
L-CMP: An Automatic Learning-Based Parameterized
Verification Tool

Jialun Cao
The State Key Laboratory of
Computer Science, Institute of
Software, Chinese Academy of

Sciences & University of Chinese
Academy of Sciences

Beijing, China
caojl@ios.ac.cn

Yongjian Li∗
The State Key Laboratory of
Computer Science, Institute of
Software, Chinese Academy of

Sciences
Beijing, China
lyj238@ios.ac.cn

Jun Pang
Faculty of Science, Technology and
Communication & Interdisciplinary
Centre for Security, Reliability and
Trust, University of Luxembourg
Esch-sur-Alzette, Luxembourg

jun.pang@uni.lu

ABSTRACT
This demo introduces L-CMP, an automatic learning-based pa-
rameterized verification tool. It can verify parameterized proto-
cols by combining machine learning and model checking tech-
niques. Given a parameterized protocol, L-CMP learns a set of
auxiliary invariants and implements verification of the protocol
using the invariants automatically. In particular, the learned auxil-
iary invariants are straightforward and readable. The experimen-
tal results show that L-CMP can successfully verify a number of
cache coherence protocols, including the industrial-scale FLASH
protocol. The video presentation of L-CMP is available at https:
//youtu.be/6Dl2HiiiS4E, and the source code can be downloaded at
https://github.com/ArabelaTso/Learning-Based-ParaVerifer.

CCS CONCEPTS
• Theory of computation→ Verification bymodel checking;

KEYWORDS
Parameterized verification, model checking, association rule learn-
ing, machine learning

ACM Reference Format:
Jialun Cao, Yongjian Li, and Jun Pang. 2018. L-CMP: An Automatic Learning-
Based Parameterized Verification Tool. In Proceedings of the 2018 33rd
ACM/IEEE International Conference on Automated Software Engineering (ASE
’18), September 3–7, 2018, Montpellier, France. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3238147.3240487

1 INTRODUCTION
Parameterized concurrent systems, in particular, cache coherence
protocols, exist in many practical applications [12]. Verifying such

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3240487

systems has attracted considerable academic interests due to its
practical importance [13]. A parameterized protocol P(N) contains
N homogeneous nodes (see sub-figure (a) in Figure 1), sometimes
also contains a heterogeneous node (e.g., FLASH protocol contains
a ‘Home’ node, see sub-figure (c) in Figure 1). The target is to verify
that the properties are satisfied for arbitrary sizes of instances. Al-
though the correctness of fixed number of instances can be proved,
their correctness cannot imply the correctness of protocols of arbi-
trary sizes. This problem has been proved to be undecidable [2].

To address this problem,many approaches have been proposed [3,
5–7, 9, 14–17, 19]. Among them, “parameterized abstraction and
guard strengthening” method, also known as CMP [6, 14], has been
widely applied to verify large-scaled and industrial protocols, in-
cluding Intel’s Chipset and FLASH protocols [18]. The main idea
of CMP is to construct an abstract protocol AP(m) (m is usually 2
or 3). AP containsm normal nodes plus an abstracted node Other ,
which simulates the behavior of the rest nodes. As we can see from
Figure 1, in sub-figure (b),m is 2 because only homogeneous nodes
in protocol (a), while in sub-figure sub-figure (d),m is set to be 3
because there is a heterogeneous node Home in sub-figure (c). In
general, AP may fail to satisfy the desired properties because it
is too ‘permissive’ [6], so researchers need to come up (manually)
with a set of auxiliary invariant to restrict its behavior. However,
to construct auxiliary invariants manually is often error-prone,
especially when the protocol description is large and complex [6].

Figure 1: Different types of parameterized protocols and cor-
responding abstracted protocols after CMP

In this paper, we propose L-CMP, which can automatically learn
auxiliary invariants, abstract and strengthen the parameterized
protocols in a unified framework. With L-CMP, a set of auxiliary in-
variants can be learned from the reachable state sets of the instances

892

https://youtu.be/6Dl2HiiiS4E
https://youtu.be/6Dl2HiiiS4E
https://github.com/ArabelaTso/Learning-Based-ParaVerifer
https://doi.org/10.1145/3238147.3240487
https://doi.org/10.1145/3238147.3240487

ASE ’18, September 3–7, 2018, Montpellier, France Jialun Cao, Yongjian Li, and Jun Pang

of protocols, and be applied to verify the protocol automatically.
The soundness of L-CMP is guaranteed in [8].

Figure 2: The envisioned users

A distinguished novelty of our tool lies in two aspects. Firstly,
the combination of association rule learning and parameterized
verification automates the verification process, and expands the
application area of machine learning algorithms. It may also shed
some light on the further combination of these two areas. Secondly,
the invariants it obtains can not only help to automate the veri-
fication, but also provide deep insights for researchers to better
understand the mechanism of protocols because the form of these
invariants are straightforward and understandable. Therefore, our
envisioned users are protocol designers and researchers who want
to gain better understanding and insights of protocols, and business
analysts who want to check the correctness of practical protocols
(see Figure 2).

2 RELATEDWORKS
There have been many studies who tried to address the problem of
parameterized verificationwith the aid of computer. Arons et al. pro-
posed the concept of “invisible invariants”, which are computed in a
finite system instance to aid inductive invariant checking [3]. Con-
chon et al. came up with the BRAB algorithm which is implemented
in an SMT-based model checker. It computes over-approximations
of backward reachable states that are checked to be unreachable
in the parameterized system [7]. Li et al. proposed a method to
automatically generate auxiliary invariants from a small reference
instance of protocols and construct a parameterized formal proof
in the theorem prover Isabelle [12]. Compared with these works,
L-CMP provides a simpler way to verify parameterized protocols,
and the auxiliary invariants it obtains are more understandable and
straightforward.

3 AN OVERVIEW OF L-CMP
The architecture of L-CMP is shown in Figure 3. We can see that
there are two main phases in the framework. The first phase is
regarded as the Learning phase. It receives a parameterized protocol
written in the input language of the model checker Murphi and
returns a set of auxiliary invariants. This phase consists of three
parts. Preprocessor utilizes Murphi to enumerate the reachable
set of the instance of protocols and transforms it into a dataset
consisting of numeric vectors. Then Learner learns association rules
from the constructed dataset. Note that the learned association rules
are not necessarily invariants, so Selector is executed with the help
of Murphi to select invariants. After selection, what remained is
regarded as auxiliary invariants and will be used in the second
phase.

The second phase is an advanced CMP phase. Unlike CMP, whose
strengthening process comes after abstraction, the advanced CMP car-
ries out strengthening process before abstraction so that more pred-
icates can be added into guard of rules. Phase two also consists of
three main steps. Strengthener strengthens the guard of each rule
using auxiliary invariants. It is noteworthy that not all auxiliary
invariants will be used in this step, and once some of them are used,
they will be recorded and verified in the final step. Next, Abstractor
abstracts local variables in the rules. After this step, an abstracted
protocol is generated and it will be subjected to Murphi together
with the used auxiliary invariants. If it passes the model checking,
then L-CMP comes outputs the result. Otherwise, parameters in
Learner will be adapted and the next round of execution will start.

Figure 3: The architecture of L-CMP

4 IMPLEMENTATION DETAILS

4.1 Phase One
Given a parameterized protocol in the Murphi language, the first
step is to generate the reachable set of its instance. We use Murphi
to compute the reachable set, which can write all reachable states
at least once. In general, we assume that the protocol contains only
homogeneous nodes so the size of instance is set to be 2. If there
is a heterogeneous node in the protocol (e.g., the FLASH protocol),
then the size of instance will be set to be 3, including two normal
nodes and one Home node. Note that there are two possible forms
to represent parameters: digits (i.e., 1, 2) or labeled type names
(i.e., NODE_1, NODE_2, where ‘NODE’ is a user-defined data type).
The first form is the ordinary expression, and the second form is
used when the protocol applies symmetry reduction to reduce the
searching space. L-CMP will record the form of parameters and use
it as identifiers.

Then, the reachable set is transformed into a new dataset. We
extract atomic predicates from the guard of rules and properties.
This step is crucial because without it the following learning pro-
cess may not be able to obtain sufficient auxiliary invariants. We
also build a map to record all the possible values for each variable.
According to the atomic predicates, the reachable set can be trans-
formed into state vectors which contain only predicates. To be more
specific, if the predicate holds at one state, then we can add the
original predicate to the state. Otherwise, the negative form of the
predicate will be added. Note that because of symmetry reduction,
the value of some variables could be ‘Undefined’, meaning that
the value of the variable is unknown. In this case, whether the
predicate holds in that state is unknown, so the predicate will be
deleted from the corresponding state. After this step, we acquire a

893

L-CMP: An Automatic Learning-Based Parameterized Verification Tool ASE ’18, September 3–7, 2018, Montpellier, France

new dataset consisting of records, where each record represents a
reachable state in the reachable set, and the length of records are
not necessarily the same.

The association rule learning is applied to the dataset in the third
step. Association rules are strong relations between items in large
databases. Assume that a database contains records, each of which
includes several items, then the learning result will be the relations
in the database, in the form of ψ → ϕ where ϕ and ψ are sets of
items. In our case, the records in the dataset are already constructed,
while items of association rule learning are correspondent to the
predicates in the records. To implement association rule learning,
there are several algorithms such as Eclat and FP-growth. In this
paper, we apply the Apriori [1] algorithm because it is more conve-
nient to constrain the size of frequent set. The frequent set is a set
of items that frequently appears in the dataset. We set the size of the
frequent set to be at most K , where K is a parameter that is initially
set to be 3. It may be fixed according to the subsequent steps. Note
that the minimum support and minimum confidence in Apriori are
also parameters, which are set to be 0.0 and 1.0, respectively.

Figure 4: The process of minimizing association rules

The number of learned association rules is generally large, so
we need a step to minimize it (see Figure 4). There are two possible
forms of parameters as mentioned above, so we need to replace
them with a unified form. We replace parameters with P1, P2 in the
order of appearance. This is why the ‘NODE_2’ of second statement
in top left of Figure 4 will be replaced by P1. Moreover, those
symmetrical association rules will be unified as one. Note that
some of association rules are axiomatic but useless (see the first
association rule in the top of Figure 4), so they will be removed.
Then the parameterized association rules will be instantiated by i
and j, respectively. Finally, we build a dictionary to record all the
left sides of association rules which have same right side. For each
right side, we build an index to represent all the left sides. Note
that each left side is a set. If one left side is the subset of another,
then the index of that larger set will be removed. For example, if
association rules p → r and p ∨ q → r are obtained, then after this
step, only p → r will remain.

Selector, as its name implies, selects auxiliary invariants from
the association rules. This step needs the help of Murphi. Although
it is impossible to verify all the association rules for protocols with
arbitrary sizes, we can check them in several small instances. To
realize it, we construct a translator which translates the association
rules into the Murphi language, so that we check them in Murphi.
Then, these translated association rules together with the original
instance from which the reachable set calculated are subjected to

Figure 5: The process of selecting auxiliary invariants

Murphi. Whenever an association rule fails to pass the model check-
ing step, L-CMP removes it and continues to check the rest. When
all the remaining association rules pass the verification, L-CMP will
increase the size of instance and repeat the above process. This
selection step proceeds until no association rules can be removed
or the searching space is getting too large. Note that we apply mul-
tiprocessing to accelerate this step (as shown in Figure 5), each
process checks a part of association rules, and returns whether they
pass the verification. Then the main processor collects all the result
and removes the failed ones from the association rule set. Finally,
the remaining association rules are regarded as auxiliary invariants.

4.2 Phase Two
Before going into details, we need to elaborate the structure of
protocol rules. A rule consists of two main parts: guard and action.
If the predicates in guard are satisfied, the statements in action can
be executed. As we can see, the guard is a conjunction of predicates,
while the auxiliary invariants are in form of ϕ → ψ , where ϕ,ψ are
sets of predicates. Thus, it is straightforward to add the conclusion
(i.e.,ψ) of auxiliary invariants to the guard of rules if its antecedent
(i.e., ϕ) is a subset of the guard. This strengthening step iterates
until no more predicates can be added into the guard.
ruleset {parameters definition} do -- for example, i : NODE
rule "rule_name"

guard part -- conjunction of predicates
==>

action part -- a set of statements
endrule; endruleset;

Phase 2 starts at partitioning the rules into four parts: definition,
rule name, guard and action. Then we parse the guard into predi-
cates and execute the above-mentioned strengthening process. The
auxiliary invariants which are used to strengthen the guard will be
recorded. Besides, a dictionary is exploited to map the antecedents
of used auxiliary invariants to the corresponding conclusions. Next,
the abstraction step is implemented by removing the predicates
and statements relating to parameters in the definition part. For
example, if a rule has two parameters i and j, at first, we remove
those related to parameter i and generate the first abstracted rule,
and do the same for parameter j . Further, those related to either i or
j are all removed and a third new rule is generated. Hence, if a rule
has one parameter, then after strengthening and abstraction steps,
it will generate at most one new rule. While if it has two parameters,
the answer will be three. It is noteworthy that if the right side of a
statement is about to be abstracted, then the dictionary we build
previously will be used to check whether the right part is a key. If
it is a key, then it will be replaced by its corresponding value. This
process prevents the loss of data during abstraction.

894

ASE ’18, September 3–7, 2018, Montpellier, France Jialun Cao, Yongjian Li, and Jun Pang

5 TOOL USAGE
Here is an example showing how L-CMP works. After downloading
L-CMP and installing Murphi and Python, it is important to inlcude
the path to Murphi into the file ‘murphi_url.txt’. We provide several
protocols in L-CMP. The help document is illustrated in Figure 6. To
verify FLASH, for example, we can simply type ‘python3 main.py
-p flash -n 3’ and the verification will be executed automatically.
Because FLASH is fairly large, so it takes some time to verify. After
it finishes, the result will be printed out and several important files
such as verified protocols, association rules, auxiliary invariants
and other backup files will be saved in the corresponding folder.

Figure 6: The help document of L-CMP

6 EXPERIMENTAL EVALUATION
Weapplied L-CMP to several typical parameterized protocols. Among
them,MOESI, MESI, Mutual Exclusion (abbrv. MutualEx),Mutual Ex-
clusion with data (abbrv. Mutdata) are small-scale protocols, while
German and FLASH protocols are more complicated1. The size of
instance for most protocols is set to be 2, while for FLASH, it is set
to be 3.

Table 1: Experiment results

protName states # assoRules # auxInvs # usedF Time (s) result
MOESI 23 736 20 5 24.744 ✓
MESI 8 144 16 5 24.412 ✓

MutualEx 12 656 12 3 89.869 ✓
Mutdata 88 540 12 6 19.703 ✓
German 852 21202 448 8 85.418 ✓
Flash 1350226 358710 1636 327 41371.023 ✓

The experimental results for each of these protocols are sum-
marized and presented in Table 1. Each record includes protocol
name, size of reachable sets, number of association rules, number of
auxiliary invariants, number of used auxiliary invariants, running
time, and result. We can see from the table that reachable sets of the
first four protocols are rather small, followed by German, while the
reachable set of FLASH is enormous comparing with the previous

1The version of German and FLASH protocols we use are the same as those used
in Chou et al.’s work [6]

ones. As for running time, almost the first five protocols can be
verified within about one minute, whereas FLASH takes about 11
hours. Most of the time is spent on selecting auxiliary invariants
from association rules. This process can be accelerated by allocating
more processors to L-CMP. If we allocate 16 processors to L-CMP,
the total running time for verifying FLASH is approximate 6 hours.

7 CONCLUDING REMARKS
In this paper, we present an easy-to-use tool, L-CMP, which can
verify parameterized protocols automatically. It provides straight-
forward and understandable invariants. Besides, it also has solid
theoretical background. The verification results of typical bench-
marks are reported in detail. Experiments demonstrate both feasi-
bility and effectiveness of L-CMP. In the future, we plan to extend
the ability of L-CMP to verify more general safety and liveness
properties.

ACKNOWLEDGEMENTS
The authors are partially supported by grant 61672503 from Na-
tional Natural Science Foundation and grant 2017YFB0801900 from
the National Key Research and Development Program in China.

REFERENCES
[1] R. Agrawal, T. Imieliński, and A. Swami. 1993. Mining association rules between

sets of items in large databases. ACM SIGMOD Record, Vol. 22, 207–216.
[2] K. R. Apt and D. C. Kozen. 1986. Limits for automatic verification of finite-state

concurrent systems. Information Processsing Letters 22, (6), 307–309.
[3] A. Pnueli, S. Ruah, Y. Xu, and L. Zuck. 2001. Parameterized verification with

automatically computed inductive assertions?. In CAV. Springer, LNCS 2102,
221–234.

[4] K. Baukus et al. 2002. Parameterized verification of a cache coherence protocol:
Safety and liveness. In VMCAI. Springer, LNCS 2294, 317–330.

[5] X. Chen and G. Gopalakrishnan. 2006. A General Compositional Approach to
Verifying Hierarchical Cache Coherence Protocols. Technical Report. UUCS-06-014,
School of Computing, University of Utah.

[6] C.-T. Chou, P. K Mannava, and S. Park. 2004. A simple method for parameterized
verification of cache coherence protocols. In FMCAD. Springer, LNCS 3312, 382–
398.

[7] S. Conchon, A. Goel, S. Krstic, A. Mebsout, and F. Zaıdi. 2012. Cubicle: A parallel
SMT-based model checker for parameterized systems. In CAV. Springer, LNCS
7358, 718–724.

[8] S. Krstic. 2005. Parameterized system verification with guard strengthening and
parameter abstraction. In Automated Verification of Infinite State Systems.

[9] S. Conchon, A. Goel, S. Krstić, A. Mebsout, and F. Zaïdi. 2013. Invariants for
finite instances and beyond. In FMCAD, 2013. IEEE, 61–68.

[10] E. A. Emerson and V. Kahlon. 2003. Exact and efficient verification of parameter-
ized cache coherence protocols. In CHDVM. Springer, LNCS 2860, 247–262.

[11] S. K. Lahiri and R. E. Bryant. 2004. Constructing quantified invariants via predicate
abstraction. In VMCAI. Springer, LNCS 2937, 267–281.

[12] Y. Li, K. Duan, Y. Lv, J. Pang, and S. Cai. 2016. A novel approach to parameterized
verification of cache coherence protocols. In ICCD. IEEE, 560–567.

[13] Y. Lv, H. Lin, and H. Pan. 2007. Computing invariants for parameter abstraction.
In MEMOCODE. IEEE, 29–38.

[14] K. L. McMillan. 2001. Parameterized verification of the FLASH cache coherence
protocol by compositional model checking. In CHARME. Springer, LNCS 2144,
179–195.

[15] S. Pandav, K. Slind, and G. Gopalakrishnan. 2005. Counterexample guided in-
variant discovery for parameterized cache coherence verification. In CHARME.
Springer, LNCS 3725, 317–331.

[16] A. Pnueli, S. Ruah, and L. Zuck. 2001. Automatic deductive verification with
invisible invariants. In TACAS. Springer, LNCS 2013, 82–97.

[17] A. Pnueli and E. Shahar. 1996. A platform for combining deductive with algorith-
mic verification. In CAV. Springer, LNCS 1102, 184–195.

[18] M. Talupur andM. R. Tuttle. 2008. Going with the flow: Parameterized verification
using message flows. In FMCAD. IEEE, 1-8.

[19] A. Tiwari, H. Rueß, H. Saïdi, and N. Shankar. 2001. A technique for invariant
generation. In TACAS. Springer, LNCS 2013, 113–127.

895

	Abstract
	1 INTRODUCTION
	2 RELATED WORKS
	3 AN OVERVIEW OF L-CMP
	4 IMPLEMENTATION DETAILS
	4.1 Phase One
	4.2 Phase Two

	5 TOOL USAGE
	6 EXPERIMENTAL EVALUATION
	7 CONCLUDING REMARKS
	References

