Nuovo DRM Paradiso
Towards a verified, fair DRM protocol

Hugo Jonker
h.l.jonker@tue.nl

Srijith Krishnan Nair
srijith@few.vu.nl

Mohammad Torabi Dashti
dashti@cwi.nl
Digital Rights Management

Goal:
- restrict access to *content* (movies, music, ...)
- access granted only when complying with *license*
Goal:
- restrict access to content (movies, music, ...)
- access granted only when complying with license

Method:
- enforce link by bundling license with encrypted content
Digital Rights Management

- **Goal:**
 - restrict access to *content* (movies, music, ...)
 - access granted only when complying with *license*

- **Method:**
 - enforce link by bundling license with encrypted content

- **Environment:**
 - trusted devices
 - trusted content providers
Digital Rights Management

- **Goal:**
 - restrict access to *content* (movies, music, ...)
 - access granted only when complying with *license*

- **Method:**
 - enforce link by bundling license with encrypted content

- **Environment:**
 - trusted devices
 - trusted content providers

- **Intruder:**
 - untrusted device owners
 - untrusted network
Enabling C2C exchange

- bottleneck in provider-to-client exchanges: bandwidth
Enabling C2C exchange

- bottleneck in provider-to-client exchanges: bandwidth
- solution: enable client-to-client exchanges...
Enabling C2C exchange

- bottleneck in provider-to-client exchanges: bandwidth
- solution: enable client-to-client exchanges...
- ... whilst preserving DRM
Enabling C2C exchange

- bottleneck in provider-to-client exchanges: bandwidth
- solution: enable client-to-client exchanges...
- ... whilst preserving DRM

Adapt intruder model:
Enabling C2C exchange

- bottleneck in provider-to-client exchanges: bandwidth
- solution: enable client-to-client exchanges...
- ... whilst preserving DRM

Adapt intruder model:
- complete, lasting protection unrealistic...
Enabling C2C exchange

- bottleneck in provider-to-client exchanges: bandwidth
- solution: enable client-to-client exchanges...
- ... whilst preserving DRM

Adapt intruder model:
- complete, lasting protection unrealistic...
- thus: mitigation procedures:
 - detection
 - revocation list
Weaknesses

1. P2C: no link between content request and received rights
 attack: insert rights
Weaknesses

1. P2C: no link between content request and received rights
 attack: insert rights

2. C2C: No link between delivery of content and payment
 attack: abort before paying
“Either both parties terminate successfully, or none does”

- Not possible without TTP ⇒ overhead!

Optimistic fair exchange:
- only use TTP if fairness violated otherwise
- protocols:
 - optimistic exchange (no TTP)
 - finish successfully (using TTP)
 - abort all commitments (using TTP)
Fair exchange in DRM

- DRM assumption: trusted devices, untrusted device owners
 ⇒ devices may be halted, but otherwise comply

- exchange in DRM: content for money
 - abort before either exchanged
 ⇒ no problem
 - abort after both exchanged
 ⇒ successful termination
 - abort after one, before other
 ⇒ not fair...
How to introduce fair exchange?
(Tip: first address the question: who can be TTP?)

Hints:
How to introduce fair exchange?
(Tip: first address the question: who can be TTP?)

Hints:
- will anyone give you money if you didn’t receive it?
Achieving FE in DRM

How to introduce fair exchange?
(Tip: first address the question: who can be TTP?)

Hints:
- will anyone give you money if you didn’t receive it?
- can anyone provide content if you didn’t receive it?
Achieving FE in DRM

How to introduce fair exchange?
(Tip: first address the question: who can be TTP?)

Hints:
- will anyone give you money if you didn’t receive it?
- can anyone provide content if you didn’t receive it?

Solution:
How to introduce fair exchange?
(Tip: first address the question: who can be TTP?)

Hints:
- will anyone give you money if you didn’t receive it?
- can anyone provide content if you didn’t receive it?

Solution:
- provider = TTP
Achieving FE in DRM

How to introduce fair exchange?
(Tip: first address the question: who can be TTP?)

Hints:
- will anyone give you money if you didn’t receive it?
- can anyone provide content if you didn’t receive it?

Solution:
- provider = TTP
- first exchange money, then content
Achieving FE in DRM

How to introduce fair exchange?
(Tip: first address the question: who can be TTP?)

Hints:
- will anyone give you money if you didn’t receive it?
- can anyone provide content if you didn’t receive it?

Solution:
- provider = TTP
- first exchange money, then content
- no abort protocol necessary!
How to introduce fair exchange?
(Tip: first address the question: who can be TTP?)

Hints:
- will anyone give you money if you didn’t receive it?
- can anyone provide content if you didn’t receive it?

Solution:
- provider = TTP
- first exchange money, then content
- no abort protocol necessary!
- relies on compliance of devices
Motivation:

Goals of Nuovo:
Motivation:

- address weaknesses
- increase assurance of security

Goals of Nuovo:
Design

Motivation:

- address weaknesses
- increase assurance of security

Goals of Nuovo:

- effectiveness
- secrecy
- resist content masquerading
- fairness
P2C protocol

Provider — client exchange

\[P: \text{provider}; \ C: \text{client}; \ M: \text{content}; \ R: \text{rights} \]

1. \(\text{owner}(C) \rightarrow C: \ P, h(M), R\)
2. \(C \rightarrow P: C, n_C\)
3. \(P \rightarrow C: \{n_P, n_C, C\}_{sk(P)}\)
4. \(C \rightarrow P: \{n_C, n_P, h(M), R, P\}_{sk(C)}\)
5. \(P \rightarrow C: \{M\}_K, \{K\}_{pk(C)}, \{R, n_C\}_{SK(P)}\)

- concrete protocol
- first weakness addressed (validity of \(R\))
C2C protocols

Client — client optimistic exchange:

similar to P2C for clients C, D

Client — client, recovery:

\[\begin{align*}
5^r. & \quad D : \quad resolves(D) \\
6^r. & \quad D \rightarrow P : \quad D, n'_D \\
7^r. & \quad P \rightarrow D : \quad \{n_P, n'_D, D\}_{sk(P)} \\
8^r. & \quad D \rightarrow P : \quad \{n'_D, n_P, \langle n_D, n_C, h(M), R', C\rangle, P\}_{sk(D)} \\
9^r. & \quad P \rightarrow D : \quad \{M\}_K, \{K\}_{pk(D)}, \{R', n'_D\}_{SK(P)}
\end{align*}\]
Formal analysis

Modelling in μCRL:

- Nuovo DRM
- communication model
- intruder model – Dolev-Yao, with restrictions

Analysed scenario’s:

1. no intruder, synchronous communication (effectiveness)
2. intruder, asynchronous communication (secrecy, masquerading, fairness)
Analysis results

Modelled scenario’s checked with CADP:

- effectiveness
- secrecy
- resisting content masquerading
- fairness
Analysis results

Modelled scenario's checked with CADP:

- √ effectiveness
- secrecy
- resisting content masquerading
- fairness
Analysis results

Modelled scenario’s checked with CADP:

- √ effectiveness
- √ secrecy
- resisting content masquerading
- fairness
Analysis results

Modelled scenario’s checked with CADP:

√ effectiveness
√ secrecy
√ resisting content masquerading
– fairness
Analysis results

Modelled scenario’s checked with CADP:

- √ effectiveness
- √ secrecy
- √ resisting content masquerading
- √ fairness
Concluding

- Identified weaknesses in NPGCT
- Designed improvement: Nuovo DRM Paradiso
- Formally verified design goals
- Provide a reworked revocation method
Concluding

- Identified weaknesses in NPGCT
- Designed improvement: Nuovo DRM Paradiso
- Formally verified design goals
- Provide a reworked revocation method

Thank you for your attention!