
Foundations of Attack–Defense Trees
⋆

Barbara Kordy⋆⋆, Sjouke Mauw, Saša Radomirović, Patrick Schweitzer⋆ ⋆ ⋆

{barbara.kordy, sjouke.mauw, sasa.radomirovic, patrick.schweitzer}@uni.lu

CSC and SnT, University of Luxembourg, 6, rue Coudenhove–Kalergi, L–1359
Luxembourg

Abstract. We introduce and give formal definitions of attack–defense
trees. We argue that these trees are a simple, yet powerful tool to analyze
complex security and privacy problems. Our formalization is generic in
the sense that it supports different semantical approaches. We present
several semantics for attack–defense trees along with usage scenarios,
and we show how to evaluate attributes.

1 Introduction

It is a well-known fact that the security of any sufficiently valuable system is
not static. In order to keep a system secure, it has to be defended against a
growing number of attacks. As better defensive measures get deployed, more
sophisticated attacks are developed, leading to an endless arms race and an
increasingly complex system.

A mature, large, and complex system poses several challenges. How can it
be decided whether a costly defensive measure implemented in the distant past
is still necessary today? What are the best defensive measures worth currently
investing in? How can newly discovered attacks and implemented defenses be
efficiently and systematically documented?

These types of challenges are not new. Similar challenges had to be overcome
by safety-critical systems. Moreover, the complexity of safety-critical systems
in aviation and nuclear power plants easily rivals the most complex security
applications. In the 1960s, fault tree analysis [1] was developed to evaluate the
safety of systems. Since the 1990s, similar structures have been used to support
system security engineering. One such structure are attack trees. The root of an
attack tree corresponds to an attacker’s goal. The children of a node in the tree
are refinements of the node’s goal into sub-goals. The leaves of the tree are the
attacker’s actions. Attack trees were popularized by Schneier [2] as a tool for
evaluating the security of systems and subsequently formalized by Mauw and
Oostdijk [3].

An obvious limitation of attack trees is that they cannot capture the inter-
action between attacks carried out on a system and the defenses put in place

⋆ The original publication is available at: www.springerlink.com
⋆⋆ B. Kordy was supported by the grant No. C08/IS/26 from FNR Luxembourg

⋆ ⋆ ⋆ P. Schweitzer was supported by the grant No. PHD−09−167 from FNR Luxembourg

to fend off the attacks. This consequently limits the precision with which the
best defensive strategies can be analyzed, since it does not take into account
the effects of existing defensive measures which may have been overcome by
new attacks. Similarly, a pure attack tree does not allow for the visualization
and consideration of the evolution of a system’s security, since the evolution can
only be understood in view of both, the attacker’s, as well as the defender’s,
actions.

These limitations can be overcome by introducing defensive actions as coun-
termeasures to attacks. In order to model the ongoing arms race between attacks
and defenses, it is necessary to allow for arbitrary alternation between these two
types of actions.

We therefore introduce and formalize attack–defense trees (ADTrees) as a
graphical representation of possible measures an attacker might take in order
to attack a system and the defenses that a defender can employ to protect the
system. Our formalization of ADTrees extends attack trees as defined in [3],
in two ways. It introduces defenses as described above and it generalizes the
interpretations and semantics of attack trees based on [3]. Consequently, our
formalism provides a single framework covering the attributes and semantics of
attack trees used in [4–6], including the notion of defense trees from [7, 8].

The main contribution of this paper is the development of a complete attack–
defense language. Our design of this language includes an algebra of attack–
defense terms (ADTerms), a graphical syntax (ADTrees), semantics derived from
first order models, semantics derived from algebraic specifications, and a method-
ology to analyze properties of attack–defense terms (attributes). Aside from the
specific semantics that we present here, several additional semantics are expected
to be useful for the analysis of an attack–defense tree. Two such examples would
be a temporal and a probabilistic semantics. The variety of semantics is a con-
sequence of different interpretations of what an attack–defense tree represents.
In the existing attack trees literature, several distinct interpretations have been
made. The present approach accommodates all these interpretations rather than
prescribing a single one.

Related Work. Fault trees have been introduced in the 1960s, and a formal
framework was given by Vesely et al. [1]. They have been used by Moore et al. [9]
to model attacks on systems, and by Cervesato and Meadows [10] to graphically
represent attacks on security protocols. Amoroso [11] considered so-called threat
trees on hospital computer systems and a simplified aircraft computer system.
Schneier [2] used the fault tree approach to describe security vulnerabilities of
systems coining the term attack trees. In [3], Mauw and Oostdijk have formalized
attack trees.

Edge et al. [5] have shown how to compute the probability, cost, risk, and
impact of an attacker’s goal using attack trees. They have shown how to translate
this information into protection trees in order to evaluate probability and cost for
protection against the attacker’s goal. Morais et al. [12] applied attack trees to
test an implementation of WTLS, a wireless security protocol. Sheyner et al. [13]

2

have automatically generated and analyzed attack graphs from the output of a
model checker for an intrusion detection system.

Willemson and Jürgenson [4] have extended the attack trees framework by
introducing an order on the set of leaves which helps to solve the optimization
problem of selecting the best attack given an attack tree. Bistarelli et al. [14] have
generalized attack trees, considering defensive measures against basic actions.
They have shown which measures to employ by using answer set programming, a
form of declarative programming oriented towards difficult (primarily NP-hard)
search problems.

In [15] it was shown that attack–defense trees and binary zero-sum two-player
extensive form games can be converted into each other. Both formalisms have
their advantages: attack–defense trees are more intuitive, because refinements
can be explicitly modeled, whereas the game theoretical approach benefits from
the well-studied methodology used in games.

Structure. The paper is organized as follows. In Section 2 we introduce attack–
defense trees, give an example and define attack–defense terms which are a formal
representation of attack–defense trees. Section 3 introduces semantics for attack–
defense trees. In Section 4 we evaluate attributes on attack–defense trees.

2 Attack–Defense Trees

We start by defining the terminology used throughout this paper. Then we de-
scribe an example of an attack–defense scenario. We end this section by defining
attack–defense terms.

2.1 Terminology

An ADTree is a node-labeled rooted tree describing the measures an attacker
might take in order to attack a system and the defenses that a defender can
employ to protect the system. An ADTree has nodes of two opposite types:
attack nodes and defense nodes.

The two key features of an ADTree are the representation of refinements and
countermeasures. Every node may have one or more children of the same type
representing a refinement into sub-goals of the node’s goal. If a node does not
have any children of the same type, it is called a non-refined node. Non-refined
nodes represent basic actions.

Every node may also have one child1 of opposite type, representing a coun-
termeasure. Thus, an attack node may have several children which refine the
attack and one child which defends against the attack. The defending child in
turn may have several children which refine the defense and one child that is an
attack node and counters the defense.

1 Note that allowing any number of children of opposite type leads to an equally
expressive, but more complicated formalism.

3

The refinement of a node of an ADTree is either disjunctive or conjunctive.
The goal of a disjunctively refined node is achieved when at least one of its
children’s goals is achieved. The goal of a conjunctively refined node is achieved
when all of its children’s goals are achieved.

The purpose of ADTrees is to analyze an attack–defense scenario. An attack–
defense scenario is a game between two players, the proponent (denoted by p)
and the opponent (denoted by o). The root of an ADTree represents the main
goal of the proponent. When the root is an attack node, the proponent is an
attacker and the opponent is a defender. Conversely, when the root is a defense
node, the proponent is a defender and the opponent is an attacker.

In ADTrees, we depict attack nodes by circles and defense nodes by rect-
angles, as shown in Figure 1. Refinement relations are indicated by solid edges
between nodes, and countermeasures are indicated by dotted edges. We depict a
conjunctive refinement of a node by connecting the edges going from this node
to its children of the same type with an arc.

2.2 Example

To demonstrate the features of ADTrees, we consider the following fictitious
scenario covering a collection of attacks on bank accounts.

Bank
Account

ATM

PIN

Eavesdrop Find Note

Memorize

Force

Card

Online

Password

Phishing
Key

Logger

2nd Auth
Factor

Key Fobs PIN Pad Malware

Browser OS

User Name

© attack node

� defense node

disjunctive refinement

conjunctive refinement

countermeasure

Fig. 1. Example of an ADTree: an attack on a bank account.

A bank wants to protect its customers’ bank accounts from theft. Two forms
of attacks on an individual’s bank account are considered. An attacker can steal

4

money from the account either by attacking online or through an ATM. In order
to steal money through an ATM, the attacker needs both, a PIN and a bank
card. We ignore how an attacker might obtain a bank card and focus on the PIN.
The PIN could be observed by eavesdropping on a customer while the customer
types her PIN. Alternatively, the attacker might acquire a note on which the
customer’s PIN is written up. A simple defensive measure against exposing a
note to an attacker is to memorize one’s PIN. This defense is of little use if an
attacker forces the customer to reveal the PIN.

For online banking attacks, an attacker needs to acquire a customer’s on-
line banking credentials, consisting of a user name and a password. While the
user name can be retrieved easily, retrieving a user’s password requires either a
phishing email or a key logger. To defend against lost or stolen passwords, the
bank introduces a second authentication factor. Two factor authentication can
be implemented using key fobs which have a built-in cryptographic token with
a pre-shared key known only to the token and the customer’s bank. An alter-
native to key fobs are PIN pads. Two factor authentication, however, is useless,
if the customer has malware on her computer. To install malware on a victim’s
computer, the attacker could attack either the browser or the operating system.

The ADTree representing the described state is shown in Figure 1. While
this ADTree is obviously incomplete, it is also clear that it would be very simple
to extend the ADTree with new attacks and defenses.

2.3 Formal Representation

In order to formally represent attack–defense scenarios, we define attack–defense
terms. We make use of the notion of an unranked function. An unranked function
f with domain D and range R denotes a family of functions (fk)k∈N, where
fk : D

k → R for k ∈ N. Given a set S, we denote by S∗ the set of all strings over
S, where ε stands for the empty string. We use ∪̇ to denote a disjoint set union.

Definition 1. An AD–signature is a pair Σ = (S, F), such that

– S = {p, o} is a set of types, (we set p = o and o = p),
– F = {(∨p

k)k∈N, (∧
p
k)k∈N, (∨

o
k)k∈N, (∧

o
k)k∈N, c

p, co} ∪̇B
p ∪̇B

o is a set of func-
tion symbols, equipped with a mapping type: F → S∗ × S, which expresses
the type of each function symbol, as follows. For every k ∈ N,

type(∨p
k) = (pk, p), type(∨o

k) = (ok, o),

type(∧p
k) = (pk, p), type(∧o

k) = (ok, o),

type(cp) = (p o, p), type(co) = (o p, o),

type(b) = (ε, p), for b ∈ B
p, type(b) = (ε, o), for b ∈ B

o.

The elements of Bp and B
o are typed constants, which we call proponent’s (p) and

opponent’s (o) basic actions, respectively. By B we denote the union B
p∪̇Bo. The

unranked functions ∨p,∧p,∨o, and ∧o represent disjunctive (∨) and conjunctive
(∧) refinement operators for a proponent and an opponent, respectively. The

5

binary function cs, where s ∈ S, connects actions of type s with actions of the
opposite type s. Intuitively, cs(a, d) expresses that there exists an action d (of
type s) that counteracts the action a (of type s).

By TΣ we denote the set of all typed ground terms over the AD–signature
Σ. The elements of TΣ are called attack–defense terms (ADTerms). We have
TΣ = T p

Σ∪T o
Σ , where T p

Σ is the set of ADTerms of the proponent’s type, and T o
Σ is

the set of ADTerms of the opponent’s type. The terms from T p
Σ constitute formal

representations of ADTrees. Tables 1 and 2 show how to obtain the ADTerm
corresponding to an ADTree, and vice versa. Given an ADTree T , we denote by
ι(T) the ADTerm representing T . Given an ADTerm t, we denote by I(t) the
corresponding ADTree. In Tables 1 and 2 we assume that the proponent is an
attacker. If the proponent is a defender, circle nodes have to be replaced with
square nodes and vice versa. To condense the presentation even further, we leave
out the arcs, denoting conjunctions, in the cases where f = ∧s, for s ∈ {p, o}.
Since the computations, as well as the internal structure of ADTrees, do not
depend on the names of the refined sub-goals, we represent the refined nodes
with the associated function symbols, only. Note that it is always possible to
also decorate the refined nodes with intuitive labels.

T b b f

T1 . . . Tk

f

T1 . . . Tk

where where where where

b ∈ B
p b ∈ B

o f ∈ {∨p,∧p}, k ≥ 1 f ∈ {∨o,∧o}, k ≥ 1

ι(T) b b f(ι(T1), . . . , ι(Tk)) f(ι(T1), . . . , ι(Tk))

T b

T1

b

T1

f

T1 . . . Tk T ′

f

T1 . . . Tk T ′

where where where where

b ∈ B
p b ∈ B

o f ∈ {∨p,∧p}, k ≥ 1 f ∈ {∨o,∧o}, k ≥ 1

ι(T) cp(b, ι(T1)) c
o(b, ι(T1)) c

p(f(ι(T1), . . . , ι(Tk)), ι(T
′)) co(f(ι(T1), . . . , ι(Tk)), ι(T

′))

Table 1. Transformation from ADTrees to ADTerms

Example 1. The ADTerm representing the ADTree from Figure 1 is the following

∨p

[
∧p

(
∨p

(
Eavesdrop, cp

(
FindNote, co(Memorize,Force)

))
,Card

)
,

∧p

(
cp

(
∨p (Phish,KLog), co

(
∨o (KFob,PPad),∨p(Br,OS)

))
,UName

)]
.

6

t b ∈ B
p b ∈ B

o f(t1, . . . , tk), where f(t1, . . . , tk), where

f ∈ {∨p,∧p}, k ≥ 1 f ∈ {∨o,∧o}, k ≥ 1

I(t) b b f

I(t1) . . . I(tk)

f

I(t1) . . . I(tk)

t cp(b, t′), co(b, t′), cp(t0, t
′), where co(t0, t

′), where

b ∈ B
p b ∈ B

o t0 = f(t1, . . . , tk) and t0 = f(t1, . . . , tk) and

f ∈ {∨p,∧p}, k ≥ 1 f ∈ {∨o,∧o}, k ≥ 1

I(t) b

I(t′)

b

I(t′)

f

I(t1) . . . I(tk) I(t′)

f

I(t1) . . . I(tk) I(t′)

t cp(t0, t
′), where co(t0, t

′), where

t0 = cp(t1, t2) t0 = co(t1, t2)

I(t)
∨p
1

I(t0) I(t′)

∨o
1

I(t0) I(t′)

Table 2. Transformation from ADTerms to ADTrees

3 Semantics for Attack–Defense Terms

The main purpose of an ADTree is to specify and analyze an attack–defense
scenario. It is possible that two distinct ADTrees describe the same scenario.
In order to deal with such situations, we introduce the notion of equivalent
ADTrees. For instance, the ADTrees represented by ∧p(a, b) and ∧p(b, a) are
equivalent, if and only if the order of executing the sub-goals is irrelevant for
the achievement of the parent goal. Hence, we consider ADTerms modulo an
equivalence relation. This makes it possible to, e.g., transform an ADTerm into
a simpler or more appealing form.

Definition 2. A semantics for ADTerms is an equivalence relation on TΣ that
preserves types.

3.1 Models for Attack–Defense Terms

Several different approaches, like propositional logics or multiset interpretations,
were proposed in the literature to define semantics for attack trees [4, 16, 3]. In
this section, we extend them to attack–defense trees. This is achieved with the
help of first order models, cf. [17].

Definition 3. Consider the AD–signature Σ = (S, F). A model for ADTerms
is a pair M = (M, IM) consisting of a non-empty set M and a function IM
defined on F , called interpretation, such that

7

– IM(b) ∈M , for b ∈ B,
– IM(fk) : M

k →M , for fk ∈ {∨s
k,∧

s
k | s ∈ S},

– IM(cs) : M2 →M , for s ∈ S.

Let M = (M, IM) be a model for ADTerms, and let t, t′ be ADTerms. The
interpretation of t in M is an element IM(t) ∈M , defined as follows

IM(t) =

{
IM(b), if t = b ∈ B

IM(fk)(IM(t1), . . . , IM(tk)), if t = fk(t1, . . . , tk).

Since the objective of introducing semantics is to decide which ADTerms are
indistinguishable, we are interested in formulas of the form t = t′. By definition,
the formula t = t′ is satisfied in M if IM(t) = IM(t′). In this case we write
M |= t = t′.

Definition 4. Let M = (M, IM) be a model for ADTerms. The equivalence
relation ≡M on TΣ, defined by

t ≡M t′ iff M |= t = t′,

is called the semantics induced by the model M. The equivalence class defined by
an ADTerm t under this relation is denoted by [t]M.

Propositional Model. The most commonly used model for attack trees is
based on propositional logic, cf. [4, 16]. Here, we propose an extension of this
model to attack–defense trees. To every basic action b ∈ B, we associate a
propositional variable xb, and we denote by F the set of propositional formu-
las over these variables. Recall that two propositional formulas ψ and ψ′ are
equivalent (ψ ≈ ψ′) iff for every valuation ν of propositional variables, we have
ν(ψ) = ν(ψ′). By F/≈ we denote the quotient space defined by the relation ≈,
and [ψ]≈ ∈ F/≈ stands for the equivalence class defined by a formula ψ.

Definition 5. The propositional model for ADTerms is the pair P = (F/≈, IP),
such that, for b ∈ B and s ∈ {p, o}

IP(b) = [xb]≈, IP(∨
s) = ∨, IP(∧

s) = ∧, IP(c
s) = ⋆,

where [ψ]≈ ∨ [ψ′]≈ = [ψ ∨ ψ′]≈, [ψ]≈ ∧ [ψ′]≈ = [ψ ∧ ψ′]≈ and [ψ]≈ ⋆ [ψ′]≈ =
[ψ ∧ ¬ψ′]≈, for all ψ,ψ′ ∈ F.

The semantics ≡P induced by the propositional model P is called the proposi-
tional semantics. The interpretation of an ADTerm in P is a set of equivalent
propositional formulas expressing the satisfiability of the proponent’s goal.

Example 2. Consider t = cp(b,∧o(d, e)) and t′ = cp(∧p(b, b),∧o(d, e)), where
b ∈ B

p and d, e ∈ B
o. The interpretation of t in the propositional model is the

equivalence class IP(t) = [xb∧¬(xd∧xe)]≈. The propositional formulas defining
this equivalence class are all satisfied iff variable xb is set to true and at least one

8

of the variables xd or xe is set to false. It models the fact that in order to achieve
his goal, the proponent has to execute the action depicted by b and at least one
counteraction, depicted by d or e, must not be executed by the opponent. Since,
xb ∧ ¬(xd ∧ xe) ≈ (xb ∧ xb) ∧ ¬(xd ∧ xe), we have IP(t) = IP(t

′), i.e., t ≡P t′.
Thus, t and t′ are indistinguishable with respect to the propositional semantics.

As shown in Example 2, the propositional model assumes that the multiplic-
ity of a sub-goal is irrelevant (by idempotency of ∨ and ∧). This assumption,
however, might not be intended in all applications of ADTrees. It might, for in-
stance, depend on whether parallel or sequential execution of sub-goals is mod-
eled. In the multiset semantics, which we introduce next, we distinguish multiple
occurrences of the same actions.

Multiset Model. The model introduced in this paragraph extends the attack
trees model defined in [3]. It is suitable for analyzing scenarios in which multiple
occurrences of the same sub-goal are significant.

Given a set X, we use 2X to denote the power set of X, and M(X) to denote
the set of all multisets of elements in X. We use {|a1, . . . , an|} to denote a multiset
composed of elements a1, . . . , an. The symbol ⊎ stands for the multiset union.
A pair (P,O) ∈ M(Bp)×M(Bo) is called a bundle, and it encodes how the pro-
ponent can achieve his goal. A bundle (P,O) represents the following situation:
in order to reach his goal, the proponent must perform all actions in P while
the opponent must not perform any of the actions in O. In the multiset model
we interpret terms with sets of bundles, i.e., with elements from 2M(Bp)×M(Bo).
Sets of bundles represent alternative possibilities for the proponent to achieve
his goal. A term representing a basic action b of the proponent’s type is thus
interpreted as a singleton {({|b|}, ∅)}, because in order to achieve his goal it is
sufficient for the proponent to execute the action b. A term representing a basic
action b of the opponent’s type is interpreted as {(∅, {|b|})}, because in order for
the proponent to be successful, the counteraction b must not be executed by the
opponent. To define the set of bundles that interprets a disjunctive proponent’s
goal, it is sufficient to take the union of the sets of bundles corresponding to its
sub-goals. To define the set of bundles that interprets a conjunctive proponent’s
goal we introduce the distributive product. The distributive product of two sets
of bundles S and Z is the following set of bundles

S ⊗ Z = {(PS ⊎ PZ , OS ⊎OZ) | (PS , OS) ∈ S and (PZ , OZ) ∈ Z}.

The distributive product can be extended to any finite number of sets of bundles.

The construction given in the preceding paragraph leads to the multiset
model for ADTerms.

9

Definition 6. The multiset model for ADTerms is the following pair MS =
(2M(Bp)×M(Bo), IMS), where

IMS(b) = {({|b|}, ∅)}, for b ∈ B
p, IMS(b) = {(∅, {|b|})}, for b ∈ B

o,

IMS(∨
p) = ∪, IMS(∨

o) = ⊗,

IMS(∧
p) = ⊗, IMS(∧

o) = ∪,

IMS(c
p) = ⊗, IMS(c

o) = ∪.

The equivalence relation on ADTerms induced by the multiset model is called
the multiset semantics, and is denoted by ≡MS . Note that IMS(∨

s) = IMS(∧
s),

for s ∈ {p, o}. This can be explained as follows: in order to achieve his disjunctive
goal, the proponent has to achieve only one among the corresponding sub-goals,
whereas in order to successfully prevent a disjunctive countermeasure of the op-
ponent, the proponent has to prevent all the corresponding sub-countermeasures.
A similar reasoning holds for conjunctive goals.

Example 3. Consider the ADTerms t and t′ introduced in Example 2, that have
been shown equivalent with respect to the propositional semantics. We have,
IMS(t) = {({|b|}, {|d|}), ({|b|}, {|e|})} and IMS(t

′) = {({|b, b|}, {|d|}), ({|b, b|}, {|e|})}.
Since, IMS(t) 6= IMS(t

′), we have MS 6|= t = t′. Thus, the ADTerms t and
t′ are not equivalent with respect to the multiset semantics.

3.2 Comparing Semantics

In order to compare two semantics, we define what it means that one semantics
is finer than a second one. Such a relation allows us to import results about a
semantics into any semantics which is coarser.

Definition 7. Let ≡1 and ≡2 be two semantics for ADTerms. The semantics ≡1

is finer than the semantics ≡2 iff ≡1⊆≡2, i.e., for t, t′ ∈ TΣ, t ≡1 t
′ ⇒ t ≡2 t

′.

The propositional semantics, as opposed to the multiset semantics, does not
distinguish multiple occurrences of a basic action. Thus, for instance, absorption
laws hold in the propositional but not in the multiset semantics. The relationship
between these two semantics is captured by the following proposition.

Proposition 1. The multiset semantics for ADTerms is finer than the propo-
sitional semantics for ADTerms.

In order to prove the proposition, we use the following lemma.

Lemma 1. Consider a function f : 2M(Bp)×M(Bo) → F defined as follows

f({({|p11, . . . , p
k1

1 |}, {|o11, . . . , o
m1

1 |}), . . . , ({|p1n, . . . , p
kn

n |}, {|o1n, . . . , o
mn

n |})}) =

(xp1
1
∧· · ·∧x

p
k1
1

∧¬xo1
1
∧· · ·∧¬xom1

1
)∨· · ·∨(xp1

n
∧· · ·∧x

p
kn
n

∧¬xo1
n
∧· · ·∧¬xomn

n
),

and let t be an ADTerm. Then

f(IMS(t)) ∈

{
IP(t), if t ∈ T p

Σ,

¬IP(t), if t ∈ T o
Σ,

(1)

where ¬[ψ]≈ = [¬ψ]≈, for all ψ ∈ F.

10

Proof. The proof is by induction on the structure of t. Suppose t = b ∈ B, then

– if b ∈ B
p, we get: f(IMS(b)) = f({({|b|}, ∅)}) = xb ∈ [xb]≈ = IP(b),

– if b ∈ B
o, we get: f(IMS(b)) = f({(∅, {|b|})}) = ¬xb ∈ ¬[xb]≈ = ¬IP(b).

Let us now assume that t 6∈ B, and suppose that (1) holds for all the sub-terms
of t. The following observations, resulting from the definition of f , are crucial
for the remaining part of the proof. For all ADTerms t1, . . . , tk, we have

f
(k⋃

j=1

IMS(tj)
)
=

k∨

j=1

f
(
IMS(tj)

)
, f

(k⊗

j=1

IMS(tj)
)
= DNF

(k∧

j=1

f
(
IMS(tj)

))
,

where DNF (ψ) denotes a disjunctive normal form of the formula ψ. We give a
complete proof for an ADTerm of the form t = co(∨o(t1, . . . , tk), t

′). The proofs
for the remaining cases are similar. Since t is of the opponent’s type, we show
that f(IMS(t)) ∈ ¬IP(t). From the type of the function symbol co, we deduce
that t1, . . . , tk ∈ T o

Σ and t′ ∈ T p
Σ . We have f(IMS(t)) =

= f
((k⊗

j=1

IMS(tj)
)
∪ IMS(t

′)
)
= f

(k⊗

j=1

IMS(tj)
)
∨ f

(
IMS(t

′)
)

= DNF

(k∧

j=1

f
(
IMS(tj)

))
∨ f

(
IMS(t

′)
)

∈
(k∧

j=1

¬IP(tj)
)
∨ IP(t

′) = ¬
(k∨

j=1

IP(tj)
)
∨ IP(t

′)

= ¬
((k∨

j=1

IP(tj)
)
∧ ¬IP(t

′)
)
= ¬

((k∨

j=1

IP(tj)
)
⋆ IP(t

′)
)
= ¬IP(t). ⊓⊔

Proof of Proposition 1. Suppose t ≡MS t
′. Thus, by definition we have IMS(t) =

IMS(t
′). Using the function f from Lemma 1, we have

IP(t) ∋ f(IMS(t)) = f(IMS(t
′)) ∈ IP(t

′), for t, t′ ∈ T p
Σ ,

IP(t) ∋ ¬f(IMS(t)) = ¬f(IMS(t
′)) ∈ IP(t

′), for t, t′ ∈ T o
Σ ,

Thus, IP(t) = IP(t
′), i.e., t ≡P t′, which concludes the proof. ⊓⊔

Examples 2 and 3 show that the reciprocal of Proposition 1 does not hold.
Thus, the propositional semantics and the multiset semantics are not equal.

3.3 Equational Semantics

The propositional and multiset semantics were obtained by mapping ADTerms
to specific mathematical domains. An alternative way to define a semantics is to
directly specify an equivalence relation on ADTerms through a set of equations.

11

This approach covers a concept from [3], which uses a specific set of rewrite
rules to encode allowed tree transformations. Our framework is more general in
that we allow any set of equations to define an equivalence relation on ADTerms.
With the help of equations it is possible to implement tools that support iterative
transformations and modifications of ADTrees.

Let VAR denote a set of typed variables ranged over by X,Xi, Y, Z. We
extend the set TΣ to the set TVAR

Σ of typed ADTerms over the variables from
VAR. An equation is a pair (t, t′) ∈ TVAR

Σ × TVAR
Σ , where t and t′ have the

same type. We use t = t′ to denote the equation (t, t′). An algebraic specification
for ADTerms is a pair (Σ,E), where Σ is the AD–signature and E is a set of

equations. Given an algebraic specification (Σ,E), we denote by Ê the set of
equations derivable from E, which is the smallest set satisfying the following

– if t = t′ ∈ E, then t = t′ ∈ Ê,
– if σ : VAR → TVAR

Σ is a substitution, and t = t′ ∈ Ê, then σ(t) = σ(t′) ∈ Ê,

– if t = t′ ∈ Ê, and C[] is a context (i.e., a term with a hole of the same type

as t), then C[t] = C[t′] ∈ Ê,
– t = t ∈ Ê, for every t ∈ TVAR

Σ ,

– if t = t′ ∈ Ê, then t′ = t ∈ Ê,
– if t = t′ ∈ Ê and t′ = t′′ ∈ Ê, then t = t′′ ∈ Ê.

We now define a semantics for ADTerms induced by an algebraic specification.

Definition 8. The equational semantics for ADTerms induced by an algebraic
specification (Σ,E) is the equivalence relation ≡E on TΣ, defined by

t ≡E t′ iff t = t′ ∈ Ê.

Example 4. Consider the equational semantics induced by an algebraic specifi-
cation (Σ,E), where

E = {∨p(X1, . . . , Xk) = ∨p(Xσ(1), . . . , Xσ(k)) | ∀ permutation σ of {1, . . . , k} }.

The equations in E encode the commutativity of the disjunctive operator for the
proponent. Thus, for t1 = ∨p(a, b) and t2 = ∨p(b, a), a, b ∈ B

p, we have t1 ≡E t2.
In contrast, t′1 = ∧p(a, b) 6≡E t′2 = ∧p(b, a), because the commutativity of the
conjunctive operator for the proponent is not modeled by E.

Consider two algebraic specifications (Σ,E) and (Σ,E′), such that E ⊆ E′.

Since we have Ê ⊆ Ê′, the semantics ≡E is finer then ≡E′ .

4 Attributes

In order to analyze an attack–defense scenario represented by an ADTerm we
use attributes. An attribute is a value assigned to an ADTerm, expressing a
useful property, such as the minimal cost of an attack, expected impact, whether
special equipment is required, or whether a considered scenario is feasible. In [2],
Schneier introduces an intuitive, bottom-up algorithm for calculating the value
of an attribute on an attack tree. This idea is formalized in [3]. In this section
we extend it to attack–defense trees.

12

4.1 Bottom-up Evaluation

Let Σ = (S, F) be the AD–signature. An attribute domain is a pair Aα =
(Dα, Iα), where Dα is a set of values, and Iα is a function,which to every fk ∈ F
with k > 0, associates a k-ary operation Iα(fk) onDα. An attribute for ADTerms
is a pair α = (Aα, βα) formed by an attribute domain Aα and a function βα : B →
Dα called a basic assignment for α. The next definition formalizes the bottom-up
procedure of calculating attribute values.

Definition 9. Let α = ((Dα, Iα), βα) be an attribute. The function α : TΣ → Dα

which calculates the value of the attribute α for every ground ADTerm t, is
defined recursively as follows

α(t) =

{
βα(t), if t ∈ B,

Iα(fk)(α(t1), . . . , α(tk)), if t = fk(t1, . . . , tk).

The following example illustrates the bottom-up evaluation of attribute values.

Example 5. Consider the ADTerm t = cp(∧p(a, b), co(d, e)), where a, b, e ∈ B
p,

d ∈ B
o are independent basic actions. We define the following operations on

the interval [0, 1]: ⊕(x, y) = x + y − xy, ⊙(x, y) = xy and ⊖(x, y) = x(1 − y).
Using the attribute domain APr = ([0, 1], IPr), where IPr(∨

s) = ⊕, IPr(∧
s) = ⊙

and IPr(c
s) = ⊖, for s ∈ {p, o}, we calculate the success probability of the

attack–defense scenario represented by t. The success probabilities of basic ac-
tions are set as follows βPr(a) = 0.2, βPr(b) = 0.7, βPr(e) = 0.1, and βPr(d) =
0.9. According to Definition 9, we obtain Pr(t) = Pr(cp(∧p(a, b), co(d, e))) =
⊖(⊙(0.2, 0.7),⊖(0.9, 0.1)) = 0.0266.

4.2 Semantics Preserving Attribute Values

In our framework, we consider equivalent ADTrees as indistinguishable. Thus,
the evaluation of attributes for equivalent ADTerms should be consistent, i.e.,
should yield the same values. This issue has already been discussed in case of
attack trees, cf. [18, 3]. In [18], the evaluation of the attacker’s expected out-
come (based on cost, probabilities, expected penalties and gains) is considered.
Using the propositional semantics, Jürgenson and Willemson propose a non-
bottom-up procedure ensuring that the expected outcome attribute is calcu-
lated consistently. In their approach, optimization becomes necessary, because
the corresponding computations are exponential with respect to the size of a tree.
In [3], Mauw and Oostdijk consider a bottom-up way of calculating attributes,
as defined in Definition 9. They show that when using the multiset semantics
on attack trees, the attribute evaluation is consistent if the considered attribute
domain is distributive, i.e., if it constitutes a semi-ring. In the current paper, we
extend this result to any semantics for ADTrees. We introduce a notion of com-
patibility between a semantics and an attribute domain, which guarantees that
the intuitive properties modeled by the semantics are preserved by the attribute
domain. The compatibility is a necessary condition for consistent bottom-up
evaluation of attributes on ADTrees.

13

Definition 10. Let (Σ,E) be an algebraic specification, and let ≡ be a semantics
for ADTerms. The set E is called a complete set of axioms for ≡, iff the relations
≡ and Ê ∩ (TΣ × TΣ) are equal.

Example 6. Consider the equational semantics ≡E induced by an algebraic spec-
ification (Σ,E). It follows directly from Definition 8 that the set E is a complete
set of axioms for ≡E .

Let Aα = (Dα, Iα) be an attribute domain. Given t ∈ TVAR
Σ , we denote by

tα an expression, composed of the elements from B ∪ VAR (here considered as
variables) and operators Iα(fk), where fk ∈ F , k ≥ 1, defined as follows

tα =

{
t, if t ∈ B ∪ VAR,

Iα(fk)
(
t1α, . . . , t

k
α

)
, if t = fk

(
t1, . . . , tk

)
.

Definition 11. An equivalence relation ≡ on TΣ is compatible with an attribute
domain Aα = (Dα, Iα) iff for all ADTerms t, t′ such that t ≡ t′, the equality
tα = t′α holds in Dα.

Consider a complete set of axioms E for a semantics ≡. It follows from Defini-
tions 11 and 10, that the semantics ≡ is compatible with an attribute domain
Aα iff for every equation t = t′ from E, the equality tα = t′α holds in Dα.

In the following, we show that when considering a semantics that is compat-
ible with a given attribute domain, the evaluation of attributes on equivalent
ADTerms yields the same values.

Theorem 1. Let α = ((Dα, Iα), βα) be an attribute, and t, t′ be ADTerms. If
tα = t′α holds in Dα, then α(t) = α(t′).

Proof. Since tα = t′α holds in Dα, we have σ(tα) = σ(t′α), for every substitution
σ : B ∪VAR → Dα. Thus, it suffices to show that for every ADTerm t, we have

βα(tα) = α(t). (2)

The proof of (2) is by induction on the structure of t. If t ∈ B, then tα = t,
thus βα(tα) = βα(t) = α(t). Suppose now, that for all ADTerms composing t,
we have (2), and let t = fk(t

1, . . . , tk). We have

βα(tα) = βα(Iα(fk)(t
1
α, . . . , t

k
α)) = Iα(fk)(βα(t

1
α), . . . , βα(t

k
α))

= Iα(fk)(α(t
1), . . . , α(tk)) = α(t). ⊓⊔

Corollary 1. Let α = (Aα, βα) be an attribute and let ≡ be a semantics for
ADTerms compatible with Aα. If t ≡ t′, then α(t) = α(t′).

Corollary 1 guarantees that, given an attribute domain and a compatible
semantics, the attributes can be calculated in a consistent way, In Example 7
we show how the compatibility notion defined in Definition 11 covers the result
obtained by Mauw and Oostdijk in [3].

14

Example 7. The multiset semantics for attack trees used in [3] can be axioma-
tized with the following set of rules, for fi ∈ {∨p

i ,∧
p
i }, i ≥ 1,

fk(X1, . . . , Xk) = fk(Xσ(1), . . . , Xσ(k)), for every permutation σ of {1, . . . , k},

fk+1(X1, . . . , Xk, fn(Y1, . . . , Yn)) = fk+n(X1, . . . , Xk, Y1, . . . , Yn),

∧p (X,∨p(X1, . . . , Xk)) = ∨p(∧p(X,X1), . . . ,∧
p(X,Xk)),

∨p (X,X,X1, . . . , Xk) = ∨p(X,X1, . . . , Xk).

Note that the corresponding equalities always hold in every attribute domain
Aα = (Dα, Iα), such that (Dα, Iα(∨

p), Iα(∧
p)) constitutes a semi-ring. Thus,

the multiset semantics for attack trees is compatible with any attribute domain
being a semi-ring.

5 Conclusion and Future Work

We introduce attack–defense trees as a new formal approach for security assess-
ment. These ADTrees provide an intuitive and visual representation of interac-
tions between an attacker and a defender of a system, as well as the evolution
of the security mechanisms and vulnerabilities of a system.

The attack–defense language is based on ADTerms, i.e., the term algebra for
ADTrees. We define semantics for ADTrees as equivalence relations on ADTerms.
This general framework unifies different approaches [3–5] to attack trees that
have been proposed in the literature, because they all rely upon an underlying
equivalence relation.

Furthermore, analysis of ADTrees is supported through attributes and their
bottom-up evaluation. This extends the approach proposed for attack trees
in [3]. Finally, we formulate a necessary condition guaranteeing that equivalent
ADTerms yield the same attribute value.

The purpose of this paper is to lay a formal foundation for attack–defense
trees. To demonstrate the applicability of attack–defense trees on a real-world
example is impossible without a tool, due to the large size of the resulting attack–
defense trees. Examples for the applicability of a similar approach can, at present,
be found in works on attack trees, e.g., [5, 12, 19, 20].

In order to allow for meaningful case-studies with attack–defense trees, a
computer tool will be developed next. It will facilitate the construction of large
ADTrees, support their graphical representation, and assist in the analysis of
ADTrees by combining information assigned to the basic actions in an ADTree
into a single value for the analyzed scenario. Furthermore, automated generation
and analysis of ADTrees is planned for particular domains, such as network secu-
rity. The feasibility of such a work has been demonstrated by Sheyner et al. [13],
who have shown how to automatically generate and analyze attack graphs from
the output of a model checker for an intrusion detection system.

We also plan to extend the attack–defense framework to attack–defense
DAGs. Using DAGs one can model dependencies between the sub-goals. This
issue is crucial when taking the execution order of sub-goals into account or
when analyzing an attack–defense scenario from a probabilistic point of view.

15

References

1. Vesely, W.E., Goldberg, F.F., Roberts, N., Haasl, D.: Fault Tree Handbook. Tech-
nical Report NUREG-0492, U.S. Regulatory Commission (1981)

2. Schneier, B.: Attack Trees. Dr. Dobb’s Journal of Software Tools 24(12) (1999)
21–29

3. Mauw, S., Oostdijk, M.: Foundations of Attack Trees. In Won, D., Kim, S., eds.:
ICISC. Volume 3935 of LNCS., Springer (2005) 186–198

4. Willemson, J., Jürgenson, A.: Serial Model for Attack Tree Computations. In
Lee, D., Hong, S., eds.: Proc. ICISC 2009. Volume 5984 of LNCS., Springer (2010)
118–128

5. Edge, K.S., Dalton II, G.C., Raines, R.A., Mills, R.F.: Using Attack and Protec-
tion Trees to Analyze Threats and Defenses to Homeland Security. In: Military
Communications Conference, 2006. MILCOM 2006. IEEE. (2006) 1–7

6. Saini, V., Duan, Q., Paruchuri, V.: Threat Modeling Using Attack Trees. Journal
of Computing in Small Colleges 23(4) (2008) 124–131

7. Bistarelli, S., Fioravanti, F., Peretti, P.: Defense Trees for Economic Evaluation of
Security Investments. In: ARES, IEEE Computer Society (2006) 416–423

8. Bistarelli, S., Dall’Aglio, M., Peretti, P.: Strategic Games on Defense Trees. In
Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S.A., eds.: Formal Aspects
in Security and Trust. Volume 4691 of LNCS., Springer (2006) 1–15

9. Moore, A.P., Ellison, R.J., Linger, R.C.: Attack Modeling for Information Security
and Survivability. Technical Report CMU/ SEI-2001-TN-001, CMU Software Eng
(2001)

10. Cervesato, I., Meadows, C.: One Picture Is Worth a Dozen Connectives: A Fault-
Tree Representation of NPATRL Security Requirements. IEEE Transactions on
Dependable and Secure Computing 4 (2007) 216–227

11. Amoroso, E.G.: Fundamentals of Computer Security Technology. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA (1994)

12. Morais, A.N.P., Martins, E., Cavalli, A.R., Jimenez, W.: Security Protocol Testing
Using Attack Trees. In: CSE (2), IEEE Computer Society (2009) 690–697

13. Sheyner, O., Haines, J.W., Jha, S., Lippmann, R., Wing, J.M.: Automated Gen-
eration and Analysis of Attack Graphs. In: IEEE Symposium on Security and
Privacy, Los Alamitos, CA, USA, IEEE Computer Society (2002) 273–284

14. Bistarelli, S., Peretti, P., Trubitsyna, I.: Analyzing Security Scenarios Using De-
fence Trees and Answer Set Programming. Electronic Notes in Theoretical Com-
puter Science 197(2) (2008) 121–129

15. Kordy, B., Mauw, S., Melissen, M., Schweitzer, P.: Attack–Defense Trees and Two-
Player Binary Zero-Sum Extensive Form Games Are Equivalent. Proceedings of
GameSec 2010. LNCS., Springer-Verlag. Avail. at http://arxiv.org/abs/1006.2732.

16. Rehák, M., Staab, E., Fusenig, V., Pěchouček, M., Grill, M., Stiborek, J., Bartoš,
K., Engel, T.: Runtime Monitoring and Dynamic Reconfiguration for Intrusion
Detection Systems. In Kirda, E., Jha, S., Balzarotti, D., eds.: Proceedings of
RAID ’09. Volume 5758 of LNCS., Springer-Verlag (2009) 61–80

17. Doets, K.: Basic Model Theory. Stanford: CSLI Publications (1996)
18. Jürgenson, A., Willemson, J.: Computing Exact Outcomes of Multi-parameter

Attack Trees. In Meersman, R., Tari, Z., eds.: OTM Conferences (2). Volume 5332
of LNCS., Springer (2008) 1036–1051

19. Amenaza: SecurITree http://www.amenaza.com/.
20. Isograph: AttackTree+ http://www.isograph-software.com/atpover.htm.

16

