Privacy in eVoting protocols
(collaborations: dr. E.P. de Vink, prof. dr. S. Mauw, ir. drs. W. Pieters)

Hugo Jonker
hugo.jonker@uni.lu
Involved parties:
- voters
- candidates
- voting officials (administrators):
 - counter(s)
 - registrar(s)
 - anonymous channel(s)
 - ...

Privacy in eVoting - p. 2/14
protocols

Intuitively:

A prescribed way to exchange messages between parties, in order to achieve a stated goal, satisfying stated requirements.

Note: distinction between roles and parties. From now on: roles.
eVoting protocols

- goal: establish consensus in a group
- requirements:
 - democracy
 - eligibility
 - accuracy
 - verifiability
 - ...
 - privacy
Two sides to privacy:

- uncertainty
- indistinguishability
 - k-anonymity...
 - ...anonymity groups!!
What is privacy?

what is to be kept private?

- voter?
- link voter-ballot?
- link voter-candidate?
- link ballot-candidate?
Existing notions of privacy in eVoting:

- **Anonymity**
 link voter-ballot cannot be determined by observation

- **receipt-freeness**
 no proof

- **strong receipt-freeness**
 no elimination of possibilities

- **coercion-resistance**
 - no randomisation
 - no abstention
 - no simulation
A receipt proves how a voter voted.
intuition

A receipt proves how a voter voted.

Examples:
- Everyone signs their vote.
intuition

A receipt proves how a voter voted.

Examples:

- Everyone signs their vote.

- In Italy, simultaneous elections were held for various posts, using one ballot. The order of posts listed is up to the voter, and is preserved. An attacker (El Mafiosi) can assign each voter a specific order of posts.

Benaloh & Tuinstra
requirements

More precisely: a receipt r proves that a voter v cast a vote for candidate c.
More precisely: a receipt r proves that a voter v cast a vote for candidate c.

- **R1**: r authenticates v
More precisely: a receipt r proves that a voter v cast a vote for candidate c.

- **R1:** r authenticates v
- **R2:** r proves that v chose candidate c
requirements

More precisely: a receipt r proves that a voter v *cast* a vote for candidate c.

- **R1:** r authenticates v
- **R2:** r proves that v chose candidate c
- **R3:** r proves that v cast her vote
More precisely: a receipt r proves that a voter v cast a vote for candidate c.

- **R1**: r authenticates v
- **R2**: r proves that v chose candidate c
- **R3**: r proves that v cast her vote

Note:
- for specific types of elections
- quite strict
The following functions are used to decompose receipts:

- $\alpha: R \rightarrow AT$, extract authentication term from receipt
- $\beta: R \rightarrow RB$, extract ballot from receipt
- $\gamma: R \rightarrow C$, extract candidate from receipt

Formalisation of the requirements:
decomposing receipts

The following functions are used to decompose receipts:

- $\alpha : \mathcal{R} \rightarrow \mathcal{AT}$, extract authentication term from receipt
- $\beta : \mathcal{R} \rightarrow \mathcal{RB}$, extract ballot from receipt
- $\gamma : \mathcal{R} \rightarrow \mathcal{C}$, extract candidate from receipt

Formalisation of the requirements:

- R1: $\alpha(r) \in \mathcal{AT}(v)$
- R2: $\gamma(r) = \Gamma(v)$
- R3: $\beta(r) \in \mathcal{RB}$
The following functions are used to decompose receipts:

- $\alpha: \mathcal{R} \rightarrow \mathcal{AT}$, extract authentication term from receipt
- $\beta: \mathcal{R} \rightarrow \mathcal{RB}$, extract ballot from receipt
- $\gamma: \mathcal{R} \rightarrow \mathcal{C}$, extract candidate from receipt

Formalisation of the requirements:

- $R1: \alpha(r) \in \mathcal{AT}(v)$
- $R2: \gamma(r) = \Gamma(v)$
- $R3: \beta(r) \in \mathcal{RB}$

So, for valid receipts: $auth(\alpha(r)) = v \implies \gamma(r) = \Gamma(v)$, which is satisfied by $\gamma = \Gamma \circ auth \circ \alpha$.
Anonymity, 3 flavours:

- sender/voter anonymity?
 no, voter tries to prove vote
RF ≈ anonymity

Anonymity, 3 flavours:

- sender/voter anonymity?
 no, voter tries to prove vote

- plausible deniability?
 no, sender knows how she voted
Anonymity, 3 flavours:

- **sender/voter anonymity?**
 no, voter tries to prove vote

- **plausible deniability?**
 no, sender knows how she voted

- **unlinkability?**
 “no link between vote and voter”...
Unlinkability of message m to sender v:

- intruder does not know that v sent m
- intruder cannot rule out that v sent any message m', where $m' \in AS$, the Anonymity Set
unlinkability

Unlinkability of message m to sender v:

- intruder does not know that v sent m
- intruder cannot rule out that v sent any message m', where $m' \in AS$, the Anonymity Set

Strong receipt-freeness
the intruder cannot rule out any vote from the anonymity set.

$$t.(v \rightarrow \text{spy} : r) \models (\neg \Box_{\text{spy}}(v \text{ sends } m)) \land \bigwedge_{m' \in AMS} \Diamond_{\text{spy}}(v \text{ sends } m')$$
currently: two approaches

Current situation:

- Delaune, Kremer and Ryan proposed an approach based on bisimilarity
 – ignoring the notion of receipts
- Jonker and De Vink proposed an approach based on the characteristics of a receipt
 – founded on the notion of receipts
future: unifying approach

- branching bisimilarity as an equivalence seems too strong e.g. order in which voters vote does not affect rf
- checking terms J&DV-style seems imprecise not a precise notion of receipts
- so unite the two! construct an appropriate equivalence notion for voting processes based on identifying receipts
branching bisimilarity as an equivalence seems to strong e.g. order in which voters vote does not affect rf

checking terms J&DV-style seems imprecise not a precise notion of receipts

so unite the two! construct an appropriate equivalence notion for voting processes based on identifying receipts

Thanks for your attention!