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Abstract—In voting, the notion of receipt-freeness has been
proposed to express that a voter cannot gain any information to
prove that she has voted in a certain way. It aims to prevent vote
buying, even when a voter chooses to renounce her privacy.

In this paper, we distinguish various ways that a voter can
communicate with the intruder to reduce her privacy and classify
these according to their ability to reduce the privacy of a voter.
We develop a framework combining knowledge reasoning and
trace equivalences to formally model voting protocols and define
vote privacy for the voters. Our framework is quantitative, in
the sense that it defines a measure for the privacy of a voter.
Therefore, the framework can precisely measure the level of
privacy for a voter for any of the identified privacy classes. The
quantification enables the framework to capture receipts that
reduce, but not nullify, the privacy of the voter. This has not
been identified and dealt with by other formal approaches.

I. I NTRODUCTION

With the growth and commercialisation of the Internet,
people become more and more concerned about their privacy
in the digital world. Privacy has been a fundamental property
for systems which provide users e-services, ranging from
electronic voting to on-line auctions to health-care.

In voting, vote privacy is the property that an outside
observer cannot determine how a voter voted. Although this
seems sufficient to ensure privacy, Benaloh and Tuinstra [1]
introduce receipt-freeness, which expresses that a voter cannot
gain any information to prove to an intruder (someone trying
to force the voter to cast a specific vote) that she voted in
a certain way. Receipt-freeness aims to prevent vote buying,
even when a voter chooses to renounce her privacy. Another
stronger notion of privacy is coercion-resistance [2], stating
that a voter cannot cooperate with the intruder to prove how
she voted. Coercion-resistance also has received considerable
attention. These strong notions of privacy actually capture the
essential idea that privacy must be enforced by a voting system
upon its users, instead offering it. We believe this should be
a crucial principle when designing voting systems.

In the literature, many research efforts have been devoted
to ensure privacy properties for (electronic) voting. Several
schemes claiming to be receipt-free (e.g. [1], [3], [4]) have
been proposed and were later shown to have receipts [5], [6],
[7]. Resolving this kind of situation underlines the need for
formal methods, which are mathematically based techniquesto
specify and verify systems. Several formalisations of privacy
properties in voting have been proposed. Delaune, Kremer and
Ryan [8], [9] develop their formalisation based on observa-
tional equivalences of processes, whereas we believe privacy

requirements should explicitly model the intruder’s knowledge.
Based on his knowledge, the intruder can distinguish different
traces. Moreover, the privacy of a voter in a voting system
also depends on how much knowledge (and when) the voter
shares with the intruder. In [10], the toolProVerif is extended
to check some (not all) equivalences of [8], [9]. Recently,
automatic verification techniques within the applied pi calculus
framework have been proposed by Backes, Hriţcu and Maf-
fei [11]. But their approach has its focus on remote electronic
voting protocols, and mainly deals with coercion-resistance.
The constructive approach of Jonker and de Vink [12] is a
logical characterization of receipt-freeness, but this work is in
a less mature state and thus currently only leads itself to high-
level analysis. Baskar, Ramanujam and Suresh [13] define a
language to specify voting protocols and use an epistemic logic
to reason about receipt-freeness. Although it is relatively easy
to express privacy properties based on logic of knowledge, it is
rather difficult to develop verification techniques within such a
logical framework. Moreover, the aforementioned approaches
only offer qualitative methods to analyse whether a voting
protocol satisfies some privacy property, instead of offering
methods to quantify privacy. However, a qualitative approach
leaves several possibilities for an intruder to reduce voter
privacy. Examples include forcing a voternot to vote for a
certain candidate, or determining at which end of the political
spectrum was voted. We believe that computing the exact
possible choices of a voter is the only way to detect such
attacks. In our view, any privacy reductor is a receipt, not just
those that nullify privacy.

In this paper, we focus on vote buying, as it is more
scalable than coercion in elections [14], and we consider the
possibilities for a voter to reduce her privacy, which we call
voter-controlled privacy. The voter cansubjectivelyprovide
the intruder information, to prove that she has voted in a
certain way in order to sell her vote. The intruder tries to
find out whether the voter did vote as she said, based on
his knowledge gained by observing the election and com-
municating with the voter. The privacy of any voting system
largely depends on the possibilities afforded to the intruder
to communicate with a voter. Voting literature [15], [5], [4],
uses the following types of information-hiding techniquesto
ensure privacy: mixnets [16], blind signatures [17], homomor-
phic encryption [5]. Furthermore, private untappable one-way
channels (voter to authority or authority to voter) or two-
way channels are often assumed [15], [5], [4]. The ability
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to break privacy relies on the information acquired by the
intruder. Such channels provide a means to keep information
from the intruder and thus help privacy. However, information
can be forwarded to the intruder by the voter. And vice
versa, a voter could use information supplied by the intruder
(which then serves as a witness). These observations lead
us to distinguish various independent ways that a voter can
communicate with the intruder to rescind her privacy and
classify them according to their ability to reduce the privacy
of a voter. These classes are ordered according to privacy-
reducing ability, with the classic definition of receipt-freeness
of Benaloh and Tuinstra [1] being a weakest element in this
ordering. The goal of this paper is to provide a method for
quantifying privacy of voters within this ordering.

As made clear by Benaloh and Tuinstra [1], voter privacy
depends on which knowledge the voter shares with the in-
truder, and at what time during the protocol this knowledge
is shared. (This is captured by the ordering of the conspir-
acy classes.) Therefore, we develop a framework combining
knowledge reasoning along the lines of [12], [13] and trace
equivalences of [8], [9] to formally model voting protocols
and define vote privacy for the voters. This enables us to
describe the knowledge of the intruder, as well as of other
entities in a voting protocol, at any point during executionof
the system. To distinguish execution traces with respect tothe
current knowledge of the intruder, we adapt the reinterpretation
function proposed by Garcia et al. [18]. The framework is
quantitative, in the sense that it can precisely measure privacy
loss for any voter conspiring like one of the conspiracy classes,
which is achieved by establishing choice groups for voters,
taking different communication mechanism between voters
and the intruder into account, along the lines of anonymity
groups as introduced by Mauw, Verschuren and de Vink [19]
and Chothia et al. [20]. Thus, we can capture privacy reducing
(but not nullifying) attacks in vote buying, which have not been
identified and dealt with in other formal approaches.

Our contribution in this paper is twofold. First, we introduce
a new formal framework combining knowledge reasoning
and trace equivalences to model and reason about voting
protocols. Second, we provide a quantitative definition of vote
privacy, which can be used to quantify privacy and enables the
detection of some subtle attacks related to vote buying. The
different cooperation modes of a voter and the intruder give
rise to a conspiracy ordering.
Outline. In Sect. II, we define the setting of our framework.
In Sect. III a formal framework to model voting systems and
its operational semantics is presented, which is followed by a
quantitative definition of privacy in voting in Sect. IV, based
on knowledge reasoning and trace equivalences. In Sect. V,
the ordering describing how the intruder and a voter can
communicate is introduced, and how to measure the loss of
privacy within this ordering is formally defined. We perform
two case studies in Sect. VI and discuss the power of our
framework by identifying some new attacks which can only
be detected by a quantitative approach in Sect. VII. Finally,
Sect. VIII concludes the paper and lists some research works

for the future.

II. SETTING

This paper limits itself to studying privacy of a voting
system at the protocol level. In the following we define the
setting of our approach.

A. Election type

We call the type of elections studied in this paper1v1v
(short for “one voter, one vote”).1v1v elections have the
following properties:

• every voter may cast one vote, and no more;
• each vote has equal weight;
• the election takes place in phases;
• the cast votes (ballots) are made public after the elections.

Phases are used to synchronise all parties, e.g. for ending the
voting period. All voting systems have a well-defined endpoint
(publication of the result), and hence there are at least two
phases (prior to results and results). We assume the ballots
are made public to enable public verification of the announced
results.

We assume that the way voters vote is independent from the
voting process, which implies that the voters’ choices can be
given a priori. We make this explicit by introducing a function
γ that specifies for each voter how she votes.

B. Privacy-enhancing techniques

To enable application to existing voting systems, the formal
framework in Sect. III must encompass the privacy-enhancing
techniques mentioned in the introduction. Below, these tech-
niques are briefly explained.

• Homomorphic encryptionis an encryption technique
where an operation on two ciphertexts equals another
operation on the plaintexts, i.e. for some operations⊗
and⊕ we have{|ϕ1|}k ⊗ {|ϕ2|}k = {|ϕ1 ⊕ ϕ2|}k.

• Blind signing is a signing technique where the signing
agent does not see what he is signing – it is blinded. An
often-used analogy is that of a sealed envelope with a
letter and carbon paper in it. Anyone can sign the letter by
signing the envelope, without opening the envelope. The
recipient can open the envelope (deblind the message) to
acquire the signed letter (message).

• Mixnets are a way to establish an anonymous channel
between two parties. Each relaying node in the channel
permutates the sequence of input messages in output. To
prevent directly matching input to output, several cryp-
tographic solutions may be used. For the purpose of this
paper, a mixnet is assumed to be a correctly functioning
sender-anonymous channel (that is, the channel hides the
identity of the sender of a message, but not its contents
or its recipient).

• Untappable channelsare often used assumptions in vot-
ing literature. They strengthen the notion of a private
channel. Using an untappable channel prevents the in-
truder from learning the contents of any message com-
municated, it also makes him unaware of any use of
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the channel. Untappable channels may be either one-
way or two-way. Sect. V discusses the consequences of
untappable channels in depth.

C. The intruder model

We consider a standard Dolev-Yao intruder [21] throughout
the paper. This intruder model can be characterised as follows:

• assumption of perfect cryptography - no cryptographic
message can be opened without the correct key;

• full network control - all messages sent on the public
network are read by the intruder; all received messages
on the public network are created or forwarded by the
intruder; the intruder can also remove messages from the
network.

III. M ODELLING VOTING SYSTEMS

In this section, we develop a formal syntax and provide
semantics for expressing the communication behaviour of
voting systems. The syntax is rudimentary in that it expresses
behaviour of agents as a sequence of events. This restricted
format serves the purpose of this paper (enabling reasoningon
quantification of vote-privacy). Should more expressivitybe
desired, the syntax can easily be extended (e.g. with control
flow operators).

A. Syntax

A voting system consists of a set of votersV, who make a
choice of their preferred candidate from a set of candidatesC,
and a set of authoritiesAut who, e.g., verify eligibility of a
voter, and announce the final results. In a voting system, these
parties communicate terms. For ease of reference,Agents =
V ∪ Aut .

As mentioned before, we assume that the way voters vote
is independent of the voting process, and hence can be given
a priori. This is captured by the relationγ : V → C, which
specifies for each voterv ∈ V which candidatec ∈ C she votes
for (γ(v)). Furthermore, we use projection functionsπi, i > 0
which return theith component of a tuple.

The terms communicated in a voting protocol are built
up from candidates inC, random numbers inNonces, and
cryptographic keys inKeys. The set of keys of a particular
agenta is given byKeysa. These basic terms can be composed
through pairing and encryption. Of the privacy primitives
mentioned in Sect. II, both homomorphic encryption and blind
signatures operate on terms. Hence, the term modelling needs
to accommodate this.

Definition 1 (terms). Given a setVars of variables, a setC of
candidates, a setNonces of nonces, and a setKeys of keys,
ranged over byvar , c, n andk, respectively. The classTerms

of terms, ranged over byϕ, is given by the BNF

ϕ ::= var | c | n | k | (ϕ1, ϕ2) | {ϕ}k | {|ϕ|}k | [[ϕ]]k.

Terms may be paired ((ϕ1, ϕ2)), encrypted with a key ({ϕ}k),
homomorphically encrypted ({|ϕ|}k) and blinded ([[ϕ]]k). A
term is calledopen if it contains variables andclosed if it

contains no variables. The set of variables of an open termϕ

are given byfv(ϕ).

Terms encrypted withk can be decrypted using the inverse
key k−1. For symmetric encryption,k−1 = k, whereas in
asymmetric encryption,pk(a) denotes the public keyk and
sk(a) the secret keyk−1 of agenta. Signing is denoted as
encryption with the secret key.

A closed termϕ matchesan open termϕ′ if ϕ and ϕ′

have the same structure. This is captured by the predicate
match: Terms × Terms as follows:match(ϕa, ϕb) ≡

ϕa = ϕb ∨ ϕb ∈ Vars ∨
〈 ∃ϕ′

a, ϕ′
b, k : match(ϕ′

a, ϕ′
b) ∧ ((ϕa = {ϕ′

a}k ∧ ϕb = {ϕ′
b}k) ∨

(ϕa = {|ϕ′
a|}k ∧ ϕb = {|ϕ′

b|}k) ∨ (ϕa = [[ϕ′
a]]k ∧ ϕb = [[ϕ′

b]]k))〉
∨ 〈∃ϕ′

a, ϕ′′
a, ϕ′

b, ϕ
′′
b : ϕa = (ϕ′

a, ϕ′′
a) ∧ ϕb = (ϕ′

b, ϕ
′′
b )∧

match(ϕ′
a, ϕ′

b) ∧ match(ϕ′′
a, ϕ′′

b )〉

Variables represent unspecified terms. An example is the
voter’s choice: it is represented by variablevc until instan-
tiated. Each agenta captures assigned variables in a partial
mappingµa : Vars → Terms. The mapping of variablevar
onto termϕ is denoted asvar 7→ ϕ. The composition ofµ′

after µ is denoted byµ′ ◦ µ. Variable mappings are extended
to open terms. For closed termϕa and matching open term
ϕb (i.e. match(ϕa, ϕb)), there exists a mappingµ such that
µ(ϕb) = ϕa. This variable mapping is captured by the function
vm, wherevm(ϕa, ϕb) =







































empty if ϕb ∈ C ∪ Nonces ∪ Keys

ϕb 7→ ϕa if ϕb ∈ Vars

vm(ϕ′
a, ϕ′

b) if (ϕa = {ϕ′
a}k ∧ ϕb = {ϕ′

b}k)∨
(ϕa = {|ϕ′

a|}k ∧ ϕb = {|ϕ′
b|}k)∨

(ϕa = [[ϕ′
a]]k ∧ ϕb = [[ϕ′

b]]k),
for somek ∈ Keys

vm(ϕ′
a, ϕ′

b) ◦ vm(ϕ′′
a, ϕ′′

b ) if ϕi = (ϕ′
i, ϕ

′′
i ), for i ∈ {a, b}

A term ϕ may be derived from a set of termsT (notation
T ⊢ ϕ) if it is an element ofT or if it can be derived by
repeatedly applying the following rules:

T ⊢ ϕ1, T ⊢ ϕ2 =⇒ T ⊢ (ϕ1, ϕ2)
T ⊢ (ϕ1, ϕ2) =⇒ T ⊢ ϕ1

T ⊢ (ϕ1, ϕ2) =⇒ T ⊢ ϕ2

T ⊢ ϕ1, T ⊢ k =⇒ T ⊢ {ϕ1}k

T ⊢ {ϕ1}k, T ⊢ k−1 =⇒ T ⊢ ϕ1

T ⊢ ϕ1, T ⊢ k =⇒ T ⊢ {|ϕ1|}k

T ⊢ {|ϕ1|}k, T ⊢ k−1 =⇒ T ⊢ ϕ1

T ⊢ ϕ1, T ⊢ k =⇒ T ⊢ [[ϕ1]]k
T ⊢ {[[ϕ1]]k}sk(a), T ⊢ k =⇒ T ⊢ {ϕ1}sk(a)

T ⊢ {|ϕ1|}k, T ⊢ {|ϕ2|}k =⇒ T ⊢ {|ϕ1 ⊕ ϕ2|}k

An agent’s knowledge is a set of terms closed under deriv-
ability. Closure of a setK under derivability is defined as
K = {ϕ | K ⊢ ϕ}. As proven in [13],T ⊢ t is decidable.

Terms are communicated between the agents. These com-
munications may occur over public, anonymous, or untappable
channels. The distinction between these channels will become
clear in the semantics for these channels.

Definition 2 (events). The class of communication events
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(public send)
ka ⊢ ϕ′ ∧ sp = a : (ka, µ, s(a, y, ϕ) · σ) ∈ S ∧ µ(ϕ) = ϕ′

(KI , S)
s(a,y,ϕ′)
−−−−−→ (KI ∪ {ϕ′}, S ∪ {a : (ka, µ, σ)} \ {sp} )

(public receive)
KI ⊢ ϕ ∧ sp = a : (ka, µ, r(x, a, ϕ′) · σ) ∈ S ∧ µ′ = vm(ϕ, µ(ϕ′)) ◦ µ ∧ match(ϕ, µ(ϕ′))

(KI , S)
r(x,a,ϕ)
−−−−−→ (KI , S ∪ {a : (ka ∪ {ϕ}, µ′, σ)} \ {sp} )

(anonymous send)
ka ⊢ ϕ′ ∧ sp = a : (ka, µ, as(a, y, ϕ) · σ) ∈ S ∧ µ(ϕ) = ϕ′

(KI , S)
as(y,ϕ′)
−−−−−→ (KI ∪ {ϕ′}, S ∪ {a : (ka, µ, σ)} \ {sp} )

(anonymous receive)
KI ⊢ ϕ ∧ sp = a : (ka, µ, ar(a, ϕ′) · σ) ∈ S ∧ µ′ = vm(ϕ, µ(ϕ′)) ◦ µ ∧ match(ϕ, µ(ϕ′))

(KI , S)
ar(a,ϕ)
−−−−−→ (KI , S ∪ {a : (ka ∪ {ϕ}, µ′, σ)} \ {sp} )

(untappable communication)

spa = a : (ka, µa, us(a, b, ϕa) · σa) ∈ S ∧ ka ⊢ ϕ′ ∧ µa(ϕa) = ϕ′ ∧
spb = b : (kb, µb, ur(a, b, ϕb) · σb) ∈ S ∧ µ′

b = vm(ϕa, µ(ϕb)) ◦ µb ∧ match(ϕa, µb(ϕb))

(KI , S)
τ
−→ (KI , S ∪ {a : (ka, µa, σ), b : (kb ∪ {ϕ′}, µ′

b, σb)} \ {spa, spb})

(phase synchronisation)
Phase = {a : (ka, µa, phase(i) · σa) ∈ S} ∧ ∀a ∈ Aut : a : (ka, µa, phase(i) · σa) ∈ S

(KI , S)
phase(i)
−−−−−→ (KI , S ∪ {a : (ka, µa, σa) | a : (ka, µa, phase(i) · σa) ∈ S} \ Phase)

Fig. 1. Operational semantics

Events is given by:
Events = {s(a, a′, ϕ), r(a, a′, ϕ), as(a, a′, ϕ), ar(a′, ϕ),

us(a, a′, ϕ), ur(a, a′, ϕ), phase(i)
| a, a′ ∈ Agents , ϕ ∈ Terms, i ∈ N},

where s, r, as, ar, us, ur denote sending and receiving over
public, anonymous and untappable channels, respectively.
Finally, phase(i) is the event denoting that an agent is ready
to start phasei.

An agent’s behaviour is given by its specification. A speci-
fication sp ∈ Spec is a tuple of knowledge, variable mapping,
and events:Spec = P(Terms)×(Vars → Terms)×Events⋆.

Not all expressible specifications make sense (e.g. two consec-
utive receive events using the same variables). There are some
static requirements on well-formed behaviours which we omit
here for space considerations. Variable mappings are extended
to events (replacing all mapped variables in the term of the
event) and to specifications (applying to each event in the list
of events). This is denoted asµ(ev) for an eventev andµ(σ)
for an event listσ.

A voting system specifies, for each agent, its behaviour.
Hence, a voting system is a mapping from agent identities to
specifications, as follows.

Definition 3 (voting system). The class of voting systems,
Prot , is defined asProt = Agents → Spec. Instantiation of
a voting systemVS ∈ Prot with choice functionγ is denoted
asVS(γ). VS(γ)(a) =

{

VS(a) if a 6∈ V
(π1(VS(a)), µa(π2(VS(a))), π3(VS(a))) if a ∈ V

whereµa = vc 7→ γ(a).

B. Semantics

State of a voting system is a tuple of intruder knowledge and
agent specifications:State = P(Terms)× (Agents → Spec).
Each agent’s specification (knowledge, variable mapping and
list of events) is given byAgents → Spec. To denote
the specification of agenta in a state (KI , S), we write
a : (ka, µa, σa) ∈ S. When there is no risk of confusion,
we omit the agent’s identity from the specification, as in
a : (k, µ, σ) ∈ S. The initial state of voting systemVS with
respect to choice functionγ is (K0

I ,VS(γ)), for the intruder
with initial knowledgeK0

I .
The operational semantics of a voting system, given in Fig. 1

and detailed below, models a Dolev-Yao intruder. Events may
involve unspecified agentsx, y ∈ Agents , which we omit from
the premise of the rules. Events involving parties6∈ Agents

(e.g., the intruder) explicitly name these parties. The semantics
of a voting system results in a labelled transition system where
the labels are elements ofLabels:

Labels = {s(a, a′, ϕ), r(a, a′, ϕ), as(a′, ϕ), ar(a′, ϕ), τ,
phase(i) | a, a′ ∈ Agents, ϕ ∈ Terms, i ∈ N}.

Note that the sender of a message over the anonymous channel
is hidden. Furthermore, phases denote synchronisation points.
A phase(i) event may only occur if all authorities have
agreed that the election will evolve into a new phase. As a
consequence, those voters who are ready to do so will move
the new phase as well.1 We use the labelτ to denote the
occurrence of a communication over untappable channels.

Send events work as follows. The sending agent can send
term ϕ if he can derive a matching instantiatedϕ′ from his

1We conjecture that our semantics of phase synchronisation issimilar to
the strong phase semantics as proposed in [10].
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current knowledge and variable mapping. The result of both
a public send event and an anonymous send event is that
the intruder’s knowledge is extended (withϕ′), and that the
send event is removed from the agent’s list of events. The
distinction between public and anonymous communication is
that the latter omits the sender in the label of the transition
(public / anonymous sendin Fig. 1).

In receive events, an agent can receive termϕ′ if the intruder
can deriveϕ, the agent’s next event is a receive event of term
ϕ′ andϕ matchesϕ′. As a result of receivingϕ, the agent’s
knowledge is extended withϕ and the free variables ofϕ′ are
assigned values in his variable mapping, since an agent may
(partly) specify the structure of a term it receives using the
match predicate. An anonymous receive event is similar to
a public receive event, except that it omits the sender in the
label of the transition (public / anonymous receivein Fig. 1).

We model untappable communications to be synchronised,
as the intruder has no influence or power whatsoever over this
communication channel. The intruder does not learn anything
about the communication, hence his knowledge is not updated.
Other than that, the rule combines the ideas of the public
send and public receive events (untappable communicationin
Fig. 1).

Phase synchronisation only occurs if all authorities from
Aut agree to progress to phasei. In this case, all other agents
ready to execute the phase event will move to the new phase
as well (phase synchronisationin Fig. 1).

The set of traces of a voting system is defined as follows
using these semantic rules:

Definition 4 (traces). The class of tracesTraces consists of
lists of labels. The traces of a voting systemVS and a choice
functionγ are given by

Tr(VS(γ)) = {α ∈ Labels⋆ | α = α0, . . . , αn−1 ∧
∃s0, . . . , sn ∈ State : s0 = (K0

I ,VS(γ)) ∧

∀0 ≤ i < n : si
αi−→ si+1}

The set of traces of a voting systemVS is now given by

Tr(VS) =
⋃

γ∈V→C

Tr(VS(γ))

We denote the intruder knowledge in the last state of a trace
t as Kt

I . The empty trace is denoted byǫ.

IV. PRIVACY IN VOTING SYSTEMS

The model developed in the previous section enables us to
express if an intruder can distinguish two executions of the
system, as previously expressed by Mauw, Verschuren and de
Vink [19] and later by Garcia et al. [18] for passive intruders.
Traces t, t′ are to be considered equivalent if the intruder
cannot distinguish them. To formalise this equivalence, the
distinguishing ability of the intruder is formalised as the
intruder’s ability to distinguish two messages, which is then
lifted to traces. The intruder can uniquely identify any plain-
text message he sees. Furthermore, the intruder can distinguish
any encrypted message for which he possesses the decryption
key, or which he can construct himself.

Definition 5 (reinterpretation [18]). Let ρ be a permutation
on the set of termsTerms and let KI be a knowledge set.
The mapρ is a semi-reinterpretation underKI if it satisfies
the following.

ρ(p) = p, for p ∈ C ∪ Nonces ∪ Keys

ρ((ϕ1, ϕ2)) = (ρ(ϕ1), ρ(ϕ2))
ρ({ϕ}k) = {ρ(ϕ)}k, if KI ⊢ ϕ, k ∨ KI ⊢ {ϕ}k, k−1

ρ({|ϕ|}k) = {|ρ(ϕ)|}k, if KI ⊢ ϕ, k ∨ KI ⊢ {ϕ}k, k−1

ρ([[ϕ]]n) = [[ρ(ϕ)]]n, if KI ⊢ n

Map ρ is a reinterpretation underKI iff it is a semi-
reinterpretation and its inverseρ−1 is a semi-reinterpretation
underρ(KI).

Reinterpretation is extended straightforwardly to eventsand
to traces by applyingρ to the message fields of events (in
traces).

Some events in a trace are hidden from the intruder, hence
the intruder has a restricted view of a trace. In particular,the
intruder cannot see anyτ transitions (communications over
untappable channels). The visible part of a trace is captured
by the functionobstr : Traces → Traces as follows:

obstr(ǫ) = ǫ, andobstr(ℓ · t) =

{

ℓ · obstr(t) if ℓ 6= τ

obstr(t) if ℓ = τ

Definition 6 (trace indistinguishability). Tracest, t′ are indis-
tinguishable for the intruder, notationt ∼ t′ iff there exists a
reinterpretationρ such that

obstr(t′) = ρ(obstr(t)) ∧ Kt
I = ρ(Kt′

I ).

The above definition of the intruder’s ability to distinguish
traces extends to his ability to distinguish sets of traces as
follows.

Definition 7 (choice indistinguishability). Given voting system
VS, choice functionsγ, γ′ are indistinguishable to the intruder,
notationγ ≃VS γ′ iff

∀t ∈ Tr(VS(γ)) : ∃t′ ∈ Tr(VS(γ′)) : t ∼ t′ ∧
∀t ∈ Tr(VS(γ′)) : ∃t′ ∈ Tr(VS(γ)) : t ∼ t′

Note that, as the ballots are made public, the intruder
knows the result. As such, he can discard choice functions
not matching the result.

The set of choice functions indistinguishable for the intruder
in a given system is now succinctly defined as follows.

Definition 8 (choice group). The choice group for a voting
systemVS and a choice functionγ is given by

cg(VS, γ) = {γ′ | γ ≃VS γ′}.

The choice group for a particular voterv, i.e. the set of
candidates indistinguishable fromv’s chosen candidate, is
given by

cgv(VS, γ) = {γ′(v) | γ′ ∈ cg(VS, γ) }.
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V. CONSPIRING VOTERS

A. The conspiracy classes

The above framework captures the behaviour of a passive
voter, who does not actively cooperate with the intruder
to prove how she has voted. However, as remarked in the
introduction, we focus on voters trying to renounce their vote-
privacy. A conspiring voter can try to share her knowledge
with the intruder. The classic receipt-freeness case assumes
the voter shares her final knowledge. However, the timing
of knowledge sharing is important (as explained in [12]) –
the voter needs to share her personal knowledge before it
becomes public, in order to prove that she really has the
receipt. Additionally, the use of untappable channels means
that during the course of an election, a voter may learn or
commit to knowledge that the intruder is unaware of. Recall
that untappable channels hide communications between a voter
and the authorities completely from the intruder. By sharing
knowledge received over such a channel with the intruder, and
by using intruder-supplied information to send over such a
channel (and thus commit to), a voter may seek to circumvent
the privacy provisions of untappable channels. The timing
of sharing information between the conspiring voter and the
intruder hence is important.

Cases where the voter shares her full knowledge (post-
election or pre-election) are independent from cases wherethe
voter conspires to circumvent untappable channels (sharing
information, using intruder-supplied information, or both).
In absence of untappable channels, all communications are
visible to the intruder. In this case, the sooner a voter shares her
knowledge with the intruder, the more traces the intruder can
distinguish. Classical receipt-freeness,classic-rf, tries to break
vote-privacy by sharing knowledge after elections. However,
sharing knowledge beforehand,start-rf, gives the intruder
more knowledge during the elections. This situation is depicted
below in Fig. 2(i).

In presence of untappable channels, the intruder is not aware
of every addition to the voter’s knowledge. The voter can
mitigate this by conspiring mid-election. Her willingnessto
do so is captured in Fig. 2(ii). The conspiring voter may
choose to share information the intruder cannot learn otherwise
(rf-share) or use intruder-supplied terms in communications
hidden from the intruder (rf-witness) to later prove how she
voted. The combination of these two notions is at the top of
the ordering (rf-full ).

vote-priv
6

1. classic-rf
6

2. start-rf

(i)

vote-priv
©©*HHY

a. rf-share b. rf-witness
©©* HHY

c. rf-full

(ii)

Fig. 2. (i) pre-, post- and (ii) mid-election knowledge sharing

A voter may use privacy-reducing techniques from both
hierarchies to reduce her privacy. We denote this, e.g., as a

type 1avoter, or atype 2cvoter.

B. Modelling conspiratory behaviour

A conspiring voter behaves differently from a regular voter,
as she will communicate with the intruder in certain circum-
stances. To incorporate the different conspiracy classes into
the framework of Sect. III and Sect. IV, we extend the set
of eventsEvents with events:{is(ϕ), ir(ϕ)}, where is(ϕ)
denotes the agent sending termϕ to the intruder, andir(ϕ)
denotes the converse receive event. These events have similar
semantics to the public sending/receiving events.

Modelling conspiracy changes the voter specification as
follows:

• 1. classic-rf: at the end of the protocol, the voter sends
her knowledge set to the intruder (is is extended to send
knowledge set).

• 2. start-rf: at the beginning of the protocol, the voter
sends her knowledge set to the intruder.

• a. rf-share: eachur(a, v, ϕ) is followed by anis(ϕ).
• b. rf-witness: The intruder supplies the voter-controllable

parts of the term used in eachus(v, a, ϕ). To do so, the
intruder must know what terms are voter-controllable. To
this end, we introduce a functionvars(v, ϕ) that returns
the variables ofϕ that agentv can control. The voter
sends this information to the intruder, who replies with a
similar term, changing the values to his liking. The voter
then uses the newly supplied values to communicate.

• c. rf-full: this combines rf-share and rf-witness.
The variables controllable by voterv in term ϕ are given by
the functionvars as follows:vars(v, ϕ) =































{ϕ} if ϕ ∈ Vars

vars(v, ϕa) ∪ vars(v, ϕb) if ϕ = (ϕa, ϕb)
vars(v, ϕ′)

if (ϕ = {ϕ′}k ∨ ϕ = {|ϕ′|}k ∨ ϕ = [[ϕ′]]k),
for k ∈ Keysv

∅ otherwise

Changes to the specification are modelled by introducing a
protocol transformation function that transforms the specifica-
tion of one agent as outlined above.

Definition 9 (protocol transformation). Recall the type of the
class of voting protocols,Prot : Agents → (P(Terms) ×
(Vars → Terms) × Events⋆). We introduce∆i : Agents ×
Prot → Prot , a protocol transformation function fori ∈
{1, 2, a, b, c} a conspiracy class, where∆i(v,VS)(a) =
{

VS(a) if a 6= v

(π1(VS(v)), π2(VS(v)), δi(v, π3(VS(v)))) if a = v

The transformation functionδi : V × Events⋆ → Events⋆

depends on the specific conspiring behaviour as follows.
- δ1(v, sp) = sp · is(kv).
- δ2(v, sp) = is(kv) · sp.

- δa(v, ev · sp) =
{

ur(ag, v, ϕ) · is(ϕ) · δa(v, sp) if ev = ur(ag, v, ϕ)
ev · δa(v, sp) otherwise
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- δb(v, ev · sp) =






is(vars(v, ϕ)) · ir(ϕ′) · us(v, ag, ϕ′′) · δb(v, sp)
if ev = us(v, ag, ϕ)

ev · δb(v, sp) otherwise
- δc(v, sp) = δb(v, δa(v, sp)).

The transformationδb works as follows: the voter controlled
information in the termϕ is sent as a pairing of all elements
in the set vars(v, ϕ) to the intruder. The intruder’s reply
is received in termϕ′, a similar pairing, but with newly
introduced variables. The termϕ′′ that the voter sends on the
untappable channel has the same structure as the original term
(match(ϕ′′, ϕ)), but uses the corresponding intruder-supplied
fresh variables (fv(ϕ′′) = fv(ϕ′)).

The above transformations are extended to combinations
of conspiring behaviour (i ∈ {1a, 2a, 1b, 2b, 1c, 2c}), e.g.
∆1a(v,VS) = ∆1(v,∆a(v,VS)). Using the above protocol
transformations, we can define choice group for conspiring
voters in a voting system within our framework (see Sect. IV).

Definition 10 (vote privacy). In voting system VS,
with a given choice functionγ, the choice group of
voter v with respect to different conspiracy classesi ∈
{1, 2, a, b, c, 1a, 2a, 1b, 2b, 1c, 2c}, is given by

cg i
v(VS, γ) = {γ′(v) | γ′ ∈ cg(∆i(v,VS), γ)}.

Given this definition of privacy, receipt-freeness is a mea-
sure of the voter’s privacy as follows.

Definition 11 (receipt-freeness). Voting systemVS is receipt-
free for conspiring behaviouri iff

∀v ∈ V, γ ∈ V → C : cg i
v(VS, γ) = cgv(VS, γ).

Note that the classic notion of receipt-freeness as introduced
by Benaloh and Tuinstra coincides with∀v, γ :

∣

∣cg1
v(VS, γ)

∣

∣ >

1. The methods of Delaune, Kremer and Ryan can be ex-
pressed as the size of the choice group being larger than
one. We consider a receipt a modifier of privacy instead of a
privacy-nullifier. The amount of receipt-freeness is thus given
by the difference in privacy between a regular voter and a
conspiring voter. The above privacy definitions capture this by
determining the exact choice group and thus the exact voter
privacy for any level of conspiracy.

VI. A PPLICATIONS

The above presented framework is designed to provide a
very precise and formal analysis. However, a full analysis
of an existing voting system goes beyond the scope of this
paper. Therefore, this section only illustrates application of
the framework at a high level. For this purpose, models of the
FOO [17] system and the ThreeBallot system (3BS, [22]) are
examined.
FOO. Our specification of the FOO protocol is similar to
that of [13], and thus omitted here. The FOO protocol has
been studied in literature and is known to have receipts [12],
[13]. FOO does not use untappable channels, thus there are
no conspiring voters of typea, b, c. The only possibility for

a voter to conspire is by sharing knowledge as in Fig. 2(i).
A conspiring voter of type1 already nullifies her privacy –
∀v, γ :

∣

∣cg1
v(FOO , γ)

∣

∣ = 1. This is because the keys used to
encrypt the vote are shared with the intruder. This makes any
other reinterpretation of the voter’s message carrying hervote
impossible. In FOO, a table with all cast ballots is published.
Later, the counting authority updates the table to include all
voter keys. One possible amelioration of FOO (call this FOO’)
is to publish the updated table. This prevents conspirators
of type 1, which implies that the choice groups with and
without type1 conspiracy are equal:∀γ, v : cgv(FOO , γ) =
cg1

v(FOO ′, γ). However, type 2 conspirators remain unaf-
fected:∀γ, v :

∣

∣cg2
v(FOO , γ)

∣

∣ =
∣

∣cg2
v(FOO ′, γ)

∣

∣ = 1.

ballot 1a ballot 1b ballot 1c
can 1 ¤ can 1 ¤ can 1 ¤

...
...

...
...

...
...

can N ¤ can N ¤ can N ¤

identifier 1a identifier 1b identifier 1c

Fig. 3. A Threeballot in 3BS.

ThreeBallot. In 3BS, a vote is split over three single ballots
(see Fig. 3), which together form one Threeballot. Each ballot
carries a unique identifier. Upon voting, the three ballots are
cast and the voter takes home a receipt (certified copy) of one
ballot. The copy allows the voter to verify that her Threeballot
is actually cast. To vote for a candidate, a voter ticks two
boxes in the row of that candidate; every other candidate-
row only receives one tickmark. The voter is free to place
the ticks in any column, as long as there is one row with
two ticked boxes (her choice) and all other rows have one
ticked box. Given the specific way of voting in 3BS, only a
limited subset of the cast ballots can form a valid Threeballot
with a given receipt (to be more precise, only those ballots
combined with the receipt such that there is only one row
with two tickmarks). For example, consider a receipt with a
tickmark for every candidate. This can only be matched with
one entirely blank ballot, and one ballot containing precisely
one tickmark.

An obvious attack (already pointed out by the designer
in [23]) is to agree a priori with the intruder on how to fill
in the ballots (captured by class b conspiracy). The intruder
can then easily verify if all three ballots are cast. This reduces
privacy more strongly than a voter merely showing her receipt
after the elections (class 1 conspiracy). This, in turn, gives
less privacy than not showing the receipt:cgb

v(3BS , γ) ⊆
cg1

v(3BS , γ) ⊆ cgv(3BS , γ).
As pointed out in [22], 3BS can also be used in elections

where voters are allowed to vote for multiple candidates. In
this case, a Threeballot may contain multiple rows with two
tickmarks. This means that the number of ballots forming a
valid Threeballot with a given receipt is increased. As the
number of valid combinations directly affects privacy, voter
privacy is improved. In the framework, this improvement is
precisely captured by the size of choice groups.
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The high-level analysis of 3BS illustrates that the frame-
work can quantify partial loss of privacy. Furthermore, the
framework can be tailored to the class of conspiracy possible.

VII. D ISCUSSION

In the previous section, we have shown that our framework
is able to quantify privacy loss in 3BS, where the receipt of a
voter reduces the size of her choice group, but not necessarily
to one. This kind of attack cannot be analysed by other formal
approaches as discussed in Sect. I. Moreover, our framework
can capture previously established privacy nullification attacks
as well as a new class of privacy reduction attacks. An
example of such new attacks is thenot-voted-forattack, where
the intruder learns that the voter did not vote for a party.
This may be sufficient for reward (or retaliation, when not
complying with the intruder’s wishes). A similar problem
manifests itself in Dutch national elections. In these elections,
voters vote for persons, but every candidate is affiliated with
one party. Effectively, voters end up voting for parties. Thus,
voter privacy should extend to parties, and not just candidates.
Another example is related tocoalition between the intruder
and several successfully conspiring voters. Based on the final
result of the election and the known votes of these voters,
the intruder can further reduce the privacy of honest voters.
A simple example of such a scenario is when a conspiring
voter cast the only vote for a particular candidate – then the
intruder additionally learns that no other voter voted for that
candidate. Finally, the result of an election provides a bias
for a voter’s choice – the probability of a voter having voted
for the winner is higher than the probability of a voter having
voted for a losing candidate. Our framework makes it possible
to account for such information bias.

VIII. C ONCLUSION

We have developed a framework to precisely measure
voter-controlled privacy, with respect to different ways how
one voter can share her knowledge with the intruder. This
quantitative framework is based on knowledge reasoning and
trace equivalences. It allows us to capture the exact meaning
of receipt-freeness in the context of vote buying, and to detect
attacks that has escaped the focus of published methods in the
literature as well. There are several directions we would like
to continue in the future.

1) The modelling language in this paper is quite limited.
Behaviour of agents is described only by a sequence of
events. We plan to extend the language to encompass
control flow constructors (e.g. the conditional choice).

2) The conspiracy classes only investigate conspiring vot-
ers. We intend to extend the framework’s transformation
function to model conspiring authorities.

3) In the current paper, we have focused on receipt-
freeness. We intend to extend our framework to formally
define coercion-resistance.

4) We will apply our work in full detail to more voting
systems. We believe that this quantitative approach to
privacy in voting will identify more new attacks.

5) We plan to investigate the potential effects of various
counting methods on privacy loss.
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