Outline	Mixnets	Assumptions	Algorithms	CSP	Problems and future work	Questions
				000000	00000000	

Local perspective of mixing - a CSP approach

Stathis Stathakidis

Department of Computing University of Surrey, UK

15 October 2012

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< 🗇 🕨

Outline	Mixnets 000000000	Assumptions	Algorithms 0000000	CSP 00000000	Problems and future work	Questions

(E) < E)</p>

Outline	Mixnets ●OOOOOOOO	Assumptions	Algorithms 0000000	CSP 00000000	Problems and future work	Questions
General						

- 2 Assumptions
- 3 Algorithms

Outline	Mixnets ●00000000	Assumptions	Algorithms 0000000	CSP 0000000	Problems and future work	Questions
General						

- cryptographic protocol
- hides (unlink) the correspondence between its inputs and outputs
- consists of mix servers
- Chaum, 1981

▲ 臣 ▶ ▲ 臣 ▶ 三 ■ ∽ � � �

A ►

• Sender *Si*, 1 < *i* < *n*

Outline	Mixnets o●○○○○○○○	Assumptions	Algorithms 0000000	CSP 000000	Problems and future work	Questions
Concercel						

- Sender *Si*, 1 < *i* < *n*
- Si sends m_i

Outline	Mixnets o●○○○○○○○	Assumptions	Algorithms 0000000	CSP 000000	Problems and future work	Questions
Concercel						

- Sender *Si*, 1 < *i* < *n*
- Si sends m_i
- Mixnet operates

Outline	Mixnets o●ooooooo	Assumptions	Algorithms 0000000	CSP 00000000	Problems and future work	Questions
0.000						

- Sender *Si*, 1 < *i* < *n*
- Si sends m_i
- Mixnet operates
- Outputs in random order

Outline	Mixnets ○○●○○○○○○	Assumptions	Algorithms 0000000	CSP 00000000	Problems and future work	Questions
Uses						

RFID tags

- anonymous web browsing
- mainly in e-voting

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline	Mixnets ○○○●○○○○○	Assumptions	Algorithms 0000000	CSP 00000000	Problems and future work	Questions
E-voting syste	ems with Mixnets					

- Prêt à Voter
- Helios
- Civitas
- . . .

Outline	Mixnets ○○○●○○○○	Assumptions	Algorithms 0000000	CSP 00000000	Problems and future work	Questions
Constructions	\$					
Chau	mian M	ixnets				

- untraceable mail system 1981
- layers of encryptions onion
- ciphertext proportional to the number of mix servers

•
$$c = E_{PK_1}(E_{PK_2} \dots E_{PK_{n-1}}(E_{PK_n}(m) \dots))$$

- ciphertext *c* is delivered to the first mix server
- each mix server peels off the outer layer

•
$$m = D_{SK_n}(D_{SK_{n-1}} \dots D_{SK_2}(D_{SK_1}(c) \dots))$$

(4) E > (4) E > (1)

Outline	Mixnets 000000000	Assumptions	Algorithms 0000000	CSP 00000000	Problems and future work	Questions
Constructions	;					
Re-er	ncryptio	n Mixnet	s			

- Park et al., 1993
- ciphertext's size irrelevant to the number of servers
- two variations
 - decryption at the end of the process (threshold)
 - partial decryption

< 回 > < 回 > < 回 > -

Outline	Mixnets ○○○○○●○○	Assumptions	Algorithms 0000000	CSP 00000000	Problems and future work	Questions
Constructions						
Other						

• parallel Mixnet

hybrid Mixnets

ヘロト 人間 とくほとくほとう

E 990

Outline	Mixnets ○○○○○○●○	Assumptions	Algorithms 0000000	CSP 0000000	Problems and future work	Questions
So far						

- global perspective of mixing
- when a server is found dishonest then it is either excluded or replaced
- no more information is given: how? who? when?
- a third party is involved time consuming

3

Outline	Mixnets ○○○○○○○●	Assumptions	Algorithms	CSP 00000000	Problems and future work	Questions
Motivation						

- local perspective how each mix server behaves
- output the final result without delay
- eliminate the existence of a third party

(雪) (ヨ) (ヨ)

3

Outline	Mixnets 000000000	Assumptions ●○○○	Algorithms 0000000	CSP 00000000	Problems and future work	Questions
What we need						

Outline	Mixnets 000000000	Assumptions ●○○○	Algorithms	CSP 00000000	Problems and future work	Questions
What we need	d					

Algorithm:

- unique
- unambiguous
- accurate
- run by each server

▲ 臣 ▶ ▲ 臣 ▶ …

∃ 9900

Outline	Mixnets 000000000	Assumptions	Algorithms 0000000	CSP 0000000	Problems and future work	Questions
Assumptions						
WBB						

- secure and trusted
- public anyone can read from it
- only servers can post on it
- communication channels are secure (read and post)
- gives accurate record of what is posted

Outline	Mixnets 000000000	Assumptions	Algorithms 0000000	CSP 00000000	Problems and future work	Questions
Assumptions						
Serve	ers					

- know their positions in the Mixnet
- same potential view to the WBB
- active during the process
- can perform the basic cryptographic operations

Outline	Mixnets 000000000	Assumptions ○○○●	Algorithms	CSP 0000000	Problems and future work	Questions
Assumptions						
Other						

- do not model the underlying cryptography
- proofs and ciphertexts as an entity
- no network traffic manipulation
- return proofs and verdicts in a timely fashion

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Outline	Mixnets	Assumptions	Algorithms	CSP	Problems and future work	Questions
	000000000	0000	000000	00000000	0000000	
Mixing and Ch	necking					

★ Ξ → ★ Ξ →

Outline	Mixnets 000000000	Assumptions	Algorithms ••••••	CSP 000000	Problems and future work	Questions
Mixing and Cl	hecking					

Algorithm 1 Mixserver

- 1: if i == j then
- 2: Mixing(i, j)
- 3: **else**
- 4: Checking(i, j)
- 5: end if

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

- *i* looking for latest server *j* with "good" proofs
- *i* operates on *j*'s ciphertexts
- i posts its proofs and verdicts on the WBB
- i claims its proofs as "good"
- update the last server with "good" proofs

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Outline	Mixnets 000000000	Assumptions	Algorithms	CSP 00000000	Problems and future work	Questions
Mixing and Ch	iecking					

Algorithm 2 Mixing

- 1: **if** *i* == 1 **then**
- 2: ReadProofs(i, lastGood, WBB)
- 3: Operate(i)
- 4: $PostProofs(i, P_i)$
- 5: *PostVerdict*(*i*, *Verdict*)
- 6: Mixserver(i, j + 1, lastGood + 1)
- 7: **else**
- 8: ReadProofs(i, lastGood, WBB)
- 9: *Operate*(*i*)
- 10: $PostProofs(i, P_i)$
- 11: *PostVerdict*(*i*, *Verdict*)
- 12: *Mixserver*(i, j + 1, i)

13: end if

・ 同 ト ・ ヨ ト ・ ヨ ト …

= 990

- *i* reads *j*'s proofs from the WBB
- *i* posts its verdict about *j*'s proofs on the WBB (update)
- if the read proofs are "good" then j + +
- update the last server *j* with "good" proofs
- else *j* is not considered as server with "good" proofs

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Outline	Mixnets	Assumptions	Algorithms	CSP	Problems and future work	Questions
			0000000	000000	00000000	
Mixing and	Checking					

Algorithm 3 Checking

- 1: $ReadProofs(i, j, P_j, WBB)$
- 2: *PostVerdict*(*i*, *j*, *Verdict*)
- 3: if $P_j == good$ then
- 4: Mixserver(i, j + 1, j)
- 5: **else**
- 6: *Mixserver*(i, j + 1, *lastGood*)
- 7: end if

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Outline	Mixnets 000000000	Assumptions	Algorithms	CSP 00000000	Problems and future work	Questions
Dishonest						

- can do anything
- can refuse to read and produce proofs
- CHAOS in CSP most non deterministic process
- too dishonest! is STOP enough?

(E) < E)</p>

Outline	Mixnets 000000000	Assumptions	Algorithms	CSP 00000000	Problems and future work	Questions
Dishonest						

- can do anything
- can refuse to read and produce proofs
- CHAOS in CSP most non deterministic process
- too dishonest! is STOP enough? probably not

A E > A E >

-

Outline	Mixnets 000000000	Assumptions	Algorithms ○○○○○●	CSP 00000000	Problems and future work	Questions
WBB						

- accepts read and post queries
- anyone can read from it
- only servers can post on it
- initially consists of sequence of pending proofs
- and sequence of unknown verdicts

(* E) * E)

Outline	Mixnets 000000000	Assumptions	Algorithms 0000000	CSP ●0000000	Problems and future work	Questions
Background						

2 Assumptions

< 🗗 🕨

★ Ξ → ★ Ξ →

Outline	Mixnets 000000000	Assumptions	Algorithms 0000000	CSP ●0000000	Problems and future work	Questions
Background						

- Communicating Sequential Processes
- Hoare, 1978
- tool for specifying and verifying concurrent systems
- subsystems which operate concurrently and interact each other
- need of a model checker FDR

-

Outline	Mixnets 000000000	Assumptions	Algorithms 0000000	CSP ○●○○○○○	Problems and future work	Questions
Datatypes						

Datatypes

```
N: number of mix servers
```

```
nametype NumberOfServers = {1..N}
```

```
nametype Servers = NumberOfServers
```

```
datatype Proofs = good | bad | pending
```

```
Verdicts = {true, false}
```

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

Outline	Mixnets 000000000	Assumptions	Algorithms 0000000	CSP ○○●○○○○○	Problems and future work	Questions
Channels						

Channels

operate: Servers

read_proofs: Servers.Servers.Proofs

read_verdicts: Servers.Servers.Verdicts

post_proofs: Servers.Proofs

post_verdicts: Servers.Servers.Verdicts

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

Outline	Mixnets 000000000	Assumptions	Algorithms 0000000	CSP 000●0000	Problems and future work	Questions
Mixserver						

```
Mixserver's alphabetalphaMIXSERVER(i) =<br/>{read_proofs.i.j.p,<br/>read_verdicts.i.j.v,<br/>post_proofs.i.p,<br/>post_verdicts.i.j.check(p),<br/>operates.i<br/>| j \leftarrow Servers, p \leftarrow Proofs, v \leftarrow Verdicts}
```

Disjoint alphabet

(個) (日) (日) (日)

Outline	Mixnets 000000000	Assumptions	Algorithms 0000000	CSP ○○○○●○○○	Problems and future work	Questions
Dishonest						

```
DISHONEST
DISHONEST(i) = CHAOS{alphaDISHONEST(i)}
```

```
Dishonest's alphabet
```

```
alphaDISHONEST(i) =
```

{read_proofs.i.j.p, read_verdicts.i.j.v, post_proofs.i.p, post_verdicts.i.j.check(p), operates.i $j \leftarrow$ Servers. $p \leftarrow$ Proofs. $v \leftarrow$ Verdicts}

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

- the choice of what happens is in the hands of the environment
- \Box the choice of what happens is in the hands of the process
- ? input
- ! output

neither an input nor an output can occur until the environment is willing to allow it

・ロト ・ 理 ト ・ ヨ ト ・

3

Outline	Mixnets 000000000	Assumptions	Algorithms 0000000	CSP 000000000	Problems and future work	Questions
WBB process						

WBB

```
\begin{array}{l} \textit{WBB} (\textit{Sqp},\textit{Sqv}) \cong \\ \textit{read\_proofs?i?j!nth}(\textit{Sqp},j) \rightarrow \textit{WBB}(\textit{Sqp},\textit{Sqv}) \\ \square \\ \textit{read\_verdicts?i?j!nth}(\textit{Sqv},j) \rightarrow \textit{WBB}(\textit{Sqp},\textit{Sqv}) \\ \square \\ \textit{post\_proofs?i?proof} \rightarrow \textit{WBB}(\textit{update}(\textit{Sqp},i,\textit{proof}),\textit{Sqv}) \\ \square \\ \textit{post\_verdicts?i?j?verdict} \rightarrow \textit{WBB}(\textit{Sqp},\textit{update}(\textit{Sqv},j,\textit{verdict})) \end{array}
```

WBB's alphabet

alphaWBB =
{| read_proofs, read_verdicts, post_proofs, post_verdicts |}

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Interleave means no explicit communication

GOOD SERVERS

 $GOOD_SERVERS = |||_{i \in setOfHonestServers}$ Mixserver(i, 1, 0)

GOOD SERVER's alphabet

 $alphaGOOD = \cup (alphaMIXSERVER(i))$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Interleave means no explicit communication

BAD SERVERS

 $BAD_SERVERS = |||_{i \in setOfDishonestServers} DISHONEST(i)$

BAD SERVER's alphabet

 $alphaBAD = \cup (alphaDISHONEST(i))$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

There is no direct communication between servers

We use interleaving instead of parallel

SERVERS

SERVERS = GOOD_SERVERS ||| BAD_SERVERS

SERVERS's alphabet

 $alphaSERVERS = \cup (alphaGOOD, alphaBAD)$

Interleaved processes do not synchronise on events even when their alphabets do overlap

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

SERVERS and WBB in parallel

Use of alphabetised parallel

SERVERSSYSTEM = SERVERSalphaSERVERSalphaWBBWBB

SERVERS's alphabet

 $alphaSYSTEM = \cup (alphaSERVERS, alphaWBB)$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Outline	Mixnets	Assumptions	Algorithms	CSP	Problems and future work	Questions
					00000000	
Tally event						

SPEC
$$SPEC = tally \rightarrow STOP$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

- checks to be carried out
- used to state properties which are believed to hold
- load in FDR alongside the processes
- deadlock and livelock freedom, traces, failures divergence etc

・ロト ・ 理 ト ・ ヨ ト ・

3

- hide the tally event
- deadlock free never stop (robustness)
- livelock free
- divergence free no unlimited sequences of internal action τ
- SYSTEM failures/divergences-refines SPEC

```
SPEC

assertSPEC 
_FD SYSTEM \ {| tally |}
```

Outline	Mixnets 000000000	Assumptions	Algorithms	CSP 00000000	Problems and future work	Questions
Remarks						

- Assumptions
- 3 Algorithms

(人) (日本) (日本)

a

Outline	Mixnets 000000000	Assumptions	Algorithms 0000000	CSP 00000000	Problems and future work	Questions
Remarks						

- the servers run this algorithm at the same time
- no one can block the protocol from happening

3

・ 同 ト ・ ヨ ト ・ ヨ ト …

- control process which prevents the WBB from reading pending proofs → time is involved
- more sanity checks

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- © split into proofs and ciphertexts
- © add time restrictions timed CSP
- drop the WBB single point of failure Verificatum uses no WBB - huge challenge
- ☺ distributed WBB? yes, but in CSP ...? ☺☺☺☺
- state space explosion reduce it
- S model the decryption

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Outline	Mixnets	Assumptions	Algorithms	CSP	Problems and future work	Questions
	000000000	0000	000000	00000000	0000000	

- 2 Assumptions
- 3 Algorithms

(人) (日本) (日本)

a.

Outline	Mixnets 000000000	Assumptions	Algorithms	CSP 00000000	Problems and future work	Questions

Thank you!

ヘロト 人間 とくほとくほとう

Outline	Mixnets	Assumptions	Algorithms	CSP	Problems and future work	Questions
				00000000	000000	

Thank you!

Questions?

ヘロト 人間 とくほとくほとう