
Event Prediction with Community Leaders
Jun Pang∗†, Yang Zhang†

∗Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg
†Faculty of Science, Technology and Communication, University of Luxembourg

Abstract—With the emerging of online social network services,
quantitative studies on social influence become achievable. Lead-
ership is one of the most intuitive and common forms for social
influence; understanding it could result in appealing applications
such as targeted advertising and viral marketing. In this work,
we focus on investigating leaders’ influence for event prediction
in social networks. We propose an algorithm based on events
that users conduct to discover leaders in social communities.
Analysis on the leaders that we found on a real-life social network
dataset leads us to several interesting observations, such as that
leaders do not have significantly higher number of friends but are
more active than other community members. We demonstrate the
effectiveness of leaders’ influence on users’ behaviors by learning
tasks: given a leader has conducted one event, whether and when
a user will perform the event. Experimental results show that
with only a few leaders in a community the event predictions are
always very effective.

I. INTRODUCTION

Social influence is a phenomenon that people change their
behaviors because of their social relations. It has been widely
accepted and studied in the area of sociology [1], [2], [3],
[4]. Due to the lack of data, most previous research on social
influence are constrained at qualitative level. During the past
decade, online social network services (OSNs) have gained
a huge success. Nowadays, OSNs become an important part
of people’s daily life. Leading actors in this business own
large quantities of users and data. For example, Facebook has
more than one billion active users and Twitter users publish
500 million tweets every day. In OSNs, people specify their
profiles, articulate social relationships and share activities.
With these huge amount of data, quantitative studies of social
influence become achievable.

There are several forms of social influence such as confor-
mity, obedience, peer pressure, leadership, etc. Among them,
leadership is one of the most common and intuitive forms for
social influence, and it has been defined as a social influence
process of organizing a group of people to achieve a common
goal [4]. There are two constrains in the leadership definition.
First, according to [3], we recognize that “leadership operates
in groups”. Thus it is important to study leaders in the context
of social groups or social communities. In a broader context,
the authors of [5], [6] argue that the community is the most
useful level of resolution for studying social networks. Second,
we notice that leader may not be unique, following Merton’s
monomorphic leadership theory [1]. This indicates that a
community often may have several leaders. We take these two
observations in our following investigation.

Understanding leader’s behaviors can result in appealing
applications, including viral marketing, targeted advertising
and recommendations. For example, a shop can promote its
new products by providing the leaders of a community some
free samples or coupons, and counts on these leaders to
attract more customers. Moreover, by only focusing on leaders
instead of all customers, the marketing cost will decrease
as well. On the other hand, exploiting leaders to predict
other users’ future behavior can also cause privacy threat.
Not many research have focus on quantitatively modeling and
understanding the phenomenon of leadership (see more discus-
sions in Section VII). In this paper, we aim to mine leaders
from social communities and demonstrate their effectiveness
in some real-life scenarios, for instance, event prediction.

Our contributions in this work are summarized as follows.
• We propose an algorithm for discovering leaders (Sec-

tion III). The algorithm is based on the solutions of [7]
and [8], which aim to quantify the influence of users by
checking the events they conducted in the past. Different
from their solutions, we take into account important features
of the events. More specifically, we focus on the popularity
of the event, and use it to adjust each user’s influence score.

• By analyzing behaviors of the leaders in a real-life social
network dataset, we have found out that our leaders don’t
have significantly higher number of friends than other
community members, but they are more active in terms of
the number of conducted events (Section IV).

• We further define an event prediction task which aims to
predict whether and when a user will perform one event in
the future after a leader (Section V, VI). Our predictor has
a strong performance and outperforms the one that is based
on the leaders discovered by a state-of-the-art algorithm,
namely the LeaderRank algorithm [9].

II. PRELIMINARIES

Notations. A user is denoted by u and set f (u) represents
u’s friends. A social network is formalized as a social graph
G . According to [3], “Leadership operates in groups”, which
means that leadership is about influencing a community of
people who are engaged in a common goal or purpose, thus
in this paper, we focus on leaders at the community level. A
community is a set of users, represented by C . We use f (u,C)
to denote u’s friends in community C . Each community forms
a graph denoted by GC = (C ,EC) where EC represents
all the edges among users in C . We use e to represent an

event. Each user can conduct several events. The events that
a community C performs are denoted by E (C). Similarly,
E (u) is the set of all events that u conducts. The fact that
u performing e is stored as an event log defined as 〈u, e, t〉
where t is the time when this event is conducted. We use
Elog(C , e) to denote the event logs of C regarding the event
e . Similarly, Elog(u, e) is the event log of u on e . Moreover,
Elog(u, e).t represents the time of the event log. If u conducts
e before another user u ′ ∈ f (u), we assume that u influences
u ′. This influence formalization is similar to [8] in which the
authors argue that it is more inclusive than other ways such as
retweeting in Twitter. A user may conduct an event due to the
social influence through his friends. Meanwhile, if he keeps
on performing the same event after, then this is more related to
the event itself rather than the social influence. Therefore, we
make a simplification that a user performs each event at most
once. In [10], the authors have made the same assumption.

Following Merton’s monomorphic leadership theory [1], a
person who is a leader in one field may be a follower in
another field. Thus we regulate that for every specific event
a community has one leader, while the community in general
could have multiple leaders. We use `C ,e to denote the leader
of C on e and L(C) to denote C ’s leader set.
Community Detection. In this work, we use the Infomap
algorithm to discovery communities since it is one of the most
widely used algorithm [11]. Note that our work is not restricted
by the chosen community detection algorithm.

III. LEADER DISCOVERY

As described in Section II, we are dealing with leaders at
the community level. Each community can have several leaders
while there is only one leader on one event. To discover the
leaders of a community, we first find the leader for each event
that the community conducts and then find the leader set of
the community based on the discovered leaders on events. Our
leader discovery algorithm is thus partitioned into two steps:
(1) for each C , we find `C ,e for all e ∈ E (C); (2) we find
the leader set L(C) from all the discovered `C ,e .

The procedure to discover `C ,e is described in Algorithm 1,
it is inspired by the works in [7] and [8]. We aim to build an
influence tree for C for a given e . The event log Elog(C , e)
is sorted chronologically (line 1). Then `C ,e is the first user
who has performed e in C (line 2), this is simply due to
the fact that he is the first one who introduces the event e
to his community C . The work of [8] has adopted the same
formalization. Moreover, `C ,e is taken as the root of the tree
(line 3). We then iterate the items in Elog(C , e). For a user,
if any of his friends is already in the influence tree, then
we add him into the tree as well (lines 4-8). This suggests
that he is influenced by his friend to perform this event as
we mentioned in Section II. Here, we exploit the influence
assumption that a user gets influence on a certain event from
his friend who conducts that event most recently, i.e., the “last
influence” assumption proposed in [10], [8] (line 6). In the
end, the influence score of the leader is the number of nodes
in the influence tree divided by the total number of users in

the community (line 10). Note that the leader himself is not
counted as a member who he has influenced. Therefore, we
exclude him when calculating the influence score (line 10).

Algorithm 1 Discovering `C ,e

Input: C and Elog(C , e)
Output: `C ,e and infscore(`C ,e , e)

1: sort E (C , e) in a chronological order
2: `C ,e ← the user of the first event log
3: add `C ,e as the root of inftree
4: for each 〈u, e, t〉 ∈ Elog(C , e) do
5: if ∃u ′ ∈ f (u,C) s.t. u ′ is already in inftree then
6: add u as a descendant of his friend

who is added to the inftree most recently
7: end if
8: end for
9: tree size ← the number of nodes in inftree

10: infscore(`C ,e , e)← (tree size − 1)/(|C | − 1)
11: return `C ,e and infscore(`C ,e , e)

After getting `C ,e for all e ∈ E (C), we perform Algo-
rithm 2 to discover L(C). The basic idea is to sum up each
user’s influence scores on all the events that he is the leader
of and choose the ones with high scores as leaders. However,
we make a subtle modification on the influence score of each
event here. We notice that some events performed by a user
are less socially driven, such as taking public transportation.
For a leader of this kind of events, his influence score should
be weighted less. On the other hand, one viewing some artist’s
work is probably through the recommendation of the leaders
in his community. Influence scores of this kind should value
more. Therefore, we first adjust each event’s influence score
by an event factor (lines 2-4), then sum up all the influence
scores of each user who is the leader for at least one event
(lines 5-7). After getting the highest influence score (line 8),
we add all users whose influence scores are close to the highest
score into L(C) (line 10). Here, ε is between 0 and 1 and it
can be set according to an application scenario.

IV. LEADER ANALYSIS

In this section, we first detect leaders on a social network
dataset with event logs. Then, we focus on the characteristics
of the discovered leaders.

A. Discovering Leaders

Dataset. Location-based social networks (LBSN) have gain a
huge popularity. Like other social network services, a user can
establish social relationships. Moreover, when a user visits a
place, he can directly share that location, called check-in. In
this work, we treat users’ check-ins at different locations as
events that they conduct. Therefore, in LBSN dataset we have
both the social graph and event logs for users.

We conduct our experiments using the dataset [12] collected
from Gowalla, a popular LBSN back in 2011. The social graph
of the dataset has 196,591 users with 950,327 edges. It also
contains more than 6 million check-ins. Due to the sparsity

Algorithm 2 Discovering L(C)

Input: `C ,e and infscore(`C ,e , e) for all e ∈ E (C)
Output: L(C)

1: L(C)← ∅
2: for e ∈ E (C) do
3: infscore(`C ,e , e)← infscore(`C ,e , e)× evefac(e)
4: end for
5: for u ∈ {`C ,e | e ∈ E (C)} do
6: infscore(u) =

∑
infscore(u, e)

7: end for
8: maxscore ← max{infscore(u)|u ∈ {`C ,e |e ∈ E (C)}}
9: L(C)← {u | infscore(u) ≥ ε×maxscore}

10: return L(C)

of location data, in this paper we only focus on the data
from 11 major metropolises around the world including New
York, L.A., Bay Area, Dallas, San Antonio, Houston, Chicago,
Seattle, Tokyo, London and Stockholm. We further filter out
users who have less than 10 check-ins and 5 friends. As we
have the assumption that each user performs an event once,
we only keep the earliest check-in of each user at each of his
locations. The above constraints totally leave us 10,355 users
with 528,266 check-ins at 164,851 locations. After performing
the Infomap algorithm, 877 communities are detected, thus the
average community size is around 12.

Leader discovery. In our leader discovery algorithm, we
propose to take the event properties to adjust each leader’s
influence scores. Recall the example in Section III, events like
going to a supermarket is certainly less socially driven, com-
pared to eating at a restaurant. One of the major differences
between the above two kinds of places is their popularity.
The former one (supermarket) normally attracts lots of people
while the latter one (restaurant) is relatively more private. To
quantify the popularity of a location, we adopt the notion of
location entropy as proposed in [13]. When a place is popular,
its location entropy is high. Moreover, instead of directly
using location entropy, we exploit its inverse, i.e., location
diversity [14] defined as locdiv(loc) = exp(−locent(loc)).
The other parameter ε for deciding how many leaders should
be included in a community is set to 0.9. In the end, 1,571
leaders are found for 877 communities.

B. Who are the Leaders?

After discovering the leaders, we are interested in whether
these leaders are different from other members in communi-
ties. For every leader, we focus on three metrics including
the number of his friends, the number of his friends in the
community and the number of his check-ins. The results
are listed in Table I. We can see that the leaders we found
have much more check-ins than members in the communities,
meaning that they are more active. On the other hand, leaders
and members in a community have a similar amount of friends.
This indicates that the leaders are not necessarily those users
who know more people than others in their communities.

Our algorithm LeaderRank
Average value leader mem. leader mem.
of check-ins 153.30 72.79 117.94 76.61

of friends 6.33 5.87 10.67 5.19
of friends in com 3.96 3.88 6.40 3.50

closeness 0.10 0.05 0.12 0.04
betweenness 0.28 0.12 0.58 0.07

TABLE I: Feature comparison between leaders and community
members w.r.t. two leader discovery algorithms

Each community C forms a graph GC , we further calculate
two centrality metrics, i.e., closeness and betweenness, for
nodes in each community. As shown in Table I, both closeness
and betweenness of leaders are much larger than those of
community members. In [15], the authors discovered that users
with high centrality scores are more influential, the centrality
metrics give us an indirect evidence of it.

We are also interested in whether the leaders we found are
different from the leaders discovered by algorithms based on
graph structure. We exploit a state-of-the-art leader discovery
algorithm LeaderRank [9] to find leaders as well. As shown
in Table I, LeaderRank leaders have twice as many friends as
members in communities, while using our algorithm these two
values are similar between leaders and members. Moreover,
the differences of centrality metrics are even larger. Especially,
betweenness of leaders by LeaderRank is 8 times larger than
members, while it is only around 2 times with our algorithm.
Leaders from both algorithms have more check-ins than com-
munity members. However, the difference in our case is much
higher (153.80-72.79 v.s. 117.94-76.71), i.e., our leaders are
more active than leaders discovered by LeaderRank.

V. EVENT PREDICTION

So far, we have seen some characteristics of the leaders we
found, next we want to demonstrate the leaders’ influence on
community members. In this section, we study the problem of
predicting a user’s behavior, i.e., check-in at a location, using
his leader’s information.

A. Problem Definition

Event prediction problem. For a community C with its leader
set L(C) and an event e ∈ E (C), given a member u’s closest
leader ` ∈ L(C) that has conducted e , we predict whether u
will perform e in the future.

The event prediction problem can be naturally formalized
as a binary classification. Next, we describe the features we
consider and utilize machine learning techniques to solve it.

B. Feature Description

The features we use are related to four aspects including
the leader, the user, the relationship between them as well as
the community itself. Therefore, we group our features into
four categories. The detailed description is listed in Table II.
Leader features. The first feature related to the leader is
his influence on community members. For example, if ` has

Leader Features

1 infscore(`) influence score of `, i.e.,
∑
{infscore(`C ,e) | `C ,e = `}

2 infratio(`) influence ratio of `, i.e., infscore(`)/
∑
{infscore(`C ,e) | e ∈ E(C)}

3 ci cnt(`) the number of check-ins conducted by `, i.e., |E(`)|
4 size(f (`)) the number of friends ` has in general, i.e., |f (`)|
5 size(f (`,C)) the number of friends ` has in C , i.e., |f (`,C)|
6 nb ratio(`) the ratio of the number of `’s friends in C over the number of his friends in general, i.e., |f (`,C)|/|f (`)|
7 avg nb deg(`) the average number of friends of `’s friends, i.e., mean{size(f (u)) | u ∈ f (`)}
8 closeness(`) closeness of ` in the community graph GC

9 betweenness(`) betweenness of ` in GC

10 eccentricity(`) eccentricity of ` in GC , i.e., max{dist(`, u) | u ∈ C}

User Features

11 ci cnt(u) the number of check-ins conducted by u , i.e., |E(u)|
12 size(f (u)) the number of friends u has in general, i.e., |f (u)|
13 size(f (u,C)) the number of friends u has in C , i.e., |f (u,C)|
14 nb ratio(u) the ratio of the number of u’s friends in C over the number of his friends in general, i.e., |f (u,C)|/|f (u)|
15 avg nb deg(u) the average number of friends of u’s friends, i.e., mean{size(f (u ′)) | u ′ ∈ f (u)}
16 closeness(u) closeness of u in GC

17 betweenness(u) betweenness of u in GC

18 eccentricity(u) eccentricity of u in GC , i.e., max{dist(u, u ′) | u ′ ∈ C}

Leader-user Features

19 isfri(u, `) whether u and ` are friends or not, isfri(u, `) = 1 when they are friends

20 dep2cnt(u, `) the number of 2-depth paths between u and `, i.e., |{u ′ | u ′ ∈ f (u) ∩ u ′ ∈ f (`)}|
21 dist(u, `) the length of the shortest path between u and `

Community Features

22 ci cnt(C) the number of check-ins conducted by all users in C

23 size(C) the size of the community C , i.e., |C |
24 density(GC) density of GC = (C ,EC), i.e., 2|EC |/(|C ||C − 1|)
25 diameter(GC) diameter of GC , i.e., max{dist(u, u ′) | u, u ′ ∈ C}
26 radius(GC) radius of GC , i.e., min{dist(u, u ′) | u, u ′ ∈ C}
27 avg path len(GC) average length of shortest paths in GC , i.e., mean{dist(u, u ′) | u, u ′ ∈ C}

TABLE II: Feature description

influenced a lot of members, then the chance that the user
follows him is high as well. Recall in our leader discovery
algorithm, only users with high influence scores are considered
as leaders of a community, we simply use this value to
represent the influence power.

Each community normally conducts several events and
leaders for these events are often different. If the leader `
we exploit, i.e., the closest leader who has conducted the
event, has a significant higher influence score than others in
{`C ,e | e ∈ E (C)}, then it is evident that ` is stronger
in influencing community members than other leaders. We
include influence ratio of ` as one feature, and it is defined as

infratio(`) =
infscore(`)∑

infscore({`C ,e | e ∈ E (C)})
.

Previous works [8], [16] show that the number of events a
user conducts and the number of his friends are strong indica-
tors for predicting his influence. We take these corresponding
data of the leader as features. In [17], the authors propose a
metric called neighbor ratio, it is defined as |f (u,C)|/|f (u)|.
The results in [18] show that the neighbor ratio is correlated
with the user’s influence. Thus we take neighbor ratio as

another feature. As stated in [15], users with high centrality
scores are considered more influential than others. Also in
Section IV, we have already shown that the leaders we found
have higher value regarding closeness and betweenness. We
add these two metrics as well as the average neighbor ratio
and eccentricity into our leader related feature set.

User features. Besides the leaders, the user himself also plays
an important role when predicting whether he will conduct the
event. We have similar features for users as the ones of leaders,
excluding the influence score and influence ratio.

Leader-user features. Considering the relationship between
leaders and users, first of all, if the leader ` and the user u
know each other, then u can get influence from ` directly.
Intuitively, the probability that u conducts the event could be
high. Second, suppose that there exist 2-depth paths between
` and u , i.e., they share common friends. According to [19],
more common friends two users share, more chances that they
trust each other. Therefore, it is more probable for u to follow
` on this event. Third, if the distance between them in GC is
short, then the influence can be easily propagated through.

These intuitions are captured through three features includ-

ing whether ` and u are friends (isfri(u, `)), the number of
their common friends which is also known as embededness
(dep2cnt(u, `)) and the distance between them (dist(u, `)).

Community features. As mentioned before, all users in the
community form a graph GC . In [16], the authors have shown
that the graph structure has a big impact on influence propa-
gation. Regarding the community related features, we put the
community density as one feature, which is formally defined
as density(C) = 2|EC |

|C ||C−1| . Other community related features
include GC ’s radius, diameter and average path length.

C. Evaluation

Machine learning techniques. We adopt logistic regression
as our classifier. The evaluation metrics we use are ROC curve
as well as AUC (area under the ROC curve).

Experiment setup. We extract community and check-in infor-
mation from the 11 metropolises and only keep the check-ins
of each community at each location that is first performed
by its leaders. Note that in Section IV we use all check-
ins of a community to discover its leaders. However in event
prediction, if we do the same, the result will be biased since
we already use the events, i.e., check-ins at locations, that we
aim to predict for leader discovery. In order to avoid this, we
split the locations of each community into half, the first part
is used to discover leaders and the second one is used for
training and testing. For the second part, we split the training
and testing set by communities. Concretely, we use the data
from 70% of the communities for training and the data for the
rest 30% communities for testing.

Baseline model. As mentioned in Section IV, leaders we
found are quite different from the leaders discovered by
LeaderRank. Therefore, we want to see which leaders are more
effective for event prediction. Since LeaderRank is purely
based on network structure, we don’t need to split the dataset
into two and use one for leader discovery. We establish the
same set of features for the leaders of LeaderRank. For
infscore(`) and infratio(`) (features (1) and (2)), we use the
leaders’ leader ranking score instead.

Results. The ROC curves in Figure 1a has shown that our
prediction achieves a good performance with AUC equal to
0.818. It outperforms the baseline model whose AUC is 0.758.
This indicates that the leaders discovered by the event based
approach are more effective than the leaders by the graph
based approach when predicting a member’s future behavior.
By studying the learned logistic model, important features
include leader’s influence ratio (2), the number of check-ins
(3), betweenness (9), the number of the user’s check-ins (11),
community size (23) and density (24).

D. Event Popularity and Prediction

As discussed in Section III, we take event’s popularity into
account when finding leaders. Thus it is natural to ask how
much the event’s popularity can affect the prediction results.
We calculate the average AUC value as a function of location
diversity and plot the result in Figure 2. With the increase of

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

LeaderRank
Our algorithm

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

(b)

Fig. 1: (a) ROC curve for event prediction (AUC for our
algorithm is 0.818, and AUC for LeaderRank is 0.758). (b)
ROC curve for time prediction (AUC = 0.897).

0 0.05 0.1 0.15 0.2 0.25 0.3
0.78

0.8
0.82
0.84
0.86
0.88

0.9
0.92

≥ location diversity

a
v
g

.
A

U
C

Fig. 2: Avg. AUC as a function of location diversity.

location diversity, our predictor’s performance grows almost
linearly. This indicates that it is easier to predict whether a
user will go to a less popular place than a popular one. This
demonstrates our intuition that when an event is not popular,
leader’s influence takes an important role for a member to
decide whether to conduct this event.

VI. TIME PREDICTION

We have shown that a user’s closest leader in a community
can be used to effectively predict whether he will conduct a
given event. In many cases, not only whether but also when
a member will conduct a certain event is important. Recall
the example in Section I, a shop gives leaders coupons or
free products to expect them to attract more customers for its
new products. However, if most of users that follow leaders
go to the shop after 2 weeks or even 1 month, then the
promotion probably is already over. The marketing strategy
won’t succeed. On the other hand, if an attacker, such as a
stalker, learns when a user will go to a certain place, then the
user’s privacy is seriously threatened. In this section, we aim
to see if it is possible to predict how soon that community
members will follow their leaders’ influence.

A. Problem Definition

There are several ways to formalize the problem, such as
predicting when a member will conduct an event after the
leader, i.e., as a regression problem. However, knowing the
exact time (or exact time interval) is not that necessary. In
most of the cases, a shopping center or a restaurant just needs
an approximate time interval. Thus, we formalize the problem
as a classification task: instead of knowing the exact time, we
focus on whether a user will conduct the event within a certain
time period or not. Formally, the problem is defined below.

714 30 60 90 180

0.82
0.84
0.86
0.88

0.9
0.92
0.94

≤ time interval (day) τ

a
v
g

.
A

U
C

Fig. 3: Avg. AUC as a function of time interval.

Time prediction problem. For a community C with its leader
set L(C) and an event e ∈ E (C), given a member u’s closest
leader ` ∈ L(C) that has conducted e , we predict whether u
will perform e within a given time interval τ .

B. Evaluation

We adopt the same features as presented in Table II and use
logistic regression again as our classifier. The time interval τ
is an application dependent parameter. It can be a day, a week
or a month. In the experiment, we set it to 30 days.

The ROC curve is depicted in Figure 1b. Our classifier
achieves a surprisingly strong performance with AUC equal
to 0.897. For the logistic model that we have learned, the
important features are quite similar to the ones for the event
prediction model. Due to the page limit, we omit them here.

C. Time Interval and Prediction

We are also interested in whether the time interval has
impact on the prediction result. For example, if a user goes
to a restaurant 6 months after his closest leader went there,
then it is quite possible that this is not a leader driven event
at all. Thus, the influence from leaders should decay with the
increase of time. We pick 6 values for the time interval τ
including 1 week, 2 weeks, 1 month, 2 months, 3 months and
6 months, and execute our classifier with these time intervals,
respectively. The results depicted in Figure 3 coincide with our
intuition. With the increase of time interval, the AUC value
decreases almost linearly.

VII. RELATED WORK

There exist many algorithms on leader discovery. One type
of the algorithms are based on the structure of the social
graph, solutions include centrality score, PageRank, etc. The
LeaderRank algorithm [9] belongs to this type as well. In [9],
the authors have shown that LeaderRank is more effective than
PageRank and rather robust against manipulations and noisy
data. The other type of leader discovery algorithms are based
on mining users’ past behaviors. Algorithms of [7] and [8],
on which we build our solution, fall into this class.

Besides leader discovery, the study on the use of leaders is
also meaningful. However to the best of our knowledge, this
hasn’t been much addressed in the literature. The work in [8]
predicts the actual influence scores of each user based on his
previous influence scores as well as some attributes. Our work
instead has used the leaders to predict community members’
behaviors (whether and when) in the future.

VIII. CONCLUSION

We have shown how to explore social influence of leaders
in a community for event prediction of community members.
This allows us to answer questions such as whether and when a
user will perform an event in an effective way. Leadership is a
common social influence form and understanding it could help
to build appealing applications. So far, we have mainly focused
on a location-based social network dataset. We believe that our
research can be applied for other types of event prediction in
social networks, and will conduct more studies in the future.

REFERENCES

[1] R. K. Merton, Social Theory and Social Structure. Simon and Schuster,
1968.

[2] D. Easley and J. Kleinberg, Networks, crowds, and markets: reasoning
about a highly connected world. Cambridge University Press, 2010.

[3] W. G. Rowe and L. Guerrero, Cases in leadership. Sage, 2012.
[4] M. Chemers, An Integrative Theory of Leadership. Psychology Press,

2014.
[5] J. Yang, J. J. McAuley, and J. Leskovec, “Detecting cohesive and 2-mode

communities indirected and undirected networks,” in Proc. 7th ACM
International Conference on Web Search and Data Mining (WSDM).
ACM, 2014, pp. 323–332.

[6] J. Pang and Y. Zhang, “Exploring communities for effective location
prediction,” in Proc. 24th World Wide Web Conference (Companion
Volume) (WWW). ACM, 2015, pp. 87–88.

[7] A. Goyal, F. Bonchi, and L. V. Lakshmanan, “Discovering leaders from
community actions,” in Proc. 17th ACM Conference on Information and
Knowledge Management (CIKM). ACM, 2008, pp. 499–508.

[8] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts, “Everyone’s
an influencer: quantifying influence on twitter,” in Proc. 4th ACM
International Conference on Web Search and Data Mining (WSDM).
ACM, 2011, pp. 65–74.

[9] L. Lu, Y.-C. Zhang, C. H. Yeung, and T. Zhou, “Leaders in social
networks, the Delicious Case,” PLoS ONE, vol. 6, no. 6, p. e21202,
2011.

[10] A. Goyal, F. Bonchi, and L. V. Lakshmanan, “Learning influence proba-
bilities in social networks,” in Proc. 3rd ACM International Conference
on Web Search and Data Mining (WSDM). ACM, 2010, pp. 241–250.

[11] S. Nilizadeh, A. Kapadia, and Y.-Y. Ahn, “Community-enhanced de-
anonymization of online social networks,” in Proc. 21st ACM Conference
on Computer and Communications Security (CCS). ACM, 2014, pp.
537–548.

[12] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility:
user movement in location-based social networks,” in Proc. 17th ACM
Conference on Knowledge Discovery and Data Mining (KDD). ACM,
2011, pp. 1082–1090.

[13] J. Cranshaw, E. Toch, J. Hone, A. Kittur, and N. Sadeh, “Bridging the
gap between physical location and online social networks,” in Proc. 12th
ACM International Conference on Ubiquitous Computing (UbiComp).
ACM, 2010, pp. 119–128.

[14] H. Pham, C. Shahabi, and Y. Liu, “EBM: an entropy-based model to
infer social strength from spatiotemporal data,” in Proc. 2013 ACM
International Conference on Management of Data (SIGMOD). ACM,
2013, pp. 265–276.

[15] J. Sun and J. Tang, “A survey of models and algorithms for social
influence analysis,” in Social Network Data Analytics. Springer US,
2011, pp. 177–214.

[16] J. Cheng, L. Adamic, P. A. Dow, J. Kleinberg, and J. Leskovec, “Can
cascades be predicted?” in Proc. 23rd International Conference on World
Wide Web (WWW). ACM, 2014, pp. 925–936.

[17] A. Mehler and S. Skiena, “Expanding network communities from
representative examples,” ACM Transactions on Knowledge Discovery
from Data, vol. 3, no. 2, p. Article No.7, 2009.

[18] M. Genois, C. L. Vestergaard, J. Fournet, A. Panisson, I. Bonmarin, and
A. Barrat, “Data on face-to-face contacts in an office building suggests a
low-cost vaccination strategy based on community linkers,” CoRR, vol.
abs/1407.7017, 2014.

[19] P. W. Holland and S. Leinhardt, “Transitivity in structural models of
small groups.” Comparative Group Studies, 1971.

	Introduction
	Preliminaries
	Leader Discovery
	Leader Analysis
	Discovering Leaders
	Who are the Leaders?

	Event Prediction
	Problem Definition
	Feature Description
	Evaluation
	Event Popularity and Prediction

	Time Prediction
	Problem Definition
	Evaluation
	Time Interval and Prediction

	Related Work
	Conclusion
	References

