
Nuovo DRM Paradiso:

Formal specification and verification of a DRM protocol

H. Jonker, S. Krishnan Nair, M. Torabi Dashti

Technische Universiteit Eindhoven, Vrije Universiteit Amsterdam, CWI Amsterdam
h.l.jonker@tue.nl, srijith@few.vu.nl, dashti@cwi.nl

Abstract. We present a DRM-preserving content redistribution scheme, based on
the NPGCT scheme [15], that provides fairness in unsupervised exchanges. The pro-
posed scheme is formally specified, verified and shown to achieve its design goals.
The NPGCT mechanism of detection and revocation of circumvented devices is also
reexamined here.
Keywords: DRM, formal verification, optimistic fair exchange protocols.

1 Introduction

In recent years, there has been a rapid increase in the popularity of personal devices
able to render digital contents, some of them also having peer-to-peer communi-
cation facilities. With the advent of these personal digital devices, mainly aimed
at the entertainment market, content providers are looking at various secure busi-
ness models to tap into this growing market for selling their copyrighted materials.
It naturally necessitates a mechanism to protect digital contents from illegal access
and unauthorized distribution. Technologies used to enforce these predefined policies
controlling access to digital contents are referred to as Digital Rights Management
(DRM) techniques. The biggest challenge in DRM is to enforce DRM policies after
contents have been distributed to consumers. The current approach to solve this
problem is to limit the distribution of protected contents to only so-called compliant
devices, which by construction are guaranteed to always observe the DRM policies
associated with the digital contents they render.

A unique concept of DRM-preserving content redistribution was proposed in [15],
where users also act as content distributors. It potentially allows a business model
where a consumer can not only buy the rights to use a content, but also redistribute
or resell the content in a controlled manner. From a security point of view, this is
technically challenging, because the resulting system is a network of peer-to-peer
independent devices, each of them a potential consumer, authorized distributer, and
also an attacker. This paper uses the concepts presented in that work as a basis for
a refined protocol, where payment orders are exchanged for protected contents.

Contributions Our contributions in this paper are as follows. We demonstrate
some security issues with the NPGCT scheme proposed in [15], which are mainly due
to underspecification. These issues are addressed by an exact formal specification
based on the scheme, which is then simplified. The mechanism for detecting and
revoking compromised devices in NPGCT is also revisited here and the underly-
ing trade-offs between security, flexibility and communication costs are highlighted.
Next, the exchange protocol for peer customers is augmented with a light-weight

recovery sub-protocol, which proves to be essential in preventing unfair situations in
the exchange, as customers do not necessarily trust each other. The resulting scheme
can then be seen as an optimistic fair exchange DRM scheme. Optimistic fair ex-
change protocols, e.g. see [2], guarantee fairness in exchange (as in Section 3.1) with
the help of an off-line trusted third party. Here, due to the use of trusted computing
devices, strong fairness [2] is achieved so that a suffered party can recover within the
system without further communications with the other party. Finally, the refined
scheme and its requirements for effectiveness, content secrecy, exchange fairness and
resistance to content masquerading are formalized and a formal verification of the
requirements is performed on a finite model of the scheme. The proposed protocols
are shown to indeed meet the stated requirements.
Related work A fair exchange protocol for trading electronic vouchers is pro-
posed by Terada et al. in [19]. It is similar to our work in that it relies on trusted
computing devices to achieve strong fairness. It has however certain assumptions
which make it not directly applicable for DRM scenarios. For instance, the protocol
is not secure if the exchanged items are similar. In a related study Avoine et al.
reduce the problem of fair exchange between trusted devices owned by malicious
agents to the classic atomic commit problem [3]. They present a probabilistic fair
exchange protocol such that the error rate is not controlled by untrusted agents.

In this paper we do not explicitly model handling and derivation of rights associ-
ated with DRM-protected contents. It would, in principle, require defining a formal
syntax and semantic for the rights and an exact specification of the ways agents
handle them. We refer the interested reader to the related literature, such as [17].
Structure of the paper In Section 2 we summarize the NPGCT scheme, which
provides the basis for the refined scheme. Section 3 presents our refined scheme,
dubbed “Nuovo DRM”, and its goals. Nuovo DRM is then formally analyzed in
Section 4 and shown to achieve its goals. Section 5 revisits the mechanisms for
detecting and revoking compromised devices. Finally, Section 6 concludes the paper.

2 The NPGCT DRM scheme

The NPGCT scheme [15] was proposed as a DRM-preserving digital content redis-
tribution system where a consumer can also act as a content reseller. The scheme
consists of two main protocols: the first distributes contents from provider P to client
C, the second allows C to resell contents to another client D.

We use the following notations for the rest of the paper:

– C and D are compliant devices, owned respectively by owner (C) and owner (D).
– P is a legitimate trusted content provider.
– h is an ideal one way hash function; therefore h(x) uniquely describes x.
– PK (X),SK (X) are respectively the public and private keys of entity X.
– {m}K represents an ideal1 encryption of message m with key K. Encrypting

with a private key denotes signing.
– The content of a signed message is always carried along with its signature. In

other words, instead of the message (M, {M}SK(X)), we write {M}SK(X) to save
some space.

1 As in [9], we assume perfect cryptographic functions.

2

– nX is a nonce which is freshly generated by entity X at its first appearance in
the protocol.

– M represents a protected content. The set of all protected contents in the protocol
is denoted Cont . It is assumed that unique descriptions (such as hash values) of
all M ∈ Cont are publicly known.

– The set of all possible rights is denoted Rgts . The term RX(M) represents the
rights of agent X for content M .

Provider-customer protocol (P2C) The protocol is initiated by the owner
of C who wants to buy item M with rights R from provider P . From [15]:

1. C → P : Request content
2. C ↔ P : Mutual authentication, [payment]
3. P → C : {M}K , {K}PK(C), R, σ, Λ

σ=meta-data of M , Λ={h(P, C,M, σ,R)}PK(P)

Λ certifies that C has been granted rights R and helps in proving C’s right to
redistribute M to other clients. It also binds the meta-data σ to the content, which
prevents spoofing attacks on M .

Customer-customer protocol (C2C) This part of the protocol is initiated by
the owner of D who wants to buy M with rights R′ from C. From [15]:

1. D → C : Request content
2. C ↔ D : Mutual authentication
3. C → D : {M}K′ , {K′}PK(D), RC(M), R′, σ, Λ, Λ′

Λ′ = {h(C,D,M, σ,R′)}PK(C)

4. D : Verifies σ, Λ′ and RC(M) using Λ
5. D → C : ψ, [payment]

ψ = {h(C, P, {M}K′ , σ, R′)}PK(D)

ψ acts as an acknowledgment from D that it has received the content M with the
rights RD(M), while Λ and Λ′ form a chain and serve the same purpose Λ serves for
C, i.e. proving that D has been granted rights R′. If R′ includes the right to further
redistribute, D can use Λ and Λ′ in the same way C used Λ.

2.1 Security issues of NPGCT

We observe the following two attacks on the NPGCT scheme. First, in the P2C
protocol (and similarly in the C2C protocol), a malicious customer can feed rights
from a previous session to its trusted device, because the authentication phase is not
extended to guarantee the freshness of the content-right bundle which is subsequently
delivered. As a remediation, fresh nonces from the authentication phase can be used
in Λ to ensure the freshness of the whole exchange. This remediation is detailed
further in Section 3.

Second, in the C2C protocol, payment is not bound to the request/receive mes-
sages exchanged between two customers. Therefore, once D receives M in step 3,
the owner of D can avoid paying C by aborting the protocol. Since the C2C protocol
is unsupervised, the owners of compliant devices are forced to trust each other to
complete transactions. While it seems reasonable to extend such trust to a legitimate
content provider, it should not be assumed for the C2C exchanges.

3

3 The Nuovo DRM scheme

The main contribution of the NPGCT scheme is to enable redistributing contents
between compliant devices, while preserving DRM. This section describes a refined
version of NPGCT, which addresses the security concerns noted in the previous
section.

The main differences between Nuovo DRM and NPGCT are the following: First,
both attacks on NPGCT explained in the previous section are addressed. The explicit
authentication in the P2C and C2C protocols in Nuovo prevents the replay attack on
the NPGCT; to prevent monetary loss due to early abortion, Nuovo’s C2C protocol
provides a recovery sub-protocol.

Second, the payment scheme is left open in the NPGCT, so various on-line
(requiring contact with the bank, e.g. payment using ATM cards) and off-line (not
requiring contact with the bank, e.g. payment by cash) payment systems can fit
there. In contrast, Nuovo DRM protocol is limited to on-line payment schemes,
where payment orders exchanged for contents can be encashed only at a bank entity.
As a direct benefit of assuming such a payment system, the process of chaining of
rights (see Section 2), which is used in [15] to detect circumvented devices, is no
longer needed in Nuovo DRM as this can be achieved by inspecting payment orders
(see Section 5). It can be seen as a trade-off between flexible payment schemes and
communication costs in the protocol.

The following assumptions are made in the protocol (and its subsequent specifi-
cation and verification):

A1 Consumer devices (C and D) are compliant and therefore can be seen as trusted
for our purpose. Notably, compliant devices are able to perform atomic actions.

A2 A legitimate trusted content provider is assumed not to engage in C2C exchanges
and is impartial in its behavior. It uses a persistent and secure database and its
actions on the database are atomic. It thus always provides consistent responses.

A3 There is a hierarchy of public keys, with the public key of the root embedded in
each compliant device and available to content providers. Using such an infras-
tructure, each participant can prove its identity or verify another’s authentication
without requiring contact with a trusted party.

A4 The banking system (responsible for encashing payment orders) cooperates with
content providers2 to catch malevolent users. Here, for the sake of simplicity, the
content provider and the bank are the same entity.

A5 When a compliant device signs a payment order, the payment order is cash-able.
This can be accomplished, for instance, by providing each compliant device with
some credit, which can be spent and recharged.

A6 Price negotiations are outside the scope of Nuovo DRM. We assume that the
price of content is negotiated in advance by the participants. In Nuovo DRM,
the price of the content being traded is bundled with the requested rights.

Provider-customer protocol (P2C) The owner of C wants to buy item M

with rights R from content provider P .

2 Though this assumption may not be universally acceptable, e.g. due to geographical diversity of
content providers and banking systems used by customers, the required degree of collaboration
makes the assumption practically tenable.

4

1. owner(C) → C : P, h(M), R
2. C → P : C, nC

3. P → C : {nP , nC , C}SK(P)

4. C → P : {nC , nP , h(M), R, P}SK(C)

5. P → C : {M}K , {K}PK(C), {R, nC}SK(P)

In the first step, the hash of the desired content, possibly retrieved from a trusted
public directory, with a right and the identity of a legitimate provider is provided
to the compliant device C. Following assumption A6, owner (C) and P have already
reached an agreement on the price. Whether P is a legitimate provider can be checked
by C (assumption A3) and vice versa. In step 2, C generates a fresh nonce nC and
sends it to P , who will continue the protocol only if C is a compliant device. Step 3
completes mutual authentication3 between C and P (based on the ISO/IEC 9798-
3 three-pass mutual authentication protocol, see e.g. [5]). Message 4 constitutes
a payment order from C to P . After receiving this message, P checks if R was
previously agreed upon (assumption A6) and only if so, it stores the payment order
(for future/immediate encashing) and performs step 5 after generating a random
key K. When C receives message 5, it decrypts {K}PK(C), extracts M and checks
if it matches h(M) in message 1, and nC is the same as the nonce in message 2. If
these tests pass, C updates RC(M) with R.

We define a set of abstract actions merely to highlight important steps of the
protocol. These actions are used in the formalization to define desired (or undesired)
behaviors of the protocol. For the P2C protocol, C performs the abstract action
request(C, h(M), R, P) at step 4, P performs issue(P, h(M), R,C) at step 5 and
finally C performs update(C, h(M), R, P) upon accepting message 5.

Customer-customer protocol (C2C) The owner of D wants to buy item M

with rights R′ from reseller C.

1. owner (D) → D : C, h(M), R′

2. D → C : D, nD

3. C → D : {nC , nD, D}SK (C)

4. D → C : {nD, nC , h(M), R′, C}SK(D)

5. C → D : {M}K , {K}PK(D), {R′, nD}SK(C)

At step 4, D performs the abstract action request(D,h(M), R′, C). At step 5, C
performs issue(C, h(M), R′, D) and more importantly, atomicly updates the right
associated with M (reflecting that some part of RC(M) has been used for reselling
M) and stores the payment order signed by D. Note that the atomicity of these
actions is important as it guarantees that C does not store the payment order without
simultaneously updating the right RC(M). Upon accepting message 5, D performs
update(D,h(M), R′, C). This protocol is similar to the provider-customer protocol
and its detailed description is skipped here. We however remark that checking for
compliance is not as easy as in the provider-customer protocol, mainly because of
revoked devices. This issue is examined in Section 5 in more detail.
3 One could argue that since C is a trusted computing device, P does not need to check the

freshness of the communication. However, in this case P would need to remember nonces to
prevent replaying payment orders (message 4). It can thus be thought as a trade-off, stateless
providers with mutual authentication vs. stateful providers and one-way authentication.

5

As mentioned earlier, a malicious owner (C) can abort before delivering message
5 to D or this message can simply be lost because of a hardware failure. To prevent
such unfair situations (for D) we provide a recovery mechanism to obtain the lost
content.

Recovery sub-protocol In case of a failure in communicating message 5 in
the C2C protocol, D can start a recovery sub-protocol with the content provider.
The purpose of the recovery is to assure that D receives the content and rights
that owner(D) wished (and ostensibly paid for). The owner of D can initiate the
following protocol at any time after D has sent message 4 in the customer-customer
protocol and a connection with the provider becomes available.

5r. owner (D) → D : resolves(D)
6r. D → P : D, n′

D

7r. P → D : {nP , n
′
D, D}SK (P)

8r. D → P : {n′
D, nP , 〈nD, nC , h(M), R′, C〉, P}SK(D)

9r. P → D : {M}K , {K}PK (D), {R′, n′
D}SK(P)

The abstract action request(D,h(M), R′, P) is performed byD at step 8r. At step 9r,
P performs issue(P, h(M), R′, D). Upon accepting message 9r,D performs the action
update(D,h(M), R′, P). This protocol is similar to the provider-customer protocol
and its detailed description is skipped here, only the behavior of P in resolving failed
exchanges is explained below.

Assume thatD tries to resolve an unsuccessful exchange with C. As a result of the
atomicity of C’s actions in customer-customer protocol, only the following situations
are possible: either C has updated RC(M) and has the payment order of message 4
(which it is thus entitled to have), or C does not have the payment order and has not
updated RC(M). In the latter case, the combination of the failed customer-customer
protocol and its subsequent resolve simply boils down to a provider-customer ex-
change. However, when C owns the payment order from D, two different cases can
happen: (1) If C tries to encash the payment order after D has resolved, P is the
one who pays the money to C, as D has already paid P . Note that P is not paid for
sendingM to D, which is fair because it has already been paid by C when C received
a right to resell M . (2) If D resolves after C has encashed the payment order, P will
not charge D, because D has already paid the price and C has updated the right
RC(M), for which it has already (directly or indirectly) paid P .

One can argue that the recovery sub-protocol may also fail due to lossy commu-
nication channels. As a way to mitigate it, one can build a more persistent communi-
cation channel for content providers e.g. by using an FTP server as an intermediary.
The provider would upload the content, and the device would download it from the
server. As the content is encrypted, no special access control on the server would be
needed. Such resilient communication channels are generally necessary to guarantee
fairness [2]. See Section 4.2 for related discussions.

As a final note, we emphasize that we only consider compliant devices (assump-
tion A1) here and this protocol can be trivially attacked if the devices are tampered.
Section 5 discusses methods for revoking tampered devices and resisting systematic
content pirating attacks.

6

3.1 Nuovo DRM’s goals

The NPGCT scheme was designed to resist against certain types of attacks. From
the original requirements, providing secrecy and resisting content masquerading are
relevant to our formalization4. Adding sub-protocols for providing fairness in ex-
change, however, means that Nuovo DRM protocol has to also provide effectiveness
and fairness.

– Secrecy states that no outsider may access secret items, which are usually en-
crypted for intended receivers. NPGCT scheme and consequently Nuovo DRM
scheme manage the distribution of DRM-protected contents by encrypting them
for intended compliant devices. These schemes thus have to guarantee that a
DRM-protected content never appears unencrypted in the protocol runs.

– Content masquerading occurs when content M is being passed off as content
M ′, for M 6= M ′. Preventing this ensures that a malicious participant cannot
feed M ′ to a device which has requested M .

– Effectiveness states that if honest participants run a protocol, the protocol
terminates successfully. Effectiveness is a sanity check for the functionality of
the protocol, and may thus be checked in a system without an attacker.

– Fairness in exchange informally means that either all or none of the involved
parties receive a desired item in exchange for their own. It has been shown that
fair exchange is impossible without a trusted third party [16]. In our protocol,
the content provider plays the role of a trusted third party (TTP) for C2C
exchanges. Moreover, since the content provider can provide the exact missing
content, strong fairness can be achieved in the system. As this property is a
liveness property5, a resilience assumption on the communication channels is
required for fairness to hold in general. For an in-depth discussion of fairness,
strong fairness and resilient communication channels, we refer readers to [2].

4 Formal analysis

Formal verification techniques can bring to light issues that have been overlooked by
protocol designers and provide a certain level of confidence in the correctness and
security of protocols [18] In this section we briefly describe the necessary machinery
to formally verify whether Nuovo DRM achieves its design goals. This formal verifi-
cation can be seen as a sequence of steps: specify the protocol, model the intruder,
state the desired properties and verify the protocol. To this end, the Nuovo DRM
scheme is formalized in µCRL [11], a process algebraic language (briefly explained
in appendix A). µCRL, an extension of ACP [4] with abstract data types, is a lan-
guage for specifying distributed systems and protocols in an algebraic style. A µCRL
specification describes a labeled transition system, in which states represent process
terms and edges are labeled with actions.

4 The rest of the requirements in [15] concern mainly tracking circumvented devices and possible
attacks on the storage backup systems, which are out of the scope of our analysis.

5 Properties of systems can be divided into two classes: safety properties, stating unwanted situa-
tions do not happen, and liveness properties, stipulating desired events eventually happen. For
a formal definition of these property classes see [1].

7

In our modeling approach, each participant of a protocol is seen as a process.
The intruder, also specified as a process, is part of the environment and may also
have a legitimate role in the protocol. Communications between protocols’ partic-
ipants happen via a network, which is controlled by the intruder. (For a complete
specification of the Nuovo DRM scheme in µCRL see appendix B.)

In the analysis technique used, the intruder is allowed to have access to un-
bounded resources of data (like fresh nonces), should it need those to exploit a
protocol. Our analysis method is fully automatic and the verification algorithms
do not need human intervention. Here we consider only a (small) finite number of
concurrent sessions of the protocol (see Section 4.4). Although this generally cannot
constitute a theoretical proof of correctness or security for a protocol, in many prac-
tical situations it suffices. The fact that the problem of the security of cryptographic
protocols is not decidable (e.g. see [8]) implies that a trade-off has to be made be-
tween completeness of the proofs and their automation. Similar to [9], we do not
consider attacks resulting from weaknesses of the cryptographic functions used in
the protocol. Type flaw attacks6 are omitted from our analysis. They can however
be easily prevented [12].

The communication model used here is further detailed in Section 4.1. The character-
istic features of the intruder model used in this study are described in Section 4.2.
The requirements of the protocol are then expressed in the regular alternation-
free µ-calculus [13], which is sketched in Section 4.3. The model checker EVALU-
ATOR 3.0 [13] from the CADP toolset [10], capable of efficiently checking regular
alternation-free µ-calculus formulas, is used here to verify the stated properties of
the protocol. The formalization of these properties and the results of the verification
are presented in Section 4.4.

4.1 Communication model

We consider two different communication models. The first model is used to verify
the effectiveness property. In this model there is no intruder and all participants are
honest. A process A can send a message m to B (denoted by send(A,m,B)) only if
B at the same time is in a position to receives it from A (denoted by recv(A,m,B)).
The synchronization between send(A,m,B) and recv(A,m,B) actions is denoted
com(A,m,B), which formalizes the “A→ B : m” notation of Sections 2 and 3.

In order to verify the remaining properties, a model where the intruder has
complete control over the communication network is used. When a process A sends
a message m with the intention that it should be received by B, it is in fact the
intruder that receives it, and it is only from the intruder that B may receive m. The
send and receive actions (between the intruder and other participants) are again
synchronized.

6 A type-flaw attack happens when a field in a message that was originally intended to have one
type is interpreted as having another type.

8

4.2 Intruder model

We mainly follow Dolev and Yao’s approach to model the intruder [9]. The Dolev-
Yao intruder has complete control over the network. It intercepts and remembers all
messages that have been transmitted. It can decrypt and sign messages, if it knows
the corresponding key. It can compose and send new messages from its knowledge.
It can also remove or delay messages in favor of others being communicated. In this
model, cryptographic primitives, such as signing and hashing, are assumed ideal.
Under certain assumptions such as perfect cryptography, the Dolev-Yao intruder
has been shown to be the most powerful attacker model [7]. In our formalization,
this intruder can be seen as a non-deterministic process that blindly exhausts all
possible sequences of actions, and then checks the effect of these on the protocol by
exploring the resulting state space.

The model of intruder used here is however different from the standard Dolev-
Yao intruder in certain aspects (for its formal specification see appendix A). These
differences root in two characteristics of the protocol analyzed here and its require-
ments, as is described below.

Trusted devices play a crucial role in this protocol. They limit the power of the
intruder significantly7. However, the intruder has the ability to turn its (trusted)
devices off deliberately. This is a threat to fairness in exchange, because the devices
will deviate from the protocol description. This ability has been implemented in
our model by letting the intruder’s device(s) non-deterministically select between
continuing the protocol and aborting communications at each step.

Resilient networks are generally required to guarantee liveness of protocols. No
liveness property can be proved in the Dolev-Yao model, since this intruder can
simply block all communications (e.g. see [14]). To verify fair exchange properties,
resilient communication channels (abbreviated as RCC) are often assumed. These
guarantee that all transmitted messages will eventually reach their destination, pro-
vided there is a recipient for them [2]. The behavior of our intruder model is limited
by RCC , i.e. it cannot indefinitely block the network8. Since the intruder is a non-
deterministic process in our model, that part of the behavior that violates RCC
has to be purged afterward. The action com †, used in Section 4.4, represents com-
munication actions not required by RCC. This action is used to purge unnecessary
collaborative behaviors of the intruder. A formalization of an intruder model that
respects RCC is given in [6].

To indicate violation of the secrecy requirement, the intruder process performs
the abstract action revealed (see appendix A) when it gets access to a plain (non-
encrypted) version of any DRM-protected content. This action clearly does not in-
dicate the case that the intruder can only render an item using its trusted device,
which is a normal behavior in the system.

7 For the moment we dismiss the possibility of tampering a trusted devices. Countermeasures for
such cases are discussed in Section 5.

8 E.g. a wireless channel provides RCC for mobile devices, assuming that jamming can only be
locally sustained.

9

4.3 Regular alternation-free µ-calculus

Here we briefly sketch the regular alternation-free µ-calculus that is used to express
the properties from Section 3.1. For a complete treatment of its syntax and semantics
see [13]. This logic consists of regular formulas and state formulas. Regular formu-
las, which describe sets of traces, are built upon action formulas and the standard
regular expression operators. We use ‘.’, ‘∨’, ‘¬’ and ‘∗’ for concatenation, choice,
complement and transitive-reflexive closure, respectively, of regular formulas. State
formulas, expressing properties of states, are built upon propositional variables, stan-
dard boolean operators, the possibility modal operator 〈· · · 〉 (3 in modal logics),
the necessity modal operator [· · ·] (2 in modal logics) and the minimal and maximal
fixed point operators µ and ν. The state formulas are assumed to be “alternation-
free”, which intuitively means that alternation of minimal and maximal fixed points
is prohibited. The symbols F and T are used in both action formulas and state
formulas. In action formulas they represent no action and any action and in state
formulas they denote the empty set and the entire state space, respectively. The
wildcard action parameter ‘−’ represents any parameter of an action.

4.4 Analysis results

In this section we describe the results obtained from the formal analysis of the Nuovo
DRM scheme. The formal analysis considers two scenarios. The first verifies effective-
ness using the first communication model of Section 4.1. The second scenario uses
the second communication model to verify the remaining properties. Both scenarios
consist of two compliant devices (C and D) which are controlled by an intruder I. P
denotes the legitimate content provider. The desired properties are encoded in the
regular alternation µ-calculus.
Honest scenario S0: The communication network is assumed operational and no
malicious agent is present. C is ordered to buy an item from P . Subsequently C

resells the purchased item to D.
This scenario was model-checked using the CADP toolset, confirming that it is

deadlock-free, and effective as specified below.

Result 1 Nuovo DRM is effective for scenario S0, meaning that it satisfies the
following properties:

1. Each request is eventually responded.

∀m ∈ Cont , r ∈ Rgts . [T∗.request (C,m, r, P)] µX.(〈T〉T ∧ [¬update(C,m, r, P)]X)
∧
[T∗.request (D,m, r,C)] µX.(〈T〉T ∧ [¬update(D,m, r, C)]X)

2. Each received item is preceded by its payment.

∀m ∈ Cont , r ∈ Rgts .

[(¬paid(P,m, r, C))∗.update(C,m, r, P)]F ∧ [(¬paid(C,m, r,D))∗.update(D,m, r, C)]F

Dishonest scenario S1: The intruder controls the communication network and
is the owner of the compliant devices C and D. The intruder can instruct the
compliant devices to purchase items from the provider P , exchange items between

10

themselves and resolve a pending transaction. Moreover, the compliant device C
can non-deterministically choose between following or aborting the protocol at each
step, which models the ability of the intruder to turn a compliant device off (see
Section 4.2). We model three concurrent runs of the content provider P , and three
sequential runs of each of C andD. The resulting model was checked with the CADP
toolset and the following results were proven.

Result 2 Nuovo DRM provides secrecy in scenario S1, i.e. no protected content is
revealed to any non-compliant device (in this case: the intruder).

∀m : Cont . [T∗
.revealed (m)]F

Result 3 Nuovo DRM provides fairness in S1 for P , i.e. no compliant device re-
ceives a protected content, unless the corresponding payment has already been made
to P .

∀a ∈ {C,D}, m ∈ Cont , r ∈ Rgts . [(¬issue(P,m, r, a))∗.update(a,m, r, P)]F
∧
[T∗.update(a,m, r, P).(¬issue(P,m, r, a))∗.update(a,m, r, P)]F

Result 4 Nuovo DRM provides strong fairness in S1 for D, as formalized below9:

1. As a customer: If a compliant device pays (a provider or reseller device) for a
content, it will eventually receive it.

Note that there are only finitely many TTPs available in the model, so the in-
truder, in principle, can keep all of them busy, preventing other participants from
resolving their pending transactions. It corresponds to a denial of service attack
in practice, which can be mitigated by putting time limits on transactions with
TTPs. As we abstract away from timing aspects here, instead the action lastttp
is used to indicate that all the available TTPs in the model are exhausted by the
intruder. In other words, if this action does not happen, there is at least one TTP
available for honest participants.

∀m ∈ Cont , r ∈ Rgts . [T∗.request (D,m, r, C).(¬(resolves(D) ∨ update(D,m, r, C)))∗]

< (¬com†(−,−,−))∗.(resolves(D) ∨ update(D,m, r,C)) > T

∧
[(¬lastttp)

∗.request (D,m, r, C).(¬(update(D,m, r, P) ∨ lastttp))∗.
resolves(D).(¬(update(D,m, r, P) ∨ lastttp))

∗]
< (¬com†(−,−,−))∗.update(D,m, r, P) > T

2. As a reseller: no compliant device receives a protected content from a reseller
device, unless the corresponding payment has already been made to the reseller.

∀m ∈ Cont , r ∈ Rgts . [(¬issue(D,m, r, C))∗.update(C,m, r,D)]F
∧
[T∗.update(C,m, r,D).(¬issue(D,m, r, C))∗.update(C,m, r,D)]F

9 Fairness for C is not guaranteed here, because it may quit the protocol prematurely. A protocol,
in principle, guarantees security only for the participants that follow the protocol.

11

Result 5 Nuovo DRM resists content masquerading attacks in S1, ensuring that
compliant devices only receive content which they requested.

∀a ∈ {C,D}, m ∈ Cont , r ∈ Rgts . [(¬request (C,m, r,D))∗.update(C,m, r,D)]F ∧
[(¬request (D,m, r,C))∗.update(D,m, r, C)]F ∧
[(¬request (a,m, r, P))∗.update(a,m, r, P)]F.

Additionally, the intruder cannot feed intruder-constructed content m0 to com-
pliant devices:

∀a ∈ {C,D}, r ∈ Rgts . [T∗.update(C,m0, r,D)]F ∧
[T∗.update(D,m0, r, C)]F ∧
[T∗.update(a,m0, r, P)]F.

5 Detection and revocation of compromised devices

The security of Nuovo DRM hinges on the compliance of the user devices. However,
it is reasonable to assume that over time, some of these devices will be compro-
mised. In this section, we examine how to detect compromised devices and propose
a method to limit interactions with these devices. As in [15], the proposed mecha-
nism aims at detecting powerful attackers and systematic content pirating, rather
than occasionally misbehaving users.

A compromised device can perform two obvious attacks 10. First, it can overuse
its reselling rights. To detect large scale overselling, the provider reconstructs the the
chain of sold rights. This is possible because of assumption A4 – to acquire payment
for sold rights, devices need to contact the provider.

In detail: the provider maintains a directed weighted graph G = (V,E) for each
sold content-right combination. Each node of G represents a compliant device and
the function E : V ×V → Nat , where Nat denotes natural numbers, represents right
transfers between each two compliant devices. For each v ∈ V , weight difference is
defined as ∆(v) =

∑
v′∈V

E(v, v′)−
∑

v′∈V
E(v′, v) (outgoing weight minus incoming

weight). We define U ⊆ V , the set of nodes which has sold a bundle, but has not yet
encashed it. We argue that if vc is a compromised device which engages in large scale
overselling, after a reasonable amount of time, the provider will detect vc’s behavior
by noting that the weight difference of vc plus the number of yet-to-cash rights are
positive, i.e. ∆(vc) +

∑
u∈U

∆(u) > 0. By putting time limits on encashing payment
orders, a provider can control the time bound on detecting compromised devices.

Secondly, a compromised device can refuse to pay for the content it receives.
According to assumption A5, user devices are provided with (and thus aware of)
credits. Therefore, the second attack could easily be detected by the banking entity
(collaborating with the providers) when a device signs a payment order without
having enough credit for that, as a compliant device would not cause this error.

Given that cheating – and thus compromised – devices are detected, countermea-
sures can be taken. Confiscation of the compromised device is of course preferred.

10 We do not discuss illegal content extraction attacks. For related discussions and countermeasures
see [15].

12

However, in practice this will not always be possible. Instead, a Device Revocation
List (DRL), containing public keys of detected compromised devices, can be used
to limit interactions of compliant devices with them. To ensure correct working of
device revocation, soundness of this DRL is required – no compliant device is ever
listed on the DRL.

Completeness of the DRL is also desirable: all compromised devices are listed on
the DRL. Such a list could grow quite large over time, as more and more compro-
mised devices are detected. However, not all devices are equally likely to interact.
Therefore, there is a trade-off between security and the size of the DRL stored on a
compliant device. There are various possibilities of how to update that part of the
DRL, that is stored on a device. The following notation is used in the discussion of
some of these possibilities:

L The main DRL, as kept by P

ld the DRL as kept by device D

fd the list of devices with which device D has had contact.
This list is extended each time a device is contacted, which is not in the list. To
keep the size of this list within reasonable bounds, it could be erased after each
contact with the provider that updates the DRL.

Below, four update schemes are described: two extremes (“complete copy” and
“friend-check”) and two between those extremes. They vary in size of the list stored
on devices and security provided (the speed with which relevant updates to the DRL
are propagated to devices).

complete copy: Each device keeps a copy of the entire DRL.
Update: On contact with P : lc := L.
On contact with D: lc := lc ∪ ld.
Advantage: additions to the DRL quickly propagate to compliant devices.
Disadvantage: Large list on each device; large communication overhead.

friend-check: A device only lists those revoked devices, with which it has had
contact.
Update: On contact with P : lc := fc ∩ L.
On contact with D: lc := lc.
Advantage: small lists on each device; low communication overhead
Disadvantage: compromised devices only appear on the DRL list of D after they
have cheated and have had contact with D. This can be too late to prevent D
from being cheated.

propagated list: Each device includes the DRL of all devices it has contacted.
Update: On contact with P : lc := lc ∪ (fc ∩ L).
On contact with D: lc := lc ∪ ld
Advantage: relatively quick propagation of DRL.
Disadvantage: relatively large list stored.

restricted propagation: each device includes the DRL of all devices it has con-
tacted, but does not propagate this further.
In order to do this, new lists rests, resto are introduced. They partition the DRL

13

into a part C has contacted themselves (restrs(C)) and a part that other de-
vices have contacted and told C about (restro(C)). In both cases, lc is given by
lc = restrs(C) ∪ restro(C).
Update: On contact with P : restrs(C) := fc ∩ L.
On contact with D: restro(C) := restro(C) ∪ rests(D).
Advantage: relatively short list stored.
Disadvantage: relatively slower propagation of DRL.

Of these four methods, restricted propagation seems to balance the length of the list
stored the best against the propagation of the DRL. On a further note, the impact of
a corrupted DRL can be limited if each device cleans its DRL every time it contacts
the provider (lc := lc∩L). This would also allow the provider to “un-revoke” devices.

6 Conclusions

We presented a refined version of the NPGCT scheme, formally verified it and proved
that it meets its requirements. As possible future research we consider studying the
accountability of the provider and incorporating the payment phase into the formal
model, besides studying the practical implementation feasibility of the proposed
scheme.

Acknowledgements

We are grateful to Bruno Crispo and Wan Fokkink for reviewing this work and to
Bert Lisser for his help in distributed model checking.

References

1. B. Alpern and F. B. Schneider. Defining liveness. Technical Report TR 85-650, Dept. of
Computer Science, Cornell University, Ithaca, NY, October 1984.

2. N. Asokan. Fairness in electronic commerce. PhD thesis, University of Waterloo, 1998.
3. G. Avoine, F. Gartner, R. Guerraoui, K. Kursaweothers, S. Vaudenay, and M. Vukolic. Reducing

fair exchange to atomic commit. Technical Report IC/2004/11, Swiss Federal Institute of
Technology (EPFL), 2004.

4. J. Bergstra and J. Klop. Process algebra for synchronous communication. Information and

Control, 60(3):109–137, 1984.
5. C. Boyd and A. Mathuria. Protocols for authentication and key establishment. Information

Security and Cryptography. Springer-Verlag, 2003.
6. J. Cederquist and M. Torabi Dashti. An intruder model for verifying termination in security

protocols. Technical Report TR-CTIT-05-29, University of Twente, Enschede, The Netherlands,
2005.

7. I. Cervesato. Data access specification and the most powerful symbolic attacker in MSR. In
ISSS ’02, volume 2609 of LNCS, pages 384–416. Springer, 2003.

8. H. Comon and V. Shmatikov. Is it possible to decide whether a cryptographic protocol is secure
or not? J. of Telecommunications and Information Technology, 4:3–13, 2002.

9. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Trans. on Information

Theory, IT-29(2):198–208, 1983.
10. J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighireanu. CADP:

A protocol validation and verification toolbox. In CAV ’98, volume 1102 of LNCS, pages
437–440. Springer-Verlag, 1996.

14

11. J. F. Groote and A. Ponse. The syntax and semantics of µCRL. In Algebra of Communicating

Processes ’94, Workshops in Computing Series, pages 26–62. Springer-Verlag, 1995.
12. J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks on security protocols.

In CSFW ’00, page 255, Washington, DC, USA, 2000. IEEE Computer Society.
13. R. Mateescu and M. Sighireanu. Efficient on-the-fly model-checking for regular alternation-free

µ-calculus. Sci. Comput. Program., 46(3):255–281, 2003.
14. C. Meadows. Formal methods for cryptographic protocol analysis: Emerging issues and trends.

IEEE Journal on Selected Areas in Communication, 21(1):44–54, January 2003.
15. S. Nair, B. Popescu, C. Gamage, B. Crispo, and A. Tanenbaum. Enabling DRM-preserving dig-

ital content redistribution. In 7th International IEEE Conference on E-Commerce Technology,
pages 151–158, München, Germany, 19-22, July 2005. IEEE Computer Society.

16. H. Pagnia and F. C. Gartner. On the impossibility of fair exchange without a trused third party.
Technical Report TUD-BS-1999-02, Department of Computer Science, Darmstadt University
of Technology, 1999.

17. R. Pucella and V. Weissman. A logic for reasoning about digital rights. In CSFW ’02, page
282, Washington, DC, USA, 2002. IEEE Computer Society.

18. P. Y. A. Ryan, S. A. Schneider, M. H. Goldsmith, G. Lowe, and A. W. Roscoe. The Modelling

and Analysis of Security Protocols : the CSP Approach. Addison-Wesley, 2001.
19. M. Terada, M. Iguchi, M. Hanadate, and K. Fujimura. An optimistic fair exchange protocol

for trading electronic rights. In CARDIS ’04, pages 255–270. Kluwer, 2004.

A A µCRL specification of the intruder model

In this section we briefly introduce the µCRL specification language, which is then
used to formalize the intruder process described in Section 4.2.
The µCRL specification language In a µCRL specification processes are
represented by process terms, which describe the order in which the actions may
happen in a process. A process term consists of action names and recursion variables
combined by process algebraic operators. The operators ‘·’ and ‘+’ are used for
the sequential and alternative composition (“choice”) of processes, respectively. The
operator

∑
d∈D

P (d) behaves like P (d1)+P (d2)+· · · . The process expression p�b�q,
where b is a term of sort Bool and p and q are processes, behaves like p if b is true,
and like q if b is false. The predefined action δ represents a deadlock, i.e. from then
on, no action can be performed.
The intruder model In the specification below, Agent represents the set of
all honest participants of the protocol and Msg represents the set of all messages.
X is the intruder’s knowledge set. Y contains messages buffered for delivery. The
set operators ∪ and \ have their usual meanings. The set synth(X) represents the
(infinite) set of messages that the intruder is able to synthesize from the messages
in set X, e.g. by applying pairing, signing and so on. For a complete description of
this model we refer to [6].

I(X,Y) =
∑

p∈Agent
m∈Msg

recv(p,m, I).I(X ∪ {m}, Y ∪ {m}) +

∑

p∈Agent
m∈Msg

send(I,m, p).I(X,Y \ {m}) �m ∈ Y � δ +

∑

p∈Agent
m∈Msg

send
†(I,m, p).I(X,Y) �m ∈ synth(X) \ Y � δ +

∑

m∈Cont

revealed (m).δ �m ∈ synth(X) � δ

15

B µCRL code

The following code presents a µCRL specification of the Nuovo DRM scheme for
scenario S1 (Section 4.4).

% Nuovo DRM protocol spec

% C and D are two complaint devices.

% P is a legitimate content provider and banking entity.

% The intruder, I, is the owner of the compliant devices and

% controls the communication media.

% We model three concurrent runs of P and three sequential runs

% of each of C and D.

%%

% Bool Data Type

%%

sort Bool

func T,F: -> Bool

map and,or: Bool # Bool -> Bool

not: Bool -> Bool

eq: Bool # Bool -> Bool

leq: Bool # Bool -> Bool

if: Bool # Bool # Bool -> Bool

var x,x’: Bool

rew

if(T,x,x’)=x

if(F,x,x’)=x’

and(T,T)=T

and(F,x)=F

and(x,F)=F

or(T,x)=T

or(x,T)=T

or(F,F)=F

not(F)=T

not(T)=F

%implication.

leq(x,x)=T

leq(F,x)=T

leq(T,F)=F

eq(x,x’)=and(leq(x,x’),leq(x’,x))

%%

% Key Data Type

%%

sort Key

func

%symmetric keys used by P

k1 :-> Key

k2 :-> Key

k3 :-> Key

%symmetric key used by C

kc :-> Key

%symmetric key used by D

kd :-> Key

%symmetric key owned by I

16

ki :-> Key

map eq:Key#Key->Bool

leq:Key#Key->Bool

var k,k’: Key

rew leq(k,k)=T

leq(k1,k2)=T leq(k1,k3)=T leq(k1,ki)=T leq(k1,kc)=T leq(k1,kd)=T

leq(k2,k1)=F leq(k2,k3)=T leq(k2,ki)=T leq(k2,kc)=T leq(k2,kd)=T

leq(k3,k1)=F leq(k3,k2)=F leq(k3,ki)=T leq(k3,kc)=T leq(k3,kd)=T

leq(ki,k1)=F leq(ki,k2)=F leq(ki,k3)=F leq(ki,kc)=T leq(ki,kd)=T

leq(kc,k1)=F leq(kc,k2)=F leq(kc,k3)=F leq(kc,ki)=F leq(kc,kd)=T

leq(kd,k1)=F leq(kd,k2)=F leq(kd,k3)=F leq(kd,ki)=F leq(kd,kc)=F

eq(k,k’)=and(leq(k,k’),leq(k’,k))

%%

% Item Data Type

%%

sort Item

func

%items that P provides

dp1,dp2: -> Item

%item that I owns

di :-> Item

map eq: Item # Item -> Bool

leq: Item # Item -> Bool

var d,d’: Item

rew leq(d,d)=T

leq(dp1,dp2)=T leq(dp1,di)=T

leq(dp2,dp1)=F leq(dp2,di)=T

leq(di,dp1)=F leq(di,dp2)=F

eq(d,d’)=and(leq(d,d’),leq(d’,d))

%%

% Right Data Type

%%

sort Right

func

%rights, known to every one

r1,r2: -> Right

map eq: Right # Right -> Bool

leq: Right # Right -> Bool

var r,r’: Right

rew leq(r,r)=T

leq(r1,r2)=T

leq(r2,r1)=F

eq(r,r’)=and(leq(r,r’),leq(r’,r))

%%

% Nonce Data Type

%%

sort Nonce

func n1: Player -> Nonce

n2: Player -> Nonce

17

n3: Player -> Nonce

nf :-> Nonce

map eq: Nonce # Nonce -> Bool

leq: Nonce # Nonce -> Bool

nxt : Nonce -> Nonce

var p,p’: Player

n,n’: Nonce

rew

leq(nf,nf)=T

leq(nf,n1(p))=T

leq(nf,n2(p))=T

leq(nf,n3(p))=T

leq(n1(p),nf)=F

leq(n2(p),nf)=F

leq(n3(p),nf)=F

leq(n1(p),n1(p’))=leq(p,p’)

leq(n1(p),n2(p’))=leq(p,p’)

leq(n1(p),n3(p’))=leq(p,p’)

leq(n2(p),n1(p’))=if(leq(p,p’),not(eq(p,p’)),F)

leq(n2(p),n2(p’))=leq(p,p’)

leq(n2(p),n3(p’))=leq(p,p’)

leq(n3(p),n1(p’))=if(leq(p,p’),not(eq(p,p’)),F)

leq(n3(p),n2(p’))=if(leq(p,p’),not(eq(p,p’)),F)

leq(n3(p),n3(p’))=leq(p,p’)

eq(n,n’)=and(leq(n,n’),leq(n’,n))

% imposing finite number of runs on each process and

% providing different nonces to different instances of P

nxt(n1(p))=n2(p)

nxt(n2(p))=n3(p)

nxt(n3(p))=nf

nxt(nf)=nf

%%

% Player Data Type

%%

sort Player

func

P,D,C,I :-> Player

map eq : Player # Player->Bool

leq: Player # Player->Bool

var p,p’: Player

rew leq(p,p)=T

leq(I,C)=T leq(I,D)=T leq(I,P)=T

leq(C,I)=F leq(C,D)=T leq(C,P)=T

leq(D,I)=F leq(D,C)=F leq(D,P)=T

leq(P,I)=F leq(P,C)=F leq(P,D)=F

eq(p,p’)=and(leq(p,p’),leq(p’,p))

%%

% Message Data Type

%%

18

sort Message

func

rgt: Right -> Message

itm: Item->Message

plyr: Player -> Message

keym: Key -> Message

nnc : Nonce -> Message

pair: Message#Message->Message

h: Message->Message

sign: Player#Message->Message %signed message -by- a player

penc : Player#Message->Message %public-key encryption -for- a player

enc: Key#Message->Message

map eq: Message#Message->Bool

leq: Message#Message->Bool

var m1,m2,m3,m4: Message

p,p’: Player

d,d’: Item

k,k’: Key

n,n’: Nonce

r,r’: Right

rew

eq(m1,m2)=and(leq(m1,m2),leq(m2,m1))

leq(itm(d),itm(d’))=leq(d,d’)

leq(rgt(r),rgt(r’))=leq(r,r’)

leq(nnc(n),nnc(n’))=leq(n,n’)

leq(plyr(p),plyr(p’))=leq(p,p’)

leq(keym(k),keym(k’))=leq(k,k’)

leq(pair(m1,m2),pair(m3,m4))=if(eq(m1,m3),leq(m2,m4),leq(m1,m3))

leq(h(m1),h(m2))=leq(m1,m2)

leq(sign(p,m1),sign(p’,m2))=if(eq(p,p’),leq(m1,m2),leq(p,p’))

leq(penc(p,m1),penc(p’,m2))=if(eq(p,p’),leq(m1,m2),leq(p,p’))

leq(enc(k,m1),enc(k’,m2))=if(eq(k,k’),leq(m1,m2),leq(k,k’))

leq(itm(d),rgt(r’))=T

leq(itm(d),nnc(n’))=T

leq(itm(d),plyr(p’))=T

leq(itm(d),pair(m3,m4))=T

leq(itm(d),h(m2))=T

leq(itm(d),sign(p’,m2))=T

leq(itm(d),penc(p’,m2))=T

leq(itm(d),enc(k’,m2))=T

leq(itm(d),keym(k’))=T

leq(rgt(r’),itm(d))=F

leq(rgt(r’),nnc(n’))=T

leq(rgt(r’),plyr(p’))=T

leq(rgt(r’),pair(m3,m4))=T

leq(rgt(r’),h(m2))=T

leq(rgt(r’),sign(p’,m2))=T

leq(rgt(r’),penc(p’,m2))=T

leq(rgt(r’),enc(k’,m2))=T

leq(rgt(r’),keym(k’))=T

19

leq(nnc(n’),itm(d))=F

leq(nnc(n’),rgt(r’))=F

leq(nnc(n’),plyr(p’))=T

leq(nnc(n’),pair(m3,m4))=T

leq(nnc(n’),h(m2))=T

leq(nnc(n’),sign(p’,m2))=T

leq(nnc(n’),penc(p’,m2))=T

leq(nnc(n’),enc(k’,m2))=T

leq(nnc(n’),keym(k’))=T

leq(plyr(p’),itm(d))=F

leq(plyr(p’),rgt(r’))=F

leq(plyr(p’),nnc(n’))=F

leq(plyr(p’),pair(m3,m4))=T

leq(plyr(p’),h(m2))=T

leq(plyr(p’),sign(p,m2))=T

leq(plyr(p’),penc(p,m2))=T

leq(plyr(p’),enc(k’,m2))=T

leq(plyr(p’),keym(k’))=T

leq(pair(m3,m4),itm(d))=F

leq(pair(m3,m4),rgt(r’))=F

leq(pair(m3,m4),nnc(n’))=F

leq(pair(m3,m4),plyr(p’))=F

leq(pair(m3,m4),h(m2))=T

leq(pair(m3,m4),sign(p,m2))=T

leq(pair(m3,m4),penc(p,m2))=T

leq(pair(m3,m4),enc(k’,m2))=T

leq(pair(m3,m4),keym(k’))=T

leq(h(m1),itm(d))=F

leq(h(m1),rgt(r’))=F

leq(h(m1),nnc(n’))=F

leq(h(m1),plyr(p’))=F

leq(h(m1),pair(m3,m4))=F

leq(h(m1),sign(p,m2))=T

leq(h(m1),penc(p,m2))=T

leq(h(m1),enc(k’,m2))=T

leq(h(m1),keym(k’))=T

leq(sign(p,m1),itm(d))=F

leq(sign(p,m1),rgt(r’))=F

leq(sign(p,m1),nnc(n’))=F

leq(sign(p,m1),plyr(p’))=F

leq(sign(p,m1),pair(m3,m4))=F

leq(sign(p,m1),h(m2))=F

leq(sign(p,m1),penc(p’,m2))=T

leq(sign(p,m1),enc(k’,m2))=T

leq(sign(p,m1),keym(k’))=T

leq(penc(p,m2),itm(d))=F

leq(penc(p,m2),rgt(r’))=F

leq(penc(p,m2),nnc(n’))=F

leq(penc(p,m2),plyr(p’))=F

leq(penc(p,m2),pair(m3,m4))=F

leq(penc(p,m2),h(m1))=F

20

leq(penc(p’,m2),sign(p,m1))=F

leq(penc(p,m1),enc(k’,m2))=T

leq(penc(p,m2),keym(k’))=T

leq(enc(k’,m1),itm(d))=F

leq(enc(k’,m1),rgt(r’))=F

leq(enc(k’,m1),nnc(n’))=F

leq(enc(k’,m1),plyr(p’))=F

leq(enc(k’,m1),pair(m3,m4))=F

leq(enc(k’,m1),h(m2))=F

leq(enc(k’,m1),sign(p,m2))=F

leq(enc(k’,m1),penc(p,m2))=F

leq(enc(k’,m1),keym(k))=T

% This ordering, putting the symmetric keys at the end, is used

% in the implementation of -- decrypt -- function below.

leq(keym(k’),itm(d))=F

leq(keym(k’),rgt(r’))=F

leq(keym(k’),nnc(n’))=F

leq(keym(k’),plyr(p’))=F

leq(keym(k’),pair(m3,m4))=F

leq(keym(k’),h(m2))=F

leq(keym(k’),sign(p,m1))=F

leq(keym(k’),penc(p,m1))=F

leq(keym(k’),enc(k,m1))=F

%%

% Ordered set of Messages

%%

sort Knowledge

func emptyset :-> Knowledge

set : Message # Knowledge -> Knowledge

map eq: Knowledge # Knowledge -> Bool

in: Message # Knowledge -> Bool

if: Bool # Knowledge # Knowledge -> Knowledge

add: Message # Knowledge -> Knowledge

rem: Message # Knowledge -> Knowledge

synthadd: Message # Knowledge -> Knowledge

union : Knowledge # Knowledge -> Knowledge

var u,v: Knowledge

m,m’: Message

rew

eq(emptyset,emptyset)=T

eq(emptyset, set(m,u))=F

eq(set(m,u), emptyset)=F

eq(set(m,u),set(m’,v))=if(eq(m,m’),eq(u,v),F)

in(m,emptyset)=F

in(m,set(m’,u))=if(leq(m,m’),eq(m,m’),in(m,u))

if(T,u,v)=u

if(F,u,v)=v

21

add(m,emptyset)= set(m,emptyset)

add(m,set(m’,u))=if(leq(m,m’),

if(eq(m,m’),set(m’,u),set(m,set(m’,u)))

,set(m’,add(m,u)))

rem(m,emptyset)=emptyset

rem(m,set(m’,u))=if(leq(m,m’),if(eq(m,m’),u,set(m’,u)),set(m’,rem(m,u)))

synthadd(m,u)=if(synth(m,u),u,add(m,u))

union(u,emptyset)=u

union(u,set(m,v))=synthadd(m,union(u,v))

% What the intruder can synthesize

map synth: Message # Knowledge -> Bool

var

u : Knowledge

m,m’: Message

p: Player

r: Right

d: Item

n: Nonce

k: Key

rew

% Intruder has no hard-coded knowledge,

% except for the public keys of other agents

% and its own private key.

synth(itm(d),u)=in(itm(d),u)

synth(rgt(r),u)=in(rgt(r),u)

synth(nnc(n),u)=in(nnc(n),u)

synth(plyr(p),u)=in(plyr(p),u)

synth(pair(m,m’),u)=and(synth(m,u),synth(m’,u))

synth(h(m),u)=or(in(h(m),u),synth(m,u))

synth(sign(p,m),u)=or(in(sign(p,m),u),and(eq(p,I),synth(m,u)))

synth(penc(p,m),u)=or(in(penc(p,m),u),synth(m,u))

synth(enc(k,m),u)=or(in(enc(k,m),u),and(synth(keym(k),u),synth(m,u)))

synth(keym(k),u)=in(keym(k),u)

% decomp function

map decomp: Message -> Knowledge

var

m,m’: Message

p: Player

r: Right

d: Item

n: Nonce

k: Key

rew

decomp(itm(d))=set(itm(d),emptyset)

decomp(rgt(r))= set(rgt(r),emptyset)

decomp(nnc(n))=set(nnc(n),emptyset)

decomp(plyr(p))= set(plyr(p),emptyset)

decomp(pair(m,m’))=union(decomp(m),decomp(m’))

decomp(h(m))=set(h(m),emptyset)

22

% A signature includes also the (signed) plain message.

decomp(sign(p,m))=synthadd(sign(p,m),decomp(m))

decomp(penc(p,m))=if(eq(p,I),decomp(m),set(penc(p,m),emptyset))

% Recursive decryption is left for ’decrypt’ function

decomp(enc(k,m))=set(enc(k,m),emptyset)

decomp(keym(k))=set(keym(k),emptyset)

% decrypt function

map decrypt: Knowledge -> Knowledge

var

u : Knowledge

m,m’: Message

p: Player

r: Right

d: Item

n: Nonce

k: Key

rew

decrypt(emptyset)=emptyset

decrypt(set(itm(d),u))=add(itm(d),decrypt(u))

decrypt(set(rgt(r),u))=add(rgt(r),decrypt(u))

decrypt(set(nnc(n),u))=add(nnc(n),decrypt(u))

decrypt(set(plyr(p),u))=add(plyr(p),decrypt(u))

% Never happens:

% decrypt(set(pair(m,m’),u))

decrypt(set(h(m),u))=add(h(m),decrypt(u))

decrypt(set(sign(p,m),u))=add(sign(p,m),decrypt(u))

decrypt(set(penc(p,m),u))=add(penc(p,m),decrypt(u))

decrypt(set(enc(k,m),u))=if(in(keym(k),u),union(decomp(m),decrypt(u)),

add(enc(k,m),decrypt(u)))

% The keys come at the very end of an ordered set and have no

% decryption, so there is no point in continuing the decryption.

decrypt(set(keym(k),u))= set(keym(k),u)

% Unbounded rounds of decryption

% Since the compiling rewriter does not terminate on this function,

% the jitty rewriter should be used in instantiation phase.

map re-decrypt : Knowledge -> Knowledge

var

u : Knowledge

rew

re-decrypt(u)=if(eq(u,decrypt(u)),u,re-decrypt(decrypt(u)))

% Intruder’s initial knowledge (ordered set)

map X0 :-> Knowledge

rew

X0 =

set(itm(di),

set(rgt(r1),

set(rgt(r2),

set(nnc(n1(I)),

set(nnc(n2(I)),

set(plyr(I),

set(plyr(C),

set(plyr(D),

23

set(plyr(P),

set(h(itm(dp1)),

set(h(itm(dp2)),

set(keym(ki),

emptyset))))))))))))

%%

% Declaration of Actions

%%

act send,sendx,recv,com,comx: Player#Message#Player

update: Player # Item # Right # Player

issue: Player # Item # Right # Player

paid : Player # Item # Right # Player

request: Player # Item # Right # Player

revealed : Item

resolves : Player

last_ttp

off

comm send|recv=com

sendx|recv=comx

proc

% The owner of compliant devices, the intruder.

I(X:Knowledge,Y:Knowledge)=

sum(p:Player,sum(m:Message,

recv(p,m,I).I(decrypt(union(decomp(m),X)),add(m,Y))

+

sendx(I,m,p).I(X,Y)<|and(synth(m,X),not(in(m,Y)))|>delta

+

send(I,m,p).I(X,rem(m,Y))<|in(m,Y)|>delta

))

+

sum(d:Item,

(revealed(d).delta<|synth(itm(d),X)|>delta)

<|or(eq(d,dp2),eq(d,dp1))|>delta)

% Compliant device C

% An "off" action has been added as an alternative to the critical

% actions of C. Critical actions are updating rights, engaging in

% a transaction and sending an item to another customer in the

% re-sell phase. It characterizes the intruder’s power to deliberately

% turn a compliant device off.

iPod1(Y:Knowledge, nc:Nonce)=

delta<|eq(nc,nf)|>

(

%buy from the provider

sum(d:Item,sum(r:Right,

recv(I,pair(plyr(P),pair(h(itm(d)),rgt(r))),C).

send(C,pair(plyr(C),nnc(nc)),I).

sum(n’:Nonce,

recv(I,sign(P,pair(pair(nnc(n’),nnc(nc)),plyr(C))),C).

send(C,sign(C,

24

pair(pair(pair(nnc(nc),nnc(n’)),

pair(h(itm(d)),rgt(r))),

plyr(P))),I).

(request(C,d,r,P)+off.iPod1(Y,nxt(nc))).

sum(k:Key,

recv(I,pair(enc(k,itm(d)),pair(penc(C,keym(k)),

sign(P,pair(rgt(r),nnc(nc))))),C).

(update(C,d,r,P)+off.iPod1(Y,nxt(nc)))

)

).

iPod1(add(pair(itm(d),rgt(r)),Y),nxt(nc))

))

+

%buy from a customer

sum(d:Item,sum(r:Right,

recv(I,pair(plyr(D),pair(h(itm(d)),rgt(r))),C).

send(C,pair(plyr(C),nnc(nc)),I).

sum(n’:Nonce,

recv(I,sign(D,pair(pair(nnc(n’),nnc(nc)),plyr(C))),C).

send(C,sign(C,pair(pair(pair(nnc(nc),nnc(n’)),

pair(h(itm(d)),rgt(r))),plyr(D))),I).

(request(C,d,r,D)+off.iPod1(Y,nxt(nc))).

(

(

%normal run

sum(k:Key,

recv(I,pair(enc(k,itm(d)),pair(penc(C,keym(k)),

sign(D,pair(rgt(r),nnc(nc))))),C).

(update(C,d,r,D)+off.iPod1(Y,nxt(nc)))

)

)

+

(

%resolve protocol

(resolves(C).send(C,pair(plyr(C),nnc(nc)),I)+off.iPod1(Y,nxt(nc))).

sum(nz:Nonce,

recv(I,sign(P,pair(pair(nnc(nz),nnc(nc)),plyr(C))),C).

send(C,sign(C,pair(pair(pair(nnc(nc),nnc(nz)),

%the obselete request to D.

pair(pair(pair(nnc(nc),nnc(n’)),

pair(h(itm(d)),rgt(r))),plyr(D))

),plyr(P))),I).

(request(C,d,r,P)+off.iPod1(Y,nxt(nc))).

sum(k:Key,

recv(I,pair(enc(k,itm(d)),pair(penc(C,keym(k)),

sign(P,pair(rgt(r),nnc(nc))))),C).

(update(C,d,r,P)+off.iPod1(Y,nxt(nc)))

)

)

)

)

).

iPod1(add(pair(itm(d),rgt(r)),Y),nxt(nc))

))

+

%sell to a customer

25

sum(n:Nonce,

recv(I,pair(plyr(D),nnc(n)),C).

send(C,sign(C,pair(pair(nnc(nc),nnc(n)),plyr(D))),I).

sum(d:Item,sum(r:Right,

recv(I,sign(D,

pair(pair(pair(nnc(n),nnc(nc)),

pair(h(itm(d)),rgt(r))),

plyr(C))),C).

(

(issue(C,d,r,D)+off.iPod1(Y,nxt(nc))).

(send(C,pair(enc(kc,itm(d)),pair(penc(D,keym(kc)),

sign(C,pair(rgt(r),nnc(n))))),I)+off.iPod1(Y,nxt(nc)))

)<|in(pair(itm(d),rgt(r)),Y)|>delta

)).

iPod1(Y,nxt(nc))

)

)

% Compliant device D

iPod2(Y:Knowledge, nd:Nonce)=

delta<|eq(nd,nf)|>

(

%buy from the provider

sum(d:Item,sum(r:Right,

recv(I,pair(plyr(P),pair(h(itm(d)),rgt(r))),D).

send(D,pair(plyr(D),nnc(nd)),I).

sum(n’:Nonce,

recv(I,sign(P,pair(pair(nnc(n’),nnc(nd)),plyr(D))),D).

send(D,sign(D,

pair(pair(pair(nnc(nd),nnc(n’)),

pair(h(itm(d)),rgt(r))),

plyr(P))),I).

request(D,d,r,P).

sum(k:Key,

recv(I,pair(enc(k,itm(d)),pair(penc(D,keym(k)),

sign(P,pair(rgt(r),nnc(nd))))),D).

update(D,d,r,P)

)

).

iPod2(add(pair(itm(d),rgt(r)),Y),nxt(nd))

))

+

%buy from a customer

sum(d:Item,sum(r:Right,

recv(I,pair(plyr(C),pair(h(itm(d)),rgt(r))),D).

send(D,pair(plyr(D),nnc(nd)),I).

sum(n’:Nonce,

recv(I,sign(C,pair(pair(nnc(n’),nnc(nd)),plyr(D))),D).

send(D,sign(D,

pair(pair(pair(nnc(nd),nnc(n’)),

pair(h(itm(d)),rgt(r))),

plyr(C))),I).

request(D,d,r,C).

(

(

26

%normal run

sum(k:Key,

recv(I,pair(enc(k,itm(d)),pair(penc(D,keym(k)),

sign(C,pair(rgt(r),nnc(nd))))),D).

update(D,d,r,C)

)

)

+

%resolve protocol

(

resolves(D).

send(D,pair(plyr(D),nnc(nd)),I).

sum(nz:Nonce,

recv(I,sign(P,pair(pair(nnc(nz),nnc(nd)),plyr(D))),D).

send(D,sign(D,pair(pair(pair(nnc(nd),nnc(nz)),

%the obselete request to C.

pair(pair(pair(nnc(nd),nnc(n’)),

pair(h(itm(d)),rgt(r))),plyr(C))

),plyr(P))),I).

request(D,d,r,P).

sum(k:Key,

recv(I,pair(enc(k,itm(d)),pair(penc(D,keym(k)),

sign(P,pair(rgt(r),nnc(nd))))),D).

update(D,d,r,P)

)

)

)

)

).

iPod2(add(pair(itm(d),rgt(r)),Y),nxt(nd))

))

+

%sell to a customer

sum(n:Nonce,

recv(I,pair(plyr(C),nnc(n)),D).

send(D,sign(D,pair(pair(nnc(nd),nnc(n)),plyr(C))),I).

sum(d:Item,sum(r:Right,

recv(I,sign(C,

pair(pair(pair(nnc(n),nnc(nd)),

pair(h(itm(d)),rgt(r))),

plyr(D))),D).

(

issue(D,d,r,C).

send(D,pair(enc(kd,itm(d)),pair(penc(C,keym(kd)),

sign(D,pair(rgt(r),nnc(n))))),I)

)<|in(pair(itm(d),rgt(r)),Y)|>delta

)).

iPod2(Y,nxt(nd))

)

)

% Provider

iTune1=

sum(n:Nonce,sum(g:Player,

(

27

recv(I,pair(plyr(g),nnc(n)),P).

send(P,sign(P,pair(pair(nnc(n1(P)),nnc(n)),plyr(g))),I).

sum(d:Item,sum(r:Right,

(

(

recv(I,sign(g,pair(pair(pair(nnc(n),nnc(n1(P))),

pair(h(itm(d)),rgt(r))),plyr(P))),P).

issue(P,d,r,g).

send(P,pair(enc(k1,itm(d)),pair(penc(g,keym(k1)),

sign(P,pair(rgt(r),nnc(n))))),I)

)

+

(

sum(n’:Nonce,sum(n’’:Nonce,sum(g’:Player,

recv(I,sign(g,pair(pair(pair(nnc(n),nnc(n1(P))),

%the obselete request to a customer.

pair(pair(pair(nnc(n’),nnc(n’’)),

pair(h(itm(d)),rgt(r))),plyr(g’))

),plyr(P))),P)

))).

issue(P,d,r,g).

send(P,pair(enc(k1,itm(d)),pair(penc(g,keym(k1)),

sign(P,pair(rgt(r),nnc(n))))),I)

)

)

<|or(eq(d,dp1),eq(d,dp2))|>delta))

)

<|or(eq(g,C),eq(g,D))|>delta)).delta

% Provider

iTune2=

sum(n:Nonce,sum(g:Player,

(

recv(I,pair(plyr(g),nnc(n)),P).

send(P,sign(P,pair(pair(nnc(n2(P)),nnc(n)),plyr(g))),I).

sum(d:Item,sum(r:Right,

(

(

recv(I,sign(g,pair(pair(pair(nnc(n),nnc(n2(P))),

pair(h(itm(d)),rgt(r))),plyr(P))),P).

issue(P,d,r,g).

send(P,pair(enc(k2,itm(d)),pair(penc(g,keym(k2)),

sign(P,pair(rgt(r),nnc(n))))),I)

)

+

(

sum(n’:Nonce,sum(n’’:Nonce,sum(g’:Player,

recv(I,sign(g,pair(pair(pair(nnc(n),nnc(n2(P))),

%the obselete request to C.

pair(pair(pair(nnc(n’),nnc(n’’)),

pair(h(itm(d)),rgt(r))),plyr(g’))

),plyr(P))),P)

))).

issue(P,d,r,g).

send(P,pair(enc(k2,itm(d)),pair(penc(g,keym(k2)),

28

sign(P,pair(rgt(r),nnc(n))))),I)

)

)

<|or(eq(d,dp1),eq(d,dp2))|>delta))

)

<|or(eq(g,C),eq(g,D))|>delta)).delta

% Provider

iTune3=

last_ttp.

sum(n:Nonce,sum(g:Player,

(

recv(I,pair(plyr(g),nnc(n)),P).

send(P,sign(P,pair(pair(nnc(n3(P)),nnc(n)),plyr(g))),I).

sum(d:Item,sum(r:Right,

(

(

recv(I,sign(g,pair(pair(pair(nnc(n),nnc(n3(P))),

pair(h(itm(d)),rgt(r))),plyr(P))),P).

issue(P,d,r,g).

send(P,pair(enc(k3,itm(d)),pair(penc(g,keym(k3)),

sign(P,pair(rgt(r),nnc(n))))),I)

)

+

(

sum(n’:Nonce,sum(n’’:Nonce,sum(g’:Player,

recv(I,sign(g,pair(pair(pair(nnc(n),nnc(n3(P))),

%the obselete request to C.

pair(pair(pair(nnc(n’),nnc(n’’)),

pair(h(itm(d)),rgt(r))),plyr(g’))

),plyr(P))),P)

))).

issue(P,d,r,g).

send(P,pair(enc(k3,itm(d)),pair(penc(g,keym(k3)),

sign(P,pair(rgt(r),nnc(n))))),I)

)

)

<|or(eq(d,dp1),eq(d,dp2))|>delta))

)

<|or(eq(g,C),eq(g,D))|>delta)).delta

init

hide({com,off},encap({send,sendx,recv},I(X0,emptyset)||

iPod1(emptyset,n1(C))||iPod2(emptyset,n1(D))||

iTune1||iTune2||iTune3))

29

