
ARTS 2004 Preliminary Version

Formal Verification of Timed Systems
using Cones and Foci

Wan Fokkink 1

Department of Software Engineering, CWI

PO Box 94079, 1090 GB Amsterdam, The Netherlands

Department of Theoretical Computer Science, Vrije Universiteit Amsterdam

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Jun Pang 2

Department of Software Engineering, CWI

PO Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

The cones and foci verification method from Groote and Springintveld [12] was
extended to timed systems by van der Zwaag [24]. We present an extension of this
cones and foci method for timed systems, which can cope with infinite τ -sequences.
We prove soundness of our approach and give small verification examples.

Key words: Timed µCRL, timed transition systems, verification
techniques.

1 Introduction

Process algebras such as CSP [14,15], CCS [18,19] and ACP [4,3,5], for which
timed extensions exist (e.g., [20,21,1], respectively), in principle offer an ex-
cellent platform for symbolic verification of timed systems. However, more
than ten years after the foundations of most timed process algebras were laid,
verifications performed within these formalisms require an enormous effort,
and tend to be restricted to relatively small case studies (see, e.g., [23]).

µCRL [9] combines the process algebra ACP with equational abstract data
types. Groote et al. [8,11] introduced a timed extension of µCRL. A labeled
transition system is associated to each timed µCRL specification. These spec-
ifications are considered modulo timed strong bisimulation, which is based on

1 Email: wan@cwi.nl; wanf@cs.vu.nl
2 Email: pangjun@cwi.nl

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Fokkink and Pang

an equivalence notion put forward in [16,17]. Timed linear process equations
[22] (timed LPEs) constitute a restricted class of timed µCRL specifications
that do not contain parallel and renaming operators. In a timed LPE, the
states of the associated labeled transition system are data objects. Usenko
[22] presented a transformation algorithm from an important subset of timed
µCRL to timed LPEs; this transformation preserves timed branching bisimu-
lation.

So far, verifications in timed µCRL have also been limited to relatively
small, manual efforts (see, e.g., [13]). Recently, van der Zwaag [24] introduced
the cones and foci verification method for timed µCRL. This work is based on
an earlier verification method by Groote and Springintveld [12] for untimed
µCRL, which played a vital role in the verification of a considerable number
of real-life protocols and distributed algorithms, often with the support of a
theorem prover; see [10] for an overview. The cones and foci method can be
used to prove both safety and liveness of a system.

The main idea of the cones and foci method is that in the implementation
of a system, hidden τ -actions usually progress inertly towards a state in which
no τ can be executed; such a state is declared to be a focus point. The cone
of a focus point consists of the states that can reach this focus point by the
execution of a string of τ ’s. In the absence of infinite τ -sequences, each state
belongs to a cone. This core idea is depicted below. Note that the external
actions at the edge of the depicted cone can also be executed in the ultimate
focus point F ; this is essential for the soundness of the cones and foci method,
as otherwise not all τ ’s in the cone would be inert.

External actions

F

Internal actions

c
d

c
d

d

d

a
b

a

b
b

b

c

a

Let the implementation of a system and its desired external behavior both
be given as a timed LPE. In the cones and foci method, a state mapping φ

relates each state of the implementation to a state of the desired external
behavior. Van der Zwaag [24] formulated matching criteria, consisting of
relations between data objects, which ensure that states s and φ(s) are timed
branching bisimilar. Thus, the cones and foci method rephrases the question

2



Fokkink and Pang

whether two timed µCRL specifications are timed branching bisimilar in terms
of proof obligations on relations between data objects. These proof obligations
can then be proved by means of algebraic calculations, in general with the help
of invariants that need to be proved separately.

In untimed µCRL, Groote and Springintveld [12] refined their cones and
foci method to cope with infinite τ -sequences. They allow the user to indicate
whether or not a τ is progressing. Only progressing τ ’s are abstracted away.
Finally, a special fair abstraction rule [2] can be used to try and eliminate
the remaining (non-progressing) τ ’s. In [7], we proposed an adaptation of the
cones and foci method for untimed µCRL in which this cumbersome treatment
of infinite τ -sequences is no longer necessary. This adaptation was conceived
during the verification of a sliding window protocol [6], where it simplified
matters considerably. It allows the user to freely assign which states are focus
points (instead of prescribing that they are the states in which no progressing
τ ’s can be performed), as long as each state is in the cone of a focus point.
Infinite τ -sequences are allowed. No distinction between progressing and non-
progressing τ ’s is needed, and τ -loops are eliminated without having to resort
to a fair abstraction rule.

Van der Zwaag [24] excluded infinite τ -sequences. Thus, we extend the
applicability of the cones and foci method from [24]. As in [7], the user can
freely assign which states are focus points, as long as each state is in the cone
of a focus point. Moreover, infinite τ -sequences are allowed. With respect to
the untimed cones and foci method in [7], our timed cones and foci method
contains two extra matching criteria, to deal with timed deadlocks (as Van der
Zwaag did in [24]). We prove soundness of our approach and give two small
verification examples. The first example, which originates from [12], contains
an infinite τ -sequence, so that it falls outside the scope of [24]. The second
example deals with the main case study of [24].

2 Preliminaries

2.1 Timed µCRL

µCRL [9] is a language for specifying distributed systems and protocols in
an algebraic style. It is based on process algebra extended with equational
abstract data types. In a µCRL specification, one part specifies the data
types, while a second part specifies the process behavior. We do not describe
the treatment of data types in µCRL in detail. For our purpose it is sufficient
that processes can be parametrized with data. We assume the data sort of
booleans Bool with constant T and F, and the usual connectives ∧, ∨, ¬, ⇒
and ⇔. For a boolean b, we abbreviate b = T to b and b = F to ¬b.

The µCRL specification of a process is constructed from action names,
recursion variables and process algebraic operators. Actions and recursion
variables carry zero or more data parameters. There are two predefined actions

3



Fokkink and Pang

in µCRL: δ represents deadlock, and τ a hidden (internal) action. These two
actions never carry data parameters. In timed µCRL [8], each action happens
at a specific time. The time domain Time is a nonempty, totally ordered set
with a least element 0. Each action is supplied with a time stamp, denoting
the time at which it can be executed. Actions can be executed at the same
time consecutively, and their execution does not consume any time.

Processes are represented by process terms, which describe the order in
which the actions from a set Act may happen. A process term consists of action
names (with time stamps) and recursion variables, combined by process alge-
braic operators. p·q denotes sequential composition and p+q non-deterministic
choice, summation

∑

d:D p(d) provides the possibly infinite choice over a data
type D, and the conditional construct p � b � q with b a data term of sort
Bool behaves as p if b and as q if ¬b. Parallel composition p ‖ q interleaves
the actions of p and q; moreover, actions from p and q may also synchronize
to a communication action, when this is explicitly allowed by a predefined
communication function. Two actions can only synchronize if they occur at
the same time, and if their data parameters are semantically the same. En-
capsulation ∂H(p), which renames all occurrences in p of actions from the set
H into δ, can be used to force actions into communication. Finally, hiding
τI(p) renames all occurrences in p of actions from the set I into τ .

2.2 Timed transition systems

Let Lab denote the set of actions from Act ∪ {τ} with all possible data pa-
rameters.

Definition 2.1 A timed transition system [11] is a tuple (S,T , U), where

• S is a set of states, including a special state
√

to represent successful ter-
mination;

• T ⊆ S × Lab × Time × S is a set of transitions;

• U ⊆ S × Time is a delay relation, which satisfies:

· if T (s, `, u, r) (s
`−→u s′), then U(s, u);

· if u < v and U(s, v), then U(s, u).

We use T (s, `, u, r) (or U(s, u)) to denote that (s, `, u, r) (or (s, u)) is an
element of T (or U). Transitions (s, `, u, s′) express that state s evolves into
state s′ by the execution of label ` at time u. If U(s, u), then state s can let

time pass until time u. A transition (s, `, u, s′) is denoted by s
`−→u s′. For

any u:Time, we define the generalized τ -step relation =⇒u as the reflexive
transitive closure of τ−→u. We assume a special termination predicate ↓, which
holds only in the successful termination state

√
.

Definition 2.2 Assume a timed transition system (S,T , U). A symmetric
binary relation B ⊆ S ×Time ×S is a timed branching bisimulation [24] such
that if sBut then all of the following hold:

4



Fokkink and Pang

• if s
`−→u s′, then

· either ` = τ and s′But,

· or t=⇒u t̂ such that sBut̂ and t̂
`−→u t′ with s′But

′;

• if s ↓, then t=⇒u t′ with t′ ↓;
• if u < v and U(s, v), then for some n ≥ 0, there are t0, · · · tn ∈ S with

t = t0, u0 < · · · < un:Time with u ≤ u0 and v = un, such that ti =⇒ui
ti+1

for i < n, sBui
ti for i ≤ n and sBui

ti+1 for i < n, U(tn, v).

Two states s and t are timed branching bisimilar at u, if there is a timed
branching bisimulation B with sBut. States s and t are timed branching
bisimilar, denoted by s ↔tb t, if they are timed branching bisimilar at any
time u:Time.

By the first clause in the definition of a timed branching bisimulation, we
treat the behavior of a state at some point in time like untimed behavior.
The second clause deals with successful termination. By the third clause, we
demand that time passing in a state s is matched by a related state r with
a “τ -path” where all intermediate states are related to s at the appropriate
times.

Example 2.3 Consider the following two timed transition system: s0
a−→2

s1
b−→1 s2 and t0

a−→2 t1. We have s0 ↔tb t0.

Example 2.4 Consider the following two timed transition system: s′0
a−→1

s′1
τ−→2 s′2

b−→3 s′3 and t′0
a−→1 t′1

b−→3 t′2. We have s′0 ↔tb t′0.

2.3 Timed linear process equations

Timed LPEs constitute a restricted class of timed µCRL specifications. They
are one-line timed µCRL specifications consisting of actions, summations, se-
quential compositions and conditional constructs. In particular, they do not
contain any parallel operators, encapsulations or hidings. Usenko [22] showed
how an importants class of timed µCRL specifications can be transformed into
timed LPEs.

For the sake of presentation, Groote and Springintveld [12] did not consider
successful termination. They noted that their cones and foci method extends
to a setting with successful termination in a straighforward fashion. For the
same reason, we do not consider successful termination here. 3

3 To cover timed µCRL specifications with successful termination, timed LPEs in Definition
2.5 should also include a summand

∑

a∈Act∪{τ}

∑

e:E

∑

u:Time

ha(d, e, u) � a(fa(d, e, u)).

5



Fokkink and Pang

Definition 2.5 A timed linear process equation X(d:D) is a timed µCRL
specification of the form:

∑

a∈Act∪{τ,δ}

∑

e:E

∑

u:Time

ha(d, e, u) � a(fa(d, e, u)); d := ga(d, e, u)

where fa : D × E × Time → D, ga : D × E × Time → D and ha : D × E ×
Time → Bool for each a ∈ Act ∪ {τ, δ}. For presentation convenience, here
we present τ and δ with data parameters.

A timed LPE expresses that state d can perform a(fa(d, e, u)) at time u,
to end up in state ga(d, e, u), under the condition that ha(d, e, u) is true. The
data type E gives timed LPEs a more general form, as not only the data
parameter d:D and t:Time but also the data parameter e:E can influence the
parameter of action a, the condition ha and the resulting state ga.

With X(d:D) we associate a timed transition system as follows.

Definition 2.6 The timed transition system tts(X) for a timed LPE X(d:D)
is defined as (D,T , U), where T and U are the smallest sets such that, for all
d:D, a ∈ Act ∪ {τ, δ}, e:E and u, v:Time,

• if ha(d, e, u) and a 6= δ, then T (d, a(fa(d, e, u)), u, ga(d, e, u));

• if ha(d, e, u) and v ≤ u, then U(d, v).

The relation hδ may be used to specify the presence of so-called timed dead-
locks. In the untimed case, it is not necessary to specify deadlocks explicitly.
Here, timed deadlocks determine process behavior as follows: if hδ(d, e, u),
then U(d, u), meaning that in state d time may pass at least until time u.
Such a state d cannot be related to a state that cannot let time pass until u.

Definition 2.7 The delay condition DCX : D×Time → Bool is defined on a
timed LPE X(d:D) if and only if ha(d, e, v) and u ≤ v for some a ∈ Act∪{τ, δ},
e:E and u, v:Time.

Lemma 2.8 Given a timed LPE X(d:D) and u:Time, DCX(d, u) ⇔ U(d, u).

This lemma explains that DCX(d, u) if and only if U(d, u) in tts(X), mean-
ing that if DCX(d, u), then in state d time may pass at least until time u.

Definition 2.9 A mapping I : D×Time→Bool is an invariant of timed LPE
X(d:D), written as in Definition 2.5, if whenever I(d, u) and ha(d, e, v), for
any u′:Time such that u ≤ u′ ≤ v, then I(d, u′) and, if a 6= δ, I(ga(d, e, v), v).

If I is an invariant of P with I(d, u), then it holds by definition of tts(P )
that, whenever d

a−→u d′, then also I(d′, u), and whenever U(d, v) and u < v,
then also I(d, v).

6



Fokkink and Pang

3 Cones and foci

In this section, we present our version of the cones and foci method for timed
transition systems. Suppose that we have a timed LPE X(d:D) (containing
τ) that specifies the implementation of a system, and a timed LPE Y (d′:D′)
(without occurrences of τ) that specifies the desired external behavior of this
system. Furthermore, assume an invariant I : D × Time → Bool character-
izing the reachable states of the implementation. We want to prove that the
implementation exhibits the desired external behavior.

In the cones and foci method, a state mapping φ : D → D′ relates each
state of the implementation X to a state of the desired external behavior
Y . Furthermore, for each u:Time some states in D are designated to be
focus points at time u. If a number of matching criteria for d:D are fulfilled,
consisting of relations between data objects, then the states d and φ(d) are
guaranteed to be timed branching bisimilar.

In the timed case, the intuition behind the cones and focus points is ob-
scured by the timing of transitions, but still is the guiding intuition. We begin
with defining the predicate FC. Next we express the matching criteria relative
to a state at a time element.

Definition 3.1 A focus condition is a mapping FC : D × Time → Bool . If
FC (d, u), then d is called a focus point at time u.

Definition 3.1 makes that our method differs from [24], in which a focus
point is defined on a time interval.

Definition 3.2 A state mapping is of the form φ : D → D′.

Definition 3.3 Let the timed LPE X(d:D) be of the form

∑

a∈Act∪{τ,δ}

∑

e:E

∑

u:Time

ha(d, e, u) � a(fa(d, e, u)); d := ga(d, e, u)

Furthermore, let the timed LPE Y (d′:D′) be of the form

∑

a∈Act∪{δ}

∑

e:E

∑

u:Time

h′
a(d

′, e, u) � a(f ′
a(d

′, e, u)); d′ := ga(d
′, e, u)

Let φ : D → D′. We say that φ satisfies the matching criteria for a state d and
a time element u if for all a ∈ Act, e:E and v:Time the following conditions
hold.

I hτ (d, e, u) ⇒ φ(d) = φ(gτ(d, e, u)) ∧ DCY (φ(d), u);

II ha(d, e, u) ⇒ h′
a(φ(d), e, u);

III FC(d, u) ∧ h′
a(φ(d), e, u) ⇒ ha(d, e, u);

IV ha(d, e, u) ⇒ fa(d, e, u) = f ′
a(φ(d), e, u);

V ha(d, e, u) ⇒ φ(ga(d, e, u)) = g′
a(φ(d), e, u);

7



Fokkink and Pang

VI hδ(d, e, u) ⇒ DCY (φ(d), u);

VII v > u ∧ FC(d, v) ∧ h′
δ(φ(d), e, v) ⇒ DCX(d, v).

Matching criterion I requires that if state d can do a τ -step at time u, then
d and the resulting state have the same φ-image, and this φ-mapping must
be able to let time pass until u. Matching criteria II,IV and V express that
each visible transition of state d at time u can be simulated by φ(d) at the
same time. Matching criterion III says that at time u, in a focus point d of
the timed LPE X, a visible transition can be performed if it is enabled in
timed LPE Y at the same time. The first five criteria are adaptations of the
criteria for the untimed case. The last two had to be added in order to deal
with explicit timed deadlocks, that do not exist in the setting without time.
Matching criterion VI and VII express that if d has a timed deadlock at u,
then its φ-mapping must be able to let time pass until u, and vice versa.

Theorem 3.4 Assume timed LPEs X(d:D) and Y (d′:D′) as in the Defini-
tion 2.5. Let I : D × Time → Bool be an invariant for X. Suppose that for
all d:D and u:Time with I(d, u):

(i) φ : D → D′ satisfies the matching criteria, and

(ii) if h′
a(φ(d), e, v), for some a ∈ Act ∪ {δ}, e:E, and u ≤ v, then for some

n ≥ 0, there are t0, · · · , tn:D with d = t0, and elements u0 < · · · <

un:Time with u ≤ u0 and v = un such that ti =⇒ui
ti+1, for i < n, and

FC (tn, un).

Then for any d0:D and u0:Time with I(d0, u0), it holds that d0 and φ(d0) are
timed branching bisimilar at u0.

Note that we can consider the untimed cones and foci method [7] as a
special case of this timed one, with all actions at time 0. Condition 2 states
the reachability of a focus point at time v from d at u by a sequence of τ -steps.

Proof. We assume without loss of generality that D and D′ are disjoint.
Define B ⊆ (D ∪D′)×Time × (D ∪D′) by dBuφ(d) and φ(d)Bud if and only
if I(d, u). B is symmetric. We show that B is a timed branching bisimulation
relation.

• Action step:

Let sBut and s
`−→u s′. This step must be matched by t. First, consider the

case where φ(s) = t. By definition of B, I(s, u).
· If ` = τ , then hτ (s, e, u) and s′ = gτ (s, e, u), for some e:E. By matching

criterion I, φ(gτ (s, e, u)) = t. Moreover, I(s, u) and hτ (s, e, u) together
imply I(gτ (s, e, u), u). Hence, gτ (s, e, u)But.

· If ` 6= τ , then ha(s, e, u), s′ = ga(s, e, u) and ` = a(fa(s, e, u)) for some a ∈
Act and e:E. By matching criteria II and IV, h′

a(t, e, u) and fa(s, e, u) =

f ′
a(t, e, u). Hence, t

a(fa(s,e,u))−−−−−−−→ug′
a(t, e, u). Moreover, I(s, u) and ha(s, e, u)

imply I(ga(s, e, u), u), and matching criterion V yields φ(ga(s, e, u)) =
g′

a(t, e, u), so ga(s, e, u)Bug
′
a(t, e, u).

8



Fokkink and Pang

Next, consider the case where s = φ(t). By definition of B, I(t, u). Since

s
`−→u s′, it holds that h′

a(s, e, u), s′ = f ′
a(s, e, u) and ` = a(f ′

a(s, e, u)) for
some a ∈ Act and e:E. By h′

a(φ(t), e, u), I(t, u) and condition ii (with n = 0
and u = u0), there is a t̂:D such that t=⇒u t̂ and FC (t̂, u). Invariant I and
the matching criteria hold for all states on this τ -path at time u. Repeat-
edly applying matching criterion I we get φ(t̂) = φ(t) = s, so sBut̂. Further-
more, matching criterion III, FC (t̂, u) and h′

a(s, e, u) yield ha(t̂, e, u). Then

by matching criterion IV, fa(t̂, e, u) = f ′
a(s, e, u), so t̂

a(f ′

a(s,e,u))−−−−−−−→u ga(t̂, e, u).
Moreover, I(t̂, u) and ha(t̂, e, u) together imply I(ga(t̂, e, u), u), and match-
ing criterion V yields φ(ga(t̂, e, u)) = g′

a(s, e, u), so g′
a(s, e, u)Buga(t̂, e, u).

• Delay behavior:
Suppose that u < v and U(s, v). This delay behavior must be matched by t.
First, consider the case where φ(s) = t. Since U(s, v), ha(s, e, v

′) for some
a ∈ Act ∪ {τ, δ}, e:E and v′:Time with v′ ≥ v > u. By definition of B,
I(s, u). So I(s, v) and I(s, v′). By definition of B, sBvt.
· If a = τ , matching criterion I yields DCY (t, v′).
· If a = δ, matching criterion VI yields DCY (t, v′).
· Otherwise, a ∈ Act, matching criterion II yields h′

a(t, e, v
′).

So DCY (t, v′) or h′
a(t, e, v

′). By Lemma 2.8, U(t, v′), and hence U(t, v).
Next, consider the case where s = φ(t). By definition of B, I(t, u). If

U(t, v), since u < v, we have I(t, v) and sBvt. Otherwise, since U(s, v),
h′

a(s, e, v
′) for some a ∈ Act ∪ {δ}, e:E and v′:Time with v′ ≥ v. By

condition ii, for some n ≥ 0, there are t0, · · · , tn:D with t = t0, and u0 <

· · · < un:Time with u ≤ u0, v′ = un such that ti =⇒ui
ti+1, for i < n, and

FC (tn, un). Since I(ti, ui) for i < n, and I(tn, un−1), by repeatedly applying
matching criterion I we get φ(ti) = φ(t) = s for i ≤ n. By definition of B,
sBui

ti for i ≤ n and sBui
ti+1 for i < n.

· If a = δ, then matching criterion VII together with FC (tn, un) (note that
un = v′) and h′

δ(s, e, v
′) yields DCX(tn, v′). By Lemma 2.8, U(tn, v′), and

hence U(tn, v). Note that since U(tn, v′) we have I(tn, v), which implies
sBvtn.

· Otherwise, a ∈ Act. Matching criterion III together with FC (tn, un) and
h′

a(s, e, v
′) yields ha(tn, e, v′) (note that un = v′). Hence, DCX(tn, v′).

Then U(tn, v′), and hence U(tn, v). Note that since ha(tn, e, v′), we have
I(tn, v′) and I(tn, v), which implies sBvtn.

Concluding, B is a timed branching bisimulation relation. So I(d0, u0) implies
that d0 and φ(d0) are timed branching bisimilar at time u0.

2

9



Fokkink and Pang

4 Examples

4.1 Tossing a coin

In [24], van der Zwaag requires that the timed transition system is convergent
at any time u. 4 In this section, we give a small example, where our method
can play a role for the verification task, while [24] cannot. (Or at least, it would
require some notion of progressing τ ’s as in [12], which was not considered by
van der Zwaag.)

We take the example of tossing a coin from [12] and add time to it.
Sides = {head, tail} denotes the sides of the coin. We give a timed LPE
(the implementation) to describe a person who tosses a coin (modeled by a τ)
at any time. When head turns up, the person gives a smile (modeled by an
external action sm) and tosses the coin again. When tail turns up the person
can toss again. We give another timed LPE (the desired external behavior)
to describe a person who can give a smile at any time.

4.1.1 The implementation

Let Act = {sm} and D = (Sides × Time) ∪ {ε} to denote the state space of
the implementation.

Icoin(d:D) :=
∑

e∈Sides

∑

u:Time

hsm(d, e, u)� sm; d := gsm(d, e, u)

+
∑

e∈Sides

∑

u:Time

hτ (d, e, u)� τ ; d := gτ (d, e, u)

with

hsm(d, e, u)⇔ d = (head, u)

gsm(d, e, u) = ε

hτ (d, e, u)⇔ d = ε

gτ (d, e, u) =







ε if e = tail

(e, u) otherwise, (⇔ e = head)

We simplify the representation, since there is only one external action sm

and it contains no data parameter. It is clear that the implementation is not
convergent at any time.

4.1.2 The desired external behavior

The specification only contains one state D′ = {%}. Its timed LPE Scoin(d′:D′)
is defined as follows.

Scoin(d′:D′) :=
∑

u:Time

T � sm; d′ := d′

4 In [24], a state s is convergent at time u in a timed transition system, if that system
has no infinite sequence s0u0s1u1s2u2 · · · such that s = s0, u ≤ u0, and, for all i ≥ 0,
si

τ−−→ui
si+1 and ui ≤ ui+1.

10



Fokkink and Pang

4.1.3 Verification

For any d:D, the state mapping φ : D → D′ is defined by φ(d) = %. The
invariant of the implementation is defined as I(d, v): for any v:Time, d =
(s, u) ⇒ s = head. It is straightforward to check that I is indeed an invariant
of the implementation.

Definition 4.1 For all u:Time, the focus condition FC (d, u) for Icoin(d:D) is
defined by d = (head, u).

Lemma 4.2 For each d:D and u:Time, together with I(d, u), if h′
sm(φ(d), v)

and u ≤ v, then for some n ≥ 0, there are t0, · · · , tn:D with d = t0, and
elements u0 < · · · < un:Time with u ≤ u0 and v = un such that ti =⇒ui

ti+1,
for i < n, and FC (tn, un).

Proof. If ¬FC(d, u), by definition of FC, d = ε. Given a v:Time, u ≤ v,
and we have I(d, v). Since hτ (d, head, v) holds, state d can perform a τ to
(head, v), and I((head, v), v). By definition of FC, FC((head, v), v) holds.

2

Lemma 4.3 Icoin(ε) ↔tb Scoin(φ(ε)).

Proof. Take any d and u such that I(d, u) and φ(d) = %; we show dBuφ(d).
The criteria VI and VII hold trivially, since hδ = ∅. The other five criteria are
also trivial. By Theorem 3.4 and Lemma 4.2, dBuφ(d). Hence, Icoin(ε) ↔tb

Scoin(φ(ε)).

2

4.2 Two serial buffers

Van der Zwaag [24] proved correctness of the two serial buffers as an applica-
tion of his cones and foci method for timed transition systems. Here we redo
his correctness proof using our version of the cones and foci method for timed
transition systems.

First, we give a timed LPE for a buffer with capacity one. Let Act = {r, s},
M the set of messages, action s(m) models the sending of message m, and
r(m) models the receiving of message m. Between the reading and the sending
of a message, there is a fixed time delay ∆. Let D = {ε} ∪ (M × Time). The
timed LPE Buffer(d:D) is defined as follows.

Buffer(d:D) :=
∑

m:M

∑

u:Time

hr(d, m, u)� r(fr(d, m, u)); d := gr(d, m, u)

+
∑

u:Time

hs(d, u)� s(fs(d, u)); d := gs(d, u)

with

11



Fokkink and Pang

hr(d, m, u)⇔ d = ε

fr(ε, m, u) = m

gr(d, m, u) = (m, u)

hs(d, u)⇔ d = (m, u − ∆)

fs((m, u − ∆), u) = m

gs(d, u) = ε.

A buffer in state ε is empty and ready to read any message at any time,
since hr(ε, m, u) holds for all m ∈ M and u:Time. A buffer in a state (m, v)
has read message m at time v, and will send the message at time v + ∆.

We look at the parallel operation of two serial buffers; one buffer reads a
message from the environment at time u. It sends the message to the other
buffer at time u+∆. The communication between the buffers occurs along an
internal port and is modeled by a τ . After the communication of the message,
the first buffer returns to the empty state. The second buffer outputs the
message at time u + 2∆.

4.2.1 The implementation

To simplify the example (for the sake of its presentation), we assume that
the set M of messages is a singleton {m}; we abstract from the identity of
messages. Consequently, we can represent {ε}∪(M×Time) (the state space of
a single buffer) by the set Timeε = Time∪{ε}. We represent the states of two
serial buffers by (d1, d2). The implementation is a timed LPE ITB((d1, d2):D)
with D = Timeε × Timeε.

ITB((d1, d2):D) :=
∑

u:Time

hr((d1, d2), u)� r; (d1, d2) := gr((d1, d2), u)

+
∑

u:Time

hs((d1, d2), u)� s; (d1, d2) := gs((d1, d2), u)

+
∑

u:Time

hτ ((d1, d2), u)� τ ; (d1, d2) := gτ ((d1, d2), u)

with

hr((d1, d2), u)⇔ d1 = ε ∧ β2(u)

gr((d1, d2), u) = (u, d2)

hs((d1, d2), u)⇔ d2 = u − ∆ ∧ β1(u)

gs((d1, d2), u) = (d1, ε)

hτ ((d1, d2), u)⇔ d1 = u − ∆ ∧ d2 = ε

gτ ((d1, d2), u) = (ε, u).

Since there is only one message, we do not write the second function argument
“e”, and use a to abbreviate a(m). The conditions βi(u), with i ∈ {1, 2},
abbreviate (di = ε ∨ u ≤ di + ∆).

12



Fokkink and Pang

4.2.2 The desired external behavior

The specification of the two serial buffers has the same state space as the
implementation, but the roles of the constituents of states are different. In a
state (df , ds), df is the time the first contained message was received, and ds

is the time the second contained message was received. If the system is empty,
then df = ds = ε. An invariant of the specification is that df = ε ⇒ ds = ε.
Its timed LPE STB((df , ds) : D) is defined as follows.

STB((df , ds):D) :=
∑

u:Time

h′
r((df , ds), u)� r; (df , ds) := g′

r((df , ds), u)

+
∑

u:Time

h′
s((df , ds), u)� s; (df , ds) := g′

s((df , ds), u)

with

h′
r((df , ds), u)⇔ df 6= ε ⇒ (ds = ε ∧ df + ∆ ≤ u ≤ df + 2∆)

g′
r((df , ds), u) =







(u, ε) if df = ε

(df , u) otherwise

h′
s((df , ds), u)⇔ df = u − 2∆

g′
s((df , ds), u) = (ds, ε).

4.2.3 Verification

We take the definition of the state mapping and invariants from [24]. The
state mapping φ : D → D is defined by

φ((d1, d2)) =







(d1, d2) if d2 = ε,

(d2 − ∆, d1) otherwise.

The invariant of the implementation is defined as follows. Let I((d1, d2), u)
be the conjunction of I1 : d1 6= ε ⇒ u ≤ d1 + ∆, I2 : d2 6= ε ⇒ d2 ≤ u, and
I3 : d1 6= ε ⇒ (d2 6= ε ⇒ d2 ≤ d1). It is straightforward to check that I is
indeed an invariant of the implementation.

The focus condition for ITB((d1, d2):D) is obtained by taking the disjunc-
tion of the summands that deal with an action in Act.

Definition 4.4 For all u:Time, the focus condition for ITB((d1, d2):D) is

FC ((d1, d2), u) ⇔ hr((d1, d2), u) ∨ hs((d1, d2), u).

Lemma 4.5 For each (d1, d2):D and u:Time, if h′
a(φ((d1, d2)), v) and u ≤ v,

together with I((d1, d2), u), for some a ∈ Act, then for some n ≥ 0, there are
t0, · · · , tn:D with (d1, d2) = t0, and elements u0 < · · · < un:Time with u = u0

and v = un such that ti =⇒ui
ti+1, for i < n, and FC (tn, un).

13



Fokkink and Pang

Proof. Let h′
a(φ((d1, d2)), v) for a ∈ {s, r}. We need to distinguish two cases.

• a = s. By definition of h′
s, df = v − 2∆. If ds = ε, then by definition of φ

either
· d2 = ds = ε and d1 = df = v − 2∆. By I1((d1, d2), u), u ≤ v − ∆.

Hence hτ ((d1, d2), v−∆) holds, (d1, d2) can perform a τ to (ε, v−∆), and
I((ε, v − ∆), v). Since hr((ε, v − ∆), v), FC((ε, v − ∆), v); or

· d1 = ds = ε and df = v−2∆ = d2−∆. Then d2 = v−∆. By I2((d1, d2), u),
u ≥ v−∆. Since I((d1, d2), v) and hr((d1, d2), v), we have FC((d1, d2), v).

If ds 6= ε, then by definition of φ, ds = d1 and df = d2−∆. Since df = v−2∆,
we have v = d2 +∆. By I3((d1, d2), u), d2 ≤ d1. Since v = d2 +∆ ≤ d1 +∆,
β1(v). I((d1, d2), v) and hs((d1, d2), v) hold, hence FC((d1, d2), v).

• a = r. By definition of φ, df = ε implies d1 = d2 = ε. I((d1, d2), v) and
hr((d1, d2), v) hold, hence FC((d1, d2), v). If df 6= ε, then by definition of
h′

r, ds = ε and df + ∆ ≤ v ≤ df + 2∆. By definition of φ, we know that
either
· d1 = ε, d2 6= ε and df = d2 − ∆. By v ≤ df + 2∆, v ≤ d2 + ∆, we have

β2(v). By I((d1, d2), v) and hr((d1, d2), v), FC((d1, d2), v) holds; or
· d2 = ε and df = d1. Since df + ∆ ≤ v, d1 + ∆ ≤ v. By I1((d1, d2), u),

u ≤ d1 + ∆ ≤ v. Since hτ ((d1, d2), d1 + ε), by performing action τ at
time d1 + ∆, we can reach a state (ε, d1 + ∆) and I((ε, d1 + ∆), v). Since
v ≤ d1 + 2∆, β2(v) holds. So hr((ε, v), v), hence FC((ε, v), v).

2

Lemma 4.6 ITB((ε, ε)) ↔tb STB(φ((ε, ε))).

Proof. Take any (d1, d2) and u such that I(d, u); let φ((d1, d2)) = (df , ds).
We show that (d1, d2)Buφ((d1, d2)). The criteria VI and VII hold trivially,
since hδ = ∅. The first five criteria are shown as follows.

(i) Suppose that hτ (d, u). We show that φ((d1, d2)) = φ(gτ((d1, d2), u)) and
DCSTB

(φ((d1, d2)), u). By definition of hτ , d1 = u − ∆ and d2 = ε. And
by definition of φ, hence φ((d1, d2)) = (d1, d2). Also φ(gτ((d1, d2), u)) =
φ(ε, u) = (u − ∆, ε) = (d1, d2). Since h′

s(φ(d1, d2), d1 + 2∆), it follows
that DCSTB

(φ((d1, d2)), u).

(ii) Suppose that ha((d1, d2), u). We show that h′
a(φ((d1, d2)), u).

2.1 a = s: By definition of hs, d2 = u−∆ . By definition of φ, d2 6= ε, and
df = d2 − ∆. Since d2 = u − ∆, df = u − 2∆, hence h′

a(φ((d1, d2)), u).
2.2 a = r: By definition of hr, d1 = ε and β2(u).

2.2.1 d2 = ε: By definition of φ, df = d1 = ε, hence h′
r((df , ds), u).

2.2.2 d2 6= ε: By definition of φ, df = d2 − ∆ and ds = d1 = ε. By β2(u),
u ≤ d2 + ∆. By I2((d1, d2), t), d2 ≤ u. Since d2 ≤ u ≤ d2 + ∆, hence
h′

r(φ((d1, d2)), u).

(iii) Trivial, by Definition 4.4.

(iv) Trivial, since M is a singleton set.

14



Fokkink and Pang

(v) Suppose that ha((d1, d2), u). We need to show that φ(ga((d1, d2), u)) =
g′

a(φ((d1, d2)), u).
5.1 a = s: Then d2 6= ε, and φ(gs((d1, d2), u)) = φ((d1, ε)) = (d1, ε) =

g′
s((d2 − ∆, d1), u) = g′

s(φ((d1, d2)), u).
5.2 a = r: Then d1 = ε.

5.2.1 d2 = ε: Then φ(gr((ε, ε), u)) = φ(u, ε) = (u, ε) = g′
r((ε, ε), u) =

g′
r(φ(ε, ε), u) = g′

r(φ((d1, d2)), u).
5.2.2 d2 6= ε: Then φ(gr((d1, d2), u)) = (d2 − ∆, u) = g′

r((d2 − ∆, ε), u) =
g′

r(φ(ε, d2), u) = g′
r(φ((d1, d2)), u).

By Theorem 3.4 and Lemma 4.5, (d1, d2)Buφ((d1, d2)). Hence, ITB((ε, ε)) ↔tb

STB(φ((ε, ε))).

2

Acknowledgement

We thank Mark van der Zwaag for pointing out some serious technical flaws
in an earlier version of this paper. We are also indebted to the anonymous
referees for their helpful comments. This research is supported by the Dutch
Technology Foundation STW under the project CES5008 – ”Improving the
quality of embedded systems by formal design and systematic testing”.

References

[1] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal Aspects

of Computing, 3(2): 142–188, 1991.

[2] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. On the consistency of Koomen’s
fair abstraction rule. Theoretical Computer Science, 51: 129–176, 1987.

[3] J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, 1990.

[4] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information and Computation, 60(1-3):109–137, 1984.

[5] W.J. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2000.

[6] W.J. Fokkink, J.F. Groote, J. Pang, B. Badban, and J.C. van de Pol. Verifying
a sliding window protocol in µCRL. In Proc. 10th Conference on Algebraic

Methodology and Software Technology, Lecture Notes in Computer Science 3116,
pp. 148-163. Springer, 2004.

[7] W.J. Fokkink and J. Pang. Cones and foci for protocol verification revisited.
In Proc. 6th Conference on Foundations of Software Science and Computation

Structures, Lecture Notes in Computer Science 2620, pp. 267–281, Springer,
2003.

15



Fokkink and Pang

[8] J.F. Groote. The syntax and semantics of timed µCRL. Technical Report
SEN-R9709, CWI, Amsterdam, 1997.

[9] J.F. Groote and A. Ponse. The syntax and semantics of µCRL. In Proc.

1st Workshop on the Algebra of Communicating Processes, Workshops in
Computing Series, pp. 26–62. Springer, 1995.

[10] J.F. Groote and M.A. Reniers. Algebraic process verification. In Handbook of

Process Algebra, pp. 1151–1208. Elsevier, 2001.

[11] J.F. Groote, M.A. Reniers, J.J. van Wamel, and M.B. van der Zwaag.
Completeness of timed µCRL. Fundamenta Informaticae, 50(3/4): 361–402,
2002.

[12] J.F. Groote and J. Springintveld. Focus points and convergent process
operators. A proof strategy for protocol verification. Journal of Logic and

Algebraic Programming, 49(1/2): 31–60, 2001.

[13] J.F. Groote and J.J. van Wamel. Analysis of three hybrid systems in timed
µCRL. Science of Computer Programming, 39(2/3): 215–247, 2001.

[14] C.A.R. Hoare. Communicating sequential processes. Communications of the

ACM, 21(8):666–677, 1978.

[15] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[16] A.S. Klusener. Abstraction in real time process algebra. In Proc. 2nd

Conference on Concurrency Theory, Lecture Notes in Computer Science 527,
pp. 376–392. Springer, 1991.

[17] A.S. Klusener. The silent step in time. In Proc. 3rd Conference on Concurrency

Theory, Lecture Notes in Computer Science 630, pp. 421–435. Springer, 1992.

[18] R. Milner. A Calculus of Communicating Systems. LNCS 92, Springer, 1980.

[19] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[20] G.M. Reed and A.W. Roscoe. A timed model for communicating sequential
processes. Theoretical Computer Science, 58(1/3): 249–261, 1988.

[21] Y. Wang. CCS + time = an interleaving model for real time systems. In Proc.

18th Colloquium on Automata, Languages and Programming, Lecture Notes in
Computer Science 510, pp. 217–228. Springer, 1991.

[22] Y.S. Usenko. Linearization in µCRL. PhD thesis, Eindhoven University of
Technology, 2002.

[23] J.J. Vereijken. Discrete-Time Process Algebra. PhD thesis, Eindhoven
University of Technology, 1997.

[24] M.B. van der Zwaag. The cones and foci proof technique for timed transition
systems. Information Processing Letters, 80(1): 33–40, 2001.

16


	Introduction
	Preliminaries
	Timed CRL
	Timed transition systems
	Timed linear process equations

	Cones and foci
	Examples
	Tossing a coin
	Two serial buffers

	Acknowledgement 
	References

