
Verifying a Sliding Window Protocol in µCRL

Wan Fokkink1,2, Jan Friso Groote1,3, Jun Pang1,
Bahareh Badban1, and Jaco van de Pol1

1 CWI, Embedded Systems Group
2 Vrije Universiteit Amsterdam, Theoretical Computer Science Group

3 Eindhoven University of Technology, Systems Engineering Group
{wan,pangjun,badban,vdpol}@cwi.nl, J.F.Groote@tue.nl

Abstract. We prove the correctness of a sliding window protocol with
an arbitrary finite window size n and sequence numbers modulo 2n. We
show that the sliding window protocol is branching bisimilar to a queue
of capacity 2n. The proof is given entirely on the basis of an axiomatic
theory, and was checked with the help of PVS.

1 Introduction

Sliding window protocols [6] (SWPs) ensure successful transmission of messages
from a sender to a receiver through a medium, in which messages may get lost.
Their main characteristic is that the sender does not wait for an incoming ac-
knowledgement before sending next messages, for optimal use of bandwidth.
This is the reason why many data communication systems include the SWP, in
one of its many variations.

In SWPs, both the sender and the receiver maintain a buffer. In practice the
buffer at the receiver is often much smaller than at the sender, but here we make
the simplifying assumption that both buffers can contain up to n messages. By
providing the messages with sequence numbers, reliable in-order delivery without
duplications is guaranteed. The sequence numbers can be taken modulo 2n (and
not less, see [42] for a nice argument). The messages at the sender are numbered
from i to i+n (modulo 2n); this is called a window. When an acknowledgement
reaches the sender, indicating that k messages have arrived correctly, the window
slides forward, so that the sending buffer can contain messages with sequence
numbers i+k to i+k+n (modulo 2n). The window of the receiver slides forward
when the first element in this window is passed on to the environment.

Within the process algebraic community, SWPs have attracted much atten-
tion. We provide a comparison with verifications of SWPs in Section 8, and
restrict here to the context in which the current paper was written. After the
advent of process algebra in the early 80’s of last century, it was observed that
simple protocols, such as the alternating bit protocol, could readily be verified. In
an attempt to show that more difficult protocols could also be dealt with, SWPs
were considered. Middeldorp [31] and Brunekreef [4] gave specifications in ACP
[1] and PSF [30], respectively. Vaandrager [43], Groenveld [12], van Wamel [44]
and Bezem and Groote [3] manually verified one-bit SWPs, in which the windows



have size one. Starting in 1990, we attempted to prove the most complex SWP
from [42] (not taking into account additional features such as duplex message
passing and piggybacking) correct using the process algebraic language µCRL
[16]. This turned out to be unexpectedly hard, which is shown by the 13 year
it took to finish the current paper, and led to significant developments in the
realm of process algebraic proof techniques for protocol verification. We therefore
consider the current paper as a true milestone in process algebraic verification.

Our first observation was that the external behaviour of the protocol, as
given in [42], was unclear. We adapted the SWP such that it nicely behaves
as a queue of capacity 2n. The second observation was that the SWP of [42]
contained a deadlock [13, Stelling 7], which could only occur after at least n

messages were transmitted. This error was communicated to Tanenbaum, and
has been repaired in more recent editions of [42]. Another bug in the µCRL
specification of the SWP was detected by means of a model checking analysis.
A first attempt to prove the resulting SWP correct led to the verification of a
bakery protocol [14], and to the development of the cones and foci proof method
[19, 9]. This method rephrases the question whether two system specifications
are branching bisimilar in terms of proof obligations on relations between data
objects. It plays an essential role in the proof in the current paper, and has
been used to prove many other protocols and distributed algorithms correct.
But the correctness proof required an additional idea, already put forward by
Schoone [37], to first perform the proof with unbounded sequence numbers, and
to separately eliminate modulo arithmetic.

We present a specification in µCRL of a SWP with buffer size 2n and win-
dow size n, for arbitrary n. The medium between the sender and the receiver
is modelled as a lossy queue of capacity one. We manually prove that the ex-
ternal behaviour of this protocol is branching bisimilar [10] to a FIFO queue
of capacity 2n. This proof is entirely based on the axiomatic theory underlying
µCRL and the axioms characterising the data types. It implies both safety and
liveness of the protocol (the latter under the assumption of fairness). First, we
linearise the specification, meaning that we get rid of parallel operators. More-
over, communication actions are stripped from their data parameters. Then we
eliminate modulo arithmetic, using the proof principle CL-RSP [2], which states
that each linear specification has a unique solution (modulo branching bisimu-
lation). Finally, we apply the cones and foci technique, to prove that the lin-
ear specification without modulo arithmetic is branching bisimilar to a FIFO
queue of capacity 2n. All lemmas for the data types, all invariants and all cor-
rectness proofs have been checked using PVS. The PVS files are available via
http://www.cwi.nl/~badban/swp.html. Ongoing research is to extend the cur-
rent verification to a setting where the medium is modelled as a lossy queue of
unbounded capacity, and to include duplex message passing and piggybacking.

In this extended abstract we omitted most equational definitions of the data
types, most lemmas regarding these data types, part of the invariants and part
of the correctness proofs. The reader is referred to the full version of the paper
[8], for these definitions and proofs.



2 µCRL

µCRL [16] (see also [18]) is a language for specifying distributed systems and
protocols in an algebraic style. It is based on the process algebra ACP [1] ex-
tended with equational abstract data types [28]. In a µCRL specification, one
part specifies the data types, while a second part specifies the process behaviour.

The data types needed for our µCRL specification of a SWP are presented
in Section 3. In this section we focus on the process part of µCRL. Processes
are represented by process terms, which describe the order in which the actions
from a set A may happen. A process term consists of action names and recur-
sion variables combined by process algebraic operators. Actions and recursion
variables may carry data parameters. There are two predefined actions outside
A: δ represents deadlock, and τ a hidden action. These two actions never carry
data parameters. p·q denotes sequential composition and p+q non-deterministic
choice. Summation

∑

d:D p(d) provides the possibly infinite choice over a data
type D, and the conditional construct p � b � q with b a data term of sort Bool
behaves as p if b and as q if ¬b. Parallel composition p ‖ q interleaves the actions
of p and q; moreover, actions from p and q may also synchronise to a commu-
nication action, when this is explicitly allowed by a predefined communication
function. Two actions can only synchronise if their data parameters are equal.
Encapsulation ∂H(p), which renames all occurrences in p of actions from the set
H into δ, can be used to force actions into communication. Hiding τI(p) renames
all occurrences in p of actions from the set I into τ . Finally, processes can be
specified by means of recursive equations X(d1:D1, . . . , dn:Dn) ≈ p, where X is
a recursion variable, di a data parameter of type Di for i = 1, . . . , n, and p a
process term (possibly containing recursion variables and the parameters di). A
recursive specification is linear if it is of the form

X(d1:D1, . . . , dn:Dn) ≈
∑̀

i=1

∑

zi:Zi

ai(e
i
1, . . . , e

i
mi

)·X(di
1, . . . , d

i
n) / bi . δ.

To each µCRL specification belongs a directed graph, called a labelled tran-
sition system, which is defined by the structural operational semantics of µCRL
(see [16]). In this labelled transition system, the states are process terms, and
the edges are labelled with parameterised actions. Branching bisimulation ↔b

[10] and strong bisimulation ↔ [33] are two well-established equivalence rela-
tions on the states in labelled transition systems. Conveniently, strong bisimula-
tion equivalence implies branching bisimulation equivalence. The proof theory of
µCRL from [15] is sound modulo branching bisimulation equivalence, meaning
that if p ≈ q can be derived from it then p ↔b q.

The goal of this paper is to prove that the initial state of the forthcoming
µCRL specification of a SWP is branching bisimilar to a FIFO queue. We use
three proof principles from the literature:

– Sum elimination [14] states that a summation over a data type from which
only one element can be selected can be removed.

– CL-RSP [2] states that the solutions of a linear µCRL specification that does
not contain any infinite τ sequence are all strongly bisimilar.



– The cones and foci method from [9, 19] rephrases the question whether two
linear µCRL specifications τI(S1) and S2 are branching bisimilar, where S2

does not contain actions from some set I of internal actions, in terms of
data equalities. A state mapping φ relates each state in S1 to a state in S2.
Furthermore, some states in S1 are declared to be focus points, by means of
a predicate FC. The cone of a focus point consists of the states in S1 that
can reach this focus point by a string of actions from I. It is required that
each reachable state in S1 is in the cone of a focus point. If a number of
matching criteria are satisfied, then τI(S1) and S2 are branching bisimilar.

3 Data Types

In this section, the data types used in the µCRL specification of the SWP are pre-
sented: booleans, natural numbers supplied with modulo arithmetic, and buffers.

Booleans and Natural Numbers. Bool is the data type of booleans. t and f denote
true and false, ∧ and ∨ conjunction and disjunction, → and ↔ implication and
logic equivalence, and ¬ negation. For a boolean b, we abbreviate b = t to b and
b = f to ¬b. Unless otherwise stated, data parameters in boolean formulas are
universally quantified.

For each data type D in this paper there is an operation if : Bool×D×D → D

with as defining equations if (t, d, e) = d and if (f, d, e) = e. Furthermore, for each
data type D in this paper one can easily define a mapping eq : D × D → Bool

such that eq(d, e) holds if and only if d = e can be derived. For notational
convenience we take the liberty to write d = e instead of eq(d, e).

Nat is the data type of natural numbers. 0 denotes zero, S(n) the successor of
n, +, .− and · addition, monus (also called proper subtraction) and multiplication,
and ≤, <, ≥ and > less-than(-or-equal) and greater-than(-or-equal). Usually,
the sign for multiplication is omitted, and ¬(i = j) is abbreviated to i 6= j. As
binding convention, {=, 6=} > {·} > {+, .−} > {≤, <,≥, >} > {¬} > {∧,∨} > {→

,↔}.
Since the buffers at the sender and the receiver in the sliding window are of

size 2n, calculations modulo 2n play an important role. i|n denotes i modulo n,
while i div n denotes i integer divided by n.

Buffers. The sender and the receiver in the SWP both maintain a buffer contain-
ing the sending and the receiving window, respectively (outside these windows
both buffers are empty). Let ∆ be the set of data elements that can be commu-
nicated between sender and receiver. The buffers are modelled as a list of pairs
(d, i) with d ∈ ∆ and i ∈ Nat , representing that position (or sequence number) i
of the buffer is occupied by datum d. The data type Buf is specified as follows,
where [] denotes the empty buffer: [] :→ Buf and in : ∆ × Nat × Buf → Buf .
q|n denotes buffer q with all sequence numbers taken modulo n. []|n = [] and
in(d, i, q)|n = in(d, i|n, q|n). test(i, q) produces t if and only if position i in q is
occupied, retrieve(i, q) produces the datum that resides at position i in buffer q
(if this position is occupied), and remove(i, q) is obtained by emptying position



i in buffer q. release(i, j, q) is obtained by emptying positions i up to j excluded
in q. release|n(i, j, q) does the same modulo n:

release(i, j, q) = if (i ≥ j, q, release(S(i), j, remove(i, q)))
release|n(i, j, q) = if (i|n=j|n, q, release|n(S(i), j, remove(i, q)))

next-empty(i, q) produces the first empty position in q, counting upwards from
sequence number i onward. next-empty|n(i, q) does the same modulo n.

next-empty(i, q) = if (test(i, q),next-empty(S(i), q), i)

next-empty|n(i, q) =

{

next-empty(i|n, q|n) if next-empty(i|n, q|n) < n

next-empty(0, q|n) otherwise

Intuitively, in-window(i, j, k) produces t if and only if j lies in the range from i
to k .− 1, modulo n, where n is greater than i, j and k.

in-window(i, j, k) = i ≤ j < k ∨ k < i ≤ j ∨ j < k < i

Lists. The data type List of lists is used in the specification of the desired
external behaviour of the SWP: a FIFO queue of capacity 2n. It is specified
by the empty list 〈〉 :→ List and in : ∆ × List → List . length(λ) denotes the
length of λ, top(λ) produces the datum at the top of λ, tail(λ) is obtained by
removing the top position in λ, append(d, λ) adds datum d at the end of λ, and
λ++λ′ represents list concatenation. Furthermore, q[i..j〉 is the list containing the
elements in buffer q at positions i up to but not including j. An empty position
in q, in between i and j, gives rise to an occurrence of the default datum d0 in
q[i..j〉.

q[i..j〉 =







〈〉 if i ≥ j

in(retrieve(i, q), q[S(i)..j〉) if i < j ∧ test(i, q)
in(d0, q[S(i)..j〉) if i < j ∧ ¬test(i, q)

4 Sliding Window Protocol

In this section, a µCRL specification of a SWP is presented, together with its
desired external behaviour.

Specification of a Sliding Window Protocol. A sender S stores data elements
that it receives via channel A in a buffer of size 2n, in the order in which they
are received. S can send a datum, together with its sequence number in the
buffer, to a receiver R via a medium that behaves as lossy queue of capacity
one, represented by the medium K and the channels B and C. Upon reception,
R may store the datum in its buffer, where its position in the buffer is dictated
by the attached sequence number. In order to avoid a possible overlap between
the sequence numbers of different data elements in the buffers of S and R, no
more than one half of the buffers of S and R may be occupied at any time; these



halves are called the sending and the receiving window, respectively. R can pass
on a datum that resides at the first position in its window via channel D; in
that case the receiving window slides forward by one position. Furthermore, R

can send the sequence number of the first empty position in (or just outside) its
window as an acknowledgement to S via a medium that behaves as lossy queue
of capacity one, represented by the medium L and the channels E and F. If S

receives this acknowledgement, its window slides accordingly.

K

L

C
D

E

B

F

RS
A

· · · · · ·

2n−2

2n−3

0

1

2

· · ·

2n−2

2n−3

0

1

2n−1 2n−1

· · ·
2

The sender S is modelled by the process S(`, m, q), where q is a buffer of size
2n, ` the first position in the sending window, and m the first empty position in
(or just outside) the sending window. Data elements can be selected at random
for transmission from (the filled part of) the sending window.

S(`:Nat , m:Nat , q:Buf )

≈
∑

d:∆
rA(d)·S(`, S(m)|2n, in(d, m, q)) / in-window(`, m, (` + n)|2n) . δ

+
∑

k:Nat
sB(retrieve(k, q), k)·S(`, m, q) / test(k, q) . δ

+
∑

k:Nat
rF(k)·S(k, m, release|2n(`, k, q))

The receiver R is modelled by the process R(`′, q′), where q′ is a buffer of size
2n and `′ the first position in the receiving window.

R(`′:Nat , q′:Buf )

≈
∑

d:∆

∑

k:Nat
rC(d, k)·(R(`′, in(d, k, q′)) / in-window(`′, k, (`′ + n)|2n) . R(`′, q′))

+ sD(retrieve(`′, q′))·R(S(`′)|2n, remove(`′, q′)) / test(`′, q′) . δ

+ sE(next-empty|2n(`′, q′))·R(`′, q′)

For i ∈ {B, C, E, F}, si and ri can communicate, resulting in ci.
Finally, the mediums K and L, which have capacity one, may lose frames

between S and R. The action j indicates an internal choice.

K ≈
∑

d:∆

∑

k:Nat
rB(d, k)·(j·sC(d, k) + j)·K

L ≈
∑

k:Nat
rE(k)·(j·sF(k) + j)·L



The initial state of the SWP is expressed by τI(∂H(S(0, 0, []) ‖ R(0, []) ‖
K ‖ L)), where the set H consists of the read and send actions over the internal
channels B, C, E, and F, while the set I consists of the communication actions
over these internal channels together with j.

External Behaviour. Data elements that are read from channel A by S should be
sent into channel D by R in the same order, and no data elements should be lost.
In other words, the SWP is intended to be a solution for the linear specification

Z(λ:List) ≈
∑

d:∆ rA(d)·Z(append(d, λ)) / length(λ) < 2n . δ

+ sD(top(λ))·Z(tail(λ)) / length(λ) > 0 . δ

Note that rA(d) can be performed until the list λ contains 2n elements, because
in that situation the sending and receiving windows will be filled. Furthermore,
sD(top(λ)) can only be performed if λ is not empty.

The remainder of this paper is devoted to proving the following theorem.

Theorem 1. τI(∂H(S(0, 0, []) ‖ R(0, []) ‖ K ‖ L)) ↔b Z(〈〉).

5 Transformations of the Specification

The starting point of our correctness proof is a linear specification Nmod , in
which no parallel operators occur. Nmod can be obtained from the µCRL spec-
ification of the SWP without the hiding operator, by means of a linearisa-
tion algorithm presented in [17]. Nmod contains five extra parameters: e:D and
g, g′, h, h′:Nat . Intuitively, g (resp. g′) equals zero when medium K (resp. L) is
inactive, equals one when K (resp. L) just received a datum, and equals two if
K (resp. L) decides to pass on this datum. Furthermore, e (resp. h) equals the
datum that is being sent from S to R (resp. the position of this datum in the
sending window) while g 6= 0, and equals the dummy value d0 (resp. 0) while
g = 0. Finally h′ equals the first empty position in the receiving window while
g′ 6= 0 and equals 0 while g′ = 0. Furthermore, data arguments are stripped from
communication actions, and these actions are renamed to a fresh action c. For
the sake of presentation, we only present parameters whose values are changed.

Nmod (`:Nat , m:Nat , q:Buf , `′:Nat , q′:Buf , g:Nat , e:D, h:Nat , g′:Nat , h′:Nat)

≈
∑

d:∆
rA(d)·Nmod (m:=S(m)|2n, q:=in(d, m, q)) / in-window(`, m, (` + n)|2n) . δ

+
∑

k:Nat
c·Nmod (g:=1, e:=retrieve(k, q), h:=k) / test(k, q) ∧ g = 0 . δ

+ j·Nmod (g:=0, e:=d0, h:=0) / g = 1 . δ

+ j·Nmod (g:=2) / g = 1 . δ

+ c·Nmod (q′:=in(e, h, q′), g:=0, e:=d0, h:=0) / in-window(`′, h, (`′ + n)|2n) ∧ g = 2 . δ

+ c·Nmod (g:=0, e:=d0, h:=0) / ¬in-window(`′, h, (`′ + n)|2n) ∧ g = 2 . δ

+ sD(retrieve(`′, q′))·Nmod (`′:=S(`′)|2n, q′:=remove(`′, q′)) / test(`′, q′) . δ

+ c·Nmod (g′:=1, h′:=next-empty|2n(`′, q′)) / g′ = 0 . δ

+ j·Nmod (g′:=0, h′:=0) / g′ = 1 . δ

+ j·Nmod (g′:=2) / g′ = 1 . δ

+ c·Nmod (`:=h′, q:=release|2n(`, h′, q), g′:=0, h′:=0) / g′ = 2 . δ



Theorem 2.

τI(∂H(S(0, 0, []) ‖ R(0, []) ‖ K ‖ L)) ↔ τ{c,j}(Nmod (0, 0, [], 0, [], 0, d0, 0, 0, 0)).

The specification of Nnonmod is obtained by eliminating all occurrences of
|2n from Nmod , and replacing in-window(`, m, (` + n)|2n by m < ` + n and
in-window(`′, h, (`′ + n)|2n by `′ ≤ h < `′ + n.

Theorem 3. Nmod (0, 0, [], 0, [], 0, d0, 0, 0, 0) ↔ Nnonmod (0, 0, [], 0, [], 0, d0, 0, 0, 0).

The proof of Theorem 2, using a linearisation algorithm [17] and a simple
renaming, is omitted. The proof of Theorem 3 is shown in Section 7.1.

6 Properties of Data and Invariants of Nnonmod

Lemma 1 collects results on modulo arithmetic related to buffers. Simpler lem-
mas on modulo arithmetic, buffers, the next-empty operation, and lists can be
found in the full version of this paper [8]. We use those lemmas without mention.

Lemma 1. The lemmas below hold for modulo arithmetic related to buffers.

1. ∀j:Nat(test(j, q) → i ≤ j < i + n) ∧ i ≤ k ≤ i + n → test(k, q) = test(k|2n, q|2n)

2. ∀j:Nat(test(j, q) → i ≤ j < i + n)∧ test(k, q) → retrieve(k, q) = retrieve(k|2n, q|2n)

3. i ≤ k < i + n → in-window(i|2n, k|2n, (i + n)|2n)

4. in-window(i|2n, k|2n, (i + n)|2n) → k + n < i ∨ i ≤ k < i + n ∨ k ≥ i + 2n

5. ∀j:Nat(test(j, q) → i ≤ j < i + n) ∧ test(k, q|2n) → in-window(i|2n, k, (i + n)|2n)

Invariants of a system are properties of data that are satisfied throughout the
reachable state space of the system. Lemma 2 collects 9 invariants of Nnonmod

that are needed in the correctness proofs in the current paper.

Lemma 2. The invariants below hold for Nnonmod (`, m, q, `′, q′, g, e, h, g′, h′).

1. max{h′, `} ≤ next-empty(`′, q′)
2. g 6= 0 → h < m

3. next-empty(`′, q′) ≤ min{m, `′ + n}
4. test(i, q) ↔ ` ≤ i < m

5. ` ≤ m ≤ ` + n ≤ `′ + 2n

6. g 6= 0 → next-empty(`′, q′) ≤ h + n
7. g 6= 0 ∧ test(h, q) → retrieve(h, q) = e

8. g 6= 0 ∧ test(h, q′) → retrieve(h, q′) = e
9. ` ≤ i ∧ j ≤ next-empty(i, q′) → q[i..j〉 = q′[i..j〉

7 Correctness of Nmod

7.1 Equality of Nmod and Nnonmod

In this section we present a proof of Theorem 3. It suffices to prove that for all
`, m, `′, h, h′ : Nat , q, q′ : Buf , e : ∆ and g, g′ ≤ 2,

Nmod (`|2n, m|2n, q|2n, `′|2n, q′|2n, g, e, h|2n, g′, h′|2n)
↔ Nnonmod (`|2n, m|2n, q|2n, `′|2n, q′|2n, g, e, h|2n, g′, h′|2n)



Proof. We show that Nmod (`|2n, m|2n, q|2n, `′|2n, q′|2n, g, e, h|2n, g′, h′|2n) is a solution
for the defining equation of Nnonmod (`, m, q, `′, q′, g, e, h, g′, h′). Hence, we must derive
the following equation.

Nmod (`|2n, m|2n, q|2n, `′|2n, q′|2n, g, e, h|2n, g′, h′|2n)

≈
∑

d:∆
rA(d)·Nmod (m:=S(m)|2n, q:=in(d,m, q)|2n) / m < ` + n . δ (A)

+
∑

k:Nat
c·Nmod (g:=1, e:=retrieve(k, q), h:=k|2n) / test(k, q) ∧ g = 0 . δ (B)

+ j·Nmod (g:=0, e:=d0, h:=0) / g = 1 . δ (C)

+ j·Nmod (g:=2) / g = 1 . δ (D)

+ c·Nmod (q′:=in(e, h, q′)|2n, g:=0, e:=d0, h:=0) / `′ ≤ h < `′ + n ∧ g = 2 . δ (E)

+ c·Nmod (g:=0, e:=d0, h:=0) / ¬(`′ ≤ h < `′ + n) ∧ g = 2 . δ (F )

+ sD(retrieve(`′, q′))·Nmod (`′:=S(`′)|2n, q′:=remove(`′, q′)|2n) / test(`′, q′) . δ (G)

+ c·Nmod (g′:=1, h′:=next-empty(`′, q′)|2n) / g′ = 0 . δ (H)

+ j·Nmod (g′:=0, h′:=0) / g′ = 1 . δ (I)

+ j·Nmod (g′:=2) / g′ = 1 . δ (J)

+ c·Nmod (`:=h′|2n, q:=release(`, h′, q)|2n, g′:=0, h′:=0) / g′ = 2 . δ (K)

In order to prove this, we instantiate the parameters in the defining equation of
Nmod with `|2n, m|2n, q|2n, `′|2n, q′|2n, g, e, h|2n, g′, h′|2n.

Nmod (`|2n, m|2n, q|2n, `′|2n, q′|2n, g, e, h|2n, g′, h′|2n)

≈
∑

d:∆ rA(d)·Nmod (m:=S(m|2n)|2n, q:=in(d, m|2n, q|2n))
/ in-window(`|2n, m|2n, (`|2n + n)|2n) . δ

+
∑

k:Nat
c·Nmod (g:=1, e:=retrieve(k, q|2n), h:=k) / test(k, q|2n) ∧ g = 0 . δ

+ j·Nmod (g:=0, e:=d0, h:=0) / g = 1 . δ

+ j·Nmod (g:=2) / g = 1 . δ

+ c·Nmod (q′:=in(e, h|2n, q′|2n), g:=0, e:=d0, h:=0)
/ in-window(`′|2n, h|2n, (`′|2n + n)|2n) ∧ g = 2 . δ

+ c·Nmod (g:=0, e:=d0, h:=0)
/ ¬in-window(`′|2n, h|2n, (`′|2n + n)|2n) ∧ g = 2 . δ

+ sD(retrieve(`′|2n, q′|2n))·Nmod (`′:=S(`′|2n)|2n, q′:=remove(`′|2n, q′|2n))
/ test(`′|2n, q′|2n) . δ

+ c·Nmod (g′:=1, h′:=next-empty|2n(`′|2n, q′|2n)) / g′ = 0 . δ

+ j·Nmod (g′:=0, h′:=0) / g′ = 1 . δ

+ j·Nmod (g′:=2) / g′ = 1 . δ

+ c·Nmod (`:=h′|2n, q:=release|2n(`|2n, h′|2n, q|2n), g′:=0, h′:=0) / g′ = 2 . δ

To equate the eleven summands in both specifications, we obtain a number of proof
obligations. Here, we focus on summands A, B, and E.

A m < ` + n = in-window(`|2n, m|2n, (`|2n + n)|2n).

m < ` + n ↔ ` ≤ m < ` + n (Inv. 2.5) → in-window(`|2n, m|2n, (` + n)|2n)
(Lem. 1.3). Reversely, in-window(`|2n, m|2n, (` + n)|2n) → m+n < `∨` ≤ m < `+

n∨m ≥ `+2n (Lem. 1.4) ↔ m < `+n (Inv. 2.5). Since (` + n)|2n = (`|2n + n)|2n,
we have m < ` + n = in-window(`|2n, m|2n, (`|2n + n)|2n).



B Below we equate the entire summand B of the two specifications. The conjunc-
tion g = 0 and the argument g:=1 of summand B are omitted, because they are
irrelevant for this derivation.
By Inv. 2.4 and 2.5, test(j, q) → ` ≤ j < `+n. So by Lem. 1.5, test(k′, q|2n) implies
in-window(`|2n, k′, (` + n)|2n). test(k′, q|2n) implies k′ = k′|2n, and by Lem. 1.4,
k′ + n < `|2n ∨ `|2n ≤ k′ < `|2n + n ∨ k′ ≥ ` + 2n. k′ = k′|2n < 2n implies
k′ + n < `|2n ∨ `|2n ≤ k′ < `|2n + n.

∑

k:Nat
c·Nmod (e:=retrieve(k, q), h:=k|2n)

/ test(k, q) . δ

≈
∑

k:Nat
c·Nmod (e:=retrieve(k, q), h:=k|2n)

/ test(k, q) ∧ ` ≤ k < ` + n . δ (Inv. 2.4, 2.5)
≈

∑

k:Nat
c·Nmod (e:=retrieve(k|2n, q|2n), h:=k|2n)

/ test(k|2n, q|2n) ∧ ` ≤ k < ` + n . δ (Lem. 1.1, 1.2)
≈

∑

k′:Nat

∑

k:Nat
c·Nmod (e:=retrieve(k′, q|2n), h:=k′)

/ test(k′, q|2n) ∧ ` ≤ k < ` + n ∧ k′ = k|2n . δ (sum elimination)
≈

∑

k′:Nat

∑

k:Nat
c·Nmod (e:=retrieve(k′, q|2n), h:=k′)

/ test(k′, q|2n) ∧ k = (` div 2n)2n + k′ ∧ `|2n ≤ k′ < `|2n + n ∧ k′ = k|2n . δ

+
∑

k′:Nat

∑

k:Nat
c·Nmod (e:=retrieve(k′, q|2n), h:=k′)

/ test(k′, q|2n) ∧ k = S(` div 2n)2n + k′ ∧ k′ + n < `|2n ∧ k′ = k|2n . δ

≈
∑

k′:Nat
c·Nmod (e:=retrieve(k′, q|2n), h:=k′)

/ test(k′, q|2n) ∧ `|2n ≤ k′ < `|2n + n ∧ k′ = k′ . δ

+
∑

k′:Nat
c·Nmod (e:=retrieve(k′, q|2n), h:=k′)

/ test(k′, q|2n) ∧ k′ + n < `|2n ∧ k′ = k′ . δ (sum elimination)
≈

∑

k′:Nat
c·Nmod (e:=retrieve(k′, q|2n), h:=k′)

/ test(k′, q|2n) . δ (see above)

E g = 2 → `′ ≤ h < `′ + n = in-window(`′|2n, h|2n, (`′ + n)|2n).
Let g = 2. We have `′ ≤ next-empty(`′, q′), and by Inv. 2.6 together with g = 2,
next-empty(`′, q′) ≤ h + n, so `′ ≤ h + n. Furthermore, by Inv. 2.2 together with
g = 2, h < m, by Inv. 2.5, m ≤ `′ + 2n. Hence, h < `′ + 2n. So using Lem. 1.3 and
1.4, it follows that `′ ≤ h < `′ + n = in-window(`′|2n, h|2n, (`′ + n)|2n).

Equality of other summands can be derived without much difficulty. Hence, we prove
that Nmod (`|2n, m|2n, q|2n, `′|2n, q′|2n, g, e, h|2n, g′, h′|2n) is a solution for the specifica-
tion of Nnonmod (`, m, q, `′, q′, g, e, h, g′, h′). By CL-RSP, they are strongly bisimilar.

7.2 Correctness of Nnonmod

We prove that Nnonmod is branching bisimilar to the FIFO queue Z of capacity
2n (see Section 4), using the cones and foci method [9].

Let Ξ abbreviate Nat ×Nat ×Buf ×Nat ×Buf ×Nat ×∆×Nat ×Nat ×Nat .
Furthermore, let ξ:Ξ denote (`, m, q, `′, q′, g, e, h, g′, h′). The state mapping φ :
Ξ → List , which maps states of Nnonmod to states of Z, is defined by:

φ(ξ) = q
′[`′..next-empty(`′, q′)〉++q[next-empty(`′, q′)..m〉

Intuitively, φ collects the data elements in the sending and receiving windows,
starting at the first position of the receiving window (i.e., `′) until the first empty



position in this window, and then continuing in the sending window until the
first empty position in that window (i.e., m). Note that φ is independent of
e, g, `, h, g′, h′; we therefore write φ(m, q, `′, q′).

The focus points are those states where either the sending window is empty
(meaning that ` = m), or the receiving window is full and all data elements in
the receiving window have been acknowledged, meaning that ` = `′ + n. That
is, the focus condition for Nnonmod (`, m, q, `′, q′, g, e, h, g′, h′) is

FC (`, m, q, `
′
, q

′
, g, e, h, g

′
, h

′) := ` = m ∨ ` = `
′ + n

Lemma 3. For each ξ:Ξ where the invariants in Lemma 2 hold, there is a ξ̂:Ξ with
FC(ξ̂) such that Nnonmod (ξ)

c1→ · · ·
cn→ Nnonmod (ξ̂), where c1, . . . , cn ∈ I.

Proof. In case g 6= 0 in ξ, by summands C, E and F , we can perform one or two commu-
nication actions to a state where g = 0. By Inv. 2.3, next-empty(`′, q′) ≤ min{m, `′+n}.
We prove by induction on min{m, `′+n}−next-empty(`′, q′) that for each state ξ′ where
g = 0 and the invariants in Lemma 2 hold, a focus point can be reached.
Base Case: next-empty(`′, q′) = min{m, `′ + n}.

In case g′ 6= 0 in ξ′, by summands I and K, we can perform communication actions
to a state where g′ = 0 and next-empty(`′, q′) = min{m, `′ + n}. By summands H,
J and K we can perform three communication actions to a state ξ̂ where ` = h′ =
next-empty(`′, q′) = min{m, `′ + n}. Then ` = m or ` = `′ + n, so FC(ξ̂).

Induction Case: next-empty(`′, q′) < min{m, `′ + n}.

By Inv. 2.1, ` ≤ next-empty(`′, q′) < m. By Inv. 2.4, test(next-empty(`′, q′), q). Further-
more, `′ ≤ next-empty(`, q′) < `′ +n. Hence, by summands B, D and E from ξ′ we can
perform three communication actions to a state ξ′′. In ξ′′, g := 0, and in comparison to
ξ′, m and `′ remain the same, while q′ := in(d,next-empty(`′, q′), q′) where d denotes
retrieve(next-empty(`′, q′), q). Since next-empty(`′, in(d,next-empty(`′, q′), q′))
= next-empty(S(next-empty(`′, q′)), q′) > next-empty(`′, q′), we can apply the induc-
tion hypothesis to conclude that from ξ′′ a focus point can be reached.

Theorem 4. For all e:∆, τ{c,j}(Nnonmod (0, 0, [], 0, [], 0, e, 0, 0, 0)) ↔b Z(〈〉).

Proof. By the cones and foci method we obtain the following matching criteria (cf.
[9]). Trivial matching criteria are left out.























































I.1 : `′ ≤ h < `′ + n ∧ g = 2 → φ(m, q, `′, q′) = φ(m, q, `′, in(e, h, q′))
I.2 : g′ = 2 → φ(m, q, `′, q′) = φ(m, release(`, h′, q), `′, q′)
II.1 : m < ` + n → length(φ(m, q, `′, q′)) < 2n

II.2 : test(`′, q′) → length(φ(m, q, `′, q′)) > 0
III.1 : (` = m ∨ ` = `′ + n) ∧ length(φ(m, q, `′, q′)) < 2n → m < ` + n

III.2 : (` = m ∨ ` = `′ + n) ∧ length(φ(m, q, `′, q′)) > 0 → test(`′, q′)
IV : test(`′, q′) → retrieve(`′, q′) = top(φ(m, q, `′, q′))
V.1 : m < ` + n → φ(S(m), in(d,m, q), `′, q′) = append(d, φ(m, q, `′, q′))
V.2 : test(`′, q′) → φ(m, q, S(`′), remove(`′, q′)) = tail(φ(m, q, `′, q′))

I.1 `′ ≤ h < `′ + n ∧ g = 2 → φ(m, q, `′, q′) = φ(m, q, `′, in(e, h, q′)).

Case 1: h 6= next-empty(`′, q′)).
Let g = 2. Since next-empty(`′, in(e, h, q′)) = next-empty(`′, q′), it follows that
φ(m, q, `′, in(e, h, q′)) = in(e, h, q′)[`′..next-empty(`′, q′)〉++q[next-empty(`′, q′)..m〉.



Case 1.1: `′ ≤ h < next-empty(`′, q′)).
test(h, q′), so by Inv. 2.8 together with g = 2, retrieve(h, q′) = e. Hence,
in(e, h, q′)[`′..next-empty(`′, q′)〉 = q′[`′..next-empty(`′, q′)〉.
Case 1.2: ¬(`′ ≤ h ≤ next-empty(`′, q′)).
in(e, h, q′)[`′..next-empty(`′, q′)〉 = q′[`′..next-empty(`′, q′)〉.
Case 2: h = next-empty(`′, q′).
Let g = 2. The derivation splits into two parts.

(1) in(e, h, q′)[`′..h〉 = q′[`′..h〉.
(2) By Inv. 2.1, ` ≤ h, and by Inv. 2.2 together with g = 2, h < m. Thus, by Inv. 2.4,

test(h, q). So by Inv. 2.7 together with g = 2, retrieve(h, q) = e. Hence,

in(e, h, q′)[h..next-empty(S(h), q′)〉
= in(e, in(e, h, q′)[S(h)..next-empty(S(h), q′)〉)
= in(e, q′[S(h)..next-empty(S(h), q′)〉)
= in(e, q[S(h)..next-empty(S(h), q′)〉) (Inv. 2.9)
= q[h..next-empty(S(h), q′)〉

Finally, we combine (1) and (2). We recall that h = next-empty(`′, q′).

in(e, h, q′)[`′..next-empty(`′, in(e, h, q′))〉
++q[next-empty(`′, in(e, h, q′))..m〉

= in(e, h, q′)[`′..next-empty(S(h), q′)〉
++q[next-empty(S(h), q′)..m〉

= (in(e, h, q′)[`′..h〉++in(e, h, q′)[h..next-empty(S(h), q′)〉)
++q[next-empty(S(h), q′)..m〉

= q′[`′..h〉++q[h..next-empty(S(h), q′)〉
++q[next-empty(S(h), q′)..m〉 (1), (2)

= q′[`′..h〉++q[h..m〉

I.2 g′ = 2 → φ(m, q, `′, q′) = φ(m, release(`, h′, q), `′, q′).
By Inv. 2.1, h′ ≤ next-empty(`′, q′).
So release(`, h′, q)[next-empty(`′, q′)..m〉 = q′[next-empty(`′, q′)..m〉.

II.1 m < ` + n → length(φ(m, q, `′, q′)) < 2n.
Let m < ` + n. By Inv. 2.3, next-empty(`′, q′) ≤ `′ + n. Hence,

length(q′[`′..next-empty(`′, q′)〉++q[next-empty(`′, q′)..m〉)
= length(q′[`′..next-empty(`′, q′)〉) + length(q[next-empty(`′, q′)..m〉))
= (next-empty(`′, q′) .− `′) + (m .− next-empty(`′, q′))
≤ n + (m .− `) (Inv. 2.1)
< 2n

II.2 test(`′, q′) → length(φ(m, q, `′, q′)) > 0.
test(`′, q′) yields next-empty(`′, q′) = next-empty(S(`′), q′) ≥ S(`′). Hence,
length(φ(m, q, `′, q′)) = (next-empty(`′, q′) .− `′) + (m .− next-empty(`′, q′)) > 0.

III.1 (` = m ∨ ` = `′ + n) ∧ length(φ(m, q, `′, q′)) < 2n → m < ` + n.
Case 1: ` = m.
Then m < ` + n holds trivially.
Case 2: ` = `′ + n.
By Inv. 2.3, next-empty(`′, q′) ≤ `′ + n. Hence,

length(φ(m, q, `′, q′))
= (next-empty(`′, q′) .− `′) + (m .− next-empty(`′, q′))
≤ ((`′ + n) .− `′) + (m .− `) (Inv. 2.1)
= n + (m .− `)



So length(φ(m, q, `′, q′)) < 2n implies m < ` + n.

III.2 (` = m ∨ ` = `′ + n) ∧ length(φ(m, q, `′, q′)) > 0 → test(`′, q′).

Case 1: ` = m.
Since m .− next-empty(`′, q′) ≤ (m .− `) (Inv. 2.1) = 0, we have
length(φ(m, q, `′, q′)) = next-empty(`′, q′) .− `′.
Hence, length(φ(m, q, `′, q′)) > 0 yields next-empty(`′, q′) > `′, which implies
test(`′, q′).

Case 2: ` = `′ + n.
Then by Inv. 2.1, next-empty(`′, q′) ≥ `′ + n, which implies test(`′, q′).

IV test(`′, q′) → retrieve(`′, q′) = top(φ(m, q, `′, q′)).

test(`′, q′) implies next-empty(`′, q′) = next-empty(S(`′), q′) ≥ S(`′).
So q′[`′..next-empty(`′, q′)〉 = in(retrieve(`′, q′), q′[S(`′)..next-empty(`′, q′)〉).
Hence, top(φ(m, q, `′, q′)) = retrieve(`′, q′).

V.1 m < ` + n → φ(S(m), in(d, m, q), `′, q′) = append(d, φ(m, q, `′, q′)).

q′[`′..next-empty(`′, q′)〉++in(d,m, q)[next-empty(`′, q′)..S(m)〉
= q′[`′..next-empty(`′, q′)〉++append(d, q[next-empty(`′, q′)..m〉)
= append(d, q′[`′..next-empty(`′, q′)〉++q[next-empty(`′, q′)..m〉)

V.2 test(`′, q′) → φ(m, q, S(`′), remove(`′, q′)) = tail(φ(m, q, `′, q′)).

test(`′, q′) implies next-empty(`′, q′) = next-empty(S(`′), q′). Hence,

remove(`′, q′)[S(`′)..next-empty(S(`′), remove(`′, q′))〉
++q[next-empty(S(`′), remove(`′, q′))..m〉

= remove(`′, q′)[S(`′)..next-empty(S(`′), q′)〉++q[next-empty(S(`′), q′)..m〉
= remove(`′, q′)[S(`′)..next-empty(`′, q′)〉++q[next-empty(`′, q′)..m〉
= q′[S(`′)..next-empty(`′, q′)〉++q[next-empty(`′, q′)..m〉
= tail(q′[`′..next-empty(`′, q′)〉++q[next-empty(`′, q′)..m〉)

7.3 Correctness of the Sliding Window Protocol

Finally, we can prove Theorem 1.

Proof.

τI(∂H(S(0, 0, []) ‖ R(0, []) ‖ K ‖ L))
↔ τ{c,j}(Nmod (0, 0, [], 0, [], 0, d0, 0, 0, 0)) (Thm. 2)
↔ τ{c,j}(Nnonmod (0, 0, [], 0, [], 0, d0, 0, 0, 0)) (Thm. 3)
↔b Z(〈〉) (Thm. 4)

8 Related Work

Sliding window protocols have attracted considerable interest from the formal
verification community. In this section we present an overview. Many of these
verifications deal with unbounded sequence numbers, in which case modulo arith-
metic is avoided, or with a fixed finite window size. The papers that do treat
arbitrary finite window sizes mostly restrict to safety properties.



Infinite window size. Stenning [41] studied a SWP with unbounded sequence
numbers and an infinite window size, in which messages can be lost, duplicated
or reordered. A timeout mechanism is used to trigger retransmission. Stenning
gave informal manual proofs of some safety properties. Knuth [26] examined more
general principles behind Stenning’s protocol, and manually verified some safety
properties. Hailpern [20] used temporal logic to formulate safety and liveness
properties for Stenning’s protocol, and established their validity by informal
reasoning. Jonsson [23] also verified both safety and liveness properties of the
protocol, using temporal logic and a manual compositional verification technique.

Fixed finite window size. Richier et al. [34] specified a SWP in a process algebra
based language Estelle/R, and verified safety properties for window size up to
eight using the model checker Xesar. Madelaine and Vergamini [29] specified
a SWP in Lotos, with the help of the simulation environment Lite, and proved
some safety properties for window size six. Holzmann [21, 22] used the Spin model
checker to verify both safety and liveness properties of a SWP with sequence
numbers up to five. Kaivola [25] verified safety and liveness properties using
model checking for a SWP with window size up to seven. Godefroid and Long
[11] specified a full duplex SWP in a guarded command language, and verified the
protocol for window size two using a model checker based on Queue BDDs. Stahl
et al. [40] used a combination of abstraction, data independence, compositional
reasoning and model checking to verify safety and liveness properties for a SWP
with window size up to sixteen. The protocol was specified in Promela, the input
language for the Spin model checker. Smith and Klarlund [38] specified a SWP
in the high-level language IOA, and used the theorem prover MONA to verify
a safety property for unbounded sequence numbers with window size up to 256.
Latvala [27] modeled a SWP using Colored Petri nets. A liveness property was
model checked with fairness constraints for window size up to eleven.

Arbitrary finite window size. Cardell-Oliver [5] specified a SWP using higher or-
der logic, and manually proved and mechanically checked safety properties using
HOL. (Van de Snepscheut [39] noted that what Cardell-Oliver claims to be a live-
ness property is in fact a safety property.) Schoone [37] manually proved safety
properties for several SWPs using assertional verification. Van de Snepscheut
[39] gave a correctness proof of a SWP as a sequence of correctness preserving
transformations of a sequential program. Paliwoda and Sanders [32] specified
a reduced version of what they call a SWP (but which is in fact very similar
to the bakery protocol from [14]) in the process algebra CSP, and verified a
safety property modulo trace semantics. Röckl and Esparza [35] verified the cor-
rectness of this bakery protocol modulo weak bisimulation using Isabelle/HOL,
by explicitly checking a bisimulation relation. Jonsson and Nilsson [24] used an
automated reachability analysis to verify safety properties for a SWP with ar-
bitrary sending window size and receiving window size one. Rusu [36] used the
theorem prover PVS to verify both safety and liveness properties for a SWP with
unbounded sequence numbers. Chkliaev et al. [7] used a timed state machine in



PVS to specify a SWP in which messages can be lost, duplicated or reordered,
and proved some safety properties with the mechanical support of PVS.

References

1. J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information and Control, 60(1/3):109–137, 1984.

2. M.A. Bezem and J.F. Groote. Invariants in process algebra with data. In Proc.
CONCUR’94, LNCS 836, pp. 401–416. Springer, 1994.

3. M.A. Bezem and J.F. Groote. A correctness proof of a one bit sliding window
protocol in µCRL. The Computer Journal, 37(4):289–307, 1994.

4. J.J. Brunekreef. Sliding window protocols. In S. Mauw and G. Veltink, eds, Alge-
braic Specification of Protocols. Cambridge Tracts in Theoretical Computer Science
36, pp. 71–112. Cambridge University Press, 1993.

5. R. Cardell-Oliver. Using higher order logic for modelling real-time protocols. In
Proc. TAPSOFT’91, LNCS 494, pp. 259–282. Springer, 1991.

6. V.G. Cerf and R.E. Kahn. A protocol for packet network intercommunication.
IEEE Transactions on Communications, COM-22:637–648, 1974.

7. D. Chkliaev, J. Hooman, and E. de Vink. Verification and improvement of the
sliding window protocol. In TACAS’03, LNCS 2619, pp. 113–127. Springer, 2003.

8. W.J. Fokkink, J.F. Groote, J. Pang, B. Badban, and J.C. van de Pol. Verifying a
sliding window protocol in µCRL. Technical Report SEN-R0308, CWI, 2003.

9. W.J. Fokkink and J. Pang. Cones and foci for protocol verification revisited. In
Proc. FOSSACS’03, LNCS 2620, pp. 267–281. Springer, 2003.

10. R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisim-
ulation semantics. Journal of the ACM, 43(3):555–600, 1996.

11. P. Godefroid and D.E. Long. Symbolic protocol verification with Queue BDDs.
Formal Methods and System Design, 14(3):257–271, 1999.

12. R.A. Groenveld. Verification of a sliding window protocol by means of process
algebra. Report P8701, University of Amsterdam, 1987.

13. J.F. Groote. Process Algebra and Structured Operational Semantics. PhD thesis,
University of Amsterdam, 1991.

14. J.F. Groote and H.P. Korver. Correctness proof of the bakery protocol in µCRL.
In Proc. ACP’94, Workshops in Computing, pp. 63–86. Springer, 1995.

15. J.F. Groote and A. Ponse. Proof theory for µCRL: A language for processes with
data. In Proc. SoSL’93, Workshops in Computing, pp. 232–251. Springer, 1994.

16. J.F. Groote and A. Ponse. Syntax and semantics of µCRL. In Proc. ACP’94,
Workshops in Computing, pp. 26–62. Springer, 1995.

17. J.F. Groote, A. Ponse, and Y.S. Usenko. Linearization of parallel pCRL. Journal
of Logic and Algebraic Programming, 48(1/2):39–72, 2001.

18. J.F. Groote and M. Reniers. Algebraic process verification. In Handbook of Process
Algebra, pp. 1151–1208. Elsevier, 2001.

19. J.F. Groote and J. Springintveld. Focus points and convergent process operators:
A proof strategy for protocol verification. Journal of Logic and Algebraic Program-
ming, 49(1/2):31–60, 2001.

20. B.T. Hailpern. Verifying Concurrent Processes Using Temporal Logic. LNCS 129,
Springer, 1982.

21. G.J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.



22. G.J. Holzmann. The model checker Spin. IEEE Transactions on Software Engi-
neering, 23(5):279-295, 1997.

23. B. Jonsson. Compositional Verification of Distributed Systems. PhD thesis, Uppsala
University, 1987.

24. B. Jonsson and M. Nilsson. Transitive closures of regular relations for verifying
infinite-state systems. In TACAS’00, LNCS 1785, pp. 220–234. Springer, 2000

25. R. Kaivola. Using compositional preorders in the verification of sliding window
protocol. In Proc. CAV’97, LNCS 1254, pp. 48–59. Springer, 1997.

26. D.E. Knuth. Verification of link-level protocols. BIT, 21:21–36, 1981.
27. T. Latvala. Model checking LTL properties of high-level Petri nets with fairness

constraints. In Proc. APN’01, LNCS 2075, pp. 242–262. Springer, 2001.
28. J. Loeckx, H.-D. Ehrich, and M. Wolf. Specification of Abstract Data Types. Wi-

ley/Teubner, 1996.
29. E. Madelaine and D. Vergamini. Specification and verification of a sliding window

protocol in Lotos. In Proc. FORTE’91, IFIP Transactions, pp. 495-510. North-
Holland, 1991.

30. S. Mauw and G.J. Veltink. A process specification formalism. Fundamenta Infor-
maticae, 13(2):85–139, 1990.

31. A. Middeldorp. Specification of a sliding window protocol within the framework of
process algebra. Report FVI 86-19, University of Amsterdam, 1986.

32. K. Paliwoda and J.W. Sanders. An incremental specification of the sliding-window
protocol. Distributed Computing, 5:83–94, 1991.

33. D.M.R. Park. Concurrency and automata on infinite sequences. In Proc. 5th GI
Conference, LNCS 104, pp. 167–183. Springer, 1981.

34. J.L. Richier, C. Rodriguez, J. Sifakis, and J. Voiron. Verification in Xesar of the
sliding window protocol. In Proc. PSTV’87, pp. 235–248. North-Holland, 1987.

35. C. Röckl and J. Esparza. Proof-checking protocols using bisimulations. In Proc.
CONCUR’99, LNCS 1664, pp. 525–540. Springer, 1999.

36. V. Rusu. Verifying a sliding-window protocol using PVS. In Proc. FORTE’01,
Conference Proceedings 197, pp. 251-268. Kluwer, 2001.

37. A.A. Schoone. Assertional Verification in Distributed Computing. PhD thesis,
Utrecht University, 1991.

38. M.A. Smith and N. Klarlund. Verification of a sliding window protocol using IOA
and MONA. In Proc. FORTE/PSTV’00, pp. 19–34. Kluwer, 2000.

39. J.L.A. van de Snepscheut. The sliding window protocol revisited. Formal Aspects
of Computing, 7(1):3–17, 1995.

40. K. Stahl, K. Baukus, Y. Lakhnech, and M. Steffen. Divide, abstract, and model-
check. In Proc. SPIN’99, LNCS 1680, pp. 57–76. Springer, 1999.

41. N.V. Stenning. A data transfer protocol. Computer Networks, 1(2):99–110, 1976.
42. A.S. Tanenbaum. Computer Networks. Prentice Hall, 1981.
43. F.W. Vaandrager. Verification of two communication protocols by means of process

algebra. Report CS-R8608, CWI, Amsterdam, 1986.
44. J.J. van Wamel. A study of a one bit sliding window protocol in ACP. Report

P9212, University of Amsterdam, 1992.


