl

oy
ee

s

T
hr

ea
te

n
B

la
ck

m
ai

l
T
ri

ck

Se
nd

Fa
ls

e
R

e-
pl

ac
em

en
t

T
ag

A
ut

he
nt

i-
ca

te
T
ag

B
re

ak
A

ut
he

nt
i-

ca
ti
on

Fa
ls

e
M

an
ag

e-
m

en
t

O
rd

er

In
fil

tr
at

e
M

an
ag

e-
m

en
t

O
rd

er
T
ag

R
ep

la
ce

-
m

en
t

Se
cu

ri
ty

A
w

ar
en

es
s

T
ra

in
in

g

A
tt

ac
h

w
it
h

St
ro

ng
er

A
dh

es
iv

e

at
ta

ck
no

de
de

fe
ns

e
no

de
a

su
bt

re
e

di
sj

un
ct

iv
e

re
fin

em
en

t
co

nj
un

ct
iv

e
re

fin
em

en
t

co
un

te
rm

ea
su

re

Figure 5: The remove tag subtree

11

Breaking
and

Entering

Get
onto

Premises

Climb
over
Fence

Barbed
Wire

Guard
Against
Barbs

Use
Carpet

on Barbs

Wear
Protective
Clothing

Enter
through
Gate

Get
into

Ware-
house

Enter
through
Door

Monitor
with

Biometric
Sensors

Enter
through
Loading
Dock

Monitor
with

Security
Cameras

Disable
Cameras

Laser
Cameras

Video
Loop

Cameras

Employ
Guards

attack node
defense node
disjunctive refinement
conjunctive refinement
countermeasure

Figure 6: The breaking and entering subtree

Blocking communication can be done by blocking the communication between the tag and the
reader or by blocking communication between the reader and the backend, as depicted in Figure 7.
To do the former, there exist several options: It is possible to “shield the tag”, to use a malicious
reader that constantly requests information from the tag and this way “blocks the tag”, to use
a different tag that “blocks the reader”, or to “jam all signals”. Shielding a tag can be achieved
by “being in the vicinity of the tag” and by using a “Faraday cage”. An obvious defense against
attackers being in the vicinity of the tags would be to increase the “security of the warehouse”.
A Faraday cage can be installed around the reader or around the tag. To prevent attackers from
jamming the signal, the defender could “isolate the entire warehouse network”, which could be
achieved by “securing the warehouse” or “encasing the entire warehouse inside a Faraday cage”.
If the attacker decides to block the communication between the reader and the backend, he can
achieve it by evoking “DoS in the wired network”.

4 Attribute Case Study
Having established our ADTree, we are ready to focus on the novelty of the case study: the
decoration of the ADTree with attributes and the corresponding values. Figure 8 gives an overview
on how this case study was performed. As explained in Section 3, the ADTree creation activity
was done through several iterations. This was followed by an attribute decoration activity, which
consisted in selecting a relevant set of attributes, choosing players and estimating attribute values.
Section 4.1 explains this part in more detail, while Section 4.2 describes the objective observations
we recorded. The next step was to prepare the attribute values for calculation, as explained in
Section 4.3. Finally, the bottom-up algorithm was applied in order to derive the minimal costs
of the attacker in our scenario. This step as well as the corresponding findings are presented in

12

Block
Communi-

cation

Block
Tag

Reader

Shield
Tag

Be in
Vicinity
of Tag

Secure
Ware-
house

Faraday
Cage

Cage
Around
Reader

Cage
Around

Tag

Blocker
Reader

Blocker
Tag

Jam
Signal

Isolate
Network

Secure
Ware-
house

Faraday
Around
Tag and
Reader

Block
Reader
Backend

DoS in
Network

attack node
defense node
disjunctive refinement
conjunctive refinement
countermeasure

Figure 7: The block communication subtree

Section 4.4.

Figure 8: The ADTree case study process

4.1 ADTree Decoration with Attributes
In this case study, we have experimented with a game-based approach for the decoration of the
ADTree. We chose a set of attributes that we felt were useful and possible to provide accurate
values for (in other studies a different set might be more suitable). The selected attributes with
their detailed descriptions, example references and the corresponding value domains can be found
in Table 1. In many cases there are variants of the attribute names in the literature, e.g., we have
used the term impact to cover impact, severity, consequence, damage, criticality, as well as
seriousness. Most of the chosen attributes can be applied to both attack and defense nodes. We
also decided to make use of the meta-attribute confidence, with the domain {1, . . . , 5}, where 1
represents total lack of confidence and 5 very high confidence.

13

There were two players taking roles as attackers, and two as defender. The players estimated
the attribute values for the nodes of the ADTree. For this purpose, we created an empty table
with 9 columns for the attributes and 79 rows for all nodes. Our intention for the table was to
prevent illegible values, that would have occurred if the players had estimated all values directly on
the ADTree printed on a sheet of paper. All players were allowed to use the labeled ADTree, the
warehouse and the system description given in Section 3.1, the attribute description from Table 1
and the empty table. The values were estimated independently over a period of one week, but
we did not set a specific time limit. Neither did we require to estimate values for every node and
attribute, we rather suggested to apply a best effort strategy.

Table 1: Decoration attributes for the RFID case study

Attribute Description Values
Costs [Schneier, 1999,
Buldas et al., 2006,
Tanu and Arreymbi,
2010, Baca and Pe-
tersen, 2010, Saini
et al., 2008, Mauw and
Oostdijk, 2005, Yager,
2006, Abdulla et al.,
2010, Roy et al., 2011,
Byres et al., 2004,
Amenaza, 2001, Wang
et al., 2011, Edge et al.,
2006]

The amount of real money
needed to finance the attack
or defend against it (depend-
ing whether it is the at-
tacker’s of defender’s point of
view), referring to e.g., equip-
ment or software costs, ed-
ucational expenses, develop-
ment costs or size of a bribe.

Cheap (C): Any attacker or de-
fender can afford this without think-
ing twice.
Average (A): The costs of the attack
will fend off most attackers without
a steady income. Defenders will typ-
ically do a cost-benefit analysis be-
fore the expenses can be justified.
Expensive (E): The attacker will
need substantial funding in order to
perform the attack. It is unlikely the
defender will invest in this.
Optional: Real number value.

Detectability [Tanu
and Arreymbi, 2010,
Byres et al., 2004,
Amenaza, 2001]

The chance that the defender
will notice the attack during
its execution or the attacker
will notice the defense mech-
anism.

Easy (E): Any attacker or defender
with a clear state of mind will de-
tect that something was out of the
ordinary right away.
Possible (P): Some attackers or de-
fenders are able to detect this de-
fense or attack.
Difficult (D): Very few attackers
or defenders are qualified to notice
that something is wrong before it is
too late.

Difficulty [Byres et al.,
2004, Fung et al., 2005,
Tanu and Arreymbi,
2010, Henniger et al.,
2009, Amenaza, 2001,
Mauw and Oostdijk,
2005, Abdulla et al.,
2010, Amoroso, 1994,
Wang et al., 2011]

The technical or social skill
level needed for the attacker
or defender to succeed.

Trivial (T): Little technical skill
required.
Moderate (M): Average cyber hack-
ing or defense skills required.
Difficult (D): Demands a high de-
gree of technical expertise, the at-
tacker is a professional con artist.
Unlikely (U): Beyond the known
capability of today’s best attackers
or defenders.

14

Table 1: Decoration attributes for the RFID case study

Attribute Description Values
Impact [Schneier,
1999, Tanu and Ar-
reymbi, 2010, Henniger
et al., 2009, Li et al.,
2009, Saini et al., 2008,
Mauw and Oostdijk,
2005, Amoroso, 1994,
Abdulla et al., 2010,
Roy et al., 2011, Edge
et al., 2006, Wang
et al., 2011]

The severity or consequence
from the system owner’s
point of view. Can refer to
loss of money, but also other
less tangible resources such as
loss of reputation.

Low (L): The system owner will not
care or notice.
Moderate (M): Acceptable but un-
wanted loss.
High (H): Unacceptable loss, must
be avoided.
Extreme (E): Will terminate busi-
ness.
Optional: Real number value.

Penalty [Buldas et al.,
2006, Jürgenson and
Willemson, 2008, Wang
et al., 2011]

The consequences for the at-
tacker given that the attack
fails, for instance, a fine, jail
sentence or being blacklisted.
Here, we do not consider any
penalty of a successful attack.

Low (L): The attacker will not care.
Medium (M): The attacker will think
twice before performing the attack.
High (H): Very few attackers will
take the risk.
Optional: Real number value of a
fine or years in prison.

Profit [Amoroso, 1994,
Jürgenson and Willem-
son, 2008, Bistarelli
et al., 2006, Roy et al.,
2011]

The economic profit or gain
the attacker will receive
should the attack succeed.
This value does not include
costs of attack.

None (N): A successful attack does
not lead to any direct income.
Marginal (M): Economic gain is not
enough by itself to justify the attack.
Lucrative (L): The attacker can
obtain a substantial profit.
Optional: Real number value.

Probability [Schneier,
1999, Buldas et al.,
2006, Henniger et al.,
2009, Li et al., 2009,
Manikas et al., 2011,
Yager, 2006, Abdulla
et al., 2010, Roy et al.,
2011, Byres et al., 2004,
Edge et al., 2006, Wang
et al., 2011]

The assumed chance that the
attack or defense will succeed.
Could be based on heuristics
of similar attacks or cognitive
estimations.

Unlikely (U): Below 5%.
Low (L): Between 5% and 25%.
Medium (M): Between 25% and 75%.
High (H): More than 75%.
Certain (C): Close to 100%.
Optional: Specific percentage value.

Special skill [Mauw
and Oostdijk, 2005,
Abdulla et al., 2010,
Schneier, 1999]

A specified skill or property
the attacker or defender will
need in order to succeed.
This is orthogonal to the dif-
ficulty attribute. Examples
are access to insiders or need
of electricity.

Binary value:
True (T): A special skill is required.
False (F): No special skill is re-
quired.

15

Table 1: Decoration attributes for the RFID case study

Attribute Description Values
Time [Henniger et al.,
2009, Schneier, 1999,
Wang et al., 2011]

For the attacker this is the
time needed to perform the
attack, independent of diffi-
culty and costs of attack.
For the defender this is the
time needed until the defense
is effective.

Quick (Q): The attack or defense
can be performed in an instance.
Medium (M): The attacker or de-
fender will need to be patient and
wait for a while.
Slow (S): The attack or defense
takes really long time to complete.
Optional: Real number in terms of
minutes.

4.2 Observations from the Attribute Decoration
The entire ADTree consisted of 79 nodes, where 59 were attack nodes and 20 were defense nodes.
An extract of the resulting estimated values is shown in Table 2, where each line for an attack
node represents a player who had been given the role of an attacker; similarly for lines representing
defense nodes. A dash indicates a conscious decision not to estimate a value and an empty field
indicates that the player was not considering estimating a value. The letters [D] and [B], inserted
in front of the node labels, indicate that the node was a defensive node and a basic action,
respectively.

None of the players used a real number values for any of the attributes, instead all four players
used the ranged values given in Table 1. In Table 2, the first letter of these ranges has been used
to indicate the value, and the following number gives the confidence value.

The two players who were initially given the role of attackers spent approximately 90min
and 120min, the players with the role of the defender spent 40min and 90min.

We would like to mention that two of the players consulted the ADTree to reexamine the
context of the nodes, whereas the two other players estimated the values without taking existing
values of similar nodes or values of the parents and children into account.

The percentage of the nodes, where both players have given values, ranges between 0%
and 93%, for different attributes. For five attributes (detectability, impact, penalty, profit
and probability) either an attacker or a defender did not estimate a value. For the special skill
attribute, we discovered that the attackers had not considered the same special skill. One defender
estimated values only for basic actions and not for refined nodes.

In the remainder of this section, we elaborate on the difficulties we encountered while estimating
the values. We have grouped the difficulties into attribute related, node related and methodological
problems. They are based on our analysis of the data and the players’ own evaluation.

Table 2: Extract of raw-data of the case study. Each row repre-
sents the estimates of one player. The first letter of every field
represents an attribute value, as abbreviated in Table 1 and the
second represents the confidence level on a scale from 1 to 5.

Name of the Node Costs Det Diff Imp Pen Prof Prob Skill Time
Breaking and Entering A,3 P,3 M,3 M,3 M,3 - - F,3 Q,3

- M,4 - M,4 F,4 Q,4
Get onto Premises C,4 P,4 T,4 M,4 M,4 - - F,4 Q,4

C,4 T,4 L,4 H,4 F,4 Q,4
Get into Warehouse C,4 P,4 T,4 M,4 M,4 - - F,4 Q,4

C,3 M,3 M,3 H,3 F,3 Q,3
[D,B] Monitor with E,4 P,4 T,4 H,4 F,4 S,4
Security Cameras E,4 E,4 M,4 M,3 T,4 Q,3

16

Table 2: Extract of raw-data of the case study.

Name of the Node Costs Det Diff Imp Pen Prof Prob Skill Time
[B] Climb over Fence C,5 D,5 T,5 L,5 L,5 - M,5 F,5 Q,5

C,4 T,4 L,4 H,4 F,4 Q,4
[B] Enter through Gate C,5 E,5 T,5 L,5 L,5 - H,5 F,5 Q,5

C,4 M,4 M,4 M,4 F,4 Q,4
[B] Enter through Door C,5 E,5 T,5 M,5 M,5 - M,5 F,5 Q,5

C,4 M,4 M,4 M,4 F,4 Q,4
[B] Enter through C,5 E,5 T,5 M,5 M,5 - L,5 F,5 Q,5
Loading Dock C,4 M,4 M,4 M,4 F,4 Q,4
Disable Cameras A,3 E,3 T,3 L,3 M,3 - M,3 F,3 Q,3

C,3 M,3 L,3 - F,3 M,3
[D,B] Barbed Wire E,4 D,4 D,4 H,4 T,4 S,4

C,4 E,4 T,4 M,3 T,3 Q,2
[D,B] Monitor with E,4 D,4 D,4 H,4 T,4 S,4
Biometric Sensors E,4 E,3 M,3 M,3 T,3 Q,2
[B] Laser Cameras A,3 E,3 M,3 L,3 M,3 - L,3 F,3 Q,3

A,2 M,2 L,2 M,2 F,2 Q,2
[B] Video Loop Cameras A,2 D,2 D,3 L,2 M,2 - U,2 T,2 M,2

A,2 M,2 L,2 L,2 F,2 M,2
Guard Against Barbs C,4 - T,4 L,4 L,4 - H,4 F,4 Q,4

A,4 T,4 L,4 H,4 F,4 Q,4
[D,B] Employ Guards A,4 P,4 T,4 H,4 F,4 M,4

E,4 E,4 T,4 M,3 F,4 M,2
[B] Use Carpet on Barbs C,5 E,5 T,5 L,5 L,5 - C,5 F,5 Q,5

C,4 T,4 L,4 H,4 F,4 Q,4
[B] Wear Protective Clothing A,5 E,5 T,5 L,5 L,5 - H,5 F,5 Q,5

A,4 T,4 L,4 H,4 F,4 Q,4
...

...
...

...
...

...
...

...
...

...
Nodes with less than two values 11 65 6 79 24 79 47 9 12
Attack nodes with two values 54 0 59 0 55 0 32 56 53
Defense nodes with two values 14 14 14 0 0 0 0 14 14

Attribute Related Problems. Several problems, encountered while estimating values, are
worth mentioning. First of all, we learned that the players tended to estimate values by using their
own interpretation of the attributes and not the one provided in Table 1. This happened when
the description given in Table 1 was not immediately understandable or when it was contradictory
to the player’s belief of what the attribute represented. Apparently, we forgot to mention that
only the attribute description given in the table should be used. For example, the attribute costs
of attack or costs of defense to “disable cameras” could be understood from two perspectives.
From an attacker’s point of view, it could mean how much the attacker has to pay to disable the
cameras. From a defender’s point of view, however, the costs of this attack could be the money
the defender has to pay to get the cameras running again after the attack.

Table 1 describes penalty and profit only from the perspective of an attacker that performs
an attack. Slightly different, the impact attribute describes consequences from a system’s owner
or defender’s point of view, the scale given in Table 1 however indicates attacks. When attackers
only estimate values for attack nodes and defenders only for defense nodes, both descriptions led
to nodes which did not have any values.

Even when Table 1 did not make a reference to only the defender or the attacker, some
players believed that a certain attribute only concerns the other player’s actions. As a result,
the detectability attribute was interpreted by an attacker as detectability of the defense, and

17

probability was interpreted by a defender as the probability that the attack succeeds. This again
led to nodes without estimated values.

A third source of missing values was the description of the attribute itself. This occurred for the
attributes profit and special skill. More concretely, the profit attribute is missing information
on what can be gained with the attack. For example, we should have mentioned whether we plan
to steal valuables from the warehouse or to annoy people that work there. Furthermore, the special
skill description allows for a use of a Boolean domain, but does not specify an attribute such as
whether or not insider knowledge, electricity, or certain technical skills are required. Table 1
offers an explanation for the different attribute value categories. However in some cases, the given
category explanation was not precise enough, or only the keyword classifying the category was
taken into account. For example, depending on the node, the value Medium for the attribute time
can be understood as anything ranging from minutes to weeks. Indeed, consider the nodes “hide
in bathroom” and “get hired”: being patient for a while could mean a couple of days when we were
hiring someone, but it would mean a couple of minutes if we were hiding in the toilet.

For some attributes, e.g., costs, probability, time, it felt easier to estimate the more refined
nodes, while for other attributes, e.g., penalty, profit, it was easier to estimate the less refined
nodes. As a result, some players chose to only estimate attribute values they were moderately
sure about. When uncertain about an attribute value, they favored not to estimate over estimate
a value with low confidence.

The description and the use of the meta-attribute confidence should have been described more
clearly. One of the players chose to only use one confidence level per node, with the intention to
save time at the expense of less accurate values. Other players selected a different confidence level
for every estimated attribute value. All players concluded that the confidence level scale should
be reduced to fewer (e.g., three) options.

Node Related Problems. Issues directly concerning attributes and their specifications are not
the only reasons why associating values with the nodes of an ADTree was a difficult task. Several
problems were in fact related to the nodes themselves. Associating attribute values with the
nodes helped us to realize that the user’s understanding of the presented scenario is in many cases
incomplete or even incorrect. One of the main problems was that node labels were often not self-
explanatory and may lead to confusion. We used simple labels in order to be able to graphically
represent the nodes. Thus, the labels were often short, e.g., “false management order”, imprecise,
e.g., “blocker reader”, or did not contain verbs, e.g., “barbed wire”. This implied that, without
looking at the context in which the nodes had been used, i.e., parent, sibling and child nodes as
well as the corresponding main goal, it was impossible to estimate the related attribute values.
As an example, we can consider the “enter through door” node. Without taking its parent node
“get into warehouse” into account, it is impossible to estimate the corresponding values for the
time and difficulty attributes, because the values may differ depending on which door we are
interested in: the warehouse door, the bathroom door or the administrative office door.

Another issue is whether attribute values should be assigned to the non-refined nodes only
or also to the refined ones? This problem is related to the meaning of refined nodes. In fact,
some of them represent understandable attacks or defenses, e.g., “get onto premises” or “block tag
reader”, others play the role of dummy placeholders, e.g., “trick”. In the first case, it was possible to
associate values with such a refined node. In the latter case, they were only used to connect several
options that could be attacked or defended in the same way. In such situations, the attribution
was more problematic and could not be performed without taking the corresponding child nodes
into account.

Finally, in order to quantify some of the considered properties, additional information may be
required. Such information does not have to be related to the considered ADTree structure. For
instance, it is hard to decide how long it takes to employ guards, without knowing what kind of
goods are stored in the warehouse. If the goods are not very valuable, anybody could be hired as a
guard. Thus, the execution time of “employ guards” would be Medium. However, if the goods are
expensive, sensitive or dangerous for the environment, the guards have to be chosen more carefully.

18

In this case, the selection process would take longer, because it would have to be accompanied by
additional measures such as background checks. Thus, the corresponding attribute value would
then be Slow.

Methodological Problems. The case study was performed by four people: two of them played
a role of the attacker and two of the defender. However, it was not explicitly specified to which
nodes the players should assign the values. This led to inconsistencies in the gathered data. Each
of the players provided values for nodes related to his or her role, but one of the attacker players
also estimated some values for the defender nodes. So a question arises: Which player should
provide values for which nodes?

This issue is closely related to the problem of what the knowledge of the player is. Should we
assume that the attacker and the defender are only able to estimate values for their own actions,
or should the game give them the freedom to assign values to the adversary’s nodes as well?
Furthermore, should the players only take the part of the scenario corresponding to their role into
account, or can they base their decisions on knowledge about the other player too?

Another issue is how to assign values to the nodes that have the same labels. Nodes such as
“secure warehouse” or “attended visitor’s log”, were mentioned twice in the initial table, because
they appear twice in Figure 5. On the one hand, the values assigned to two different occurrences
of the same action might be different in the case when the context is taken into account. On the
other hand, if the nodes are handled independently of the tree, it would be more reasonable to
associate the same values with similarly labeled nodes.

We also identified an issue concerning the role of the players in the creation phase of the
considered ADTree. As we were the creators of the tree, we had a good understanding of the tree.
However, in general players might be asked to estimate values for trees which they have not seen
before.

4.3 Preparation of Attribute Values
The attribute values have been estimated by four players. As a result we have obtained several
values for a given attribute and a given node, as described in Table 2. In practice, we would like
to have a single value that can give us some indication about the aspects we are interested in. In
this section, we show how a single value can be derived from the raw data gathered in the previous
step of the case study.

We start from the data provided by the players, as given in Table 2. If every player has
estimated the same value, we can immediately use it as input to produce an indicator for the
scenario. In practice, this perfect world scenario seldom occurs. There are several reasons why
the values were not identical. First, some players may have opted not to estimate a value at all.
Second, the understanding of the node may have been different for each player, as we pointed
out in Section 4.2. Finally, it might also happen that no player has estimated a value for a node.
Therefore, in a non-perfect world scenario, we need a method to choose one representative value
for each node.

Provided all players had estimated a value for a given node, we automated the process of
combining the values by using the following procedure. First, we transformed the attribute values
into natural numbers. E.g., the costs attribute values Cheap, Average and Expensive, were
transformed into 1, 2 and 3, respectively. We let n be the number of independently gathered
pairs (attribute, confidence), i.e., in our case n was equal to 2. Then, we used the formula

(rnd

(∑
attribute · confidence∑

confidence

)
,

⌊∑
confidence

n

⌋
), (1)

where b·c symbolizes rounding down to the nearest integer and rnd regular rounding. We chose
to round the first component to use the best estimate. This rounding also allows us to transform
the first component back into the original categories. We chose to round the second component
down, to reflect risk averseness. The results of the application of the formula are the non-bold
values in Table 3.

19

To illustrate the application of Formula (1), we combine the difficulty attribute values es-
timated for the “Enter through Gate” node. From Table 2 we can see that one of the players
estimated the difficulty of entering through the gate as being Trivial (T) and his confidence
level in this value was 5. The other player found the considered action as Moderate (M) in diffi-
culty and his confidence level in this value was 4. The value domain for the difficulty attribute,
as defined in Table 1, contains four values: Trivial (T), Moderate (M), Difficult (D) and
Unlikely (U), which we transform into 1, 2, 3 and 4, respectively. Thus, we use (1, 5) and (2, 4)
as inputs for Formula (1). We obtain:

(rnd

(
1 · 5 + 2 · 4

5 + 4

)
,

⌊
5 + 4

2

⌋
) = (1, 4).

This means that, after combining the values estimated by the players, we obtain that the
difficulty of “entering through the gate” is Trivial (T) (because of the 1), of which we are certain
with a confidence level of 4. The cost, difficulty, and time values, as well as the corresponding
confidence levels, obtained for the remaining nodes by applying Formula (1), are depicted as non-
bold pairs in Table 3. We defer a discussion of other possible methods to combine values to
Section 5.2.

In our case study, we encountered several exceptional cases, when using the formula was either
impossible, because, for example, not a single value was given, or doubtful, because the values
differed substantially. These critical cases we classified and discussed at a consensus meeting.

The main goal of the consensus meeting was to obtain values that can then be used as unbiased
input for further calculations on the ADTree. For example, we reduced the unbalance that would
be introduced if we considered nodes with four times the same value equal to those where only
one of the players had estimated this value. Since for several attributes we did not have enough
data, we focused only on the attributes costs, difficulty, and time at the consensus meeting.

We first ensured that the nodes were correctly classified, i.e., that the players had not mistak-
enly estimated wrong value. Whenever mistakes were discovered, they were corrected, and the
nodes were reassigned to the correct category, before the actual conflict resolution started. We
also uncovered one inconsistency where the scenario and the tree were not matching. To repair
this mistake, we corrected the tree. To obtain agreed values, the nodes were analyzed in context,
i.e., we looked at the parents and the children of the nodes, but without considering any values
assigned to these nodes. More concretely, we identified the following categories and resolved the
problems in the following way

• Nodes where no one had estimated a value: We opted to discuss the value and eventually
assign a single value. The players who had taken the opposite role commented on plausible
values, then we selected one with which we all agreed.

• Nodes where not every player had estimated a value: We also decided on a single value at
the consensus meeting. Concretely, the player who had not given a value, first explained
why he had not done so, then the player who had given a value explained his choice. Then,
a consensus was formed.

• Nodes that had non-neighboring values: The player with the lower value explained his choice,
then the player with the higher value explained his. After that, the involved players agreed
on one of the given values, or a compromise was chosen. Whenever a compromise was chosen,
we lowered the confidence value.

• Nodes where all given values have low confidence levels: We also planned to discuss these
uncertain values, but we ran out of time, skipped this step and applied Formula (1).

The final results of the consensus meeting are given as pairs in bold font in Table 3. Instead of
the allocated hour, we spend two hours discussing the values. Out of the 3 × 79 possible values,
there were 188 cases for which we applied the Formula (1), 8 cases without any assigned value, 24
cases to which we had assigned only one value and 17 cases where the values diverged significantly.

20

Table 3: The table after the consensus meeting. The first letter of
every field represents an attribute value, as abbreviated in Table 1
and the second represents the confidence level on a scale from 1 to
5. The letters preceding the node names denote basic actions [B]
and defensive actions [D].

Name of the Node Costs Diff Time
Breaking and Entering A,3 M,3 Q,3
Get onto Premises C,4 T,4 Q,4
Get into Warehouse C,3 T,3 Q,3
[D,B] Monitor with Security Cameras E,4 M,4 S,4
[B] Climb over Fence C,4 T,4 Q,4
[B] Enter through Gate C,4 T,4 Q,4
[B] Enter through Door C,4 T,4 Q,4
[B] Enter through Loading Dock C,4 T,4 Q,4
Disable Cameras A,3 M,3 Q,3
[D,B] Barbed Wire A,4 T,4 S,4
[D,B] Monitor with Biometric Sensors E,4 D,3 S,5
[B] Laser Cameras A,2 M,2 Q,2
[B] Video Loop Cameras A,2 D,2 M,2
Guard Against Barbs A,4 T,4 Q,4
[D,B] Employ Guards E,4 T,4 M,3
[B] Use Carpet on Barbs C,4 T,4 Q,4
[B] Wear Protective Clothing A,4 T,4 Q,4

4.4 Bottom-up Calculation of Attribute Values
As already mentioned in Section 4.2, assigning relevant values to all nodes of an ADTree may
be difficult or even impossible. Fortunately, the ADTree methodology allows us to automate the
calculation of values on ADTrees with the help of the bottom-up procedure. To use the bottom-up
evaluation, we first have to initialize values at all non-refined nodes of the tree. Then, the values
for all subtrees, and in particular for the entire tree, are calculated, using functions which depend
on the type of the root of the subtree and the considered attribute. In this section, we first show
how to calculate, in the bottom-up way, the values for the minimal costs of the attacker. Then,
we use the obtained values to analyze the warehouse scenario.

In the case study, we were interested in calculating the minimal costs of a successful attack
in the RFID warehouse scenario. We considered the situation where the attacker did not have
any precise information on how the defender will decide to protect the warehouse. Thus, for this
calculation, we assumed that all possible defenses illustrated on the ADTree were in place and that
they were fully functional, i.e., a defense attached to an attack node defeats the corresponding
attack component, unless the defense itself is rendered useless by a counterattack.

We started by initializing the values for the non-refined nodes of the tree. In the case of the
attacker’s non-refined nodes, we used the pairs (costs, confidence) from Table 3 as initial values.
As the defender’s costs do not have influence on the attacker’s costs, we did not use the values
from Table 3 in the case of the defender’s non-refined nodes. Instead, we introduced an additional
cost value Infinite, denoted by X, which represents infinite costs and we assumed the attacker
is not able to afford it. The non-refined nodes of the defender were initialized with the pair (X, 5).
This indicates that we are fully confident that it is infinitely expensive (and thus impossible) for
the attacker to be successful at a defender’s action. Such initial values allow us to express the
costs of the considered scenario from the point of view of the attacker.

Since we were interested in the minimal costs, we have to know how to compare different values.
Thus, we considered the following linear order Cheap < Average < Expensive < Infinite. Now,
we are ready to describe how we calculated the minimal attacker’s costs for all subtrees. The

21

bottom-up procedure is recursive, i.e., we start from the leaves and we calculate the value for every
subtree rooted in a parent node based on the values previously calculated for the subtrees rooted
in its child nodes.

In this framework, we chose the minimal value for an attacker disjunctive subtree, because we
were interested in the minimal costs. Thus, we supposed that the attacker always performs the
least expensive option. Moreover, we assumed that performing several actions belonging to the
same costs category is not more expensive than performing one of such actions. Therefore, we
chose the maximal costs in the case of a conjunctive subtree with the attacker’s root. Conversely,
in order to successfully disable a disjunctively refined defensive countermeasure, the attacker has
to disable all corresponding refining options. Therefore, we used the maximum operator in this
case. On the other hand, to successfully disable a conjunctively refined defensive countermeasure,
it is sufficient for the attacker to disable only one of the corresponding refining actions. Here
again, according to our assumption, the attacker chooses the least expensive solution. Thus, the
operator used in this case is minimum. Finally, we always propagated the maximal confidence
level, corresponding to the chosen cost value. This allowed us to express how certain we can be
about this value.

The three paragraphs below summarize which operators are used for calculation of costs values
for all possible subtrees.

Subtrees rooted in a node which is refined but not countered

• The costs calculated for a subtree rooted in a disjunctively refined attack (resp. defense)
node is defined as the minimum (resp. maximum) of the costs calculated for its refining
subtrees.

• The costs calculated for a subtree rooted in a conjunctively refined attack (resp. defense)
node is defined as the maximum (resp. minimum) of the costs calculated for its refining
subtrees.

The maximal confidence level corresponding to the chosen costs is propagated.

Subtrees rooted in a node which is not refined but countered The costs calculated for
a subtree rooted in an attack (resp. defense) node is defined as the maximum (resp. minimum) of
the initial value for the non-refined root node and the value calculated for the countering subtree.
The maximal confidence level corresponding to the chosen costs is propagated.

Subtrees rooted in a node which is refined and countered In this case, first a pair corre-
sponding to a refining part of the tree is calculated, as in the case of a subtree rooted in a refined
but not countered node. Then, the functions for a subtree rooted in a non-refined but countered
node are used, where the initial value for the root is replaced with the calculated value for the
refining part.

We would like to remark that the functions used to calculate values depend on the considered
attribute and additional assumptions. Thus, if we would be interested in calculation of the defender
maximal costs, for instance, the used functions would have to be redefined accordingly. It is easy
to see that the functions presented in this section are also suitable for calculation of the minimal
difficulty level of the attacker and the minimal time of an attack, under the assumption that
all defensive components are present and fully functional.

With the assumption that all the possible defenses are present and fully functional, the real
minimal costs of a successful attack can be lower than the one obtained using our calculation.
Indeed, in reality, the defender may decide not to implement some of the defenses and thus the
costs of the corresponding counterattacks will not be taken into account for the final costs of the
attacker. However, by taking the described approach we use a safe solution, in the sense that

22

• the calculated minimal costs will not be lower than the actual minimal costs, i.e., the
minimal costs will not be underestimated,

• and the resulting set of attack components that have to be executed in order to achieve
the cheapest attack forms a successful attack which, according to our scenario, the defender
cannot defend against.

In the rest of this section, we use the calculated values for minimal costs, minimal difficulty
and minimal time to analyze the RFID-based warehouse scenario. These attributes serve as
representative examples. Our calculation shows that, to achieve an attack with the minimal
costs, an attacker needs to spend Average amount of money. We have a confidence level 3 in this
value. The corresponding attack consists of “disabling the backend”. For the attack of minimal
difficulty, the attacker should also “disable the backend”. Its difficulty is Medium of which we are
confident with level 3. The time it takes to perform the fastest attack is Quick of which we are
confident with level 2. To achieve the fastest attack, an attacker should “disable the RFID tag”.
We observe that for all three attributes, the optimal attack option is something which we chose
not to refine, see Figure 4. To be able to give a more insightful example, we look at the subtree
rooted in the node “breaking and entering”. The values resulting from the bottom-up approach
for the costs attribute are depicted in Figure 9.

Breaking
and

Entering
(A,2)

Get
onto

Premises
(C,4)

Climb
over
Fence
(C,4)

Barbed
Wire
(C,4)

Guard
Against
Barbs
(C,4)

Use
Carpet

on Barbs
(C,4)

Wear
Protective
Clothing

(A,4)

Enter
through
Gate
(C,4)

Get
into

Ware-
house
(C,4)

Enter
through
Door
(X,5)

Monitor
with

Biometric
Sensors
(X,5)

Enter
through
Loading
Dock
(C,4)

Monitor
with

Security
Cameras

(A,2)

Disable
Cameras

(A,2)

Laser
Cameras

(A,2)

Video
Loop

Cameras
(X,5)

Employ
Guards
(X,5)

Figure 9: The breaking and entering subtree with costs calculated in the bottom-up way.

From the bottom-up calculation presented in Figure 9, we deduce that an attacker can “break
and enter” when he spends an Average amount of money, and we are confident with level 2 about
that. To perform the attack, an attacker has two options: either he has to “use a carpet on the
barbs”, “climb over the fence”, “enter trough the loading dock” and “laser the cameras”, or he has
to “enter through the gate”, “enter through the loading dock” and “laser the cameras”.

Using the bottom-up approach, we computed the minimal costs of an attacker for every
subtree. This is the information that is depicted in every node. Comparing these values with the
ones gathered in Table 3 seems like a natural consequence. In Section 5.3 we elaborate on this
and other questions which illustrate the differences between attack trees and ADTrees.

23

5 Discussion
While performing this case study we encountered numerous design choices concerning the ADTree
methodology. Some options were outright inadmissible, some easy to pinpoint, whereas for oth-
ers the multiplicity of possible solutions proved the versatility of the ADTree methodology. In
Section 5.1 we discuss issues related to estimation of values by players. Then, in Section 5.2, we
present the alternative we were faced with when fusing several values into one final value that we
then use as initial assignment in the bottom-up algorithm. Section 5.3 elaborates on the choices
and problems we had during the actual bottom-up calculation. Section 5.4 contains a general
discussion about the usefulness and the benefits of the entire ADTree methodology and elaborate
on the four conflicting modeling goals. Finally, Section 5.5 shows the hindsight guidelines we have
learned based on our specific case study.

5.1 Lessons Learned from ADTree Decoration
Some attributes like penalty, profit or impact were only estimated by either attackers or de-
fenders. Assigning a specific role to a player initially seemed like a good idea, it caused the players
to minimize their work, such that (with a small exception) attackers only estimated values for
attack nodes and defenders for defense nodes. This reduces the number of estimated values by a
half, but it is doubtful that the quality was twice as good. So, the first lesson here would be to
have a clear understanding of what kind of players you have available and how to assign them. If
you have a specialists within certain domains available, make sure to exploit that. For example, a
janitor could estimate nodes related to physical building security, i.e., nodes depicted in Figure 6,
whereas a psychologist might be better suited to estimate values for nodes related to social engi-
neering, i.e., nodes depicted in Figure 5. A system administrator will in most cases know more
about historical attacks than a software developer, and so on.

Another alternative would be to let specialists estimate values for all nodes but only for the
attributes related to their field of expertise. For instance, accountants would be better suited to
provide costs values and technical personnel could take care of deciding whether electricity is
needed to perform the considered actions.

If the players are not specialized, e.g. you do not have that kind of people available or can
afford to hire a seemingly trustworthy black hat hacker, we believe that a random assignment of
nodes to be estimated is hardly justifiable. In such a case, it might be helpful to assign roles
according to the node types to different players to transform them into attackers and defenders.
We do not have sufficient evidence to recommend whether the players should then estimate only
one type of nodes (i.e., attack node or defense nodes) or both, i.e., whether they should predict the
strategy of their opponents and reflect that in the node values belonging to their role, or whether
they should influence the results by estimating values for all non-refined nodes. The best data
from non-specialists would probably be obtained from having the players play as both defenders
and attackers, however we do suspect that having a friendly competition between two opposing
teams would serve as a good motivation.

Even though all players were involved in the creation of the tree, there were cases where some
of the players did not completely agree with its structure when estimating the values. Here, we
feel it is best to run with a dual strategy. First, the player should nonetheless provide a value, but
assign a very low confidence. Second, we should introduce a new attribute called disagree with
node with a binary value range. Any node that has been flagged with this attribute should then
be discussed at the consensus meeting. It is important to remember that other players may feel
differently about the model and too many structural changes will make other values in the tree
insignificant. To avoid such complications and especially repetitive work, it is important that the
model of the tree is sufficiently accurate before any values are assigned.

To make full use of meta-attributes, they should always be estimated on a per attribute value
basis. In particular, not all attribute values for a given node should be assigned with the same
confidence level. This increases the time it takes to assign values, but it also increases the ac-
curacy of any calculation. Furthermore, a 3−valued confidence scale should be enough. As for

24

the attribute values, each confidence level should be clearly explained. Otherwise distinguishing
between different confidence levels is somewhat arbitrary.

If only the bottom-up approach is used during the analysis phase, estimating values for refined
nodes is questionable. If an action is already sufficiently comprehensible that a reliable value could
be suggested, it would not need to be refined anymore. Hence, from the fundamental modeling
idea behind ADTrees, assigning values to intermediate nodes is an inherent contradiction.

On the one hand, node labels are very important because they help the players to understand
the scenario without reading the scenario description in detail. Node labels that are too short
may lead to confusion. On the other hand, the labels should be concise because if they are too
long and detailed they are difficult to display and reduce the possibility of reusability. Therefore,
to satisfy both criteria, we propose to always use a noun and a verb as node labels.

During the game, players raised the question whether nodes should be considered without their
context, e.g., neighboring nodes and previously assigned values to similar nodes. We believe that
if the values had been assigned inside the actual ADTree, and not in a separate table, one would
have to consider the context. If the context is taken into account, the node labels might be easier
understandable (due to the additional information the parent node gives). We are aware that
assigning values without context can be used to detect inconsistencies and random assignments.
This however, we would pay for by less accurate values, because the node by itself is then less
descriptive. Estimating a value without context might not even be possible, because a bias that
might have been introduced during the creation of the tree. The player may simply remember the
context. Even though refined nodes should not hold less information than the children, repeating
the label of the parent clutters the label of the child nodes.

5.2 Lessons Learned from Attribute Preparation
Due to the different background or knowledge of the players, the estimated values will rarely be
the same. Furthermore, some players may chose not to insert a value at all. For these reasons,
we end up with heterogeneous data that needs to be homogenized. In Section 4.3 we describe one
possible option to proceed by using Formula (1) and to discuss the remaining values at a consensus
meeting. The formula consists of a weighted average for the attribute value and an estimation of
the confidence value, which reflects risk averseness. Instead of applying this formula, it is possible
to for example, choose the average, the median, the used or the lowest value for the attribute
value and an average, a reduced average, the lowest or possibly a new level of confidence as the
confidence value. The desired method may vary, depending on the scenario and the attribute to
be calculated.

When using any formula, it is, in general, preferable to have as many input values as possible,
since this increases the significance of the result. However, the meaningfulness of the values may
depend on the actual values that were estimated. To differentiate the inputs, we classify the input
values into six categories. Then, for each of the following six categories we can choose a different
approach of how to combine the estimated values in to one, e.g., using an average or a minimum
value, using ranges as values or deciding on the final value at the consensus meeting. The proposed
categories are:

• Category 1: Nodes with as many attribute values as players.

• Category 2: Nodes where at least one player has not estimated a value.

• Category 3: Nodes where all estimated values have a low confidence.

• Category 4: Nodes where the values diverge significantly.

• Category 5: Nodes where the disagree flag is set.

• Category 6: Nodes where no player has estimated a value.

25

The categories are ordered according to a descending scale of automation. Whereas for Category 1
it is entirely reasonable to combine the input values automatically into a single value, this is not
even possible for Category 6. A decreasing automatic treatment is equivalent to an increased
necessity for a consensus meeting. We again observe the conflict between modeling time and
modeling accuracy. Holding a consensus meeting, will result in an improvement of most of the
nodes from Category 5 or 6, because either the model was actually wrong or the model was not
described clearly enough. Categories 3 and 4 only vaguely depict a design option, since the terms
low confidence and diverge significantly would need to be defined, in more detail. Nonetheless, even
defining low confidence as only values with confidence level of 1 or 2 and diverge significantly as are
not neighboring in the natural order, already improved the model. For example for the attribute
attack time, the node “postal Trojan attack” was put in Category 4. While reviewing this node at
the consensus meeting, we discovered that one of estimated values was mistakenly given. Another
example of model improvement was the node “hide in bathroom”, where the divergent values
started a discussion which led to the insight that an attack component was missing.

A different classification we have to consider is the domain of the attributes. When estimating
values for non-refined nodes, naturally the question arises of why we only have three or four
different possible values for each attribute. From a theoretic point of view, it is entirely possible
to use real numbers, intervals or even discrete probability functions as value domains. However, the
more detailed the information is a person has to estimate, the less likely he is inclined to provide
a value. Using a more fine-grained scale to achieve more exact results is counterproductive, if the
number of people, who estimates a value, decreases. Furthermore, increasing the graining of the
scale may make it more difficult to distinguish between values.

5.3 Lessons Learned from Calculation
Comparing the values from Table 3 with the values calculated using the bottom up approach shows
that the countermeasures are usually disregarded when we try to assign values to nodes on an
intuitive basis. Therefore, we should not perform such a comparison. Figure 9 shows, for instance,
that video looping cameras is infinitely expensive and thus impossible when guards are employed.
This is contradicted by the estimated costs value mentioned in Table 3, which is Average with
confidence level of 2. A similar negligence of countermeasures and subsequent counterattacks
occurs if we consider attack trees instead of ADTrees. If we remove all subtrees rooted in defense
nodes from Figure 9, we do not model that an attacker should worry about possible defenses,
such as “barbed wire” or “monitor with security cameras”. Then, the costs value of the cheapest
scenario would be Cheap, with the confidence level of 4. The corresponding attack would be to
enter through the gate and the loading dock, undetected.

Since ADTrees allow us to combine information about the attacker and the defender, the
ADTree formalism allows to answer questions that depend on both players. We can, for instance,
compute the minimal difficulty of an attack, assuming that the budget of the defender is limited
to Average. Using Table 3 and Figure 9 we see that, in this case, monitoring with biometric
sensors as well as with security cameras would be too expensive for the defender. Hence, there
would be four possible attack scenarios:

• using the carpet on the barbs, climbing over the fence and entering through the door of the
main building,

• using the carpet on the barbs, climbing over the fence and entering through the loading
dock,

• entering through the gate and the door of the main building

• entering through the gate and the loading dock.

Similarly, it is possible to compute all combined attributes mentioned in Section 2.1, provided we
know the values given in Table 3.

26

In the minimal costs calculation performed in Section 4.4, we have chosen to use the functions
minimum and maximum. It is possible to redefine the used functions, in order to express more
accurately how costly a combination of actions from different categories is, for instance, that
performing a sequence of actions which are Cheap and Average is actually Expensive. However, in
this case study we are more interested in the proof of concept rather than in precise computations,
thus we use simple functions. It is clear that when our assumptions change, we have to redefine
the used functions accordingly. For instance, the function minimum cannot be used any more for
a disjunctively refined node, if we assume that the attacker is able to implement several among
existing options and not only the cheapest one.

The minimal costs calculation, performed in Section 4.4, can be made more precise with the
help of attributes expressed using Boolean values. Such attributes are well suited to reason about
hypothetical scenarios. If we are sure that some of the hypothetically possible attacks or defenses
do not occur, we can model this by pruning the tree. Pruning nicely fits in the framework of the
bottom up propagation, when we use Boolean values. Let us, for instance, consider the attribute is
electricity needed. We can prune the tree to simulate what happens if there is a power outage.
Since power outage affects the attacker as well as the defender, ADTrees are the formalism we
want to employ. In this case, pruning the tree is not done by simply cutting off defenses, rather
we cut of the subtree rooted in the nodes which need electricity and all parents until we either
hit a node of the other player or a disjunctively refined node. Pruning can also be used to reason
about parts of the scenario that satisfy a certain property, like, for instance, their costs is lower
than a certain threshold. In such cases, one player can prune the tree according to his knowledge
and assumptions about the other player, to get a better overview of a realistic scenario.

5.4 Lessons Learned from the Methodology in General
The attack tree obtained from our ADTree by removing all subtrees rooted in defense nodes
depicts the actual attack scenario, all other nodes describe hypothetical defenses and attacks that
may or may not be in place. Therefore, the security cameras from the floor plan, see Figure 3,
are not explicitly modeled as defense nodes in our ADTree. The cameras mentioned in Figure 6
are additional cameras that could be put into place. Modeling this way clearly distinguishes
between the considered scenario and hypothetical attacks and defenses. When modeling an actual
scenario this approach might be appropriate, whereas when we want to store possible attacks and
defenses in a library it is preferable that all defenses, including the already existing ones, are
depicted in the ADTree. Consequently, when using libraries as the starting point for an ADTree,
we have to adapt the tree to the scenario. Moreover, we can include information we have about
the attacker/defender, by adjusting the tree to the considered situation before actually starting a
bottom-up calculation. For example, if we know that the defender only has a limited budget, we
could remove any attack that is too expensive and then start the bottom-up calculation on the
pruned tree.

Since an incorrect or missing value anywhere in the tree can affect the resulting value for an
attribute, this indicates that the level of node refinement is crucial. To avoid biased results, the
level of refinement should roughly be the same for all branches. For us this means that for most
of the non-refined nodes we have the same intuitive level of understanding.

The level of refinement may be influenced by who created the tree and how it was created.
First, the players can be given the tree and act as independent security experts or they can have
created the tree (even described the corresponding scenario). Second, tree creation can start from
templates available in security repositories, as suggested by Meland et al. [Meland et al., 2010]
or from an empty sheet of paper. In either combination, there is a trade-off between time and
creativity.

An observation that we found interesting is that some of the attributes, such as skill, attack
costs and insider required, tell us a lot about the requirements for the attacker. This would
actually allow us to generate attacker profiles based on specific projections of the tree. Having such
profiles would be of benefit for the defender in order to identify potentially harmful candidates.

27

There are four conflicting modeling goals we would like to emphasize: time, reusability, accu-
racy and simplicity, which all have implications on the complexity of the analysis. In modeling,
time is always a concern. According to our experience, companies spend between one hour and
one week on threat modeling before the implementation starts. From a theoretic point of view
this might not be enough, but unless we see a paradigm shift in security modeling, time is always
a scare resource. The amount of time (and therefore money) spent always has to be justified by
either allowing the analysis to be highly reusable or require a high degree of accuracy.

If we spend a lot of time modeling, we prefer our analysis to be reusable. For graphic security
modeling, libraries immediately come to mind. For this reason, the SHIELDS project [SHIELDS,
2008-2010] developed an online library for (among others) attack trees. This library could be
extended to also include attack–defense trees. Whereas a repository for the structure of attack
scenarios already exists, there has not yet been an attempt to also store node values together
with the structural information. The degree of reusability might not be as high for actual values.
Therefore, instead of storing concrete values, it might be preferable to store ranges of admissible
values which serve as possible and not actual values. The more values for different attributes are
retrievable, the more likely some information will be reusable. Using stored values may again
conflict with other modeling goals, such as a fast scenario analysis (the stored node values most
likely still have to be adapted) and, unless a computer tool is used, the visual appeal of the
ADTrees is diminished, because the tree feels cluttered.

A third conflicting modeling goal is the accuracy of the model and the values. It is necessary
to find an acceptable compromise between the required time and necessary accuracy. Also, more
accurate ADTrees and values reduce the reusability of the ADTree. In general, we can say that the
coarser the value, the more raw data we get, because more people feel comfortable with actually
providing the value. The finer the value, the more precise the result will be, but if the values are
too fine, only experts might be able to estimate values. A coarse value range for a costs attribute
would, for example, be Low, Medium and High, a fine grade would be if the value was given as a
real number expressing a monetary value, e.g., in e.

As a last modeling goal, we want the methodology of ADTrees to be easily understandable.
We use a simple tree structure which is a main advantage over the generalized petri-net approach.
But we do not only want the relation between the basic actions depicted in an easy way, we also
want non-experts to be able to make full use of the ADTree methodology. Therefore, we also want
a common user, developer, administrator or system owner to be able to estimate values for basic
actions. By doing this, we benefit from a larger resource pool of potential attribute assigners,
which might reduce the costs, because we do not need to hire an expert for tree creation and
providing values. This however, might have implications on the accuracy of the values.

5.5 Hindsight Guidelines for the Warehouse Case Study
Earlier in this section, we have elaborated on possible methodology design choices that typically
occur in case studies such as ours. The “right” choices depend on the actual scenario, the security
relevant questions to be answered, the modeling goals, the client, and last but not least, the people
performing the case study. None of them should be treated in isolation. In Table 4, we take this
discussion into account and list numerous design choices for the presented RFID case study. The
bold options indicate which of the choices we would select with hindsight, but are of course not
necessarily the right choices for other system settings.

28

Table 4: Work flow – Exemplary guidelines for the use of ADTrees
for our case study

Step Task Design choices
1 Create ADTree

for scenario
- Create tree from root node on/adapt tree from existing tem-
plates.
- Use/do not use incomplete trees.
- Continuously improve trees/freeze tree structure at some
time.
- Use concise noun and verb/detailed textual description as node
label.
- Security expert/system owner/random person creates tree.
- Use same level of detail for refinements/limit number of nodes.
- Allow/disallow pruning.
- Assume/do not assume players are the creator of the tree.

2 Choose and de-
scribe attributes

- Use attribute description given in Table 1/provide new descrip-
tions.
- Select attribute domains: discrete/real numbers/fuzzy sets/
intervals/probability measures.
- Allow/disallow (disagree with node attribute).
- Always/sometimes use meta-attribute confidence.

3 Choose who es-
timates what

- Who estimates: attackers/defenders/specialists/random people.
- Which nodes: according to role of player/to background/
depending on attribute/all nodes.

4 Estimate values - Evaluate meta-attributes for all attributes separately/together.
- Consider nodes in/without context.
- Allow/disallow different values for repetitive nodes.
- Do not estimate/estimate values for intermediate nodes.

5 Combine values - Apply standard combining procedure for Categories 1–4/for
other categories.
- Use Formula (1)/something else as standard procedure.
- Use averaging/minimization/majority/consensus meeting for al-
ternative categories.
- Restrict/do not restrict time in case of consensus meetings.

6 Calculate values - Use predefined/other functions from software tool or literature.
- Compare/do not compare with intermediate values.

6 Conclusion and Future Work
In this paper, we have looked at the use of attributes for attack–defense trees (ADTrees). After
explaining the ADTree formalism and giving an overview of typical attributes for attack trees found
in the literature, we have described a case study for an RFID-based system managing goods in a
warehouse. An ADTree depicting possible attacks on the considered system and the subsequent
countermeasures was created. Then, a set of suitable attributes was selected and their values were
determined. The results of the attribute evaluation can be used as a part of a redesign process or
risk analysis in order to improve the security of the system.

The main contributions from this case study are practical experiences and user feedback.
Taking the lessons learned during the case study into account, we have extended the original case
study process graph depicted in Figure 8. Below we present the resulting six steps guideline which
suggests a work flow and lists possible design choices that we recommend for applying the ADTree
methodology when performing case studies.

1. Create an ADTree for the scenario. An ADTree is created using all available information

29

and support tools. The attack tree, obtained from an ADTree by ignoring all defense nodes
and the corresponding subtrees, depicts the main attack scenario. All other nodes describe
hypothetical defenses and counterattacks.

• People with different knowledge and relationship to the system, e.g., developers, security
experts, system owner and end users, should be involved in the tree creation.
• Different material, such as system specifications, floor plans, blueprints, work descrip-

tions, attack tree libraries and attack patterns, should be used to create the tree.
• The creation of the tree should be an iterative process which should end when there is

mutual agreement between the involved parties. Modifying the tree after Step 3 should
be avoided.
• Node labels should contain a verb and a noun and concisely represent an attack or

defense action.

2. Choose and describe attributes: Relevant attributes and meta-attributes are chosen, based
on the security questions to be answered.

• A clear, written description of chosen attributes and meta-attributes should be pro-
vided.
• The description of each attribute and meta-attribute should include a domain which is

used to quantify the values.
• In the case of discrete domains, a written definition for each introduced category, such

as small, medium, big, should be provided.
• A user should be allowed to express whether he disagrees with a part of the tree, e.g.,

by including the disagree with node attribute in the list of attributes.

3. Choose who estimates attribute values: Decide which and how many people estimate which
values. Optimize the number of people with respect to the available resources.

• In order to avoid errors and take into account different perspectives, more than one
player should estimate attribute values.
• Each player should obtain clear, written instructions detailing which values to esti-

mate. It is not necessary that each player estimates the values for all nodes and/or all
attributes, however it should be mandatory that he provides the values he is assigned
to estimate.

4. Value estimation: The players selected in Step 3 estimate the values of the attributes chosen
in Step 2 with the help of the support material identified in Step 1.

• The values should be estimated only based on the attribute and meta-attribute descrip-
tions provided in Step 2.

• When the bottom-up approach is used, the values should only be estimated for non-
refined nodes.

• The confidence meta-attribute should express a user’s confidence in the provided at-
tribute value. It should therefore be given for each estimated attribute value separately.

• The attribute values should be estimated based on the node’s context in the tree.

5. Value combination: When the attribute estimates from different people diverge, a combined
value needs to be obtained. This value should be the best representative for all input values.

• Nodes should be partitioned into categories, depending on clear objective criteria, such
as percentage of coverage.

• The best way of deriving the representatives should be selected independently for each
category, e.g., use a suitable formula, average or decide at a consensus meeting.

30

• In case a consensus meeting is called for, its duration should be limited.

6. Value calculation: If the bottom-up approach is to be applied, suitable functions need to be
chosen in order to calculate values for all the subtrees of a considered tree.

• The used functions should be in accordance with the attribute descriptions provided in
Step 2.

• Scientific papers discussing attribute evaluation and existing attack tree tools can be
consulted in order to define the appropriate functions.

• Estimated values of refined subtrees should not be compared with values resulting from
the bottom-up algorithm, unless the tree does not contain any defense nodes.

When performing the case study, it became apparent that a software tool supporting the
security analysis using attributes on ADTrees would be of great value. Such a tool is currently
under development at the University of Luxembourg. Its main objective is to facilitate the work
with the ADTree formalism by allowing to answer questions pertaining to security aspects based
on realistic models. In particular, such a tool should lend support during input of values, show
different tree views that focus on specific parts of a scenario, prevent repetitive tasks, lend support
while computing values, be able to generate attack scenarios.

In the future, we intend to carry out another case study using the ADTree methodology. This
will help us to further substantiate the ADTree formalism. We hope that it will allow us to
expand our recommendations on modeling choices, fine-tune the attribute descriptions, lead to
more insights about which attribute domains to choose in which case and test our software tool.

Another line of research that we foresee is to consider the use of the ADTree methodology in
diagnostics and forensics. More explicitly, we would like to look at the question whether ADTrees
can be usefully employed once an attack has occurred in order to reconstruct what happened.

Acknowledgments
We would like to thank Ton van Deursen and Domenico Rotondi for their invaluable insights
in RFID technology and their help to create the ADTree used in this case study. B. Kordy
and P. Schweitzer were supported by grants from the National Research Fund, Luxembourg,
with No. C08/IS/26 and PHD-09-167, respectively. P. H. Meland and A. Bagnato have received
funding leading to these research results from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant No. 215995 and 257930, and 215995, respectively.

References
Parosh Aziz Abdulla, Jonathan Cederberg, and Lisa Kaati. Analyzing the Security in the GSM
Radio Network Using Attack Jungles. In Tiziana Margaria and Bernhard Steffen, editors, ISoLA
(1), volume 6415 of LNCS, pages 60–74. Springer, 2010. ISBN 978-3-642-16557-3.

Amenaza. SecurITree, 2001. URL GermanLink:http://www.m-privacy.de/produkte/
securitree/. http://www.amenaza.com/.

Edward G. Amoroso. Fundamentals of Computer Security Technology. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1994. ISBN 0-13-108929-3. URL http://portal.acm.org/citation.
cfm?id=179237#.

Dejan Baca and Kai Petersen. Prioritizing Countermeasures through the Countermeasure Method
for Software Security (CM-Sec). In Muhammad Ali Babar, Matias Vierimaa, and Markku Oivo,
editors, PROFES, volume 6156 of LNBIP, pages 176–190. Springer, 2010. ISBN 978-3-642-
13791-4.

31

Stefano Bistarelli, Marco Dall’Aglio, and Pamela Peretti. Strategic Games on Defense Trees. In
Theodosis Dimitrakos, Fabio Martinelli, Peter Y. A. Ryan, and Steve A. Schneider, editors,
FAST, volume 4691 of LNCS, pages 1–15. Springer, 2006. ISBN 978-3-540-75226-4. URL
http://www.springerlink.com/content/83115122h9007685/.

Ahto Buldas, Peeter Laud, Jaan Priisalu, Märt Saarepera, and Jan Willemson. Rational Choice
of Security Measures Via Multi-parameter Attack Trees. In Javier Lopez, editor, Critical In-
formation Infrastructures Security, volume 4347 of LNCS, pages 235–248. Springer, 2006. URL
http://dx.doi.org/10.1007/11962977_19. 10.1007/11962977_19.

E.J. Byres, M. Franz, and D. Miller. The Use of Attack Trees in Assessing Vulnerabilities in
SCADA Systems. In International Infrastructure Survivability Workshop. (IISW’04), 2004.

Marc Dacier and Yves Deswarte. Privilege graph: an extension to the typed access matrix model.
In ESORICS, volume 875 of LNCS, pages 319–334, 1994. doi: 10.1007/3-540-58618-0_72. URL
http://dx.doi.org/10.1007/3-540-58618-0_72.

Mamadou H. Diallo, Jose Romero-Mariona, Susan Elliot Sim, Thomas A. Alspaugh, and Debra J.
Richardson. A comparative evaluation of three approaches to specifying security requirements.
In 12th International Working Conference on Requirements Engineering: Foundation for Soft-
ware Quality (REFSQ’06), June 2006.

Kenneth S. Edge, George C. Dalton II, Richard A. Raines, and Robert F. Mills. Using Attack
and Protection Trees to Analyze Threats and Defenses to Homeland Security. In Proceedings of
the 2006 IEEE Military Communications Conference, MILCOM’06, pages 953–959, Piscataway,
NJ, USA, 2006. IEEE Press. ISBN 1-4244-0618-8. URL http://portal.acm.org/citation.
cfm?id=1896579.1896724.

Casey Fung, Yi-Liang Chen, Xinyu Wang, J. Lee, R. Tarquini, M. Anderson, and R. Linger.
Survivability analysis of distributed systems using attack tree methodology. In Proceedings of
the 2005 IEEE Military Communications Conference, volume 1, pages 583–589, October 2005.
doi: 10.1109/MILCOM.2005.1605745.

Olaf Henniger, Ludovic Apvrille, Andreas Fuchs, Yves Roudier, Alastair Ruddle, and Benjamin
Weyl. Security requirements for automotive on-board networks. In 9th International Conference
on Intelligent Transport Systems Telecommunications,(ITST), pages 641–646, Lille, 2009. doi:
10.1109/ITST.2009.5399279.

Cormac Herley. So long, and no thanks for the externalities: the rational rejection of security
advice by users. In Proceedings of the 2009 New security paradigms workshop, NSPW ’09, pages
133–144, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-845-2. doi: http://doi.acm.org/
10.1145/1719030.1719050. URL http://doi.acm.org/10.1145/1719030.1719050.

Aivo Jürgenson and Jan Willemson. Computing Exact Outcomes of Multi-parameter Attack Trees.
In Robert Meersman and Zahir Tari, editors, OTM Conferences (2), volume 5332 of LNCS, pages
1036–1051. Springer, 2008. ISBN 978-3-540-88872-7. doi: 10.1007/978-3-540-88873-4_8.

Barbara Kordy, Sjouke Mauw, Matthijs Melissen, and Patrick Schweitzer. Attack–Defense Trees
and Two-Player Binary Zero-Sum Extensive Form Games Are Equivalent. In Tansu Alpcan,
Levente Buttyán, and John S. Baras, editors, GameSec, volume 6442 of LNCS, pages 245–256.
Springer, 2010. ISBN 978-3-642-17196-3.

Barbara Kordy, Sjouke Mauw, Saša Radomirović, and Patrick Schweitzer. Foundations of Attack–
Defense Trees. In Sandro Etalle Joshua Guttman Pierpaolo Degano, editor, FAST, volume
6561 of LNCS, pages 80–95. Springer, 2011a. URL http://satoss.uni.lu/members/barbara/
papers/adt.pdf.

32

Barbara Kordy, Marc Pouly, and Patrick Schweitzer. Computational Aspects of Attack–Defense
Trees. In Security & Intelligent Information Systems, volume 7053 of LNCS, pages 103–116.
Springer, 2011b.

Xiaohong Li, Ran Liu, Zhiyong Feng, and Ke He. Threat modeling-oriented attack path eval-
uating algorithm. Transactions of Tianjin University, 15(3):162–167, 2009. doi: 10.1007/
s12209-009-0029-y.

Theodore W. Manikas, Mitchell A. Thornton, and David Y. Feinstein. Using Multiple-Valued
Logic Decision Diagrams to Model System Threat Probabilities, 2011. to appear.

Sjouke Mauw and Martijn Oostdijk. Foundations of Attack Trees. In Dongho Won and Seungjoo
Kim, editors, ICISC, volume 3935 of LNCS, pages 186–198. Springer, 2005. ISBN 3-540-33354-1.

Per Håkon Meland, Inger Anne Tøndel, and Jostein Jensen. Idea: Reusability of threat mod-
els - two approaches with an experimental evaluation. In Fabio Massacci, Dan Wallach, and
Nicola Zannone, editors, Engineering Secure Software and Systems, volume 5965 of LNCS,
pages 114–122. Springer, 2010. ISBN 978-3-642-11746-6. URL http://dx.doi.org/10.1007/
978-3-642-11747-3_9.

Luke Mirowski, Jacqueline Hartnett, and Raymond Williams. An RFID Attacker Behav-
ior Taxonomy. IEEE Pervasive Computing, 8:79–84, 2009. ISSN 1536-1268. doi: http:
//doi.ieeecomputersociety.org/10.1109/MPRV.2009.68.

Andrew P. Moore, Robert J. Ellison, and Richard C. Linger. Attack Modeling for Information
Security and Survivability, 2001.

Andreas L. Opdahl and Guttorm Sindre. Experimental comparison of attack trees and misuse
cases for security threat identification. Information & Software Technology, 51(5):916–932, 2009.
doi: doi:10.1016/j.infsof.2008.05.013.

Ludovic Piètre-Cambacédès and Marc Bouissou. Beyond Attack Trees: Dynamic Security Model-
ing with Boolean Logic Driven Markov Processes (BDMP). In European Dependable Computing
Conference, pages 199–208, Los Alamitos, CA, USA, 2010. IEEE Computer Society. ISBN
978-0-7695-4007-8. doi: http://doi.ieeecomputersociety.org/10.1109/EDCC.2010.32.

Arpan Roy, Dong Seong Kim, and Kishor S. Trivedi. Attack countermeasure trees (ACT): towards
unifying the constructs of attack and defense trees. Security and Communication Networks,
2011. ISSN 1939-0122. doi: 10.1002/sec.299. URL http://dx.doi.org/10.1002/sec.299.
http://dx.doi.org/10.1002/sec.299.

Vineet Saini, Qiang Duan, and Vamsi Paruchuri. Threat Modeling Using Attack Trees. J. Com-
puting Small Colleges, 23(4):124–131, 2008. ISSN 1937-4771. URL http://portal.acm.org/
citation.cfm?id=1352100.

Bruce Schneier. Attack Trees. Dr. Dobb’s Journal of Software Tools, 24(12):21–29, 1999.

SHIELDS. FP7 project, grant agreement 215995, 2008-2010. http://www.shields-project.eu/.

Eedee Tanu and Johnnes Arreymbi. An examination of the security implications of the su-
pervisory control and data acquisition (SCADA) system in a mobile networked environ-
ment: An augmented vulnerability tree approach. In 5th Annual Conference on Advances
in Computing and Technology, (AC&T), pages 228–242. University of East London, School of
Computing, Information Technology and Engineering, 2010. ISBN 978-0-9564747-0-4. URL
http://hdl.handle.net/10552/994.

Inger Anne Tøndel, Jostein Jensen, and Lillian Røstad. Combining Misuse Cases with Attack
Trees and Security Activity Models. In International Conference on Availability, Reliability
and Security, pages 438–445, Los Alamitos, CA, USA, 2010. IEEE Computer Society. ISBN
978-0-7695-3965-2. doi: http://doi.ieeecomputersociety.org/10.1109/ARES.2010.101.

33

W. E. Vesely, F. F. Goldberg, N.H Roberts, and D.F. Haasl. Fault Tree Handbook. Techni-
cal Report NUREG-0492, U.S. Regulatory Commission, 1981. URL http://www.nrc.gov/
reading-rm/doc-collections/nuregs/staff/sr0492/sr0492.pdf.

Jie Wang, John N. Whitley, Raphael C.-W. Phan, and David J. Parish. Unified Parametriz-
able Attack Tree. International Journal for Information Security Research, 1(1):20–26, 2011.
URL http://www.infonomics-society.org/IJISR/Unified%20Parametrizable%20Attack%
20%Tree.pdf.

Ronald R. Yager. OWA trees and their role in security modeling using attack trees. In-
formation Sciences, 176(20):2933–2959, 2006. ISSN 0020-0255. doi: DOI:10.1016/j.ins.
2005.08.004. URL http://www.sciencedirect.com/science/article/B6V0C-4H511HB-1/2/
4431b03877e8b6d03677146af7b9fe4e.

34

