
Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 1/11

Formalising Receipt-Freeness

Hugo Jonker h.l.jonker@tue.nl

Erik de Vink e.p.d.vink@tue.nl

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 2/11

Evoting

Safe and secure elections over a hostile network

Security properties of evoting protocols include:

■ Democracy
■ Accuracy
■ Individual verifiability
■ Universal verifiability
■ Privacy

◆ voter privacy
◆ receipt-freeness
◆ coercion-resistance

http://www.win.tue.nl/~hjonker/


Receipts

● intuition

● requirements

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 3/11

intuition

receipt: proof of how a voter has voted

Non-existent in pre-1994 protocols

Example:

In the FOO92 protocol, a voter can prove how she voted
by disclosing the position of her vote on the published
list of received votes and by disclosing the used
encryption key.

http://www.win.tue.nl/~hjonker/


Receipts

● intuition

● requirements

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 4/11

requirements

“receipt: proof of how a voter has voted”

More precisely:

“receipt r proves that voter v cast a vote for candidate c”

This means any receipt must satisfy the following:

■ R1: r authenticates v

■ R2: r proves that v chose candidate c

■ R3: r proves that v cast her vote

http://www.win.tue.nl/~hjonker/


Receipts

● intuition

● requirements

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 4/11

requirements

“receipt: proof of how a voter has voted”

More precisely:

“receipt r proves that voter v cast a vote for candidate c”

This means any receipt must satisfy the following:

■ R1: r authenticates v

■ R2: r proves that v chose candidate c

■ R3: r proves that v cast her vote

http://www.win.tue.nl/~hjonker/


Receipts

● intuition

● requirements

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 4/11

requirements

“receipt: proof of how a voter has voted”

More precisely:

“receipt r proves that voter v cast a vote for candidate c”

This means any receipt must satisfy the following:

■ R1: r authenticates v

■ R2: r proves that v chose candidate c

■ R3: r proves that v cast her vote

http://www.win.tue.nl/~hjonker/


Receipts

● intuition

● requirements

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 4/11

requirements

“receipt: proof of how a voter has voted”

More precisely:

“receipt r proves that voter v cast a vote for candidate c”

This means any receipt must satisfy the following:

■ R1: r authenticates v

■ R2: r proves that v chose candidate c

■ R3: r proves that v cast her vote

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

● ingredients

● decomposing receipts

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 5/11

ingredients

■ voters v ∈ V, choices c ∈ C

■ ballots B and results M(C)

■ received ballots RB, from which the result will be computed
■ choice function Γ: V → C specifying how voters vote

To denote receipts, the following syntax is used:

■ receipts r ∈ R

■ Terms(v), the set of all terms that a voter v ∈ V can generate
■ authentication terms AT (v):

at ∈ AT (v) =⇒ ∀w 6= v : at /∈ Terms(w)

■ auth : AT → V, the unique voter that created an at

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

● ingredients

● decomposing receipts

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 5/11

ingredients

■ voters v ∈ V, choices c ∈ C

■ ballots B and results M(C)

■ received ballots RB, from which the result will be computed
■ choice function Γ: V → C specifying how voters vote

To denote receipts, the following syntax is used:

■ receipts r ∈ R

■ Terms(v), the set of all terms that a voter v ∈ V can generate
■ authentication terms AT (v):

at ∈ AT (v) =⇒ ∀w 6= v : at /∈ Terms(w)

■ auth : AT → V, the unique voter that created an at

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

● ingredients

● decomposing receipts

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 6/11

decomposing receipts

The following functions are used to decompose receipts:

■ α : R → AT , extract authentication term from receipt
■ β : R → RB, extract ballot from receipt
■ γ : R → C, extract candidate from receipt

Formalisation of requirements R1-3 for receipt r:

■ R1 (auth v): α(r) ∈ AT (v)

■ R2 (v chose c): γ(r) = Γ(v)

■ R3 (v cast vote): β(r) ∈ RB

For valid receipts: auth(α(r)) = v =⇒ γ(r) = Γ(v)
Sufficient: γ = Γ ◦ auth ◦ α.

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

● ingredients

● decomposing receipts

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 6/11

decomposing receipts

The following functions are used to decompose receipts:

■ α : R → AT , extract authentication term from receipt
■ β : R → RB, extract ballot from receipt
■ γ : R → C, extract candidate from receipt

Formalisation of requirements R1-3 for receipt r:

■ R1 (auth v): α(r) ∈ AT (v)

■ R2 (v chose c): γ(r) = Γ(v)

■ R3 (v cast vote): β(r) ∈ RB

For valid receipts: auth(α(r)) = v =⇒ γ(r) = Γ(v)
Sufficient: γ = Γ ◦ auth ◦ α.

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

● ingredients

● decomposing receipts

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 6/11

decomposing receipts

The following functions are used to decompose receipts:

■ α : R → AT , extract authentication term from receipt
■ β : R → RB, extract ballot from receipt
■ γ : R → C, extract candidate from receipt

Formalisation of requirements R1-3 for receipt r:

■ R1 (auth v): α(r) ∈ AT (v)

■ R2 (v chose c): γ(r) = Γ(v)

■ R3 (v cast vote): β(r) ∈ RB

For valid receipts: auth(α(r)) = v =⇒ γ(r) = Γ(v)
Sufficient: γ = Γ ◦ auth ◦ α.

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

● ingredients

● decomposing receipts

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 6/11

decomposing receipts

The following functions are used to decompose receipts:

■ α : R → AT , extract authentication term from receipt
■ β : R → RB, extract ballot from receipt
■ γ : R → C, extract candidate from receipt

Formalisation of requirements R1-3 for receipt r:

■ R1 (auth v): α(r) ∈ AT (v)

■ R2 (v chose c): γ(r) = Γ(v)

■ R3 (v cast vote): β(r) ∈ RB

For valid receipts: auth(α(r)) = v =⇒ γ(r) = Γ(v)
Sufficient: γ = Γ ◦ auth ◦ α.

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

● ingredients

● decomposing receipts

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 6/11

decomposing receipts

The following functions are used to decompose receipts:

■ α : R → AT , extract authentication term from receipt
■ β : R → RB, extract ballot from receipt
■ γ : R → C, extract candidate from receipt

Formalisation of requirements R1-3 for receipt r:

■ R1 (auth v): α(r) ∈ AT (v)

■ R2 (v chose c): γ(r) = Γ(v)

■ R3 (v cast vote): β(r) ∈ RB

For valid receipts: auth(α(r)) = v =⇒ γ(r) = Γ(v)
Sufficient: γ = Γ ◦ auth ◦ α.

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

● receipts as terms

● suitable terms

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 7/11

receipts as terms

Receipts must be derivable from an execution of a protocol.

Thus, we limit the notion of receipts to terms
(i.e. R = ∅ ∨ R ⊆ Terms).

Analyzing protocols:

■ Model the protocol in ACP (+ tweaks)
■ Test suitability of communicated terms as receipts
■ Pronounce judgment

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

● receipts as terms

● suitable terms

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 8/11

suitable terms

Write t ∈ t′ if t is a subterm of t′.

α, β extract terms from terms, i.e. they deal with subterms.

Lemma ∀t ∈ R : α(t) ∈ t ∧ β(t) ∈ t

(Note: at ∈ t′ ∧ at ∈ AT (v) =⇒ t′ ∈ AT (v).
Therefore, receipts are authentication terms)

This does not capture the entire notion of receipts,
but turns out to be strong enough in the examined cases.

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

● receipts as terms

● suitable terms

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 8/11

suitable terms

Write t ∈ t′ if t is a subterm of t′.

α, β extract terms from terms, i.e. they deal with subterms.

Lemma ∀t ∈ R : α(t) ∈ t ∧ β(t) ∈ t

(Note: at ∈ t′ ∧ at ∈ AT (v) =⇒ t′ ∈ AT (v).
Therefore, receipts are authentication terms)

This does not capture the entire notion of receipts,
but turns out to be strong enough in the examined cases.

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

● receipts as terms

● suitable terms

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 8/11

suitable terms

Write t ∈ t′ if t is a subterm of t′.

α, β extract terms from terms, i.e. they deal with subterms.

Lemma ∀t ∈ R : α(t) ∈ t ∧ β(t) ∈ t

(Note: at ∈ t′ ∧ at ∈ AT (v) =⇒ t′ ∈ AT (v).
Therefore, receipts are authentication terms)

This does not capture the entire notion of receipts,
but turns out to be strong enough in the examined cases.

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

● receipts as terms

● suitable terms

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 8/11

suitable terms

Write t ∈ t′ if t is a subterm of t′.

α, β extract terms from terms, i.e. they deal with subterms.

Lemma ∀t ∈ R : α(t) ∈ t ∧ β(t) ∈ t

(Note: at ∈ t′ ∧ at ∈ AT (v) =⇒ t′ ∈ AT (v).
Therefore, receipts are authentication terms)

This does not capture the entire notion of receipts,
but turns out to be strong enough in the examined cases.

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

● BT

● BT: receipt-free

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 9/11

BT

■ Original receipt-freeness paper by Benaloh & Tuinstra
■ Attack found... but not on the main scheme
■ Assumes untappable channels and a voting booth
■ Uses randomised encryption and “ZKP”

Process for voting authority:

A(v) =
∑

x∈E(0), y∈E(1) sa→v(min(x, y), max(x, y)) ·

p∗a→v(x ∈ E(0) ∧ y ∈ E(1)) ·
(

rv→a(x) + rv→a(y)
)

Process for a voter:

V =
∑

x,y ra→v(x, y) ·
∑

i∈{0,1} p∗a→v(x ∈ E(i) ∧ y ∈ E(1 − i)) ·
(

Γ(v) = i → sv→a(x) + Γ(v) = 1 − i → sv→a(y)
)

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

● BT

● BT: receipt-free

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 9/11

BT

■ Original receipt-freeness paper by Benaloh & Tuinstra
■ Attack found... but not on the main scheme
■ Assumes untappable channels and a voting booth
■ Uses randomised encryption and “ZKP”

Process for voting authority:

A(v) =
∑

x∈E(0), y∈E(1) sa→v(min(x, y), max(x, y)) ·

p∗a→v(x ∈ E(0) ∧ y ∈ E(1)) ·
(

rv→a(x) + rv→a(y)
)

Process for a voter:

V =
∑

x,y ra→v(x, y) ·
∑

i∈{0,1} p∗a→v(x ∈ E(i) ∧ y ∈ E(1 − i)) ·
(

Γ(v) = i → sv→a(x) + Γ(v) = 1 − i → sv→a(y)
)

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

● BT

● BT: receipt-free

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 9/11

BT

■ Original receipt-freeness paper by Benaloh & Tuinstra
■ Attack found... but not on the main scheme
■ Assumes untappable channels and a voting booth
■ Uses randomised encryption and “ZKP”

Process for voting authority:

A(v) =
∑

x∈E(0), y∈E(1) sa→v(min(x, y), max(x, y)) ·

p∗a→v(x ∈ E(0) ∧ y ∈ E(1)) ·
(

rv→a(x) + rv→a(y)
)

Process for a voter:

V =
∑

x,y ra→v(x, y) ·
∑

i∈{0,1} p∗a→v(x ∈ E(i) ∧ y ∈ E(1 − i)) ·
(

Γ(v) = i → sv→a(x) + Γ(v) = 1 − i → sv→a(y)
)

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

● BT

● BT: receipt-free

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 10/11

BT: receipt-free

Let’s examine the voter process:

V =
∑

x,y ra→v(x, y)·

Not an authentication term

∑

i∈{0,1} p∗a→v(x ∈ E(i) ∧ y ∈ E(1 - i))·

No ballot as a subterm

(

Γ(v) = i → sv→a(x) + Γ(v) = 1 - i → sv→a(y)
)

Subterm of first term!

None of these terms can satisfy the lemma!

Thus: BT is receipt-free.

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

● BT

● BT: receipt-free

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 10/11

BT: receipt-free

Let’s examine the voter process:

V =
∑

x,y ra→v(x, y)·

Not an authentication term

∑

i∈{0,1} p∗a→v(x ∈ E(i) ∧ y ∈ E(1 - i))·

No ballot as a subterm

(

Γ(v) = i → sv→a(x) + Γ(v) = 1 - i → sv→a(y)
)

Subterm of first term!

None of these terms can satisfy the lemma!

Thus: BT is receipt-free.

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

● BT

● BT: receipt-free

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 10/11

BT: receipt-free

Let’s examine the voter process:

V =
∑

x,y ra→v(x, y)·

Not an authentication term

∑

i∈{0,1} p∗a→v(x ∈ E(i) ∧ y ∈ E(1 - i))·

No ballot as a subterm

(

Γ(v) = i → sv→a(x) + Γ(v) = 1 - i → sv→a(y)
)

Subterm of first term!

None of these terms can satisfy the lemma!

Thus: BT is receipt-free.

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

● BT

● BT: receipt-free

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 10/11

BT: receipt-free

Let’s examine the voter process:

V =
∑

x,y ra→v(x, y)·

Not an authentication term

∑

i∈{0,1} p∗a→v(x ∈ E(i) ∧ y ∈ E(1 - i))·

No ballot as a subterm

(

Γ(v) = i → sv→a(x) + Γ(v) = 1 - i → sv→a(y)
)

Subterm of first term!

None of these terms can satisfy the lemma!

Thus: BT is receipt-free.

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

● BT

● BT: receipt-free

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 10/11

BT: receipt-free

Let’s examine the voter process:

V =
∑

x,y ra→v(x, y)·

Not an authentication term

∑

i∈{0,1} p∗a→v(x ∈ E(i) ∧ y ∈ E(1 - i))·

No ballot as a subterm

(

Γ(v) = i → sv→a(x) + Γ(v) = 1 - i → sv→a(y)
)

Subterm of first term!

None of these terms can satisfy the lemma!

Thus: BT is receipt-free.

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

● BT

● BT: receipt-free

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 10/11

BT: receipt-free

Let’s examine the voter process:

V =
∑

x,y ra→v(x, y)·

Not an authentication term

∑

i∈{0,1} p∗a→v(x ∈ E(i) ∧ y ∈ E(1 - i))·

No ballot as a subterm

(

Γ(v) = i → sv→a(x) + Γ(v) = 1 - i → sv→a(y)
)

Subterm of first term!

None of these terms can satisfy the lemma!

Thus: BT is receipt-free.

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

● BT

● BT: receipt-free

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 10/11

BT: receipt-free

Let’s examine the voter process:

V =
∑

x,y ra→v(x, y)·

Not an authentication term

∑

i∈{0,1} p∗a→v(x ∈ E(i) ∧ y ∈ E(1 - i))·

No ballot as a subterm

(

Γ(v) = i → sv→a(x) + Γ(v) = 1 - i → sv→a(y)
)

Subterm of first term!

None of these terms can satisfy the lemma!

Thus: BT is receipt-free.

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

● BT

● BT: receipt-free

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 10/11

BT: receipt-free

Let’s examine the voter process:

V =
∑

x,y ra→v(x, y)·

Not an authentication term

∑

i∈{0,1} p∗a→v(x ∈ E(i) ∧ y ∈ E(1 - i))·

No ballot as a subterm

(

Γ(v) = i → sv→a(x) + Γ(v) = 1 - i → sv→a(y)
)

Subterm of first term!

None of these terms can satisfy the lemma!

Thus: BT is receipt-free.

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

● BT

● BT: receipt-free

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 10/11

BT: receipt-free

Let’s examine the voter process:

V =
∑

x,y ra→v(x, y)·

Not an authentication term

∑

i∈{0,1} p∗a→v(x ∈ E(i) ∧ y ∈ E(1 - i))·

No ballot as a subterm

(

Γ(v) = i → sv→a(x) + Γ(v) = 1 - i → sv→a(y)
)

Subterm of first term!

None of these terms can satisfy the lemma!

Thus: BT is receipt-free.

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 11/11

Conclusions

■ A constructive approach to uncovering receipts
■ But limited to terms
■ BT, SK95, HS and ALBD analysis indicates receipt-freeness
■ RIES and FOO analysis demonstrates receipts
■ Further details in paper

Thank you for your attention!

h.l.jonker@tue.nl

www.win.tue.nl/∼hjonker

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 11/11

Conclusions

■ A constructive approach to uncovering receipts
■ But limited to terms
■ BT, SK95, HS and ALBD analysis indicates receipt-freeness
■ RIES and FOO analysis demonstrates receipts
■ Further details in paper

Thank you for your attention!

h.l.jonker@tue.nl

www.win.tue.nl/∼hjonker

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 12/11

example: FOO

Rough sketch of the FOO protocol for voter v, admin a and
counter cnt:

1. v: create a blinded, encrypted vote
2. v → a: blinded, encrypted vote signed by v

3. a → v: blinded, encrypted vote signed by a

4. v → cnt: encrypted vote signed by a

5. cnt: collect all votes
6. cnt: publish list of received votes
7. v → cnt: decryption key, index of vote in list
8. cnt: publish list of received keys

Obvious receipt... but it seems to lose its validity
Using timestamping on the receipt =⇒ no loss of validity

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 12/11

example: FOO

Rough sketch of the FOO protocol for voter v, admin a and
counter cnt:

1. v: create a blinded, encrypted vote

2. v → a: blinded, encrypted vote signed by v

3. a → v: blinded, encrypted vote signed by a

4. v → cnt: encrypted vote signed by a

5. cnt: collect all votes
6. cnt: publish list of received votes
7. v → cnt: decryption key, index of vote in list
8. cnt: publish list of received keys

Obvious receipt... but it seems to lose its validity
Using timestamping on the receipt =⇒ no loss of validity

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 12/11

example: FOO

Rough sketch of the FOO protocol for voter v, admin a and
counter cnt:

1. v: create a blinded, encrypted vote
2. v → a: blinded, encrypted vote signed by v

3. a → v: blinded, encrypted vote signed by a

4. v → cnt: encrypted vote signed by a

5. cnt: collect all votes
6. cnt: publish list of received votes
7. v → cnt: decryption key, index of vote in list
8. cnt: publish list of received keys

Obvious receipt... but it seems to lose its validity
Using timestamping on the receipt =⇒ no loss of validity

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 12/11

example: FOO

Rough sketch of the FOO protocol for voter v, admin a and
counter cnt:

1. v: create a blinded, encrypted vote
2. v → a: blinded, encrypted vote signed by v

3. a → v: blinded, encrypted vote signed by a

4. v → cnt: encrypted vote signed by a

5. cnt: collect all votes
6. cnt: publish list of received votes
7. v → cnt: decryption key, index of vote in list
8. cnt: publish list of received keys

Obvious receipt... but it seems to lose its validity
Using timestamping on the receipt =⇒ no loss of validity

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 12/11

example: FOO

Rough sketch of the FOO protocol for voter v, admin a and
counter cnt:

1. v: create a blinded, encrypted vote
2. v → a: blinded, encrypted vote signed by v

3. a → v: blinded, encrypted vote signed by a

4. v → cnt: encrypted vote signed by a

5. cnt: collect all votes
6. cnt: publish list of received votes
7. v → cnt: decryption key, index of vote in list
8. cnt: publish list of received keys

Obvious receipt... but it seems to lose its validity
Using timestamping on the receipt =⇒ no loss of validity

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 12/11

example: FOO

Rough sketch of the FOO protocol for voter v, admin a and
counter cnt:

1. v: create a blinded, encrypted vote
2. v → a: blinded, encrypted vote signed by v

3. a → v: blinded, encrypted vote signed by a

4. v → cnt: encrypted vote signed by a

5. cnt: collect all votes

6. cnt: publish list of received votes
7. v → cnt: decryption key, index of vote in list
8. cnt: publish list of received keys

Obvious receipt... but it seems to lose its validity
Using timestamping on the receipt =⇒ no loss of validity

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 12/11

example: FOO

Rough sketch of the FOO protocol for voter v, admin a and
counter cnt:

1. v: create a blinded, encrypted vote
2. v → a: blinded, encrypted vote signed by v

3. a → v: blinded, encrypted vote signed by a

4. v → cnt: encrypted vote signed by a

5. cnt: collect all votes
6. cnt: publish list of received votes

7. v → cnt: decryption key, index of vote in list
8. cnt: publish list of received keys

Obvious receipt... but it seems to lose its validity
Using timestamping on the receipt =⇒ no loss of validity

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 12/11

example: FOO

Rough sketch of the FOO protocol for voter v, admin a and
counter cnt:

1. v: create a blinded, encrypted vote
2. v → a: blinded, encrypted vote signed by v

3. a → v: blinded, encrypted vote signed by a

4. v → cnt: encrypted vote signed by a

5. cnt: collect all votes
6. cnt: publish list of received votes
7. v → cnt: decryption key, index of vote in list

8. cnt: publish list of received keys

Obvious receipt... but it seems to lose its validity
Using timestamping on the receipt =⇒ no loss of validity

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 12/11

example: FOO

Rough sketch of the FOO protocol for voter v, admin a and
counter cnt:

1. v: create a blinded, encrypted vote
2. v → a: blinded, encrypted vote signed by v

3. a → v: blinded, encrypted vote signed by a

4. v → cnt: encrypted vote signed by a

5. cnt: collect all votes
6. cnt: publish list of received votes
7. v → cnt: decryption key, index of vote in list
8. cnt: publish list of received keys

Obvious receipt... but it seems to lose its validity
Using timestamping on the receipt =⇒ no loss of validity

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 12/11

example: FOO

Rough sketch of the FOO protocol for voter v, admin a and
counter cnt:

1. v: create a blinded, encrypted vote
2. v → a: blinded, encrypted vote signed by v

3. a → v: blinded, encrypted vote signed by a

4. v → cnt: encrypted vote signed by a

5. cnt: collect all votes
6. cnt: publish list of received votes
7. v → cnt: decryption key, index of vote in list
8. cnt: publish list of received keys

Obvious receipt... but it seems to lose its validity

Using timestamping on the receipt =⇒ no loss of validity

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 12/11

example: FOO

Rough sketch of the FOO protocol for voter v, admin a and
counter cnt:

1. v: create a blinded, encrypted vote
2. v → a: blinded, encrypted vote signed by v

3. a → v: blinded, encrypted vote signed by a

4. v → cnt: encrypted vote signed by a

5. cnt: collect all votes
6. cnt: publish list of received votes
7. v → cnt: decryption key, index of vote in list
8. cnt: publish list of received keys

Obvious receipt... but it seems to lose its validity
Using timestamping on the receipt =⇒ no loss of validity

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 13/11

RIES

■ Used in Dutch water management board elections
■ Handled over 70,000 votes
■ Uses a publicly-known hash-function and voter-specific keys
■ Obvious receipt

How it works:

1. a → v: key(v)

2. a: publish list of all possible encrypted votes, hashed:
L =

⋃

v∈V{〈h({c}key(v)), c〉 | c ∈ C}

3. pv→a: {Γ(v)}key(v)

4. a: collect all votes
5. a: publish outcome

Notice a receipt?

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 13/11

RIES

■ Used in Dutch water management board elections
■ Handled over 70,000 votes
■ Uses a publicly-known hash-function and voter-specific keys
■ Obvious receipt

How it works:
1. a → v: key(v)

2. a: publish list of all possible encrypted votes, hashed:
L =

⋃

v∈V{〈h({c}key(v)), c〉 | c ∈ C}

3. pv→a: {Γ(v)}key(v)

4. a: collect all votes
5. a: publish outcome

Notice a receipt?

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 13/11

RIES

■ Used in Dutch water management board elections
■ Handled over 70,000 votes
■ Uses a publicly-known hash-function and voter-specific keys
■ Obvious receipt

How it works:
1. a → v: key(v)

2. a: publish list of all possible encrypted votes, hashed:
L =

⋃

v∈V{〈h({c}key(v)), c〉 | c ∈ C}

3. pv→a: {Γ(v)}key(v)

4. a: collect all votes
5. a: publish outcome

Notice a receipt?

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 13/11

RIES

■ Used in Dutch water management board elections
■ Handled over 70,000 votes
■ Uses a publicly-known hash-function and voter-specific keys
■ Obvious receipt

How it works:
1. a → v: key(v)

2. a: publish list of all possible encrypted votes, hashed:
L =

⋃

v∈V{〈h({c}key(v)), c〉 | c ∈ C}

3. pv→a: {Γ(v)}key(v)

4. a: collect all votes
5. a: publish outcome

Notice a receipt?

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 13/11

RIES

■ Used in Dutch water management board elections
■ Handled over 70,000 votes
■ Uses a publicly-known hash-function and voter-specific keys
■ Obvious receipt

How it works:
1. a → v: key(v)

2. a: publish list of all possible encrypted votes, hashed:
L =

⋃

v∈V{〈h({c}key(v)), c〉 | c ∈ C}

3. pv→a: {Γ(v)}key(v)

4. a: collect all votes

5. a: publish outcome

Notice a receipt?

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 13/11

RIES

■ Used in Dutch water management board elections
■ Handled over 70,000 votes
■ Uses a publicly-known hash-function and voter-specific keys
■ Obvious receipt

How it works:
1. a → v: key(v)

2. a: publish list of all possible encrypted votes, hashed:
L =

⋃

v∈V{〈h({c}key(v)), c〉 | c ∈ C}

3. pv→a: {Γ(v)}key(v)

4. a: collect all votes
5. a: publish outcome

Notice a receipt?

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 13/11

RIES

■ Used in Dutch water management board elections
■ Handled over 70,000 votes
■ Uses a publicly-known hash-function and voter-specific keys
■ Obvious receipt

How it works:
1. a → v: key(v)

2. a: publish list of all possible encrypted votes, hashed:
L =

⋃

v∈V{〈h({c}key(v)), c〉 | c ∈ C}

3. pv→a: {Γ(v)}key(v)

4. a: collect all votes
5. a: publish outcome

Notice a receipt?

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 14/11

receipts in RIES

To prove that v cast a vote for candidate c, it suffices to show
an k such that 〈h({c}k), c〉 ∈ L.

This is precisely the voter’s key!

This means the following in the formalism:

■ α(x) = x

■ β(x) = x ... for suitable RB

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 14/11

receipts in RIES

To prove that v cast a vote for candidate c, it suffices to show
an k such that 〈h({c}k), c〉 ∈ L.

This is precisely the voter’s key!

This means the following in the formalism:

■ α(x) = x

■ β(x) = x

... for suitable RB

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 14/11

receipts in RIES

To prove that v cast a vote for candidate c, it suffices to show
an k such that 〈h({c}k), c〉 ∈ L.

This is precisely the voter’s key!

This means the following in the formalism:

■ α(x) = x

■ β(x) = x ... for suitable RB

http://www.win.tue.nl/~hjonker/

	Evoting
	Receipts
	intuition
	requirements
	requirements
	requirements
	requirements


	Formalisation
	ingredients
	ingredients

	decomposing receipts
	decomposing receipts
	decomposing receipts
	decomposing receipts
	decomposing receipts


	More concretely
	receipts as terms
	suitable terms
	suitable terms
	suitable terms
	suitable terms


	Application
	BT
	BT
	BT

	BT: receipt-free
	BT: receipt-free
	BT: receipt-free
	BT: receipt-free
	BT: receipt-free
	BT: receipt-free
	BT: receipt-free
	BT: receipt-free
	BT: receipt-free


	Final Thoughts
	Conclusions
	Conclusions

	example: FOO
	example: FOO
	example: FOO
	example: FOO
	example: FOO
	example: FOO
	example: FOO
	example: FOO
	example: FOO
	example: FOO
	example: FOO

	RIES
	RIES
	RIES
	RIES
	RIES
	RIES
	RIES

	receipts in RIES
	receipts in RIES
	receipts in RIES



