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Motivation 

• Boardroom voting 

• No server setup (tallying authorities, bulletin board, ...) 

• Implementation on smartphones 

• Ensure security properties 

• Ballot secrecy 

• Verifiability 

• Robustness 

• Dispute-freeness 

• Efficient in terms of complexity  

• computational  

• communication  

• round 
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First Approach 
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Initial Voting Step 

• DeMillo et al. 1982, Volkamer et al. 2005, Meletiadou 2007-2009 

 

• Each voter makes her unique selection and encrypts her vote twice 

voter i voter n voter 1 

Stephan Neumann  |  16.10.2012  |  eVoting PhD Workshop 2012 



Anonymization Phase 

• Each voter strips off the outmost layer, permutes the ciphertexts, and forwards 

the partially anyonymized ciphertext to the next voter. 

voter i-1 voter i voter i+1 
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Anonymization Phase 

• After the last voter stripped off her layer, the set of anonymized ciphertexts is 

sent to all other voters 

voter 1 voter i voter n 
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Anonymization Phase 

• Each voter verifies the presence of her vote and acknowledges to the first voter. 

voter 1 voter i voter n 
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Decryption Phase 

voter 1 voter i voter n 

• The i-th voter receives the set of partially decrypted votes, stripps off the outmost 

layer and broadcasts all partially decrypted votes to all other voters. 

voter i-1 
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Decryption Phase 

• All voters acknowledge the correct processing to the (i+1)-th voter that proceeds 

with the decryption process. 

voter 1 voter i+1 voter n 
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Existing Approaches (DeMillo 1982, 
DuD 2005, Meletiadou 2007-2009) 
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Security Analysis: 
• Robustness not given (due to decryption shuffle) 

 
• Verifiability not given (malicious device can accept dishonest behavior) 

 
• Weak form of receipt-freeness 
 
Complexity: 
• Computational Complexity: 

𝑛3 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑝𝑅𝑅𝑅 − 1 ∗ 𝑞𝑅𝑅𝑅 − 1 + 3𝑛 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑞 + 𝑛 
 
• Network Complexity: 

8𝑛 + 2𝑛2 ∗ 𝑝 + 𝑛 + 1 ∗ 𝑠(𝑎𝑎𝑎) 
 
• Round Complexity: 

3𝑛 + 6 



A Naive Improvement 
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Initial Voting Step 

voter 1 voter i voter n 
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• A public key is generated distributively by all voters such that each voter holds a 

secret key share (e.g., Joint-Feldman DKG). 

 

• Each voter makes her selection and encrypts her vote with commonly 

generated public key. 



Initial Voting Step 

voter 1 voter i voter n 

• Each voter holds all encrypted votes 
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Anonymization Phase 

voter i-1 

• Each voter permutes the received votes, re-encrypts them and broadcasts a 

proof of correct proceeding to all other voters that have to acknowledge. 

voter 1 voter i voter n 
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Decryption Phase 

• Each voter partially decrypts the set of encrypted votes and broadcasts the 

partial decryption together with a proof of correct proceeding to all other voters. 

voter 1 voter i voter n 
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A Naive Improvement 

Stephan Neumann  |  16.10.2012  |  eVoting PhD Workshop 2012 

Security Analysis: 
• Robustness given (re-encryption substitutes decryption shuffle) 

 
• Verifiability given (all steps universally verifiable) 

 
• Stronger form of receipt-freeness 
 
Complexity: 
• Computational Complexity: 

10𝑛2 + 11𝑛 + 2 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑞 + 4𝑛2 + 3𝑛 + 1 
 
• Network Complexity: 

6𝑛2 𝑝 + 4𝑛2 𝑞 + 𝑛2𝑠(𝑎𝑎𝑎) 
 
• Round Complexity: 

2𝑛2 + 5𝑛 + 1 



A Distributed 
Voting System 
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General Idea of this Work 

• Initial broadcasting of each encrypted vote 

• Improve computational, communication, and round complexity due to 

• Shuffle proof chain (Eurocrypt 2012) 

• Decryption proof batching (ACNS 2004) 

• Final broadcasting of anonymized and decrypted votes 

• Integrity of both phases universally verifiable 
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Controlled Malleable Proof 
Systems 
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Idea:  Prove particular statements relying on proofs of related statements 

 

• Definitions for a proof system that is  

• malleable wrt. to set of transformations (valid transformations): 

Given proofs for  

𝑥1,𝑤1 ∈ 𝑅, … , 𝑥𝑛,𝑤𝑛 ∈ 𝑅 

these proofs can be transformed into valid proof for 

(𝑇𝑥 𝑥1, … , 𝑥𝑛 ,𝑇𝑤 𝑤1, … ,𝑤𝑛 ) ∈ 𝑅 

• derivation private: Transformed proofs cannot be distinguished from fresh 

proofs for a statement 
 



Verifiable Shuffle Construction 

Stephan Neumann  |  16.10.2012  |  eVoting PhD Workshop 2012 

Procedure (𝑘-th server): 
 
• Obtain 𝑐𝑖 , 𝑐𝑖′ ,𝜋, 𝑝𝑘𝑗  and check validity of 𝜋 

 
• Pick 𝑟𝑖  and permutation 𝜙𝑖 and compute 

{𝑐𝑖′′} ← 𝑅𝑅𝑅𝑅𝑅𝑅(𝑝𝑝,𝜙𝑖{𝑐𝑖′}; {𝑟𝑖}) 
 
• Based on valid transformation (specified in the paper), a valid proof is 

generated 
𝜋′ ← 𝑍𝑍𝑍𝑍𝑍𝑍(𝜎𝑐𝑐𝑐,𝑇, 𝑝𝑝, 𝑐𝑖 , 𝑐𝑖′ , 𝑝𝑘𝑗 ,𝜋)) 

 
This proof shows that {𝑐𝑖′′} is a valid shuffle of {𝑐𝑖} by voters in possession of 
(𝑠𝑘1, … , 𝑠𝑘𝑘) 
 
• Output 

( 𝑐𝑖 , 𝑐𝑖′′ ,𝜋′, 𝑝𝑘𝑗 ∪ 𝑝𝑘𝑘) 



Partial ElGamal Decryption 
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Given ElGamal ciphertext 𝑐1, 𝑐2 = (𝑔𝑟,𝑦𝑟 ⋅ 𝑚) of message 𝑚 under public key 

(𝑝,𝑔,𝑦) and randomness 𝑟 ← {1, … , 𝑝 − 2} 

• Each voter 𝑖 computes 

𝑐1,𝑖 = 𝑐1𝑥𝑖 

and proves the equality of discrete logarithms 

log𝑔 𝑦𝑖 = log𝑐1 𝑐1,𝑖 



Proof of Equality of Discrete 
Logarithms 
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• Sigma protocol due to Chaum and Pedersen (1992) 

• Given 𝑥 = 𝑔𝑙 ,𝑦 = ℎ𝑙, a prover wants to convince a verifier about the fact 

log𝑔 𝑥 = logℎ 𝑦 = l 

• Computational Cost for decryption of 𝑛 ciphertexts: 

• Prover: 2𝑛 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑞 + 𝑛 

• Verifier: 4𝑛 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑞 + 2𝑛 



Batch Proof Generation and 
Verification 
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Batch Theorem: 
 
Given two large primes 𝑝, 𝑞 with 𝑝 = 2𝑞 + 1, a security parameter 𝑙 with 2𝑙 < 𝑞, 𝑡𝑗 ←

1, … , 2𝑙 , a set of 𝑛 ciphertexts 𝑐𝑘, voter‘s 𝑖 public key 𝑦𝑖, 𝑛 corresponding partial 

decryptions 𝑐𝑘,1,𝑖, then the following holds with probability more than 1 − 2−𝑙: 

 

∃𝑘 ∈  1, … ,𝑛  𝑠. 𝑡.  |𝑐𝑘,1
log𝑔 𝑦𝑖| ≠ |𝑐𝑘,1,𝑖| ⟹ � 𝑐𝑘,1

𝑡𝑘
𝑛

𝑘=1

log𝑔 𝑦𝑖

≠  � 𝑐𝑘,1,𝑖
𝑡𝑘

𝑛

𝑘=1

 

 
 



Linear Encryption 
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 Motivation: Move from DDH to DLIN assumption. 

 Key Generation: The user randomly chooses 𝑥1, 𝑥2 ← 𝑍𝑝, and computes 

𝑦1 = 𝑔𝑥1 and 𝑦2 = 𝑔𝑥2 . The secret key is 𝑠𝑠 = (𝑥1, 𝑥2) and the public key is 

𝑝𝑝 = (𝑦1, 𝑦2) 

 Encryption: In order to encrypt message 𝑚, two values 𝑟1, 𝑟2 ← 𝑍𝑝 are randomly 

drawn and the ciphertext is computed as follows: 

𝑐1, 𝑐2, 𝑐3 = (𝑦1𝑟1 ,𝑦2𝑟2 ,𝑚 ∗ 𝑔𝑟1+𝑟2) 

 Decryption: Ciphertext (𝑐1, 𝑐2, 𝑐3) is decrypted with (𝑥1, 𝑥2) 

𝑚 =
𝑐3

𝑐1
1
𝑥1 ∗ 𝑐2

1
𝑥2

 



Discussion 

• Can distributed key generation and distributed decryption be adapted to 

Linear Encryption? 

• Can the corresponding proofs still be batched? 

• Can distributed ElGamal decryption proofs be cm-NIZK? 
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Thank you for your Attention! 
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Distributed ElGamal Key 
Generation 
• Each voter i generates 

𝑥𝑖 ← 𝑍𝑞 
• Each voter i generates a polynom 

𝑓𝑖 𝑥 = 𝑓𝑖𝑖 + 𝑓𝑖𝑖 ⋅ 𝑥 + ⋯+ 𝑓𝑖 𝑡−1 ⋅ 𝑥𝑡−1 
with 

𝑓𝑖 0 = 𝑥𝑖 = 𝑓𝑖𝑖 
 

• Each voter i commits on the generated polynom by broadcasting 
𝐹𝑖𝑖 = 𝑔𝑓𝑖𝑖  mod 𝑝 

 
• Each voter i sends to voter j 

𝑠𝑖𝑖 = 𝑓𝑖 𝑗  mod 𝑞 
 

• Each voter i verifies received shares by 

𝑔𝑠𝑗𝑗 = �𝐹𝑗𝑗𝑖
𝑙

𝑡−1

𝑙=0

 mod 𝑝 
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Distributed ElGamal Key 
Generation 
• Each voter i computes shares 𝑠𝑖 of private key 𝑥 

𝑠𝑖 =  �𝑠𝑗𝑗

𝑛

𝑗=1

 mod 𝑞 

 
• The public key can be publicly computed 

ℎ =  �𝐹𝑖𝑖

𝑛

𝑖=1

= �𝑔𝑥𝑖
𝑛

𝑖=1

 mod 𝑝 

and public shares 
ℎ𝑗 = 𝑔∑ 𝑓𝑖(𝑗)𝑛

𝑖=1  
 

• For each 𝑠𝑖 a commitment 𝑝𝑖 can be publicly computed 

𝑝𝑖 =  �𝑔𝑠𝑗𝑗
𝑛

𝑗=1

=  �(ℎ𝑗 ⋅�𝐹𝑗𝑗
𝑖𝑙  

𝑡−1

𝑙=1

)
𝑛

𝑗=1

= 𝑔∑ 𝑠𝑗𝑗𝑛
𝑗=1  mod 𝑝 
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