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Evoting

Safe and secure elections over a hostile network

Security properties of evoting protocols include:

■ Democracy
■ Accuracy
■ Individual verifiability
■ Universal verifiability
■ Privacy

◆ voter privacy
◆ receipt-freeness
◆ coercion-resistance
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intuition

receipt: proof of how a voter has voted

Non-existent in pre-1994 protocols

Example:

In the FOO92 protocol, a voter can prove how she voted
by disclosing the position of her vote on the published
list of received votes and by disclosing the used
encryption key.
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requirements

“receipt: proof of how a voter has voted”

More precisely:

“receipt r proves that voter v cast a vote for candidate c”

This means any receipt must satisfy the following:

■ R1: r authenticates v

■ R2: r proves that v chose candidate c

■ R3: r proves that v cast her vote

http://www.win.tue.nl/~hjonker/
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ingredients

■ voters v ∈ V, choices c ∈ C

■ ballots B and results M(C)

■ received ballots RB, from which the result will be computed
■ choice function Γ: V → C specifying how voters vote

To denote receipts, the following syntax is used:

■ receipts r ∈ R

■ Terms(v), the set of all terms that a voter v ∈ V can generate
■ authentication terms AT (v):

at ∈ AT (v) =⇒ ∀w 6= v : at /∈ Terms(w)

■ auth : AT → V, the unique voter that created an at

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

● ingredients

● decomposing receipts

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 5/11

ingredients

■ voters v ∈ V, choices c ∈ C

■ ballots B and results M(C)

■ received ballots RB, from which the result will be computed
■ choice function Γ: V → C specifying how voters vote

To denote receipts, the following syntax is used:

■ receipts r ∈ R

■ Terms(v), the set of all terms that a voter v ∈ V can generate
■ authentication terms AT (v):

at ∈ AT (v) =⇒ ∀w 6= v : at /∈ Terms(w)

■ auth : AT → V, the unique voter that created an at

http://www.win.tue.nl/~hjonker/


Receipts

Formalisation

● ingredients

● decomposing receipts

More concretely

Application

Final Thoughts

Hugo Jonker, ISC2006, September 2, 2006 Formalising Receipt-freeness - p. 6/11

decomposing receipts

The following functions are used to decompose receipts:

■ α : R → AT , extract authentication term from receipt
■ β : R → RB, extract ballot from receipt
■ γ : R → C, extract candidate from receipt

Formalisation of requirements R1-3 for receipt r:

■ R1 (auth v): α(r) ∈ AT (v)

■ R2 (v chose c): γ(r) = Γ(v)

■ R3 (v cast vote): β(r) ∈ RB

For valid receipts: auth(α(r)) = v =⇒ γ(r) = Γ(v)
Sufficient: γ = Γ ◦ auth ◦ α.

http://www.win.tue.nl/~hjonker/
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receipts as terms

Receipts must be derivable from an execution of a protocol.

Thus, we limit the notion of receipts to terms
(i.e. R = ∅ ∨ R ⊆ Terms).

Analyzing protocols:

■ Model the protocol in ACP (+ tweaks)
■ Test suitability of communicated terms as receipts
■ Pronounce judgment

http://www.win.tue.nl/~hjonker/
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suitable terms

Write t ∈ t′ if t is a subterm of t′.

α, β extract terms from terms, i.e. they deal with subterms.

Lemma ∀t ∈ R : α(t) ∈ t ∧ β(t) ∈ t

(Note: at ∈ t′ ∧ at ∈ AT (v) =⇒ t′ ∈ AT (v).
Therefore, receipts are authentication terms)

This does not capture the entire notion of receipts,
but turns out to be strong enough in the examined cases.

http://www.win.tue.nl/~hjonker/
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BT

■ Original receipt-freeness paper by Benaloh & Tuinstra
■ Attack found... but not on the main scheme
■ Assumes untappable channels and a voting booth
■ Uses randomised encryption and “ZKP”

Process for voting authority:

A(v) =
∑

x∈E(0), y∈E(1) sa→v(min(x, y), max(x, y)) ·

p∗a→v(x ∈ E(0) ∧ y ∈ E(1)) ·
(

rv→a(x) + rv→a(y)
)

Process for a voter:

V =
∑

x,y ra→v(x, y) ·
∑

i∈{0,1} p∗a→v(x ∈ E(i) ∧ y ∈ E(1 − i)) ·
(

Γ(v) = i → sv→a(x) + Γ(v) = 1 − i → sv→a(y)
)
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BT: receipt-free

Let’s examine the voter process:

V =
∑

x,y ra→v(x, y)·

Not an authentication term

∑

i∈{0,1} p∗a→v(x ∈ E(i) ∧ y ∈ E(1 - i))·

No ballot as a subterm

(

Γ(v) = i → sv→a(x) + Γ(v) = 1 - i → sv→a(y)
)

Subterm of first term!

None of these terms can satisfy the lemma!

Thus: BT is receipt-free.
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Conclusions

■ A constructive approach to uncovering receipts
■ But limited to terms
■ BT, SK95, HS and ALBD analysis indicates receipt-freeness
■ RIES and FOO analysis demonstrates receipts
■ Further details in paper

Thank you for your attention!

h.l.jonker@tue.nl

www.win.tue.nl/∼hjonker
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example: FOO

Rough sketch of the FOO protocol for voter v, admin a and
counter cnt:

1. v: create a blinded, encrypted vote
2. v → a: blinded, encrypted vote signed by v

3. a → v: blinded, encrypted vote signed by a

4. v → cnt: encrypted vote signed by a

5. cnt: collect all votes
6. cnt: publish list of received votes
7. v → cnt: decryption key, index of vote in list
8. cnt: publish list of received keys

Obvious receipt... but it seems to lose its validity
Using timestamping on the receipt =⇒ no loss of validity
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RIES

■ Used in Dutch water management board elections
■ Handled over 70,000 votes
■ Uses a publicly-known hash-function and voter-specific keys
■ Obvious receipt

How it works:

1. a → v: key(v)

2. a: publish list of all possible encrypted votes, hashed:
L =

⋃

v∈V{〈h({c}key(v)), c〉 | c ∈ C}

3. pv→a: {Γ(v)}key(v)

4. a: collect all votes
5. a: publish outcome

Notice a receipt?
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receipts in RIES

To prove that v cast a vote for candidate c, it suffices to show
an k such that 〈h({c}k), c〉 ∈ L.

This is precisely the voter’s key!

This means the following in the formalism:

■ α(x) = x

■ β(x) = x ... for suitable RB
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