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Towards Optimal Decomposition of
Boolean Networks

Cui Su, Jun Pang, and Soumya Paul

Abstract—In recent years, great efforts have been made to analyse biological systems to understand the long-run behaviours. As a
well-established formalism for modelling real-life biological systems, Boolean networks (BNs) allow their representation and analysis
using formal reasoning and tools. Most biological systems are robust - they can withstand the loss of links and cope with external
environmental perturbations. Hence, the BNs used to model such systems are necessarily large and dense, and yet modular. However,
existing analysis methods only work well on networks of moderate size. Thus, there is a great need for efficient methods that can
handle large-scale BNs and for doing so it is inevitable to exploit both the structural and dynamic properties of the networks. In this
paper, we propose a method towards the optimal decomposition of BNs to balance the relation between the structure and dynamics of
a network. We show that our method can greatly improve the existing decomposition-based attractor detection by analysing a number
of large real-life biological networks.

Index Terms—Boolean networks, strongly connected components, graph partition.
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1 INTRODUCTION

S YSTEMS biology is a rapidly developing field that aims to
provide a comprehensive, system-level interpretation of

cellular behaviours from a holistic perspective. It includes
the computational modelling and the analysis of complex
biological systems.

Computational modelling of a biological system pro-
vides means to construct a computational/mathematical
model from the expression data, which makes it possi-
ble to analyse biological systems using formal reasoning
and tools. Among various computational modelling frame-
works, Boolean networks (BNs) are widely used to quanti-
tatively model large-scale biological systems, such as gene
regulatory networks (GRNs) and their signalling pathways.
In BNs, genes are modelled as binary nodes, being ei-
ther expressed or not expressed. The interactions between
the genes are described by Boolean functions assigned to
each node, from which the structure of the network can
be derived. The dynamics of the BNs are determined by
a combination of the Boolean functions and the update
modes, such as the synchronous mode or the asynchronous
mode. The main advantage of BNs lies in being simple
and yet being able to capture important biological and
systemic properties of the biological systems. Specifically,
the steady states of BNs called attractors, correspond to
cellular phenotypes [1] or functional cellular states, such as
proliferation, apoptosis or differentiation etc [2]. Thanks to
the rapid expansion of biological databases, a number of
large-scale BNs are constructed to model biological systems.
These BNs are considered to be more stable and are thus
likely to better withstand the loss of a link and cope with
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external environmental perturbations, which are important
characteristics of such systems [3]. This leads to a growing
need of efficient and scalable methods to analyse such large-
scale BNs.

The efficient detection of attractors is a major challenge
in the analysis of biological systems. It is non-trivial to
identify all the attractors of a BN, since we need to explore
the entire state space of the network, the size of which is
exponential in the number of nodes. Great efforts have been
made to develop efficient attractor detection algorithms and
tools [4], [5], [6], [7], [8], [9]. These methods are mainly
designed for BNs with the synchronous update mode,
where all the nodes are updated simultaneously according
to their Boolean functions. However, this update mode is
considered not realistic in biology. The nodes are more
likely to be updated asynchronously [10], which means
that at each time step, a node is randomly chosen to be
updated according to its function. Thus, every state may
have multiple outgoing edges under asynchronous mode
and an attractor is a bottom strongly connected component
(SCC) in the transition system. Due to the differences of the
transition systems under two update modes, the methods
in [4], [5], [6], [7], [8] are not applicable to asynchronous
BNs. Regarding to the satisfiability (SAT)-based method [9],
its ability is greatly hindered as the potentially complex
attractor structure leads to prohibitively large SAT formulas.

It has been known for a while that to detect the attractors
of a BN efficiently, an algorithm should exploit both the
structure and the dynamics of the BN [11]. In this spirit, Miz-
era et al. [12] developed a decomposition-based approach
to accurately detect all the attractors in large asynchronous
BNs. The main idea was to decompose a BN into SCCs
based on its network structure and construct a weighted
directed acyclic graph (DAG), the SCC graph. In an SCC
graph, every vertex corresponds to an SCC and there is a
directed edge between two vertices if and only if one of the
associated SCCs depends on the vertices of the other (control
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nodes). After that, ‘blocks’ are formed by merging SCCs with
their control nodes and the blocks are sorted according to
their topological ordering. In every block, the state transi-
tion system (STS) for that block was constructed focusing
on the local network dynamics and the ‘local’ attractor
detection is performed on this STS. These local attractors
are then combined block-wise to derive the attractors for
the entire BN. It is worth noting that the vital principle
that guarantees the correctness of the decomposition-based
approach [12] is that the decomposed components of the
network should form a DAG. However, the efficiency of
the SCC-decomposition-based approach is hindered when a
BN has a large number of SCCs, which commonly arises in
biological networks. This motivates the need for the optimal
decomposition of BNs, which balances the structure and the
dynamics of the networks and increases efficiency of the
attractor detection. In this paper, we address this problem of
the optimal decomposition of BNs by partitioning the SCC
graphs to balance the size of different components, while
maintaining the acyclic property between the components.

There are a few requirements to be satisfied when
searching for an optimal partitioning of the SCC graphs
(resulting from the SCC-decomposition of BNs). The first
is that the weight of a partition should not exceed an
upper bound. This upper bound is the core in balancing the
relation between the structural and the dynamic properties
of networks. If the upper bound is too large, the partitioned
graph might have parts that are almost equal to the entire
BN. It is too expensive to analyse the dynamics of such a
partition in terms of time cost and memory. On the contrary,
if the upper bound is too small, there will be a large number
of partitions. In this case, even though the state space of
every partition is small, it might still be time consuming to
traverse all the partitions. The second is that the number
of control nodes of each partition needs to be minimised.
This is mainly due to the fact that we perform analysis in
blocks, which are formed by partitions together with their
control nodes. By minimising the number of control nodes,
the sizes of blocks will be reduced, leading to smaller state
transition systems. Last but not least, without overrunning
the upper bound of the partition weight, the number of
partitions should be minimised as well. Fewer parts lead to
fewer blocks, and as a consequence we analyse fewer state
transition systems.

The problem is similar to that of acyclic partitioning
of DAGs which asks to partition a weighted DAG into k
disjoint subsets such that the maximum weight of a subset is
smaller than a given threshold while minimising the weight
of the edges between these subsets. This problem is known
to be NP-hard in the strong sense (e.g., see [13]) and hence
efficient algorithms for the general case are highly unlikely.
However, extensive work has been done in the literature
to address this problem for special classes of graphs and
to find efficient but non-optimal solutions [14], [15], [16],
[17]. In our context, the work that is the most relevent is
a multilevel graph partitioning method developed in [18].
This method employs the methods in [14], [15] and con-
sists of three phases: coarsening, initial partitioning and
refinement. They have demonstrated that their methods are
much faster and can compute higher quality partitions than
similar tools and algorithms in the literature [18]. However,

this method cannot be applied directly to partition the SCC
graphs of BNs and certain modifications should be made.
First, in the SCC graph, the weight of an edge should be
extended to a set of nodes. In this way, the weight of a
cut set is the union of the weight of the edges in the set
without duplicate elements. Secondly, unlike in [18], where
the number of partitions is given as a predefined value, we
compute a minimal number of partitions, within a threshold
determined by the BN at hand.

With the above restrictions in mind, in this paper, we
propose a method towards optimal decomposition of BNs.
We first perform the SCC-decomposition and form an SCC
graph. Then we partition the SCC graph in three steps:
initial partitioning, topological refinement and iteration. The
initial partitioning computes a preliminary solution. This
solution is improved upon in the topological refinement,
including the refinement of the boundary vertices and the
partitions at the same topological level. After that, we iter-
atively perform the initial partitioning and the topological
refinement to further improve the partitioning. We aim to
decompose a BN in an optimal way, which balances the
ratio between the structure and the dynamics of a BN. To
demonstrate the effectiveness of the newly proposed de-
composition of BNs, we apply it to the SCC-decomposition-
based approach for attractor detection [12] and perform
experiments on a number of biological networks. The results
show that the performance of the method [12] can be signif-
icantly improved with our new decomposition method.

2 PRELIMINARIES

This section recalls the preliminary notions on directed
graphs and BNs needed in the course of the paper.

2.1 Acyclic partitioning of DAGs
A directed graph G(V,E) consists of a non-empty set of
vertices V and a set of directed edges E. Each edge e in
E is an ordered pair of vertices u, v ∈ V , denoted by (u, v).
u is a predecessor of v and v is a successor of u. Let G(V,E)
be a directed graph and let n = |V | and m = |E| denote the
number of vertices and edges resp. The vertex weight and
edge weight of G are functions δ : V → N and η : E → N.
A directed graph is said to be strongly connected if for every
pair of nodes u, v ∈ V , there is a directed path from u to
v and vice versa. A strongly connected component (SCC) of a
directed graph is a maximal strongly connected subgraph.

A directed graph is called a directed acyclic graph (DAG)
if it does not contain any directed cycles. Every DAG has a
topological ordering, an ordering of the vertices V that for
every edge e(u, v), u, v ∈ V , vertex u comes before vertex
v in the ordering. We introduce the concept of topological
credits as follows.
Definition 1 (Topological credit). Given a DAG G(V,E), a

vertex u with no parent has a credit of 0, denoted as
ϕ(u) = 0. A vertex v with a set of parents par(v) has a
credit of ϕ(v) = max v′∈par(v)(ϕ(v′)) + 1.

A DAG is said to be weighted if it has associated vertex
and edge weights. A k−way partitioning of a weighted
DAG G(V,E) divides the vertices V into k disjoint subsets
V1, V2, . . . , Vk. For any partition Vi, i ∈ [1, k], its weight
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equals to
∑

v∈Vi
δ(v). A cut set is a set of edges whose

endpoints are in different partitions, i.e. {e(u, v) ∈ E | u ∈
Vi, v ∈ Vj}, where Vi, Vj ∈ V and Vi 6= Vj . The weight of a
cut set Γ is the sum of the weights of the edges in the set,∑

e∈Γ η(e). The formal definition of cut set is given below.
Definition 2 (Cut set). A cut set of a k− way partitioning

of a weighted DAG G(V,E) is a set of edges with the
following properties.
• The removal of all edges in the set disconnects G.
• The removal of some (but not all) of the edges in the set

does not disconnect G.

The partitioning of a weighted DAG, that maintains
the acyclic property between different partitions, is called
acyclic partitioning. In general, the maximal weight of a
partition is limited by an upper bound Lmax . Here, we give
the formal definition of acyclic partitioning of a weighted
DAG.
Definition 3 (Acyclic partitioning of a weighted DAG).

Given a weighted DAG G(V,E) and an upper bound
Lmax , find a partitioning P = {V1, V2, . . . , Vk}, where
V1 ∪ . . . ∪ Vk = V and Vi ∩ Vj = ∅ (i 6= j), such that the
maximal weight of one partition is not greater than Lmax

and the weight of the cut set is minimised. Moreover, the
relation between V1, V2, . . . , Vk is acyclic.

2.2 Boolean networks
Boolean networks (BNs) were first proposed by Kauffman
in 1969 as a network model of GRNs [1]. In BNs, genes
are represented by nodes and the interactions between the
genes are described as Boolean functions.
Definition 4 (Boolean network). A Boolean network G(V,f)

comprises of a set of nodes V = {v1, v2, . . . , vn}, and
a vector of Boolean functions f = (f1, f2, . . . , fn), where
fi : {xi1 , xi2 , . . . , xik(i)

} → {0, 1} is a Boolean function
associated with node vi (i = 1, 2, . . . , n) and xij ∈ {0, 1}
for j ∈ [1, k(i)] is a value assigned to node vij . A state of
the network is given by a vector x = (x1, x2, . . . , xn) ∈
{0, 1}n, where xi ∈ {0, 1} is a value assigned to node vi.

A BN G(V,f) can be viewed as a directed graph
G(V,E), where V = {v1, v2, . . . , vn} represents the set
of nodes. For two nodes vi, vj ∈ V , there is a directed
edge from node vj to node vi if and only if the Boolean
function of vi, i.e. fi, depends on vj . If the edge exists,
node vj is a parent node of vi and node vi is a child node
of vj . Every node vi ∈ V has a set of parent nodes
{vi1 , vi2 , . . . , vik(i)

}, where k(i) denotes the number of par-
ent nodes and 1 ≤ i1 < i2 < · · · < ik(i) ≤ n. The
state of a BN at a discrete time point t (t = 0, 1, 2, . . .) is
given by a vector x(t) = (x1(t), x2(t), . . . , xn(t)), where
xi(t) is a binary variable, which represents the value of
node vi at time point t. The value of node vi at time point
t + 1 is determined by its Boolean function fi applied to
the values of the set of parent nodes of vi at time t, i.e.,
xi(t+ 1) = fi(xi1(t), xi2(t), . . . , xik(i)

(t)).
Starting from an initial state, the dynamics of a BN

evolves by transiting from one state to another based on
different update modes [19]. Among several update modes,
the synchronous and the asynchronous modes are the most
popular ones. In the synchronous mode, all the nodes are

updated simultaneously; while in the asynchronous mode,
one node is non-deterministically chosen to be updated at
a time. The synchronous mode is used mainly due to its
simplicity; however, for modelling biological systems, the
asynchronous mode is more suitable since the expression of
a gene is usually not an instantaneous process [10]. Thus, in
this paper, we focus on the asynchronous mode.

The state transitions of a BN can be illustrated by the
state transition system (STS), which is defined below.
Definition 5 (State transition system). A state transition

system T is a 3-tuple 〈S, S0, T 〉 where S is a finite set
of states, S0 ⊆ S is the initial set of states and T ⊆ S×S
is the transition relation, specifying the evolution of the
system. When S = S0, we write 〈S, T 〉.
Based on Definition 5, we can model the dynamics of an

asynchronous BN as a state transition system: the set S is
the state space of the BN; the initial set S0 equals to S as all
the states are accessible; the transition relation T is given by
the following equation.

T (x(t),x(t+ 1)) =
n∧

j=1,j 6=i

(
xj(t+ 1)↔ xj(t)

)
∧
(
xi(t+ 1)↔ fi(xi1(t), xi2(t), · · · , xik(i)

(t))
)
. (1)

The attractors are the key characters of a BN as they
depict the long-run behaviours of the BN [20] and are hy-
pothesised to characterise cellular phenotypes in biological
systems [1]. The attractors are formally defined below.
Definition 6 (Attractor of a BN). An attractor of a BN is

a set of states satisfying that any state in this set can be
reached from any other state in this set and no state in
this set can reach any other state that is not in this set.

Example 1. The PC12 cell differentiation network was
developed by Offermann et al. [21]. It is a comprehensive
model used to clarify the cellular decisions towards
proliferation or differentiation. This network consists of
33 nodes and has 7 single-state attractors. We refer to [21]
for the structure of the network derived from the Boolean
functions.

2.3 SCC-decomposition of BNs
A BN G(V,E) can be decomposed into a set of maximal
SCCs, denoted as C = {c1, c2, . . . , cm}, where m is the
number of SCCs. The set of SCCs is disjoint and the union of
the SCCs equals to the whole set of nodes, namely ci∩cj = ∅
for any ci 6= cj in C and c1 ∪ c2 ∪ . . . ∪ cm = V .

Considering SCCs C as vertices, we can form a weighted
directed graph G(C, E), which we call the SCC graph of a given
BN G(V,E). Every vertex c ∈ C of G corresponds to an SCC
in the BN, so the number of vertices |C| equals to m. For any
pair of SCCs ci, cj ∈ C, ci 6= cj , there is a directed edge from
ci to cj if and only if there exists a directed edge from a node
in SCC ci to a node in SCC cj in the associated BN G(V,E).
In such case, we say that SCC ci is a parent SCC of cj . Let
par(cj) denote the set of parent SCCs of cj . The set of nodes,
satisfying {u | e(u, v) ∈ E, u ∈ ci for ci ∈ par(cj), v ∈ cj},
are control nodes of cj , denoted as ctr(cj).

We assign vertex and edge weights, δ and η, to the SCC
graph G(C, E) as follows. δ is a function δ : C → N, such that
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for every vertex ci ∈ C, δ(ci) = |ci|, representing the number
of nodes contained in this SCC. η is a function E → 2V

where for every edge e(ci, cj) ∈ E , η(e) is given as η(e) =
(ctr(cj) ∩ ci). Thus the weight of the edge e corresponds to
the set of control nodes of SCC cj from SCC ci. It is easy
to observe that the SCC graph G is also a DAG, since the
directed edges in E are all from the parent SCCs to the child
SCCs and there are no directed cycles.

An SCC together with its control nodes forms a block,
denoted as B. We can form a block graph from the SCC graph
by having the vertices as blocks and a directed edge from
block Bi to Bj if and only if there is a directed edge from
the SCC corresponding to Bi to that corresponding to Bj in
the SCC graph. In this way, the block graph is also a DAG.
If a control node in a block Bi belongs to an SCC which
forms a block Bj , block Bj is called a parent of block Bi

and Bi is a child of Bj . Let par(Bi) denote the set of parent
blocks of Bi and ctr(Bi) denote the set of control nodes
of Bi with respect to all the parent blocks. We refer to a
block as an elementary block if it does not contain any control
nodes, otherwise, it is a non-elementary block. We notice that
as long as the block graph is guaranteed to be a DAG, other
strategies to form blocks can also be used. Two blocks can
be merged into a larger block.
Example 2. To continue with the PC12 cell network, we per-

form SCC-decomposition on this network. The network
has 19 SCCs and the corresponding SCC graph is given
in Figure 1. Each vertex represents an SCC. Among all
the SCCs, only SCCs 3, 15 and 16 have 3, 2 and 12 nodes.
Thus, the weights of vertices 3, 15 and 16 are 3, 2 and
12. The rest of the SCCs contain only one node and their
vertex weights equal to 1. Regarding to an SCC c, the
weights of edges from this SCC to its child SCCs are a
subset of nodes in the SCC. Thus, for the SCCs with only
one node, the weights of edges from this SCC to its child
SCCs contain only that node.
The PC12 cell network with only 33 nodes has 19 SCCs,
of which 16 are single-node SCCs. Each SCC with its con-
trol nodes forms a block. In order to analyse the entire
network, we need to construct a local transition system
for every block and analyse the constructed transition
system. A large number of single-node SCCs hampers
the efficiency of decomposition-based analysis methods.
Moreover, the SCC-decomposition often leads to single-
node SCCs in biological networks, which motivates us
to develop the present decomposition method.

3 DECOMPOSITION OF BNS

As mentioned in the introduction, the analysis of large-
scale BNs often suffers from the infamous state explosion
problem. Hence, we propose a new decomposition of BNs
to divide an entire network into small components, whose
transition systems are of acceptable sizes. This method is
generic and can be applied to any analysis method.

3.1 Problem definition
As described in Section 2.3, the SCCs of a BN form a
weighted DAG G(C, E). Every vertex corresponds to an SCC
and a vertex weight is an integer representing the number

of nodes contained in the associated SCC. An edge weight
represents the set of control nodes of the child SCC from its
parent SCC.

The SCC graph partitioning is an instance of the acyclic
DAG partitioning problem with some specific constraints.
On the one hand, the weight of any partition should not
exceed an upper bound Lmax . This upper bound is to
restrict the number of nodes contained in one partition. The
value of Lmax should not exceed the maximal value of the
vertex weight, since it is common that a biological network
contains a big SCC that cannot be split any further [22]. On
the other hand, the size of the cut set weight, i.e. the number
of control nodes, should be minimised. Since a block is
formed by a partition and its control nodes, less control
nodes lead to smaller blocks with smaller state transition
systems. Moreover, within the upper bound of the partition
weight, the number of partitions k should be minimised.
This is motivated by the fact that after decomposing a BN,
we need to construct local state transition systems for each
block, which is time-consuming if there are too many blocks.
These constraints naturally lead to the formal definition of
acyclic partitioning of SCC graphs.

Definition 7 (Acyclic partitioning of an SCC graph). Given
an SCC graph, which is a weighted DAG G(C, E) with a
vertex weight δ and an edge weight η, find a partitioning
P = {V1, V2, . . . , Vk}, where V1 ∪ . . . ∪ Vk = C and Vi ∩
Vj = ∅(i 6= j), satisfying the following constraints.

1) The maximal weight of any partition is equal or smaller
than a threshold Lmax.

2) The weight of the cut set η(Γ) is minimised.
3) The number of partitions k is minimised.
4) The graph formed by P = {V1, V2, . . . , Vk} is still a

DAG.

The acyclic partitioning of an SCC graph differs from
the acyclic partitioning of a weighted DAG mainly in two
aspects.

1) The weight of a cut set Γ is different in the two prob-
lems. In the DAG partitioning, the weight of an edge is
an integer, so that the weight of a cut set Γ is the sum
of the weights of the edges in Γ, i.e. η(Γ) =

∑
e∈Γ η(e).

In the SCC graph partitioning, the weight of an edge is
a set of nodes. There may exist duplicate nodes in the
weights of different edges. The weight of a cut set Γ is
the union of the weights of edges in Γ.

2) The number of final partitions k is not predefined.
Without overrunning an upper bound of the partition
weight, we would like to get as few partitions as
possible.

3.2 Acyclic partitioning of SCC graphs

We propose a method for SCC graph partitioning based on
the methods in [18]. Our method contains three phases: the
initial partitioning, the topological refinement and the iter-
ation of the partitioning. The initial partitioning performs a
preliminary partitioning of the vertices based on the topo-
logical ordering. In the topological refinement phase, we
refine the preliminary solution by adjusting the boundary
vertices as well as the partitions at the same topological
level. Furthermore, we iterate the initial partitioning and the
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Fig. 1: The SCC graph of the PC12 cell network. Each vertex represents an SCC.

topological refinement until there is no more improvement
in the partitioning results.

3.2.1 Initial partitioning

We adapt the greedy algorithm in [18] to perform the initial
partitioning of SCCs. In this phase, we compute an initial
solution based on the topological ordering of the weighted
DAG.

The input to our algorithm is a weighted DAG G(C, E)
formed from a BN as described in Section 2.3. The vertices
C are sorted according to their topological credits, denoted
as ϕ(u), u ∈ C. The upper bound of the partition weight
Lmax is a hyper-parameter of our decomposition method.
Each vertex u in C is assigned with two properties: part and
free, representing the partition which u belongs to and the
mobility of u. The mobility of a vertex u determines if the
vertex u is movable or not. We consider a vertex is movable
if it has no predecessors or the mobility free of its direct
predecessors are false as in [18].

The gain of moving a vertex u to a partition j is com-
puted by checking the status of all its predecessors and
successors after the move, as described in [18]. Applying
the greedy strategy, among a number of movable vertices,
the best vertex to be moved is the one with the lowest
topological credit and the highest gain. It is worth noting
that, to maintain the acyclic dependency of the graph, a
vertex u should not be moved to a partition j, j ∈ [1, k],
if ϕ(u)−maxv∈Vj (ϕ(v)) > 1 or minv∈Vj (ϕ(v))−ϕ(u) > 1.

To perform the initial partitioning, we first initialise the
number of partitions k = 0 and set all the vertices to
movable. Then, we repeat the following steps as long as
there exist vertices that are movable.

1) Save movable vertices to a set set .
2) For every vertex u ∈ set , we compute the gain

of assigning u to partition k and insert a tuple
(u, ϕ(u), gain) to a queue queue .

3) After computing the gains for all the vertices in set , we
sort the tuples in queue with respect to the topological
credit in an ascending order first and then again, in each
credit level, according to the gain in a descending order.
Note that when we sort the queue queue based on gain ,
the sorted topological ordering is preserved since the
sorting is done separately for each credit level.

4) If the total weight of partition k is less than the upper
bound Lmax , we traverse the tuples in queue based on
the sorted order.

a) Release the first item (u, ϕ(u), gain) in queue .
b) If partition k is empty, we assign vertex u to par-

tition k and set the maximum and the minimum
topological credits of partition k as ϕ(u). Otherwise,
vertex u can be assigned to partition k if and only
if two conditions are satisfied. The first condition is
that the weight of partition k will not overrun the
upper bound Lmax after the assignment. The second
condition is that ϕ(u) − maxv∈Vk

(ϕ(v)) ≤ 1 and
minv∈Vk

(ϕ(v))− ϕ(u) ≤ 1.
c) If vertex u is assigned to partition k, we set free(u)

as false and check if its direct successors are movable
or not. If a direct successor of u, denoted as v is
movable, we compute the gain of assigning v to
partition k, insert (v, ϕ(v), gain) to queue and sort
queue as Step 3.

5) If queue is not empty, we increase k by one and go to
step 1.

After the initial partitioning, the value of k is the number
of partitions we computed so far. The results might be
improved in the topological refinement and the iterations.

Remark. The differences of our initial partitioning with the
one in [18] mainly lie in three aspects.

1) The computation of a gain of assigning a vertex u to a
partition j. In the DAG formed by SCCs, we extended
an edge weight from an integer to a set of nodes.
We consider the initial size of the cut set weight as
the number of all the control nodes in the BN. The
gain indicates the decrease of the size of the cut set
weight. Since the weight of two edges may have an
overlap of nodes, to compute the cut set weight, a
simple sum of the edge weights as [18] is not applicable
here. The cut set weight is the union of the weight of
the edges in the set without duplicate elements. Let
M denote the set of predecessors of u that belongs
to partition j, and Q denote the set of successors of
u. The gain of assigning the vertex u to a partition j
is |
⋃

v∈M η(e(v, u))| − |
⋃

p∈Q η(e(u, p))|. A larger gain
indicates a larger decrease of the size of the cut set
weight.

2) We take both the topological credit and the gain into
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account to decide the assignment. The vertices are
traversed according to an ascending order of their
topological credits. When a vertex is assigned to some
partitions, the mobility of its child vertices may be-
come movable. More importantly, simply considering
the gain may violate the acyclic property. Given two
vertices u, v ∈ C and ϕ(u) < ϕ(v), it may happen
that v is assigned to a partition i and u is assigned to
a partition j that has higher credit. Thus, loops may
appear in the partitioned graph. Hence, we propose the
heuristic that the topological credit has higher priority
than the gain. All the movable vertices are processed
first according to their topological credits. With the
same credits, the assignment of the vertex with the
highest gain will be handled first.

3) We only assign a vertex u to a partition j, if ϕ(u) −
maxv∈Vj

(ϕ(v)) ≤ 1 and minv∈Vj
(ϕ(v)) − ϕ(u) ≤ 1.

This condition is adapted to guarantee the acyclic prop-
erty of the partitioning result.

3.2.2 Topological refinement

The main objective of the topological refinement is to refine
the preliminary solution based on the topological informa-
tion. The refinement is achieved in two steps: the refinement
of the boundary vertices and the refinement of the partitions
with the same topological credits.

Refinement of the boundary vertices. Boundary vertices
include incoming boundary vertices and outgoing boundary
vertices. A vertex is an incoming boundary vertex if it has no
predecessors or all its predecessors are in other partitions.
Similarly, a vertex is an outgoing boundary vertex if it has
no successors or all its successors are in other partitions.
Note that after the initial partitioning, only the boundary
vertices can be moved without violating the acyclic de-
pendency. An incoming boundary u can be moved to a
partition j, j ∈ [1, k] which satisfies two constraints. The
first is that partition j contains at least one predecessor of
vertex u. The second is that partition j has the maximum
topological credit among the partitions that meet the first
constraint. In a similar way, an outgoing boundary v can
be moved to a partition j that satisfies two constraints:
partition j contains at least one successor of v and has the
minimum topological credit among the partitions satisfying
the previous constraint. It is worth noting that the violation
of either constraint may lead to cycles. For the cases, where
there are multiple partitions satisfying the constraints, the
partition with the largest gain will be considered.

We adapt the FM-like, move-based direct “k-way” re-
finement algorithm in [18] to refine the initial partitioning.
We propose two modifications.

1) The computation of a gain when moving a vertex u
from the current partition part(u) to another partition
j. Motivated by the same reason explained in Sec-
tion 3.2.1, we modify the computation of the gain in
this phase. The gain denotes the increase/decrease of
the size of the cut set weight η(Γ) after the move-
ment. Let M denote the set of predecessors/successors
of u that are in partition j, Q denote the set of
predecessors/successors of u that are not in parti-
tion j. If part(u) > j, the gain is |

⋃
v∈M η(v, u)| −

|
⋃

p∈Q η(u, p)|. Otherwise, the gain is |
⋃

v∈M η(u, v)|−
|
⋃

p∈Q η(p, u)|. We drop the movements that cause an
overrun on the total weight of a partition j.

2) After all possible movements, the property part of ver-
tices and the number of parts k are updated, since the
refinement may cause empty partitions.

Refinement of the partitions with the same topological
credits. Suppose the SCCs are divided into k partitions.
All the partitions are topologically sorted and the maximal
credit is ϕmax . If k > ϕmax , we perform this step to min-
imise the number of partitions. This step is straightforward
yet effective. We simply group the partitions with the same
topological credits, if the weight of the new partition is
not greater than the upper bound Lmax . In this way, every
partition is considered as a whole and the partitioning is
refined at the topological level.

3.2.3 Iteration
Despite the effectiveness of the initial partitioning and the
topological refinement, there is still room for further im-
provement. In the initial partitioning and the refinement of
the boundary vertices, we compute solutions at the level
of vertices. For large graphs with complex structures, to
compute a near optimal partitioning, it is insufficient to
traverse the vertices only once. The refinement of the par-
titions with the same topological credits can only improve
the partitioning at the same topological level.

In order to achieve a near optimal partitioning, we
iteratively apply the initial partitioning and the topological
refinement to a new graph constructed by treating each
partition in the computed solution as a vertex. Suppose
we have a solution P = {V1, V2, . . . , Vk} after performing
the initial partitioning and refinement phases. Considering
each partition Vi ∈ P as a vertex, we form a DAG G(P,E).
The weight of a vertex Vi ∈ P equals to the weight of the
corresponding partition, denoted as δ(Vi). There is an edge
from vertex Vi to vertex Vj , Vi, Vj ∈ P and Vi 6= Vj , if and
only if there is an edge from a node in Vi to a node in Vj
in the original BN. The weight of an edge e(Vi, Vj) is a set
{u | e(u, v) ∈ E in the BN, u ∈ Vi, v ∈ Vj}. We perform
the initial partitioning and the topological refinement in the
smaller DAG G(P,E), convert the new solution to a DAG
and repeat this process, until the number of partitions k
stays the same.

During the iteration, every partition is considered as
a vertex and we utilise the initial partitioning and the
topological refinement to group these partitions. Thus, we
can further improve the partitioning crossing different topo-
logical levels.

Example 3. To illustrate the partitioning method, we give the
partitioning results of the PC12 cell network in Figure 2
and Table 1. The upper bound of a partition weight is
12, which is the maximal size of the SCCs. In Table 1, the
indices of SCCs are consistent with Figure 1. Figure 2a
shows the results of the initial partitioning phase. 19
SCCs are partitioned into 8 partitions. Figure 2b is the
results of the topological refinement. In this phase, by
adjusting the boundary vertices, the number of partitions
is reduced to 5. Partition T2 and T3 are at the same
topological level. However, the total weight of these
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two partitions exceeds the upper bound, they cannot
be merged into one group. The two phases are iterated
three times to improve the partitioning. In the second
iteration, the two partitions T1 and T2 in Figure 2b are
merged. The third iteration shows that the results can
not be improved any further and we have 4 partitions in
the end as shown in Figure 2c.

3.3 Integration with the SCC-decomposition method
In [12], we proposed an SCC-decomposition method for at-
tractor detection of asynchronous BNs, where we simply de-
compose BNs into SCCs in order to divide the networks into
small components while preserving the acyclic dependency
between the components. However, the SCC-decomposition
often leads to a large number of SCCs (e.g., illustrated by the
PC12 network), which makes it only suit well-structured
BNs. Here, we integrate our new network decomposition
method with the SCC-decomposition-based approach for
attractor detection. This is realised by reformulating the
function “FORM BLOCK(G)” in [12] as below.

1) Decompose a BN into SCCs and construct the associ-
ated SCC graph G, where a vertex describes an SCC
and there is an edge from vertex ci to vertex cj , if the
corresponding SCC cj depends on SCC ci. Note that
the size of an SCC is assigned to the associated vertex
as weight. The set of control nodes of a child SCC cj
from a parent SCC ci is assigned to the edge e(ci, cj) as
weight.

2) Apply the SCC graph partitioning described in Sec-
tion 3.2 to G.

3) Form blocks by combing merged SCCs with their con-
trol nodes.

4) Sort the blocks in an ascending order according to their
topological credits.

Based on this, we can perform the rest of procedures for
attractor detection as described in [12].

4 EVALUATION

To demonstrate the efficiency of our new decomposition
method, we compare the performance of the attractor de-
tection with the SCC-decomposition [12] and the new de-
composition method on real-life biological models. The SCC
graph partitioning is implemented in Python based on an ef-
ficient Python module graph-tool [23]. The decomposition-
based attractor detection is implemented in our software
tool ASSA-PBN [24], [25], based on the model checker [26] to
encode BNs into the efficient data structure binary decision
diagrams. All the experiments are performed on a computer
(MacBook Pro), which contains a CPU of Intel Core i7 @3.1
GHz and 8 GB of DDR3 RAM. We first describe the three
large biological networks below, and give an overview of
these networks in Table 2.
The Apoptosis network models the central intrinsic and
extrinsic apoptosis pathways and the pathways connected
with them [27]. It gives insights into the feedback loops
and the crosstalk effects. This network consists of 97 nodes.
Among these nodes, the housekeeping node is fixed to
ON to model constitutive activation of certain nodes in the
network.

The T-cell signalling network is a large-scale logical model
for T cell activation, which not only reveals important
structural features, like feedback loops and network-wide
dependencies, but also captures the global behaviours of
this complex network for both natural and perturbed condi-
tions [28]. This network consists of 99 nodes.

The CD4+ T-Cell network is a computational model of a
CD4C immune effector T-cell to imitate cellular dynamics
and molecular signalling under both healthy and immuno-
compromised conditions (i.e., leukemic conditions) [29].
This model can predict and examine the heterogeneous
effects and mechanisms of CAV1 in silico. This network
consists of 188 nodes.

We start with the SCC-decomposition of the networks.
As shown in Table 2, these three networks can be decom-
posed into 60, 68 and 103 SCCs, respectively. The maximal
size of SCCs of the three network are 33, 32 and 86. It is
worth noticing that in the CD4+ T-Cell network, there is a
big SCC containing 86 nodes, the rest 102 nodes forms 102
SCCs. This means that every node not in the big SCC forms
a single-node SCC.

When performing the new decomposition method, the
upper bound of a partition weight is set as Lmax = scale ∗
maxSCC , where maxSCC is the maximal size of SCCs in
the considered network. In order to analyse the influence of
the upper bound on the performance of attractor detection,
we perform the SCC graph partitioning with a list of upper
bounds by setting scale from 0.1 to 1 with an increment of
0.1. The number of partitions and the corresponding weight
of the cut set |η(Γ)| are listed in Table 3. The results on the T-
cell signalling network and the CD4+ T-cell network show
that, bigger upper bounds somehow do not guarantee less
partitions. This is mainly due to that the SCCs with lower
topological credits have a higher priority to be assigned
to a partition, which influences the results. In general, the
weight of the cut set η(Γ) shrinks as the scale increases. We
do not give the detailed results regarding to the number of
iterations, while the results of the experiments indicate that
the iteration improves the partitioning results in terms of
the number of partitions and the weight of the cut set. For
the three networks, to compute the final results, the initial
partitioning and the topological refinement are iterated for
one to three times.

We perform attractor detection with the SCC-based de-
composition method and the decomposition method devel-
oped here, on the three networks. The detected attractors
with the two decomposition methods are identical, since
both methods decompose the networks into DAGs and
their correctness is shown in [12]. The apoptosis network
has 4 attractors when 10 input nodes are fixed. For the T-
cell signalling network, 2 attractors are detected under the
condition that all the input nodes are fixed to OFF. For the
CD4+ T-cell network, 6 attractors are detected when the
input nodes are also fixed to OFF.

The time costs of the attractor detection are given in Ta-
ble 3. TSCC and Tnew represent the time cost of the attractor
detection with the SCC-decomposition and the new decom-
position, respectively. The results indicate that with the new
decomposition method, the efficiency of the attractor detec-
tion is greatly improved. With the SCC-decomposition, the
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Fig. 2: Partitioning the SCC graph of the PC12 cell network.

Initial SCCs Topological SCCs Iteration SCCspartitioning refinement
I1 [18] T1 [17, 18] V 1 [17, 18, 2, 6]
I2 [6, 17] T2 [2, 6] V 2 [16]
I3 [2] T3 [16] V 3 [1, 3−5, 7−12]
I4 [16] T4 [1, 3−5, 7−12] V 4 [0, 13, 14, 15]
I5 [1, 3−5, 7−12] T5 [0, 13, 14, 15]
I6 [14, 15]
I7 [13]
I8 [0]

TABLE 1: Partitioning the SCC graph of the PC12 cell network.

Networks #
nodes

#
edges

#
attractors

#
SCCs maxSCC

apoptosis 97 192 4 60 33
T-cell signalling 99 163 2 68 32

CD4+ T-cell 188 380 6 103 86

TABLE 2: An overview of the three real-life biological networks.

time costs for the three networks are 5.44, 2.98 and 446.44
seconds respectively. With the new decomposition method,
the range of the time costs are (0.13 − 3.96), (0.10 − 2.57)
and (70.55 − 133.10) seconds. The speedups gained by the
new decomposition on the attractor detection are computed
by TSCC/Tnew . It is obvious that, regardless of the scale,
our new decomposition method can always improve the
efficiency of the decomposition-based attractor detection.
Especially, in most cases, we can get speedups above 28 for
the apoptosis network and above 18 for the T-cell signalling
network. Furthermore, the scale or the upper bound has an
influence on the speedup. We can see that the trend of the
speedups fluctuates with the increase of the scale. When the
scale is around 0.6, the new decomposition method usually
gains higher speedups.

Besides the upper bound, the weight of the cut set and
the network density may also have an influence on the
performance of the decomposition-based attractor detection
methods. Further investigation is still required to discover
the correlations between these factors and the efficiency of
the decomposition-based attractor detection method.

5 CONCLUSION

As discussed in Section 1, to analyse large-scale networks, it
is inevitable to extend and improve the capability of the

SCC-decomposition-based attractor detection by develop-
ing a method taking the structure and the dynamics of
the networks into account. To address this challenge, we
propose a new decomposition of BNs by partitioning the
SCC graphs. Derived from the network structure and dy-
namics, our optimisation on the decomposition of BNs can
be considered as acyclic DAG partitioning while minimising
(1) the size of the weight of the cut set and (2) the number
of partitions without exceeding (3) the upper bound of the
partition weight.

We developed a multilevel method to partition the
SCC graphs, based on the methods [18]. We have demon-
strated the effectiveness of our new decomposition method
by applying it to improve the efficiency of the SCC-
decomposition-based approach for attractor detection on
a number of real-life biological networks. With the new
decomposition of BNs, the efficiency of the decomposition-
based attractor detection is greatly improved.

We found that the efficiency of the decomposition-based
attractor detection can be influenced by many factors, in-
cluding the network density, the upper bound of a partition
weight, the weight of the cut set. We plan to perform
intensive experiments on biological networks to eventually
find the optimal decomposition of BNs that suits well for
the decomposition-based approach for attractor detection.

Besides the attractor detection, we believe the new de-
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Networks scale #
partitions |η(Γ)| TSCC

(s)
Tnew

(s) speedups

apoptosis

0.1 23 76

5.44

0.17 31.47
0.2 16 73 0.16 34.68
0.3 9 62 2.66 2.05
0.4 7 57 3.96 1.38
0.5 6 53 0.13 41.56
0.6 5 50 0.16 34.03
0.7 5 46 0.19 28.96
0.8 5 44 0.18 29.59
0.9 5 43 3.00 1.82
1.0 4 41 2.36 2.31

T-cell signalling

0.1 25 65

2.98

1.83 1.63
0.2 14 57 0.12 24.42
0.3 10 48 0.16 18.97
0.4 7 41 0.11 26.36
0.5 9 50 2.52 1.18
0.6 7 43 1.78 1.67
0.7 9 41 0.10 30.40
0.8 7 42 2.57 1.16
0.9 8 48 0.10 28.64
1.0 7 42 0.11 26.84

CD4+ T-cell

0.1 19 104

446.44

70.63 6.32
0.2 8 86 84.55 5.28
0.3 9 91 99.83 4.47
0.4 6 92 70.55 6.33
0.5 5 82 80.74 5.53
0.6 4 79 73.97 6.04
0.7 4 82 133.10 3.35
0.8 4 82 124.96 3.57
0.9 5 76 115.62 3.86
1.0 4 62 82.96 5.38

TABLE 3: Results of the new decomposition method and the SCC-decomposition method for attractor detection on the
three real-life biological networks.

composition of BNs can also contribute to improve our
decomposition-based target control of BNs [30]. Similar to
the attractor detection, the factors should also be adjusted
to obtain the best performance for the target control of BNs.

Moreover, an important advantage of the new decompo-
sition of BNs is that the numbers of control nodes among
different partitions are minimised, this contributes to the
preservation of information when we construct the local
state transition systems for the non-elementary blocks ac-
cording to the behaviours of their control nodes. Based on
this, we can develop an approximate decomposition-based
target control approach by constructing the local transition
systems for non-elementary blocks only according to pro-
jecting the behaviours of the control nodes in the basins
of the parent blocks. In this way, we sacrifice accuracy for
efficiency, while with the optimal decomposition of BNs, we
believe such an approach can compute a good approxima-
tion with a reasonable execution time for the analysis of
large biological networks.
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