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Abstract—With their rapid development, the scale and com-
plexity of software systems are rapidly growing. Identifying and
organizing files of similar functionality into the same module,
called architecture recovery, contributes to the maintainability
of a software system. However, manual architecture recovery
on large-sized software requires unbearable costs. Hence a lot
of automatic algorithms have been proposed in recent years.
However, current algorithms’ accuracy is still insufficient to
support practical applications. To improve the accuracy of
architecture recovery, this work proposes a novel algorithm,
NEGAR, which leverages random walks to extract latent graphic
information from the dependency graph of files in the software
system and learn the node representation for clustering. The
proposed algorithm NEGAR has been comprehensively evaluated
on three medium-sized and two large-sized software systems, as
well as a super large-sized software system, in terms of four
widely-used metrics. The experimental results demonstrate the
outstanding accuracy and excellent scalability of NEGAR.

Index Terms—Architecture recovery, software maintenance,
network embedding

I. INTRODUCTION

As software grows in scale and complexity, developers need
to build a software architecture to enhance its comprehensibil-
ity and maintainability [1]. A software architecture consists of
several modules, each of which contains a number of basic
components that are close in functionality [2]. Hence, the
recovery of software architecture is to identify the essential
components with similar functions and divide them into the
same modules. However, it is not easy to build and maintain
good architecture for software due to the rapid evolution in
terms of scale and complexity.

For instance, even medium-sized software ranging from 70
KSLOC to 280 KSLOC takes an experienced expert hundreds
of hours to recover an accurate ground-truth architecture [3].
Scaling to hyperscale software, even with the aid of semi-
automated approaches, it would take an entire team of profes-
sionals two years to recover a sound software architecture [4].

Many automated or semi-automated algorithms have been
proposed to facilitate the recovery efficiency of the software
architecture. According to the input data, the existing architec-
ture recovery algorithms are generally divided into two cate-
gories: dependency-based and knowledge-based. Knowledge-
based algorithms leverage textual information, such as com-
ments, domain knowledge, design documents, source code,
etc., to identify entities with similar functionalities. Although

knowledge-based algorithms have been proven to achieve
remarkable results on some projects [5], [6], their application
scope is limited due to the lack of useful textual informa-
tion in some projects. Unlike knowledge-based algorithms,
dependency-based algorithms use the dependency information
extracted from the software. The core inspiration of the
dependency-based algorithm is that components with similar
functionality tend to have denser interconnections with each
other on the dependency graph. Such algorithms first construct
dependency graphs from software and then perform specific
clustering methods on the dependency graphs. Dependency
graphs can describe the associations between software com-
ponents [7] and have various implementation levels, such
as class inheritance, file inclusion, method invocation, etc.
Therefore, dependency graphs of suitable granularity can
enable dependency-based algorithms to perform better than
knowledge-based algorithms [4], [8].

Although the dependency-based algorithm is commonly
better than the knowledge-based algorithm in architectural
recovery, its overall effectiveness is still far from practical.
The main reason for this problem is that existing dependency-
based algorithms tend to use a rather traditional clustering
idea, which does not fully use the latent structural infor-
mation in the dependency graph. For example, ACDC [9]
uses a simple graph structure pattern recognition method
to identify software modules; FCA [10] clusters nodes by
simple matrix operations; Bunch [11] takes the cohesive and
coupling property of the architecture as the optimization goal
to find the clustering results that satisfy the maximization of
the objective function. Unfortunately, the clustering process
of these algorithms is often restricted to a small range of
local structures, and the modules obtained by clustering are
connected subgraphs. However, this goes against the properties
of dependency graphs constructed from real software: identical
nodes are not always directly connected. Instead, they may be
separated by other nodes or distributed in different subgraphs
at a slight distance.

To better utilize the structural information in the dependency
graph, we use a graph node representation learning technique
from deep learning called network embedding. The network
embedding technique aims to mine the latent structural in-
formation from non-Euclidean graphs to learn the vector
representation of graph nodes in multidimensional vector



space [12].
Different network embedding techniques exist, and one

widely-used approach is based on random-walk statistics, such
as DeepWalk [13] and node2vec [14]. These random-walk-
based methods use a stochastic and flexible node similarity
metric that allows a larger exploration of the graph’s local
structure, enabling nodes with similar local neighborhood
graphs to get closer vector representations. Such techniques
have achieved wide applications in social network analysis
and have shown superior performance on downstream tasks
such as classification and clustering [15]. However, as far as
we know, there exists no related work that applies random
walk-based network embedding techniques to the recovery of
software architectures.

The primary contributions of this work can be summarized
as follows.

• A dependency-based architecture recovery algorithm NE-
GAR is proposed, which utilizes a controllable random-
walk method to sample the statistical information of the
dependency graph structure and learns a node vector
representation for clustering using the language model
SkipGram.

• A comprehensive experimental evaluation is conducted to
assess the performance of NEGAR. The results show that
the proposed algorithm outperforms the chosen state-of-
the-art algorithms in terms of accuracy and quality of the
recovered architecture.

• We further evaluate the scalability of NEGAR on a super
large-scale software, and the results show that NEGAR
can still achieve excellent performance in an acceptable
time cost.

The rest of the paper is organized as follows. Section 2 intro-
duces several state-of-the-art architecture recovery algorithms.
Section 3 describes the algorithm design and implementation
of NEGAR. Section 4 details the experimental evaluation.
Section 5 concludes the paper with future work.

II. RELATED WORK

Existing architecture recovery algorithms can generally be
divided into two major categories according to the source
of input data: dependency-based [7], [10], [16]–[33] and
knowledge-based [5], [6] algorithms.

Dependency-based algorithms leverage structural informa-
tion for modularization, which can be further classified into
hierarchical and search-based categories. Hierarchical algo-
rithms utilize a greedy strategy to merge similar clusters. WCA
(Weighted Combined Algorithm) [34] measures the inter-
cluster distance between different clusters and merges close
clusters into a new larger cluster. It starts with each node as
an individual cluster associated with a feature vector. Then two
most similar clusters are merged into a larger cluster based on
a specific inter-cluster distance measurement and the feature
vector of the new cluster is recalculated. This process repeats
until the clusters reaches the number set in advance. There
are two inter-cluster distance measurements for WCA: Unbi-
ased Ellenberg (UE) and Unbiased Ellenberg-NM (UENM).

LIMBO [35] scales the Information Bottleneck algorithm to
large data sets. It regards each node as an individual cluster and
summarizes all clusters into a Distributational Cluster Feature
(DCF) tree. Then leaves of the DCF tree are merged using
the Information Bottleneck algorithm to produce a specific
number of clusters. At last, the original nodes are assigned to
a cluster. In search-based algorithms, the architecture recovery
is transformed into an optimization problem [36] with the
objective for maximizing a quality function. Bunch is a well-
known search-based algorithm, whose objective function is
called Modularization Quality (MQ), that measures the extent
of cohesion and coupling of clusters. Different searching
strategies are employed to reduce the algorithmic complexity,
such as genetic algorithm (GA), nearest and steepest ascent hill
climbing algorithms (NAHC and SAHC) and so on. Although
some heuristic methods are leveraged to reduce the time
complexity, the time cost of search-based algorithms is still
unbearable in terms of large software systems [4], [10]. Some
other algorithms are special and do not belong to the above two
kinds of algorithms. FCA [10] is proposed to quickly recover
the architecture while the clustering quality is guaranteed. The
core idea of FCA is to start clustering from the border nodes,
which are prioritized through specific mathematical operations
on special matrices derived from the dependence matrix.
ACDC (Algorithm for Comprehension-Driven Clustering) [9]
is a comprehension-driven algorithm recovering architectures
based on identify of specific sub-system patterns that are closer
to the view of real software development, which are more
suitable for human comprehension.

Different from dependency-based algorithms, knowledge-
based algorithms utilize textual information to implement
architecture recovery. Architecture Recovery Using Concerns
(ARC) [6] leverages information retrieval and machine learn-
ing methods. ARC regards the program as textual docu-
ments and leverages a statistical language model called Latent
Dirichlet Allocation (LDA) [37] to extract concerns from
identifiers and comments of the program code. Concerns
represent concepts of the software system and can be used
to identify different clusters. Zone Based Recovery (ZBR) [5]
utilizes natural language semantics of textual data in the
program. Each file is regarded as a textual document and
divided into several zones. ZBR evaluates the term frequency-
inverse document frequency (TF-IDF) score for each word in
a zone and uses the Expectation-Maximization algorithm to
weigh each zone. ZBR leverages group average agglomerative
algorithm for clustering. There are two variants of ZBR [4].
One variant uses uniform weights for each zone, and the other
uses the ratio of the number of tokens in the entire software
program as the weights.

III. PROPOSED ALGORITHM

A. Overview of Framework

Dependency graph for file granularity can express potential
relationship between different files that is useful for identifying
nodes of the same functionality. Nodes belonging to the same
cluster tend to be densely clustered in local subgraph. But



Fig. 1. Illustration of the framework of NEGAR.

these nodes are not necessarily highly interconnected, which
may be separated by nodes belonging to other clusters. To
exploit this latent dependency graphic properties, we have
proposed a novel algorithm NEGAR in this work, whose
framework is presented in Fig. 1. The input is an dependency
graph extracted from the software system. Then the algorithm
utilizes a controllable random walk to sample node sequences,
which are used to train a natural language model SkipGram.
SkipGram aims to learning a embedding function which
embeds nodes into a low-dimensional vector space based on
their context in the sampled node sequences. After obtaining
the vectors for all nodes, we leverage k-means algorithm for
clustering.

The input to our algorithm is a dependency graph extracted
from the software, which is independent with the exact de-
pendency extraction process. There are a lot of related work
and tools to extract dependency graphs of different granularity.
For example, Understand toolset1 can extract call and include
dependencies, the proposed technique proposed in previous
work [38] can generate precise dependencies based on analysis
on LLVM bitcode, etc. In this work, we directly utilize the
public dependencies provided by the authors of [4], hence we
skip the details of dependency graph extraction.

In the clustering process, we apply the classical k-means
algorithm. Some related works [4], [39] use direct neighbor
vectors as the input to k-means and have achieved good results
on some dependency graphs. However, the direct neighbor
vectors contain only the first-order neighborhood information
of nodes, which cannot perceive a larger range of graph
structure information. In addition, the vector length can be too
large for clustering on large-scale graphs. These factors limit

1https://scitools.com/

the effectiveness of clustering performance. In this work, we
expect to use a different node representation as input to k-
means. The following subsections concentrate on description
of our network embedding method, which consists of two
parts: random walk sampling and representation learning.

Fig. 2. The proportion of homogeneous nodes in the sequences sampled from
Bash’s Symbol Dependency graph. The vertical axis represents the proportion,
and the horizontal axis represents the length of the node sequence.

B. Random Walk Sampling

Random walk is a stochastic and flexible sampling algo-
rithm to extract structural statistics from a graph and measure
similarity between nodes, which is used in various research
fields such as content recommendation and community de-
tection. To observe the characteristics of random walk, we
sampled a set of node sequences at different lengths on Symbol
Dependency graph of Bash using uniform random walk. We
calculated the percentage of nodes belonging to the same
cluster in each sequence and take the average value. As shown
in Fig. 2, the top-1 proportion of nodes belonging to a same
cluster is bigger than 50% and much larger than the others.
This statistical feature can be used to measure the similarity
between nodes.

The sampled sequence by random walk started from node
vi can be denoted as:

Wvi = W1
vi ,W

2
vi , . . . ,W

ℓ
vi ,

where W1
vi is the root node vi and ℓ represents the walk length.

When Wj
vi is the currently visiting node, the next node to be

visited is chosen among the direct neighbors of Wj
vi based on

specific sampling strategy.
There are two kinds of random walk strategy utilized in

DeepWalk [13] and node2vec [14]. The random walk in
DeepWalk uses a uniform random strategy, i.e., the next
selected node is chosen with medium probability from the
neighbors of the current node. node2vec leverages a control-
lable random walk that pursues a tradeoff between BFS and
DFS. Assuming the root node is u, BFS and DFS are explained
as following [14]:

1) Breadth-first Strategy (BFS): The breadth-first strategy
tends to sample the direct neighbors of the root node
u. BFS concentrates on the microscopic view of partial
structures, as it restricts sampling scope to the direct
neighborhoods of the root nodes. The sampled statistics



of BFS reflect the homophily [40] of node similarity,
where the nodes that are highly inter-connected and
belong to the same cluster have higher probability of
co-occurrence in a traverse sequence.

2) Depth-first Sampling (DFS): The depth-first strategy
tends to sample nodes with increasing distance from the
root node u. DFS can explore further away from the root
node and obtain a macroscopic view of the sub-graph.
The sampled statistics of DFS focus on the structural
equivalence [41] . In contrast with homophily, structural
equivalence does not stress connectivity, where nodes
that are far apart in the graph can still belong to the
same cluster.

In this work, we utilize the controllable random walk in
node2vec [14] based on the observation that nodes in real
dependency graph may exhibit both homophily and structural
equivalence and the uniform random walk in DeepWalk is
actually a specific case of the controllable random walk. Under
controllable random walk, given the root node u and the
currently visiting node t, the probability of node x being
sampled next follows the distribution:

P (ci = x|ci−1 = t) =

{
πtx

Z if (t, x) ∈ E
0 otherwise

(1)

where πtx is an unnormalized transition probability between
nodes t and x, Z is the normalizing factor and E is the set of
dependency edges.

The controllable random walk leverages a 2nd order strategy
to guide the random process, which is controlled by two hyper-
parameters p and q. Assuming the random walk resides in
the node t by previous traversing through edge (v, t), the
unnormalized transition probability to node x is defined as
πtx = αpq(v, x) ∗ ω(t, x), where

αpq(v, x) =


1
p if dvx = 0

1 if dvx = 1
1
q if dvx = 2

(2)

ω(t, x) represents the weight of edge (t, x) and dvx is the
minimun distance from node t to x. If the graph is unweighted,
we have πtx = αpq(v, x).

Hyper-parameters p and q control the behavior of random
walk. p is return parameter controlling likelihood of immedi-
ately revisiting the previously visited node. If 1/p is less than
min(1, 1/q), the random walk is less likely to choose the node
just visited. In contrast, if 1/p is higher than max(1, 1/q),
the random walk tends to backtrack the traversing sequence,
which indicates the explored sub-graph is more compact with
the root. q is in-out parameter controlling the depth of random
walk. If 1/q is higher than max(1, 1/p), the random walk will
be more inclined to explore further away from the root node.
In contrast, if 1/q is less than min(1, 1/p), the random walk
tends to obtain a microscopic view of partial graph. If 1/p
and 1/q are both much less than 1, the random walk will have
higher probability on visiting direct neighborhoods of the root
node, which is a BFS-like exploration.

C. Representation Learning

SkipGram [42] is a widely-used language model for word
representation learning, whose input is a corpus consisting of
a large number of sentences. SkipGram mines the corpus for
potential statistical information, so that words with similar
contextual content can learn to get closer vector representa-
tions. Homogeneous nodes occupy the majority of sampled
node sequences by random walk as shown in Fig. 2, thus can
be used as the corpus instead. Let G = (V, E) represents the
unweighted and undirected graph, the embedding function is
simply an mapping process:

zi = ϕ(vi) = Zvi (3)

where Z ∈ Rd×|V| is a matrix containing |V| embedding
vectors, d is the number of vector dimensions and vi ∈ IV is
the one-hot vector indicating which column of matrix Z (i.e.,
zi) is the corresponding vector of vi. The trainable parameters
of embedding function is θϕ = {Z}, i.e., the embedding
vectors for all nodes are optimized directly during the training
process.

The corpus of SkipGram is constructed from the node
sequence sampled by random walk. Given a node sequence
{W1,W2, . . . ,Wℓ} from the corpus and assigned a node
vi ∈ {W1,W2, . . . ,Wℓ}, the context of vi is defined as the
nodes appearing in a window of length w on both sides of
vi in the sequence. The goal of SkipGram is to maximize the
co-occurrence probability of pairs of node appearing in the
same context based on an independence assumption

Pr(NS(vi, w)|vi) =
∏

vj∈NS
j ̸=i

Pr(vj |vi) (4)

where NS(vi, w) = {vi−w, . . . , vi+w}\vi is the context of vi.
The co-occurrence probability between two nodes can be

calculated using softmax algorithm:

Pr(vj |vi) =
ez

⊤
i zj∑

vk∈V ez
⊤
i zk

(5)

Formally, the objective function of SkipGram can be con-
cluded as the following cross-entropy loss:

min
ϕ

∑
vi∈V

vj∈NS(vi)
j ̸=i

− logPr(vj |vi) (6)

Calculating the denominator of Softmax formula over a large
graph is a time-consuming operation as it requires |V| times
of calculation. There are two primary methods to reduce the
time complexity: Hierarchical Softmax and Negative Sam-
pling, which are used in DeepWalk [13] and node2vec [14]
respectively. Hierarchical Softmax leverages Huffman-tree to
reduce the time complexity to O(log |V|); Negative sampling
approximates the normalizing factor to avoid calculation over
all nodes. In this work, we tried both of these two approaches.



D. Algorithm: NEGAR

This section presents the algorithm implementation of NE-
GAR. The pseudocode is represented in Algorithm 1. Lines 1-2
initialize the embedding function ϕ randomly and the corpus
walks to store traverse sequences sampled by random walk.
Lines 3-9 contain two layers of loops, where the outer loop
controls the number of walks per node, and the inner loop
performs a random walk sampling started from each node.
The choice of start node has an implicit bias on the context
of nodes. To offset the bias, the order of node set V will
be shuffled before sampling, and the random walk will be
simulated γ times per node. We leverages the controllable
random walk strategy that is controlled by hyper-parameters
p and q. The controllable probability is implemented using
alias sampling algorithm in O(1) time complexity. Line 10
employs the node sequence sampled by random walk as
the corpus to train the SkipGram model. For each sequence
{W1,W2, . . . ,Wℓ} in corpus, SkipGram extracts the context
centered on each node Wi (1 ≤ i − 2ω && i + 2ω ≤ ℓ)
and uses the loss function in Eq. 6 to optimize the embedding
function. Lines 11-12 obtain embedding vectors for all nodes
in V and use k-means algorithm to cluster the vectors into k
clusters.

Algorithm 1 NEGAR
Input: Unweighted Dependency Graph G = (V, E)

Return parameter p
In-out parameter q
Walks per node γ
Walk length ℓ
Window size ω
Embedding Dimensions d
Epochs over the corpus η
Cluster number k
Optimization method opt

Output: Recovered architecture A
1: Encoder initialization: ϕ ∈ R|V|×d

2: walks = ∅
3: for i = 0 to γ do
4: O = Shuffle(V)
5: for all vi ∈ O do
6: W = RandomWalk(G, vi, ℓ, p, q)
7: Append W to walks
8: end for
9: end for

10: SkipGram(ϕ,walks, ω, η, opt)
11: Obtain embeddings: embeds = {ϕ(vi)|vi ∈ V}
12: Clustering: arch = k-means(embeds, k)
13: return arch

IV. EXPERIMENTS

In this section, we introduce our experimental setup and
the configuration of algorithmic parameters. Then we propose
three research questions and answer each based on an analysis
of the experimental results.

TABLE I
EVALUATED SOFTWARE SYSTEMS

Project Version Description Language SLOC

Bash 4.2 Unix Shell C 115K
Hadoop 0.19.0 Data Processing Java 87K

ArchStudio 4 Architecture Development Java 55K
ITK 4.5.2 Image Segmentation Toolkit C++ 1M

Chromium svn-171054 Web Browser C++ 10M

A. Experimental Setup

To ensure the validity of the experimental conclusions, we
adopted the experimental setup from a previously published
work [4]. The tested projects include three medium-sized, one
large-sized, and one super large-sized software, whose details
are listed in Table I. We used four metrics to evaluate the
architecture recovery algorithm’s effectiveness: a2a, MoJoFM,
c2c with a threshold of 0.33, and Normalized TurboMQ [4].
The a2a, MoJoFM, and c2c quantify the similarity of the
recovered architecture recovered by the algorithms to the
ground truth architecture, where the credible ground truth
architectures of selected projects are provided by previous
work [4]. Normalized TurboMQ measures the architecture’s
degree of cohesion and coupling, which does not rely on
ground truth. Higher results of the above metrics indicate
better performance of the algorithms. We choose 12 variants
of state-of-the-art algorithms for comparison, where 8 are
dependency-based and 4 are knowledge-based.

TABLE II
EXPERIMENTAL HYPER-PARAMETERS CONFIGURATION OF NEGAR IN

TERMS OF DIFFERENT PROJECTS.

Project ℓ ω d p q γ k η opt

Bash [10,40] [5,20] 128 0.25,0.5,1,2,4 0.25,0.5,1,2,4 200 14 5 hs,ns
ArchStudio [10,40] [5,20] 128 0.25,0.5,1,2,4 0.25,0.5,1,2,4 200 57 5 hs,ns

Hadoop [10,40] [5,20] 128 0.25,0.5,1,2,4 0.25,0.5,1,2,4 200 67 5 hs,ns
ITK 40 20 128 1 1 100 50 1 hs

Chromium 40 20 128 1 1 100 67 1 hs

B. Algorithmic Parameters

To explore the theoretical optimal performance for NEGAR,
we leverage the grid-searching approach for hyper-parameters
tuning and chosen the best value for specific metric as the re-
sult. The tuned range of hyper-parameters is listed in Table II.

For Bash, ArchStudio and Hadoop, because of their medium
size, we tuned in a large parameter space. The walk length ℓ
ranged from 10 to 40, and the window size ω was set as the
half of ℓ. Besides, the return parameter p and in-out parameter
q were tuned on {0.25, 0.5, 1, 2, 4} to investigate whether
different random walk strategies will improve the effect of
architecture recovery. In addition, we both tried Hierarchical
Softmax (hs) and Negative Sampling (hs) approaches to opti-
mize the calculation of softmax.

For ITK and Chromium, it consumed NEGAR a long time
to recover the architecture because of the large scale of the
dependency graph. Hence we obtained the results under a fixed
configuration of hyper-parameters and decreased the value of
γ and η.



C. Research Questions

This work mainly focuses on the following three research
questions:

RQ1. Can the proposed algorithm NEGAR achieve superior
effectiveness in terms of different metrics than the existing
algorithms?

RQ2. Can the proposed algorithm NEGAR scale to a super
large project comprising 10MSLOC?

RQ3. Is there a remarkable statistical improvement in the
results obtained by the proposed algorithm NEGAR and the
selected algorithms?

All experiments were conducted on a server with Intel(R)
Xeon(R) W-2245 CPU @ 3.90GHz and 32GB of memory.

D. Analysis of Results

The results are presented in Tables III, IV, V, VI, and VII.
The first column represents different algorithms, and the other
columns represent results on different implementation levels
of dependency in terms of specific metrics. Each granularity’s
dependency has four values corresponding to a specific metric
for dependency-based algorithms. As knowledge-based al-
gorithms [4] are independent of dependency, they have
unique result corresponding to each metric in a project.
Because Normalized TurboMQ requires the corresponding
dependency graph of the recovered architecture, knowledge-
based algorithms, and Dir.Struc method cannot calculate the
value for Normalized TurboMQ and is marked as not ap-
plicable (NA). Besides, in large-sized and super-large-sized
projects, some algorithms failed to obtain results due to time
out (TO) and memory overflow (MEM) problems. We also
tried LINE [43] as the network embedding method, another
widely-used method using first and second order neighbor-
hood to measure node similarity. However, the exploration of
LINE is restrictive and is unable to explore nodes at further
depths than DeepWalk and node2vec. Its performance is less
satisfactory, thus we didn’t present its results.

RQ1 is answered based on Table III, IV, V, VI, VII from
three aspects:

Comparison with dependency-based algorithms. Comparison
with dependency-based algorithms. Dependencies of different
implementation levels have different effects on the archi-
tecture recovery. For example, some algorithms may prefer
particular kinds of dependencies while other algorithms can
achieve better performance on other dependencies. Hence,
an algorithm can be considered superior to others only if it
can achieve consistently better results in most dependencies
in the same project. We marked the top-1 result with
gray color for each level of dependency. As shown in the
results, NEGAR achieves top-1 scores on the majority of
dependencies, except that ACDC performs a little bit better
than NEGAR in ArchStudio. This indicates that NEGAR
has a comprehensively better effect than the selected
dependency-based algorithms.
Comparison with knowledge-based algorithms. Since
knowledge-based algorithms (ARC and ZBR) have only

one group of experimental results on each project, while
dependency-based algorithms have multiple groups of
results, we compare the results obtained on each level
of dependency between NEGAR and knowledge-based
algorithms. For Symbol dependency (Sym, S-CHA, S-Int,
No DyB), NEGAR achieves consistently better results on all
five projects. For Transitive dependency (Trans), obtained by
calculating the closure of Symbol dependency, NEGAR is
better than the knowledge-based algorithms on all projects
other than Hadoop. For Include dependency (Inc), NEGAR
can achieve better results on three C/C++ projects (Bash,
ITK, Chromium). NEGAR’s results on ArchStudio are
better on MoJoFM and c2c, but the value of a2a is worse
than the average value of the knowledge-based algorithms,
and the results of all the metrics on Hadoop are worse
than the knowledge-based algorithms. For Function-Call
(Funct) and Function-Call-and-Global-Variable-Use (F-GV)
dependencies, the results of NEGAR on ArchStudio, Hadoop,
and Chromium are better than knowledge-based algorithms,
but it is in contrast on Bash and ITK. In conclusion, utilizing
favorable implementation-level dependencies, NEGAR
can achieve a better architectural recovery effect than
knowledge-based algorithms.

Comparison with baselines. The primary difference between
NEGAR and DN+K-means is the node vector used for input.
DN+K-means leverages the direct neighborhood (DN) as the
node vector, while NEGAR utilizes random walk to sample the
graphic statistics and leveraged SkipGram for representation
learning. As shown in the results, NEGAR significantly
improves almost all results more than DN+K-means, which
indicates NEGAR can extract better latent graph structure
information. Dir.Struc. utilizes the directory structure as the
approximate architecture. Overall, the results of NEGAR are
closer to Dir.Struc. than other algorithms, where NEGAR
achieved a better effect on C/C++ projects but Dir.Struc. was
better on Java projects. This indicates that the recovered
architecture by NEGAR may be more similar to the actual
directory structure of the software.

RQ2 is answered by analysis of the algorithmic perfor-
mance of Chromium. Because part of the experimental data
is referenced from previous work [4] and the exact results
of running time are not provided, we discuss it based on
our experimental results and publicly available data. Different
levels of dependency consume different amounts of running
time and memory. The largest graph of Chromium is the
Include dependency graph, whose number of edges exceeds
one million and the number of nodes reaches more than
twenty thousand. The single running time of NEGAR on
the Include dependency graph is around 14 hours. Running
on other levels of dependency consumes 5-6 hours. Other
algorithms are diverse in running time. Previous work [10]
merged multiple dependencies and measured performance of
different algorithms on this converged dependency graph.
According to its results, FCA and ACDC were the top-2
scalable algorithms, which consumed 8 and 10 hours. In our



TABLE III
RESULTS OF MOJOFM (M)(%), A2A (A)(%), C2C (C)(%) AND NORMALIZED TURBOMQ (T)(%) FOR BASH

Algorithm

Bash

Inc Sym Trans Funct F-GV
M A C T M A C T M A C T M A C T M A C T

ACDC 52 65 47 9 57 80 77 22 38 80 40 6 49 41 7 29 50 41 7 29
Bunch-NAHC 53 68 20 25 43 84 20 31 34 83 10 20 49 41 10 33 46 41 9 28
Bunch-SAHC 57 69 23 30 52 85 37 30 34 83 13 20 43 40 6 28 49 41 11 28

WCA-UE 29 64 10 0 24 80 8 4 27 80 10 4 34 39 4 5 33 39 6 5
WCA-UENM 29 64 10 0 23 80 8 4 25 80 7 4 32 39 10 5 31 39 6 6

LIMBO 32 61 4 3 27 77 5 9 28 77 4 4 17 37 0 4 17 37 0 4
DN+K-means 59 67 19 0 55 84 28 17 49 84 26 6 47 41 5 14 46 40 2 16

FCA 60 67 29 15 47 77 43 19 44 82 14 9 40 38 7 15 39 39 7 14
NEGAR 72 72 37 35 71 91 57 59 53 87 29 26 62 43 23 43 62 43 21 43

ARC 43 67 20 NA
ZBR-tok 41 71 7 NA
ZBR-uni 29 70 0 NA
Dir.Struc. 57 64 36 NA

TABLE IV
RESULTS OF MOJOFM (M)(%), A2A (A)(%), C2C (C)(%) AND NORMALIZED TURBOMQ (T)(%) FOR ARCHSTUDIO

Algorithm

ArchStudio

Inc S-CHA S-Int No DyB Trans Funct F-GV
M A C T M A C T M A C T M A C T M A C T M A C T M A C T

ACDC 60 71 21 66 60 86 54 41 77 88 77 76 78 83 75 84 71 92 72 71 75 87 64 72 74 88 62 74
Bunch-NAHC 48 69 5 72 40 80 6 42 49 81 11 74 47 75 10 85 40 80 5 35 53 81 13 74 46 81 9 75
Bunch-SAHC 54 70 10 71 39 80 7 41 53 82 13 76 40 74 8 85 38 80 7 50 53 81 11 72 54 82 19 74

WCA-UE 30 70 5 1 30 83 5 11 32 84 14 22 45 81 35 65 32 83 13 15 31 82 7 10 31 83 8 19
WCA-UENM 30 70 5 1 30 83 5 11 32 84 14 22 45 81 35 65 33 84 13 15 31 82 7 10 31 83 8 19

LIMBO 23 67 0 2 23 79 0 12 24 79 0 31 25 74 0 38 24 78 0 7 24 77 0 24 23 78 0 27
DN+K-means 44 70 25 13 37 81 18 21 39 82 24 38 41 77 23 51 43 83 33 29 39 81 22 35 38 82 24 39

FCA 48 69 35 34 39 77 46 33 50 78 68 57 53 73 70 66 46 78 67 37 49 76 58 52 49 77 67 56
NEGAR 66 72 37 64 59 85 42 62 72 87 63 86 75 83 66 93 68 88 69 82 72 85 54 85 70 87 57 87

ARC 56 84 29 NA
ZBR-tok 48 85 16 NA
ZBR-uni 48 86 23 NA
Dir.Struc. 88 87 91 NA

TABLE V
RESULTS OF MOJOFM (M)(%), A2A (A)(%), C2C (C)(%) AND NORMALIZED TURBOMQ (T)(%) FOR HADOOP

Algorithm

Hadoop

Inc S-CHA S-Int No DyB Trans Funct F-GV
M A C T M A C T M A C T M A C T M A C T M A C T M A C T

ACDC 24 68 3 48 29 81 13 28 41 84 18 59 41 79 18 65 28 80 10 29 41 84 16 57 41 84 16 58
Bunch-NAHC 23 67 3 40 21 79 1 26 24 80 4 53 24 76 4 61 17 78 3 17 26 80 5 52 26 80 5 48
Bunch-SAHC 24 67 3 40 26 80 7 31 28 81 6 53 26 76 6 61 20 79 3 18 29 81 8 54 28 81 5 56

WCA-UE 13 68 7 1 12 80 12 5 15 80 12 8 28 78 9 34 17 81 12 7 17 81 15 6 17 81 12 8
WCA-UENM 13 68 7 1 12 80 12 5 15 80 12 8 28 78 9 33 17 81 12 7 17 81 15 6 17 81 12 8

LIMBO 15 67 0 2 13 79 0 7 14 79 0 19 14 75 0 25 13 79 0 2 13 78 0 17 14 79 0 17
DN+K-means 30 70 22 11 25 81 15 13 29 81 19 29 28 77 16 34 29 82 14 9 29 82 18 26 29 82 19 27

FCA 28 68 36 26 27 76 46 18 34 77 49 39 37 73 49 50 22 81 16 23 35 77 46 38 36 77 49 39
NEGAR 37 71 15 48 49 83 28 72 53 85 32 65 52 81 30 72 35 84 18 37 53 85 32 62 53 85 33 64

ARC 35 82 24 NA
ZBR-tok 29 81 16 NA
ZBR-uni 38 83 23 NA
Dir.Struc. 63 88 45 NA

experiments, we tested the fastest-of-the-art algorithm (FCA)
and took around 10 hours on the Include dependency graph
and around 3-6 hours on other dependencies, consistent with
its results. Other algorithms would consume a much longer
time. For example, WCA and DN+K-means consumed more
than 30 hours. On the other hand, bunch-SAHC and LIMBO
timed out after 24 and 8 days. Moreover, ZBR ran out of 40
GB of RAM in processing for knowledge-based algorithms,
and ARC had a similar execution time as WCA [4]. In
summary, although NEGAR’s execution is not as efficient
as the fastest algorithms, it can still be applied to large-
scale software architecture recovery tasks.

RQ3 is answered using Cliff’s δ effect size metric, a statistic
tool to quantify the difference between two groups of values
(NEGAR versus other algorithms). The value of Cliff’s δ
ranges from -1 to 1. A positive value indicates that the results
of NEGAR are better than those of another algorithm. A
larger absolute value indicates a more pronounced difference
in the distribution of the results. We utilize the following
representative magnitudes [10] to interpret the difference:
negligible (N) (|δ| < 0.147), small (S) (|δ| < 0.33), medium
(M) (|δ| < 0.474) and large (L) (|δ| ≥ 0.474). The results are
listed in Table VIII, which show that NEGAR is significantly
better than almost all the other algorithms in terms of



TABLE VI
RESULTS OF MOJOFM (M)(%), A2A (A)(%), C2C (C)(%) AND NORMALIZED TURBOMQ (T)(%) FOR ITK

Algorithm

ITK

Inc S-CHA S-Int No DyB Funct F-GV
M A C T M A C T M A C T M A C T M A C T M A C T

ACDC 59 67 0 33 55 74 0 24 52 63 0 18 48 58 0 32 60 48 8 40 60 48 8 40
Bunch-NAHC 37 71 0 15 36 78 0 23 35 68 0 23 35 58 0 22 45 47 0 34 47 47 0 37
Bunch-SAHC 32 69 0 10 46 78 2 29 43 66 0 23 41 57 0 21 54 48 0 44 53 47 0 37

WCA-UE 30 73 0 2 31 82 0 5 44 47 8 1 45 38 0 1 35 48 0 5 35 48 0 5
WCA-UENM 30 73 0 2 31 82 0 5 44 47 8 1 45 38 0 1 35 48 0 5 35 48 0 5

LIMBO 30 69 0 4 31 76 0 6 44 43 0 3 36 36 0 1 35 45 0 4 35 45 0 4
DN+K-means 38 74 0 13 42 82 8 24 39 71 3 15 43 61 9 13 60 51 6 31 61 51 8 25

FCA 67 66 0 34 63 71 0 23 48 63 0 14 44 55 0 16 52 45 0 22 52 45 0 22
NEGAR 69 73 15 82 57 79 15 82 60 70 8 75 54 59 0 79 62 49 15 82 61 48 8 81

ARC 24 54 0 NA
ZBR-tok MEM MEM MEM NA
ZBR-uni MEM MEM MEM NA
Dir.Struc. 59 61 0 NA

TABLE VII
RESULTS OF MOJOFM (M)(%), A2A (A)(%), C2C (C)(%) AND NORMALIZED TURBOMQ (T)(%) FOR CHROMIUM

Algorithm

Chromium

Inc S-CHA S-Int No DyB Funct F-GV
M A C T M A C T M A C T M A C T M A C T M A C T

ACDC 64 71 30 15 70 73 45 19 73 74 37 18 71 64 23 20 71 62 17 24 71 62 17 24
Bunch-NAHC 28 69 0 4 31 73 0 24 24 76 0 9 29 66 0 26 29 63 0 16 35 63 3 19
Bunch-SAHC 12 60 6 2 71 71 33 30 43 66 12 11 42 66 10 23 39 64 1 29 29 62 0 11

WCA-UE 23 70 0 0 23 75 0 2 23 78 0 2 27 68 0 2 29 66 0 2 29 66 0 2
WCA-UENM 23 70 0 0 23 75 0 2 23 78 0 2 27 68 0 2 29 66 0 2 29 66 0 3

LIMBO TO TO TO TO 23 70 0 2 3 73 0 2 26 64 0 2 27 61 0 2 27 61 0 2
DN+K-means 40 71 7 0 42 74 6 17 43 77 8 13 43 67 5 19 45 65 5 22 45 65 4 22

FCA 44 67 10 6 53 66 6 11 52 70 6 10 51 62 9 12 53 60 9 15 52 60 9 15
NEGAR 68 77 30 79 66 79 35 75 73 82 39 68 71 71 38 82 71 70 36 85 72 70 36 86

ARC 54 54 3 NA
ZBR-tok MEM MEM MEM NA
ZBR-uni MEM MEM MEM NA
Dir.Struc. 69 60 7 NA

TABLE VIII
RESULTS OF CLIFF’S δ EFFECT SIZE TEST (NEGAR VERSUS OTHERS) IN

TERMS OF MOJOFM (M)(%), A2A (A)(%), C2C (C)(%) AND
NORMALIZED TURBOMQ (T)(%).

Algorithm M A C T

ACDC 0.2 (S) 0.16 (S) 0.19 (S) 0.7 (L)
Bunch-NAHC 0.92 (L) 0.33 (S) 0.89 (L) 0.74 (L)
Bunch-SAHC 0.79 (L) 0.34 (M) 0.8 (L) 0.71 (L)

WCA-UE 0.99 (L) 0.29 (S) 0.86 (L) 0.97 (L)
WCA-UENM 0.99 (L) 0.29 (S) 0.86 (L) 0.97 (L)

LIMBO 0.99 (L) 0.44 (M) 0.97 (L) 0.99 (L)
DN+K-means 0.83 (L) 0.25 (S) 0.65 (L) 0.96 (L)

FCA 0.78 (L) 0.45 (M) 0.17 (S) 0.89 (L)
ARC 0.74 (L) 0.34 (M) 0.6 (L) NA

ZBR-tok 0.95 (L) 0.37 (M) 0.79 (L) NA
ZBR-uni 0.5 (L) 0.34 (M) 0.74 (L) NA
Dir.Struc. -0.13 (N) 0.07 (N) 0.01 (N) NA

MoJoFM, a2a, c2c and Normalized TurboMQ. Besides,
the gap between ACDC and NEGAR is small in terms of
MoJoFM, a2a and c2c, and the gap between FCA and NEGAR
is small in terms of c2c. This shows that ACDC and FCA
also have good effects in some aspects. Regarding baseline
algorithms, NEGAR is superior to K-means, which proves the
effectiveness of the random walk-based node representation
method. The gap between NEGAR and Dir.Struc. is negligible,
which indicates that the recovered architecture is close to the
directory structure of the objective projects.

V. CONCLUSION

Organizing similar files into the same cluster, called archi-
tecture recovery, benefits the understandability and maintain-
ability of software. This paper proposed a novel algorithm,
NEGAR, which leverages the random-walks-based network
embedding method to learn the node representation for cluster-
ing. According to the experimental results, NEGAR surpasses
the chosen state-of-the-art algorithms in terms of multiple
metrics. In addition, NEGAR can scale to super large-sized
software and is faster than most other algorithms.

A few points deserve further study. On the one hand, the
presence of redundant dependencies in the graph can interfere
with the architecture recovery, but no research currently con-
centrates on evaluating these negative influences. On the other
hand, non-existing algorithms can use both structural and non-
structural information. Although structural information has
shown higher value, non-structural information, such as file
name, comments, code semantics, etc., can also contribute to
architecture recovery. Thus, we plan to carry out the following
two research directions in the future.

1) Optimizing the dependency graph structure: We aim
to optimize the redundant dependency in the graph and
evaluate the impact on the architecture recovery.

2) Integrate structural and non-structural information: We
plan to utilize graph neural networks (GNN) to integrate
structural and non-structural information (e.g., using



code semantics as initial node attributes in the graphs)
for architecture recovery.
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