
AVoCS’04 Preliminary Version

Simplifying Itai-Rodeh Leader Election
for Anonymous Rings

Wan Fokkink 1

Department of Software Engineering, CWI, Amsterdam, The Netherlands

Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands

Jun Pang 2

Department of Software Engineering, CWI, Amsterdam, The Netherlands

Abstract

We present two probabilistic leader election algorithms for anonymous unidirectional
rings with FIFO channels, based on an algorithm from Itai and Rodeh [14]. In
contrast to the Itai-Rodeh algorithm, our algorithms are finite-state. So they can
be analyzed using explicit state space exploration; we used the probabilistic model
checker PRISM to verify, for rings up to size four, that eventually a unique leader
is elected with probability one.

Key words: Distributed computing, leader election, anonymous
networks, probabilistic algorithms, model checking.

1 Introduction

Leader election is the problem of electing a unique leader in a network, in the
sense that the leader (process) knows that it has been elected and the other
processes know that they have not been elected. Leader election algorithms
require that all processes have the same local algorithm and that each compu-
tation terminates, with one process elected as leader. This is a fundamental
problem in distributed computing and has numerous applications. For exam-
ple, it is an important tool for breaking symmetry in a distributed system. By
choosing a process as the leader it is possible to execute centralized protocols
in a decentralized environment. Leader election can also be used to recover
from token loss for token-based protocols, by making the leader responsible
for generating a new token when the current one is lost.

1 Email: wan@cwi.nl; wanf@cs.vu.nl
2 Email: pangjun@cwi.nl

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Fokkink and Pang

There exists a broad range of leader election algorithms. These algorithms
have different message complexity in worst and/or average case. Furthermore,
they vary in communication mechanism (asynchronous vs. synchronous), pro-
cess names (unique identities vs. anonymous), and network topology (e.g.
ring, tree, complete graph).

A first leader election algorithm for unidirectional rings was given by Le
Lann [17]. It requires that each process has a unique identity, with a to-
tal ordering on identities; the process with the largest identity becomes the
leader. The basic idea of Le Lann’s algorithm is that each process sends a
message around the ring bearing its identity. Thus it requires a total of n2

messages, where n is the number of processes in the ring. Chang and Roberts
[7] improved Le Lann’s algorithm by letting only the message with the largest
identity complete the round trip; their algorithm still requires in the order
of n2 messages in the worst case, but only n log n on average. Franklin [10]
developed a leader election algorithm for bidirectional rings with a worst-case
message complexity of O(n log n). Peterson [18] and Dolev, Klawe, and Rodeh
[8] independently adapted Franklin’s algorithm so that it also works for uni-
directional rings. All the above algorithms work both for asynchronous and
for synchronous communication, and do not require a priori knowledge about
the number of processes.

Sometimes the processes in a network cannot be distinguished by means of
unique identities. First, as the number of processes in a network increases, it
may become difficult to keep the identities of all processes distinct; or a net-
work may accidentally assign the same identity to different processes. Second,
identities cannot always be sent around the network, for instance for reasons
of efficiency. An example of the latter is FireWire, the IEEE 1394 high per-
formance serial bus. A leader election algorithm that works in the absence of
unique process identities is also desirable from the standpoint of fault toler-
ance. In an anonymous network, processes do not carry an identity. Angluin
[2] showed that there does not exist a terminating algorithm for electing a
leader in an asynchronous anonymous network. According to this result, a
Las Vegas algorithm (meaning that the probability that the algorithm termi-
nates is greater than zero, and all terminal configurations are correct) is the
best possible option.

Itai and Rodeh [14,15] proposed a probabilistic leader election algorithm
for anonymous unidirectional rings, based on the Chang-Roberts algorithm.
Each process selects a random identity from a finite domain, and processes
with the largest identity start a new election round if they detect a name
clash. It is assumed that the size of the ring is known to all processes, so that
each process can recognize its own message (by means of a hop counter that
is part of the message). The Itai-Rodeh algorithm is a Las Vegas algorithm
that terminates with probability one; it takes n log n messages on average.

The Itai-Rodeh algorithm makes no assumptions about channel behavior,
except fair scheduling. An old message, that has been overtaken by other

2



Fokkink and Pang

messages in the ring, could in principle result in a situation where no leader is
elected (see Fig. 1 in Section 2.2). In order to avoid this problem, the algorithm
proceeds in successive rounds, and each process and message is supplied with
a round number. Thus an old message can be recognized and ignored. Due
to the use of round numbers, the Itai-Rodeh algorithm has an infinite state
space.

In this paper, we make the assumption that channels are FIFO. We claim
that in this case round numbers can be omitted from the Itai-Rodeh algorithm.
We present two adaptations of the Itai-Rodeh algorithm, that are correct in
the presence of FIFO channels. In the first algorithm, a process may only
choose a new identity when its message has completed the round trip, as
is the case in the Itai-Rodeh algorithm. In the second algorithm, a process
selects a new identity as soon as it detects that another process in the ring
carries the same identity (even though this identity may not be the largest one
in the ring). Since both algorithms do not use round numbers, they are finite-
state. This means that we can apply model checking to automatically verify
properties of an algorithm, specified in some temporal logic. These properties
can be checked against the explicit (finite) state space of the algorithm, for
specific ring sizes. We used PRISM [16], a probabilistic model checker that
can be used to model and analyze systems containing probabilistic aspects.
We specified both algorithms in the PRISM language, and for rings up to size
four we verified the property: “with probability one, eventually exactly one
leader is elected”.

PRISM offers the possibility to calculate the probability that our algo-
rithms have terminated after some number of messages. These statistics show
that the first algorithm on average requires more messages to terminate than
the second algorithm.

On the web page of PRISM (http://www.cs.bham.ac.uk/~dxp/prism),
the Itai-Rodeh algorithm for asynchronous rings was adapted for synchronous
rings. In PRISM, processes synchronize on action labels, so a synchronous
ring can simply be modeled by excluding channels from the specification.
Processes are synchronized in the same round, thus round numbers are not
needed (similar to our Algorithm A). The state space therefore becomes
finite, and PRISM could be used to verify the property “with probability one,
eventually a unique leader is elected”, for rings up to size eight. Also the
probability of electing a leader in one round was calculated. More related
work on formal verification of leader election algorithms can be found in the
full version of this paper [9].

Section 2 contains the original Itai-Rodeh algorithm. In Sections 3 and 4,
we present two probabilistic leader election algorithms for anonymous rings
with FIFO channels. We explain our verification results with PRISM. Sec-
tion 5 reveals some experimental results using PRISM on the number of mes-
sages needed to terminate. We conclude this paper and discuss some future
work in Section 6.

3

http://www.cs.bham.ac.uk/~dxp/prism


Fokkink and Pang

2 Itai-Rodeh Leader Election

We consider an asynchronous, anonymous, unidirectional ring consisting of
n ≥ 2 processes p0, . . . , pn−1. Processes communicate asynchronously by send-
ing and receiving messages over channels, which are assumed to be reliable.
Channels are unidirectional: a message sent by pi is added to the message
queue of p(i+1)mod n. The message queues are guided by a fair scheduler,
meaning that in each infinite execution sequence, every sent message even-
tually arrives at its destination. Processes are anonymous, so they do not
have unique identities. The challenge is to present a uniform local algorithm
for each process, such that one leader is elected among the processes.

2.1 The Itai-Rodeh algorithm

Itai and Rodeh [14,15] studied how to break the symmetry in anonymous
networks using probabilistic algorithms. They presented a probabilistic algo-
rithm to elect a leader in the above network model, under the assumption
that processes know that the size of the ring is n. It is a Las Vegas algorithm
that terminates with probability one. The Itai-Rodeh algorithm is based on
the Chang-Roberts algorithm [7], where processes are assumed to have unique
identities, and each process sends out a message carrying its identity. Only
the message with the largest identity completes the round trip and returns to
its originator, which becomes the leader.

In the Itai-Rodeh algorithm, each process selects a random identity from
a finite set. So different processes may carry the same identity. Again each
process sends out a message carrying its identity. Messages are supplied with
a hop counter, so that a process can recognize its own message (by checking
whether the hop counter equals the ring size n). Moreover, a process with the
largest identity present in the ring must be able to detect whether there are
other processes in the ring with the same identity. Therefore each message
is supplied with a bit, which is dirtied when it passes a process that is not
its originator but shares the same identity. When a process receives its own
message, either it becomes the leader (if the bit is clean), or it selects a new
identity and starts the next election round (if the bit is dirty). In this next
election round, only processes that shared the largest identity in the ring are
active. All other processes have been made passive by the receipt of a message
with an identity larger than their own. The active processes maintain a round

number, which initially starts at zero and is augmented at each new election
round. Thus messages from earlier election rounds can be recognized and
ignored.

We proceed to present a detailed description of the Itai-Rodeh algorithm.
Each process pi maintains three parameters:

- id i ∈ {1, . . . , k}, for some k ≥ 2, is its identity;

- state i ranges over {active, passive, leader};

4



Fokkink and Pang

- round i ∈ N represents the number of the current election round.

Only active processes may become the leader; passive processes simply pass
on messages. At the start of a new election round, each active process sends
a message of the form (id , round , hop, bit), where:

- the values of id and round are taken from the process that sends the message;

- hop is a counter that initially has the value one, and which is increased by
one every time it is passed on by a process;

- bit is a bit that initially is true, and which is set to false when it visits a
process that has the same identity but that is not its originator.

The Itai-Rodeh algorithm.

• Initially, all processes are active, and each process pi randomly selects its
identity id i ∈ {1, . . . , k} and sends the message (id i, 1, 1, true).

• Upon receipt of a message (id , round , hop, bit), a passive process pi (statei =
passive) passes on the message, increasing the counter hop by one; an active
process pi (statei = active) behaves according to one of the following steps:

· if hop = n and bit = true, then pi becomes the leader (state ′

i = leader);
· if hop = n and bit = false, then pi selects a new random identity id ′

i ∈
{1, . . . , k}, moves to the next round (round ′

i = round i + 1), and sends the
message (id ′

i, round ′

i, 1, true);
· if (round , id) = (round i, id i) and hop < n, then pi passes on the message

(id , round , hop + 1, false);
· if (round , id) > (round i, id i),

a then pi becomes passive (state ′i = passive)
and passes on the message (id , round , hop + 1, bit);

· if (round , id) < (round i, id i), then pi purges the message.
a We compare (round , id) and (round i, id i) lexicographically.

We say that an execution sequence of the Itai-Rodeh algorithm has termi-

nated if each process is either passive or elected as leader, and there are no
remaining messages in the channels.

2.2 Round numbers are needed

Fig. 1 presents a scenario to show that if round numbers were omitted, the Itai-
Rodeh algorithm could produce an execution sequence in which all processes
become passive, so that no leader is elected. This example uses the fact that
channels are not FIFO. Let k ≥ 3. Fig. 1 depicts a ring of size three; black
processes are active and white processes are passive. Initially, all processes
are active, and the two processes above select the same identity u, while the
one below selects an identity v < u. (See the left side of Fig. 1.) The three
processes send a message with their identity, and at the receipt of a message
with identity u, process v becomes passive. Since channels are not FIFO, the

5



Fokkink and Pang

message (v, 1, true) can be overtaken by the other two messages with identity
u. The latter two messages return to their originators with a dirty bit. So
the processes with identity u detect a name clash, select new identities w < v

and x < v, and send messages carrying these identities. (See the middle part
of Fig. 1.) Finally, the message with identity v makes the processes with
identities w and x passive. The three messages in the ring are passed on
forever by the three passive processes. (See the right side of Fig. 1.)

v

u > v

v

v > w, x

(u, 1, true) (v, 3, true)

v

v > w, x

(x, 1, true)

(v, 1, true)

u u w x w x
(u, 1, true) (w, 1, true)

(v, 1, true)

Fig. 1. Round numbers are essential if channels are not FIFO

3 Leader Election without Round Numbers

We observe that if channels are FIFO, round numbers are redundant. Thus we
obtain a simplification of the Itai-Rodeh algorithm. Algorithm A is obtained
by considering only those cases in the Itai-Rodeh algorithm where the active
process pi and the incoming message have the same round number.

Algorithm A.

• Initially, all processes are active, and each process pi randomly selects its
identity id i ∈ {1, . . . , k} and sends the message (id i, 1, true).

• Upon receipt of a message (id , hop, bit), a passive process pi (statei = passive)
passes on the message, increasing the counter hop by one; an active process pi

(statei = active) behaves according to one of the following steps:

· if hop = n and bit = true, then pi becomes the leader (state ′

i = leader);
· if hop = n and bit = false, then pi selects a new random identity id ′

i ∈
{1, . . . , k} and sends the message (id ′

i, 1, true);
· if id = id i and hop < n, then pi passes on the message (id , hop + 1, false);
· if id > id i, then pi becomes passive (state ′i = passive) and passes on the

message (id , hop + 1, bit);
· if id < id i, then pi purges the message.

Owing to the elimination of round numbers, Algorithm A is finite-state,
contrary to the Itai-Rodeh algorithm. Hence we can apply explicit state space
generation and model checking to establish the correctness of Algorithm A for
fixed ring sizes.

PRISM [16] is a probabilistic model checker. It allows one to model and
analyze systems and algorithms containing probabilistic aspects. PRISM

6



Fokkink and Pang

supports three kinds of probabilistic models: discrete-time Markov chains
(DTMCs), Markov decision processes (MDPs) and continuous-time Markov
chains (CTMCs). Analysis is performed through model checking such sys-
tems against specifications written in the probabilistic temporal logic PCTL
[12,4] if the model is a DTMC or an MDP, or CSL [3] in the case of a CTMC.

In order to model check probabilistic properties of Algorithm A, we first
encoded the algorithm as a DTMC model using the PRISM language, which
is a simple, state-based language, based on the Reactive Modules formalism
of Alur and Henzinger [1]. A system is composed of a number of modules that
contain local variables, and that can interact with each other. The behavior
of a DTMC is described by a set of commands of the form:

[a] g → λ1 : u1 + . . . + λ` : u`

a is an action label in the style of process algebras, which introduces syn-
chronization into the model. It can only be performed simultaneously by all
modules that have an occurrence of action label a in their specification. If a
transition does not have to synchronize with other transitions, then no action
label needs to be provided for this transition. The symbol g is a predicate
over all the variables in the system. Each ui describes a transition which the
module can make if g is true. A transition updates the value of the variables
by giving their new primed value with respect to their unprimed value. The
λi are used to assign probabilistic information to the transition. It is required
that λ1 + · · · + λ` = 1. This probabilistic information can be omitted if ` = 1
(and so λ1 = 1). PRISM considers states without outgoing transitions as error
states; terminating states can be modeled by adding a self-loop.

We used PRISM to verify that Algorithm A satisfies the probabilistic prop-
erty “with probability 1, eventually exactly one leader is elected”. We modeled
each FIFO channel and each process as a separate module in PRISM. The fol-
lowing code in the PRISM language gives the specification for a channel of size
two. The channel channel1 receives a message (mes1 id,mes1 counter,mes1 bit)
from process p1 (synchronized on action label rec from p1) and sends it to pro-
cess p2 (synchronized on action label send to p2). Each position i ∈ {1, 2} in
the channel is represented by a triple of natural numbers: one for the process
identity contained in a message (b 1 2 i1), one for the hop counter (b 1 2 i2),
and one for the bit (b 1 2 i3). If the natural numbers for a position in a chan-
nel are greater than zero, it means this position is occupied by a message.
Otherwise, the position is empty.

We present the channel between processes p1 and p2. Both the number of
processes and the size of the identity set are two (N=2; K=2).

module channel1
b 1 2 11: [0..K]; b 1 2 12:[0..N]; b 1 2 13:[0..1];
b 1 2 21: [0..K]; b 1 2 22:[0..N]; b 1 2 13:[0..1];
[rec from p1] b 1 2 11=0

→ (b 1 2 11’=mes1 id) & (b 1 2 12’=mes1 counter) &
(b 1 2 13’=mes1 bit);

7



Fokkink and Pang

[rec from p1] (b 1 2 11>0) & (b 1 2 21=0)
→ (b 1 2 21’=mes1 id) & (b 1 2 22’=mes1 counter) &

(b 1 2 23’=mes1 bit);
[send to p2] b 1 2 11>0

→ (b 1 2 11’=b 1 2 21) & (b 1 2 12’=b 1 2 22) &
(b 1 2 13’=b 1 2 23) & (b 1 2 21’=0) &
(b 1 2 22’=0) & (b 1 2 23’=0);

endmodule

mes1 id, mes1 counter and mes1 bit are shared variables. They are used in
the module process1 below for receiving and sending messages. Only in that
module values can be assigned to these variables. mes1 id carries the identity
of a message, mes1 counter its hop counter, and mes1 bit the clean (1) or dirty
(0) bit. If no message is present, all three variables have the value zero. (So
mes1 bit=0 has two meanings: either there is no message, or the bit is dirty.)

Each process pi is specified by means of a variable processi id:[0..K] for its
identity (where 0 means that the process is passive or selecting a new identity),
a variable si:[0...5] for its local state (this is explained below), and a variable
leaderi:[0..1] (where in state 0 means that the process is passive, and 1 that it
is the leader). The following PRISM code is the specification for process p1.

module process1
process1 id:[0..K]; s1:[0..5]; leader1:[0..1];
mes1 id:[0..K]; mes1 counter:[0..N]; mes1 bit:[0..1];

When a process is in state 0, it is active and can randomly (modeled by the
probability rate R=1/K) select its identity, build a new message with this
identity, and set its state to 1.

[ ] s1=0
→ R: (s1’=1) & (process1 id’=1) & (mes1 id’=1) &

(mes1 counter’=1) & (mes1 bit’=1)
+ R: (s1’=1) & (process1 id’=2) & (mes1 id’=2) &

(mes1 counter’=1) & (mes1 bit’=1);

When s1=1, the process sends the new message into channel 1 (modeled by a
synchronization with channel1 on action rec from p1), and moves to state 2.

[rec from p1] s1=1
→ (s1’=2) & (mes1 id’=0) & (mes1 counter’=0) & (mes1 bit’=0);

In state 2 the process can receive a message from channel 2 (modeled by a
synchronization with module channel2 on action send to p1), and go to state
3. Note that b 2 1 11, b 2 1 12 and b 2 1 31 are shared variables, representing
the first position in the module channel2.

[send to p1] s1=2
→ (s1’=3) & (mes1 id’=b 2 1 11) &

(mes1 counter’=b 2 1 12) & (mes1 bit’=b 2 1 13);

When a process is in state 3, it has received a message and takes a decision.

8



Fokkink and Pang

If the process got its own message back (mes1 counter=N) and the bit of the
message is clean (mes1 bit=1), the process is elected as the leader (leader1’=1),
and moves to state 4.

[ ] (s1=3) & (mes1 counter=N) & (mes1 bit=1)
→ (s1’=4) & (process1 id’=0) & (mes1 id’=0) &

(mes1 counter’=0) & (mes1 bit’=0) & (leader1’=1);

If mes1 counter=N and mes1 bit=0, the process changes its state to 0 and will
select a new random identity.

[ ] (s1=3) & (mes1 counter=N) & (mes1 bit=0)
→ (s1’=0) & (process1 id’=0) & (mes1 id’=0) &

(mes1 counter’=0) & (mes1 bit’=0);

If mes1 id=process1 id and mes1 counter<N, the process has received a mes-
sage with the same identity, but the message does not originate from itself.
It increases the hop counter in the message by one, makes the bit dirty, and
moves to state 5 to pass on the message.

[ ] (s1=3) & (mes1 id=process1 id) & (mes1 counter<N)
→ (s1’=5) & (mes1 counter’=mes1 counter+1) & (mes1 bit’=0);

If mes1 id<process1 id, the process purges the message, and moves back to
state 2 to receive another message.

[ ] (s1=3) & (mes1 id<process1 id)
→ (s1’=2) & (mes1 id’=0) & (mes1 counter’=0) & (mes1 bit’=0);

If mes1 id>process1 id, the process increases the hop counter in the message
by one, and goes to state 4 where it becomes passive (i.e., the value of leader1
remains zero).

[ ] (s1=3) & (mes1 id>process1 id)
→ (s1’=4) & (process1 id’=0) & (mes1 counter’=mes1 counter+1);

In state 5, a process passes on a message, and moves to state 2.

[rec from p1] (s1=5)
→ (s1’=2) & (mes1 id’=0) & (mes1 counter’=0) & (mes1 bit’=0);

In state 4, a passive process (leader1=0) can only pass on messages with their
hop counter increased by one.

[send to p1] (s1=4) & (leader1=0) & (mes1 id=0)
→ (mes1 id’=b 2 1 11) & (mes1 counter’=b 2 1 12+1) &

(mes1 bit’=b 2 1 13);
[rec from p1] (s1=4) & (leader1=0) & (mes1 id>0)

→ (mes1 id’=0) & (mes1 counter’=0) & (mes1 bit’=0);

We added the conjunct leader1=0 to the predicate in order to emphasize that
the leader does not have to deal with incoming messages. Namely, when a
process is elected as the leader there are no remaining messages, owing to the
fact that channels are FIFO.

A self-loop with synchronization on an action label done is added to pro-

9



Fokkink and Pang

Processes Identities Channel size FIFO States Transitions

Ex.1 2 2 2 yes 127 216

Ex.2 3 3 3 yes 5,467 12,360

Ex.3 4 3 4 yes 99,329 283,872

Table 1
Model checking result for Algorithm A with FIFO channels

cesses in state 4, to avoid deadlock states.

[done] (s1=4) → (s1’=s1);
endmodule

Other channels and processes can be constructed by carefully module renam-

ing modules channel1 and process1. The initial value of each variable is the
minimal value in its range.

Below we specify the property “with probability 1, eventually exactly one
leader is elected” for a ring with two processes as a PCTL formula:

Property: P>=1 [ true U (s1=4 & s2=4 & leader1+leader2=1 &
b 1 2 11+b 2 1 11=0) ]

It states that the probability that ultimately both p1 and p2 are in state 4 (s1=4
& s2=4), with exactly one process elected as the leader (leader1+leader2=1),
is at least one. In addition, we check that the algorithm terminates with no
message in the ring (b 1 2 11+b 2 1 11=0).

To model check this property, the algorithmic description (in the module-
based language) was parsed and converted into an MTBDD [11]. In PRISM,
reachability is performed to identify non-reachable states and the MTBDD is
filtered accordingly. Table 1 shows statistics for each model we have built.
The first part gives the parameters for each model: the ring size n, the size of
the identity set, and the size of the channel. It is not hard to see that at any
time there are at most n messages in the ring, so channel size n suffices; and
having n different possible identities means that in each “round”, all active
processes can select a different identity. The second part gives the number of
states and transitions in the MTBDD representing the model.

Property was successfully checked on all the ring networks in Table 1 (we
used the model checker PRISM 2.0 with its default options). Note that for
n = 4, we could only check the property for an identity set of size three. For
n = 4 and an identity set of size four, and in general for n ≥ 5, PRISM fails
to build a model due to the lack of memory.

4 Leader Election without Bits

In this section, we present another leader election algorithm, which is a vari-
ation of Algorithm A. Again channels are assumed to be FIFO. We observe

10



Fokkink and Pang

that when an active process pi detects a name clash, meaning that it receives
a message with its own identity and hop counter smaller than n, it is not nec-
essary for pi to wait for its own message to return. Instead pi can immediately
select a new random identity and send a new message. Algorithm B is ob-
tained by adapting Algorithm A according to this observation. In particular
all occurrences of bits are omitted.

Algorithm B.

• Initially, all processes are active, and each process pi randomly selects its
identity id i ∈ {1, . . . , k} and sends the message (id i, 1).

• Upon receipt of a message (id, hop), a passive process pi (statei = passive)
passes on the message, increasing the counter hop by one; an active process pi

(statei = active) behaves according to one of the following steps:

· if hop = n, then pi becomes the leader (state ′

i = leader);
· if id = id i and hop < n, then pi selects a new random identity id ′

i ∈
{1, . . . , k} and sends the message (id ′

i, 1);
· if id > id i, then pi becomes passive (state ′i = passive) and passes on the

message (id , hop + 1);
· if id < id i, then pi purges the message.

Channels are modeled in the same way as in Section 3. We present each
process pi with a variable process i id:[0..K] for its identity, a variable s i:[0...4]
for its local state, and a variable leader i:[0..1]. We present only part of the
PRISM specification for process p1. The parts when a process is in state 0,
1, 2 or 4 are omitted, as this behavior is very similar to Algorithm A (see
Section 3). State 5 is redundant here, because a process selects a new identity
as soon as it detects a name clash.

module process1
process1 id:[0..K]; s1:[0..4]; leader1:[0..1]; mes1 id:[0..K];
mes1 counter:[0..N];

When a process in state 3, it has received a message from the channel
and takes a decision. If mes1 counter=N, the process is elected as the leader
(leader1’=1), and moves to state 4.

[ ] (s1=3) & (mes1 counter=N)
→ (s1’=4) & (process1 id’=0) & (mes1 id’=0) &

(mes1 counter’=0) & (leader1’=1);

If mes1 id=process1 id and mes1 counter<N, the process goes back to state 0
and will select a new identity.

[ ] (s1=3) & (mes1 id=process1 id) & (mes1 counter<N)
→ (s1’=0) & (mes1 id’=0) & (mes1 counter’=0) & (process1 id’=0);

If mes1 id<process1 id, the process purges the message, and moves back to
state 2 to receive another message.

11



Fokkink and Pang

Processes Identities Channel size FIFO States Transitions

Ex.1 2 2 2 yes 97 168

Ex.2 3 3 3 yes 6,019 14,115

Ex.3 4 3 4 yes 176,068 521,452

Ex.4 4 4 4 yes 537,467 1,615,408

Ex.5 5 2 5 yes 752,047 2,626,405

Table 2
Model checking result for Algorithm B with FIFO channels

[ ] (s1=3) & (mes1 id<process1 id)
→ (s1’=2) & (mes1 id’=0) & (mes1 counter’=0);

If mes1 id>process1 id, the process becomes passive, increases the hop counter
of the message by one, and goes to state 4.

[ ] (s1=3) & (mes1 id>process1 id)
→ (s1’=4) & (process1 id’=0) & (mes1 counter’=mes1 counter+1);

...
endmodule

Other channels and processes can be constructed by module renaming.

Property was successfully model checked with respect to Algorithm B, in a
setting with FIFO channels, for rings up to size five. For any larger ring size,
and in case of ring size five and an identity domain containing three elements,
PRISM fails to produce an MTBDD. Table 2 summarizes the verification
results for Algorithm B with PRISM.

5 Performance Analysis

A probabilistic analysis in [14] reveals that if k = n, the expected number of
rounds required for the Itai-Rodeh algorithm to elect a leader in a ring with
size n is bounded by e· n

n−1
. The expected number of messages for each round

is O(n log n). Hence, the average message complexity of the Itai-Rodeh algo-
rithm is O(n log n). Likewise, Algorithms A and B have an average message
complexity of O(n log n).

The probabilistic temporal logic PCTL [12,4] can be used to express soft

deadlines, such as “the probability of electing a leader within t discrete time
steps is at most 0.5”. 3 A PCTL formula to calculate the probability of electing
a leader within t discrete time steps for a ring with two processes is

P=? [ true U<=t (s1=4 & s2=4 & leader1+leader2=1)]

We used PRISM to calculate the probability that Algorithms A and B termi-
nate within a given number of transitions, for rings of size two and three. The

3 Each discrete time step corresponds to one transition in the algorithm.

12



Fokkink and Pang

experimental results presented in Fig. 2 and Fig. 3 indicate that Algorithm
B seems to have a better performance than Algorithm A. Note that when t

moves to infinity, both algorithms elect a leader with probability one.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  20  30  40  50  60  70  80  90  100

pr
ob

ab
ili

ty
 o

f e
le

ct
in

g 
a 

le
ad

er

number of discrete time steps

2 processes, 2 identities

algorithm A
algorithm B

Fig. 2. The probability of electing a leader with deadlines.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  20  30  40  50  60  70  80  90  100

pr
ob

ab
ili

ty
 o

f e
le

ct
in

g 
a 

le
ad

er

number of discrete time steps

3 processes, 3 identities

algorithm A
algorithm B

Fig. 3. The probability of electing a leader with deadlines.

We also used a development version of PRISM to compute the expected
number of steps before a unique leader is elected for each algorithm with
fixed configurations. (This new feature will be included in the next release of
PRISM. ) Some experimental results (see Table 3) show that Algorithm B is
on average faster than Algorithm A.

6 Conclusion and Future Work

In this paper, we presented two probabilistic leader election algorithms for
anonymous unidirectional rings with FIFO channels. Both algorithms were

13



Fokkink and Pang

Processes Identities Channel size Steps (A) Steps (B)

Ex.1 2 2 2 25.0 19.0

Ex.2 3 3 3 33.6 29.3

Ex.3 4 3 4 52.5 46.0

Table 3
The expected number of steps before a unique leader is elected for each algorithm.

specified and successfully model checked with PRISM. They satisfy the prop-
erty “with probability 1, eventually exactly one leader is elected”. The com-
plete specifications in PRISM can be found at www.cwi.nl/~pangjun/leader.
The generation of state spaces and the verifications were performed on a 1.4
GHz AMD AlthlonTM Processor with 512 Mb memory. Furthermore, we gave
a manual correctness proof for each algorithm (see [9]). Future work is to
formalize and check these proofs by means of a theorem prover such as PVS.

Itai and Rodeh [14] stated:

“We could have used any of the improved algorithms [6], [8], [13], [18].”

Following this direction, we developed two more probabilistic leader election
algorithms, based on the Dolev-Klawe-Rodeh algorithm [8,10]. Both of them
are finite-state, and we model checked them successfully in µCRL [5] up to
ring size six. The adaptations of the Dolev-Klawe-Rodeh algorithm are very
similar to our adaptations (Algorithms A and B) of the Chang-Roberts al-
gorithm; i.e., processes again select random identities, and name clashes are
resolved in exactly the same way. Therefore our adaptations of the Dolev-
Klawe-Rodeh algorithm are not presented here. The interested reader can
find the specifications of all our algorithms at www.cwi.nl/~pangjun/leader.
These specifications are in the language µCRL, which was used for an initial
non-probabilistic model checking exercise.

Acknowledgement

This research is supported by the Dutch Technology Foundation STW under
the project CES5008. We thank Gethin Norman for helping us with PRISM.

References

[1] R. Alur and T.A. Henzinger. Reactive modules. Formal Methods in System

Design, 15(1): 7-48, 1999.

[2] D. Angluin. Local and global properties in networks of processors (extended
abstract). In Proc. STOC’80, pp. 82-93, ACM, 1980.

[3] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model checking

14

www.cwi.nl/~pangjun/leader
www.cwi.nl/~pangjun/leader


Fokkink and Pang

continuous-time Markov chains by transient analysis. In Proc. CAV’00, LNCS
1855, pp. 358–372. Springer, 2000.

[4] C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching
time logic with fairness. Distributed Computing, 11(3): 125-155, 1998.

[5] S.C.C. Blom, W.J. Fokkink, J.F. Groote, I.A. van Langevelde, B. Lisser, and
J.C. van de Pol. µCRL: A toolset for analysing algebraic specifications. In
Proc. CAV’01, LNCS 2102, pp. 250–254. Springer, 2001.

[6] J.E. Burns. A formal model for message passing systems. Technical Report
TR-91, Indiana University, 1980.

[7] E.J.H. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes. Communication of the

ACM, 22(5): 281-283, 1979.

[8] D. Dolev, M. Klawe, and M. Rodeh. An O(n log n) unidirectional distributed
algorithm for extrema finding in a circle. Journal of Algorithms, 3: 245-260,
1982.

[9] W.J. Fokkink and J. Pang. Simplifying Itai-Rodeh leader election for
anonymous rings. Technical Report SEN-R0405, CWI Amsterdam, 2004.

[10] R. Franklin. On an improved algorithm for decentralized extrema finding in
circular configurations of processors. Communication of the ACM, 25(5): 336-
337, 1982.

[11] M. Fujita, P.C. McGeer, and J.C.-Y. Yang. Multi-terminal binary decision
diagrams: An efficient data structure for matrix representation. Formal Methods

in System Design, 10(2/3): 149-169, 1997.

[12] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.
Formal Aspects of Computing 6(5): 512-535, 1994.

[13] D.S. Hirschberg and J.B. Sinclair. Decentralized extrema-finding in circular
configurations of processes. Communication of the ACM, 23(11): 627-628, 1980.

[14] A. Itai and M. Rodeh. Symmetry breaking in distributive networks. In Proc.

FOCS’81, pp. 150–158. IEEE Computer Society, 1981.

[15] A. Itai and M. Rodeh. Symmetry breaking in distributed networks. Information

and Computation, 88(1): 60-87, 1990.

[16] M.Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic
model checker. In Proc. TOOLS’02, LNCS 2324, pp. 200-204. Springer, 2002.

[17] G. Le Lann. Distributed systems: Towards a formal approach. Information

Processing 77, Proc. of the IFIP Congress, pp. 155-160, 1977.

[18] G.L. Peterson. An O(n log n) unidirectional algorithm for the circular extrema
problem. IEEE Transactions on Programming Languages and Systems, 4: 758-
762, 1982.

15


	Introduction
	Itai-Rodeh Leader Election
	The Itai-Rodeh algorithm
	Round numbers are needed

	Leader Election without Round Numbers
	Leader Election without Bits
	Performance Analysis
	Conclusion and Future Work
	Acknowledgement 
	References

