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Abstract. We present ASSA-PBN, a tool for approximate steady-state analysis
of large probabilistic Boolean networks (PBNs). ASSA-PBN contains a construc-
tor, a simulator, and an analyser which can approximately compute the steady-
state probabilities of PBNs. For large PBNs, such approximate analysis is the only
viable way to study their long-run behaviours. Experiments show that ASSA-
PBN can handle large PBNs with a few thousands of nodes.

1 Introduction

Probabilistic Boolean networks (PBNs) [1, 2], introduced by Shmulevich et al. in 2002
as an extension of Boolean networks, is a modelling framework widely used to model
gene regulatory networks (GRNs). Inheriting appealing features of Boolean networks of
being simple but effective, PBN additionally is capable to cope with uncertainties both
on the data and model selection levels. The dynamics of a PBN with N nodes is gov-
erned by a discrete-time Markov chain (DTMC) with exponential in N number of states,
i.e., 2N states. Although qualitative in nature, PBNs provide means for quantifying the
influences of genes on other genes and for characterising the long-run behaviour of the
system, both based on the steady-state distribution of the associated DTMC. Therefore,
the efficient computation of steady-state probabilities is of utter importance. It is well
studied how to compute the steady-state distribution of small PBNs with numerical
methods [2]. However, due to their computational cost, these methods are not scalable.
In the literature, a few statistical methods such as Monte Carlo methods [3], are pro-
posed to deal with large PBNs. A recent study analysed a 96-node PBN of apoptosis
using the optPBN tool [4]. However, the existing methods/tools for PBNs are prohibited
by the network size. For instance, optPBN can only analyse parts of the 96-node PBN
due to its efficiency limits, leaving some properties of the network unconfirmed [4].
Therefore, there is demand for a tool which can handle large PBNs efficiently.

In this work we present ASSA-PBN, a tool which provides the means for efficient
analysis of large PBNs. Firstly, it applies the state-of-the-art techniques to the com-
putation of the steady-state probabilities of large PBNs. The current version supports
three different statistical methods, i.e., the perfect simulation algorithm [5], the two-
state Markov chain approach [6, 7], and the Skart method [8]. To the best of our knowl-
edge, ASSA-PBN is the first tool to introduce the perfect simulation algorithm and the
Skart method to the context of PBNs. Secondly, it contains a fast simulator, which is
designed using the alias technique [9]. This makes it capable of handling the steady-
state computations that require generation of trajectories consisting of billions of states.
Experimental results show that ASSA-PBN can analyse PBNs with thousands of nodes.
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Fig. 1. Structure of ASSA-PBN.

2 Architecture and Usage

A PBN models a system such as a GRN with binary-valued nodes. For each node there
is a certain number of Boolean functions, known as predictor functions, which deter-
mine the value of the node at the next time step. The selection of the predictor function is
governed by a probability distribution: a probability parameter is associated with each
predictor function of the node. Two variants of PBNs are considered: instantaneous
PBNs and context-sensitive PBNs. In the former variant, the selection of a predictor
function is performed for each node at each time step. In the latter variant, the PBN
evolves in accordance with selected predictor functions and new selection is performed
only if indicated by an additional random variable which is updated at each time step.
Moreover, the so-called PBNs with perturbations, allow the system to transit to the next
state due to random perturbations that are governed by a perturbation rate parameter.
On top of that dependent and independent PBNs are considered as well as synchronous
and asynchronous update schemes. The dynamics of a PBN can be viewed as a DTMC.
In the case of PBNs with perturbations, the underlying DTMC is ergodic, thus having
a unique stationary distribution, the so-called steady-state (or limiting) distribution,
which governs the long-run behaviour of the system. Due to the space limitation, we
refer to [10] and [2, page 4] for a formal definition and detailed description of PBNs.

For systems like GRNs, we are often interested in answering the following biologi-
cal question: what is the probability that a gene or a number of genes will be expressed
in the long run? This question can be addressed in the framework of PBNs by deter-
mining the steady-state probability for a PBN to be in a certain state or, equivalently,
the steady-state probability of a state in the underlying ergodic DTMC. ASSA-PBN is
designed to compute the steady-state probabilities for PBNs, especially for large PBNs.

ASSA-PBN contains three major parts (see Figure 1): a PBN constructor, a PBN
simulator, and a PBN analyser. Based on the specified parameters or model file, the
constructor can build a PBN. The simulator takes a PBN generated by the constructor as
input and performs simulation of the PBN efficiently to produce trajectories (also called
samples). The key function of ASSA-PBN is to compute the steady-state probability for
a set of states of the PBN which is defined in a property file. This is achieved by the
analyser in either a numerical manner (for small PBNs) or a statistical manner (for large
PBNs). The implemented numerical methods require the transition matrix of a PBN as
input, which is supplied by the constructor; while the implemented statistical methods
require simulated trajectories of the PBN as input, which are supplied by the simulator.
Simulation is not based on the transition matrix, as a consequence it does not suffer
from the state-space explosion problem even for large PBNs. The ASSA-PBN program
package can be found at http://satoss.uni.lu/software/ASSA-PBN/.
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PBN constructor. The PBN constructor can either load a PBN from a specification file
or generate a random PBN complying with a given parametrisation.

To load a PBN into ASSA-PBN, the user needs to provide a description of the PBN
in a specification file. The description consists of four elements: the number of nodes
(also known as genes), the definitions of predictor functions of each node, the selection
probabilities for the predictor functions of each node, finally the perturbation rate pa-
rameter value. The details on the format can be found in the user guide of the program
package. ASSA-PBN also supports importing PBNs defined in the optPBN Matlab tool-
box [4] format. ASSA-PBN constructs the PBN based on its loaded specification and
stores it in memory in a structure which contains the information from the specification.
The stored information is sufficient for performing simulations of the PBN.

For the convenience of experiment and testing, the constructor provides a function
for generating a random PBN complying with specified parameters, i.e., the number of
nodes in the PBN, the perturbation rate, the maximal number of predictor functions for
nodes in the network, and the maximal number of variables of the predictor functions.
Given these parameters, the constructor will randomly generate for each node of the
PBN the specified number of predictor functions and their selection probabilities. The
generated PBN can be saved in a specification file or exported to the optPBN format.

In certain biological experiments, the environmental conditions of cells are kept
constant, e.g., sustained activation of cell receptors. Therefore, in ASSA-PBN it is pos-
sible to disable the perturbations of certain nodes. This is provided by a filter storing
the indices of these nodes that should not undergo perturbations. Note that this does not
change the ergodicity of the PBN: since the values of those nodes are kept constant, the
state-space of the underlying Markov chain is simply reduced, but it remains aperiodic
and irreducible, thus ergodic.

Simulator. Statistical approaches are the only viable option for the analysis of PBNs
characterised by large state space, e.g., PBNs that arise in the context of realistic bio-
logical study of GRNs. However, applications of such methods necessitate generation
of trajectories of significant length. Therefore, the efficiency requirement is crucial for
enabling analysis of large networks in a reasonable computational time. To achieve this
goal, sampling of the consecutive state of the trajectory is performed with the use of
an instance of the alias method, a class of efficient algorithms for sampling from a dis-
crete probability distribution originally introduced by Walker in [9].

The ASSA-PBN simulator can operate in two modes: 1) the global alias mode and
2) the local alias mode. In the global mode, a joint probability distribution is consid-
ered on all possible combinations of predictor function selections for all the nodes and
a single alias table for this distribution is constructed. In the local mode, the indepen-
dence of the PBN is exploited: individual alias tables are constructed for each node of
the PBN. In both cases the consecutive state is generated by updating the value of each
node with the predictor function selected for this node. However, in the global mode
predictor functions for all nodes are selected simultaneously with the use of only two
random numbers, while in the local mode the number of random numbers used is twice
the number of nodes. In consequence, the generation of the next state is faster in the
global mode, but more expensive in terms of memory usage.
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When simulating the next state, the simulator first decides whether perturbations are
applied. If yes, the simulator updates the current state accordingly. If no, the simulator
chooses the predictor functions for each node and update the current state according to
the chosen predictor functions. Notice that the state transition matrix is not needed in
the simulation process, which makes ASSA-PBN capable of managing large PBNs.

The simulator is called by the analyser to perform simulation when statistical meth-
ods are selected for the analysis of a PBN. We explain the interaction between the
simulator and the analyser in the next section.

Analyser. The analyser provides three different classes of methods for the computation
of exact/approximate steady-state probabilities. The first class consists of two iterative
methods for exact computation of the steady-state distributions: the Jacobi method and
the Gauss-Seidel method. However, both of them require the state transition matrix to
be constructed by the constructor, which is expensive in terms of memory and time.
Therefore, these methods are only suitable for analysing small-size PBNs (the focus of
ASSA-PBN is on large PBNs). The two methods are available in probabilistic model
checkers, e.g., PRISM [11]. We reimplement them for the comprehensiveness of the
tool and the convenience of the user as there is no direct way to handle PBNs in PRISM.

The second class consists of the perfect simulation algorithm for sampling the
steady-state of DTMCs. It is based on the ingenious idea of the backward coupling
scheme originally proposed by Propp and Wilson in [12]. The perfect simulation al-
gorithm allows to draw independent samples which are distributed exactly in accor-
dance with the steady-state distribution of a DTMC. Thus, it avoids problems related
to the speed of convergence to the steady-state distribution or non-zero correlation be-
tween consecutive samples. Given a confidence level, the number of required samples
used for the approximation of the steady-state probability can be iteratively computed.
Due to the uncorrelated, exact samples the use of this sampling method for statistical
approximation of steady-state probabilities results in a smaller sample size than the
statistical methods from the third class discussed below. The current implementation
is in-line with the ‘Functional backward-coupling simulation with aliasing’ algorithm
provided in [5], which highly improves the efficiency. The functional coupling shortens
significantly the average coupling time in cases where the aim is to approximate the
steady-state probability for a subset of states. In general, larger subsets of interest result
in smaller coupling time. Due to the nature of this method, each state of the state space
needs to be considered at each step of the coupling scheme. Therefore, this approach is
suitable only for medium-size PBNs and is implemented for the comprehensiveness of
the tool. Unfortunately, since PBNs with perturbations are non-monotone systems, the
very efficient monotone version of perfect simulation [13] in which only a small subset
of the state space needs to be considered is of no use in this context.

The third class of available methods consists of two incremental sampling meth-
ods for approximate computation of the steady-state probabilities, i.e., 1) the Skart
method [8] and 2) the two-state Markov chain approach [6]. Both statistical methods op-
erate in accordance with the following scheme. The analyser calls the simulator to gen-
erate a trajectory of initial length. The algorithms check whether the trajectory is long
enough to compute estimates of average internal statistics, which satisfy a predefined
confidence level and precision requirements. If the confidence level and precision are
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node
number

method the two-state Markov chain Skart
precision 0.01 0.005 0.001 0.01 0.005 0.001

1,000
trajectory size 35,066 133,803 3,402,637 37,999 139,672 3,272,940
time cost (s) 6.19 23.53 616.26 7.02 24.39 590.26

2,000
trajectory size 64,057 240,662 5,978,309 63,674 273,942 5,936,060
time cost (s) 20.42 67.60 1722.86 20.65 78.53 1761.05

Table 1. Approximate steady-state analysis of two large PBNs (confidence level 95%).

not reached, the simulator will be called again to generate more samples. This process
is repeated until the confidence level and precision requirements are met. For a compre-
hensive description of these methods we refer to [6–8]. They are best suited for large
networks which cannot be analysed with the approaches from the previous two classes.
Our experiments show that both the Skart method and the two-state Markov chain ap-
proach in the current implementations can be used for the approximation of steady-state
probabilities for networks consisting of thousands of nodes (see Section 3).

3 Comparison, Evaluation and Future Developments

Comparison. Both ASSA-PBN and optPBN are designed for steady-state analysis of
PBNs. ASSA-PBN supports three statistical methods for computing the steady-state
probabilities of a PBN, while optPBN only prototypically implemented the two-state
Markov chain approach in Matlab. We compared our tool with optPBN for the analysis
of the 96-node PBN model of apoptosis in [4] using the two-state Markov chain ap-
proach. As mentioned in [4], their analysis of the influence of RIP deubi on complex2
was not handled completely due to the long computational time required by optPBN.
With the use of ASSA-PBN, we performed the complete analysis of the influence and
presented it in [7]. ASSA-PBN outperforms optPBN in terms of simulation speed. For
example, the time cost for simulating 100,000 steps of the 96-node PBN model in
optPBN is around 120s, which is almost 100 times more than that in ASSA-PBN.

Our tool is highly related to tools for statistical model checking [14, 15]. Existing
statistical model checkers are either restricted for bounded properties or cannot directly
deal with PBNs. The Skart method and the perfect simulation algorithm have been
recently used for statistical model checking of steady state and unbounded until prop-
erties [13, 16]. To the best of our knowledge, ASSA-PBN is the first tool to introduce
those two methods into the context of PBNs.
Evaluation. We have evaluated ASSA-PBN exhaustively on a large number of ran-
domly generated PBNs of different sizes ranging from a few nodes to a few thou-
sands nodes and with different characteristics (network structures being either sparse
or dense). We show in Table 1 the trajectory sizes and the time costs for computing
steady-state probabilities of two large PBNs using the two-state Markov chain approach
and the Skart method for different precision requirements. We have compared the per-
formance of these two methods in computing steady-state probabilities of PBNs on 882
randomly generated PBNs with nodes numbers ranging from 15 to 2,000. We collected
5,263 pairs of results. Based on this complete set of results, i.e., with nodes numbers
ranging from 15 to 2,000, the two-state Markov chain approach was faster than the
Skart method in most of the compared cases (see [7, Section 4] for more details).
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Future developments. One technique to improve the performance of ASSA-PBN is
parallel computation. This can be applied to the Jacobi method, the perfect simulation
algorithm and the simulation of a PBN. In the future, we plan to implement in ASSA-
PBN other algorithms (e.g., see [17]) for approximating steady-state probabilities.
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