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ABSTRACT
We study the problem of computing a minimal subset of nodes of a

given asynchronous Boolean network that need to be controlled to

drive its dynamics from an initial steady state (or attractor) to a tar-

get steady state. Due to the phenomenon of state-space explosion,

a simple global approach that performs computations on the entire

network, may not scale well for large networks. We believe that

efficient algorithms for such networks must exploit the structure

of the networks together with their dynamics. Taking such an ap-

proach, we derive a decomposition-based solution to the minimal

control problem which can be significantly faster than the exist-

ing approaches on large networks. We apply our solution to both

real-life biological networks and randomly generated networks,

demonstrating promising results.
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1 INTRODUCTION
Cell reprogramming is a way to change one cell phenotype to an-

other, allowing tissue or neuron regeneration techniques. Recent

studies have shown that differentiated adult cells can be repro-

grammed to embryonic-like pluripotent state or directly to other

types of adult cells without the need of intermediate reversion to

pluripotent state [5, 20]. This has led to a surge in regenerative

medicine and there is a growing need for the discovery of new and

efficient methods for the control of cellular behaviour.

In this work we focus on the study and control of gene reg-

ulatory networks (GRNs) and their combined dynamics with an
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associated signalling pathway. GRNs are graphical diagrams visual-

ising the relationships between genes and their regulators. They

represent biological systems characterised by the orchestrated in-

terplay of complex interactions resulting in highly nested feedback

and feed-forward loops. Signalling networks consist of interacting

signalling pathways that perceive the changes in the environment

and allow the cell to correctly respond to them by appropriately

adjusting its gene-expression. These pathways are often complex,

multi-component biological systems that are regulated by various

feedbacks and that interfere with each other via diverse cross-talks.

As a result, GRNs with integrated signalling networks are represen-

tatives of complex systems characterised by non-linear dynamics.

These factors render the design of external control strategies for

these biological systems a very challenging task. So far, no general

mathematical frameworks for the control of this type of systems

have been developed [3, 8, 9].

Boolean networks (BNs), first introduced by Kauffman [7], is a

popular and well-established framework for modelling GRNs and

their associated signalling pathways. Its main advantage is that it

is simple and yet able to capture the important dynamic properties

of the system under study, thus facilitating the modelling of large

biological systems as a whole. The states of a BN are tuples of

0s and 1s where each element of the tuple represents the level

of activity of a particular protein in the GRN or the signalling

pathway it models - 0 for inactive and 1 for active. The BN is

assumed to evolve dynamically by moving from one state to the

next governed by a Boolean function for each of its components. The

steady state behaviour of a BN is given by its subset of states called

attractors to one of which the dynamics eventually settles down.

In biological context, attractors are hypothesised to characterise

cellular phenotypes [7] and also correspond to functional cellular

states such as proliferation, apoptosis differentiation etc. [6].

Cellular reprogramming, or the control of the GRNs and their

signalling pathways therefore amounts to being able to drive the dy-

namics of the associated BN from an attractor to another ‘desirable’

target attractor by controlling or reprogramming the nodes of the

BN. This needs to be done while respecting certain constraints viz.

a minimal subset of nodes of the BN are controlled or the control

is applied only for a minimal number of time steps. Under such

constraints, it is known that the problem of driving the BN from a

source to a target attractor (the control problem) is computationally

difficult [11, 12] and does not scale well to large networks. Thus a

simple global approach (see Section 3.4 for a description) treating

the entire network in one-go is highly inefficient. This is intuitively

due to the infamous state-space explosion problem. Since most
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real-life networks are large, there is a strong need for designing

algorithms which exploit certain properties (structural or dynamic

or both) of a BN and can efficiently address the control problem.

Our contributions. In this paper, we develop a generic approach

towards solving the minimal control problem (defined formally in

Section 3) on large BNs based on combining both their structural

and the dynamic properties. We show that:

• The problem of computing the minimal set of nodes to be

controlled in a single time-step (simultaneously) to drive

the system from a source state s to a target attractor At
(driver nodes) is equivalent to computing a subset of states of

the state transition graph of the BN called the strong basin
(defined in Section 3) of attraction of At (dynamic property).

• We show how the network structure of a large BN can be

explored to decompose it into smaller blocks. The strong

basins of attractions of the projection of At to these blocks

can be computed locally and then combined to recover the

global strong basin of attraction of At (structural property).
• Any algorithm for the computation of the global strong basin

of attraction of At can also be used to compute the local

strong basins of attraction of the projections of At to the

blocks of BN. Doing so results in the improvement in effi-

ciency for certain networks which have modular structures

(like most real-life biological networks).

• We concretise our approach by describing in detail one such

algorithm (Algorithm 1) which is based on the computation

of fixed points of set operations.

• We have implemented our decomposition-based approach

using this algorithm and applied it to a number of case stud-

ies of BNs corresponding to real-life biological networks

and randomly generated BNs. Our results show that for cer-

tain structurally well-behaved BNs our decomposition-based

approach is efficient and outperforms the global approach.

2 RELATEDWORK
In recent years, several approaches have been developed for the

control of complex networks [1–3, 9, 11, 12, 15, 22–24]. Among

them, the methods [1, 3, 9] were proposed to tackle the control of

networks with linear time-invariant dynamics. Liu et al. [9] first

developed a structural controllability framework for complex net-

works to solve full control problems, by identifying the minimal set

of (driver) nodes that can steer the entire dynamics of the system.

Afterwards, Gao et al. extended this method to the target control

of complex networks [3]. They proposed a k-walk method and

a greedy algorithm to identify a set of driver nodes for control-

ling a pre-selected set of target nodes. However, Czeizler et al. [1]

proved that it is NP-hard to find the minimal set of driver nodes for

structural target control problems and they improved the greedy

algorithm [3] using several heuristics. The above methods have a

common distinctive advantage that they are solely based on the net-

work structures, which are exponentially smaller than the number

of states in their dynamics. Nevertheless, they are only applicable

to systems with linear time-invariant dynamics.

The control methods proposed in [2, 11, 12, 15, 22–24] are de-

signed for networks governed by non-linear dynamics. Among

these methods, the ones based on the computation of the feedback

vertex set (FVS) [2, 15, 24] and the ‘stable motifs’ of the network [23]

drive the network towards a target state by regulating a component

of the network with some constraints (feedback vertex sets and

stable motifs). The method based on FVS is purely a structure-based

method, while that based on stable motifs takes into account the

functional information of the network (network dynamics) and

has a substantial improvement in computing the number of driver

nodes. These two methods are promising, even though none of

them guarantees to find the minimal set of driver nodes. In [22],

Wang et al. highlighted an experimentally feasible approach to-

wards the control of nonlinear dynamical networks by constructing

‘attractor networks’ that reflect their controllability. They construct

the attractor network of a system by including all the experimen-

tally validated paths between the attractors of the network. The

concept of an attractor network is inspiring. However, this method

cannot provide a straightforward way to find the paths from one

attractor to a desired attractor, and it fails to formulate a generic

framework for the control of nonlinear dynamical networks.

Closely related to our work, Mandon et al. [11, 12] proposed

approaches towards the control of asynchronous BNs. In particular,

in [11] they proposed a few algorithms to identify reprogramming

determinants for both existential and inevitable reachability of the

target attractor with permanent perturbations. Later on, they pro-

posed an algorithm that can find all existing control paths between

two states within a limited number of either permanent or tem-

porary perturbations [12]. However, these methods do not scale

well for large networks.
1
This is mainly due to the fact that they

need to encode all possible control strategies into the transition

system of the BN in order to identify the desired reprogramming

paths [12]. As a consequence, the size of the resulting perturbed
transition graph grows exponentially with the number of allowed

perturbations, which renders their algorithms inefficient.

The identified limitations of these existing approaches motivate

us to develop a new approach towards the control of non-linear

Boolean networks which is modular and exploits both their struc-

tural and dynamic properties. Gates et al. [4] showed that such

an approach is inevitable for the identification of the correct pa-

rameters and control strategies, in that, focussing only on a single

property (either structural or dynamic) might lead to both their

overestimation or underestimation.

3 PRELIMINARIES
3.1 Boolean networks
A Boolean network (BN) describes elements of a dynamical system

with binary-valued nodes and interactions between elements with

Boolean functions. It is formally defined as:

Definition 3.1 (Boolean networks). A Boolean network is a tuple

BN = (x, f) where x = (x1,x2, . . . ,xn ) such that each xi , 1 ≤ i ≤ n
is a Boolean variable and f = (f1, f2, . . . , fn ) is a tuple of Boolean
functions over x. |x| = n denotes the number of variables.

In what follows, i will always range between 1 and n, unless
stated otherwise. A Boolean network BN = (x, f)may be viewed as

a directed graph GBN = (V ,E) whereV = {v1,v2 . . . ,vn } is the set

1
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of vertices or nodes and for every 1 ≤ i, j ≤ n, there is a directed
edge from vj to vi if and only if fi depends on x j . An edge from

vj to vi will be often denoted as vj → vi . A path from a vertex v
to a vertex v ′

is a (possibly empty) sequence of edges from v to

v ′
in GBN. For any vertex v ∈ V we define its set of parents as

par(v) = {v ′ ∈ V | v ′ → v}. For the rest of the exposition, we

assume that an arbitrary but fixed network BN of n variables is

given to us and GBN = (V ,E) is its associated directed graph.

A state s of BN is an element in {0, 1}n . Let S be the set of

states of BN. For any state s = (s1, s2, . . . , sn ), and for every i ,
the value of si , often denoted as s[i], represents the value that

the variable xi takes when the BN ‘is in state s’. For some i , sup-
pose fi depends on xi1 ,xi2 , . . . ,xik . Then fi (s) will denote the

value fi (s[i1], s[i2], . . . , s[ik ]). For two states s, s′ ∈ S, the Ham-
ming distance between s and s′ will be denoted as hd(s, s′) and
arg(hd(s, s′)) ⊆ {1, 2, . . . ,n} will denote the set of indices in which

s and s′ differ. For a state s and a subset S′ ⊆ S, the Hamming dis-

tance between s and S′ is defined as the minimum of the Hamming

distances between s and all the states in S′. That is, hd(s, S′) =
mins′∈S′ hd(s, s′). We let arg(hd(s, S′)) denote the set of subsets of
{1, 2, . . . ,n} such that I ∈ arg(hd(s, S′)) if and only if I is a set of
indices of the variables that realise this Hamming distance.

3.2 Dynamics of Boolean networks
We assume that the Boolean network evolves in discrete time steps.

It starts initially in a state s0 and its state changes in every time step

according to the update functions f . The updating may happen in

various ways. Every such way of updating gives rise to a different

dynamics for the network. In this work, we shall be interested

primarily in the asynchronous updating scheme.

Definition 3.2 (Asynchronous dynamics of Boolean networks). Sup-
pose s0 ∈ S is an initial state of BN. The asynchronous evolution
of BN is a function ξ : N→ ℘(S) such that ξ (0) = s0 and for every

j ≥ 0, if s ∈ ξ (j) then s′ ∈ ξ (j + 1) if and only if either hd(s, s′) = 1

and s′[i] = fi (s) where i = arg(hd(s, s′)) or hd(s, s′) = 0 and there

exists i such that s′[i] = fi (s).

Note that the asynchronous dynamics is non-deterministic –

the value of exactly one variable is updated in a single time-step.

The index of the variable that is updated is not known in advance.

Henceforth, when we talk about the dynamics of BN, we shall mean

the asynchronous dynamics as defined above.

The dynamics of a Boolean network can be represented as a state
transition graph or a transition system (TS).

Definition 3.3 (Transition system of BN). The transition system

of BN, denoted by the generic notation TS is a tuple (S,→) where

the vertices are the set of states S and for any two states s and s′

there is a directed edge from s to s′, denoted s → s′ if and only

if either hd(s, s′) = 1 and s′[i] = fi (s) where i = arg(hd(s, s′)) or
hd(s, s′) = 0 and there exists i such that s′[i] = fi (s).

3.3 Attractors and basins of attraction
A path from a state s to a state s′ is a (possibly empty) sequence

of transitions from s to s′ in TS. A path from a state s to a subset

S′ of S is a path from s to any state s′ ∈ S′. For any state s ∈ S, let
preTS(s) = {s′ ∈ S | s′ → s} and let postTS(s) = {s′ ∈ S | s → s′}.

preTS(s) contains all the states that can reach s by performing a

single transition in TS and postTS(s) contains all the states that

can be reached from s by a single transition in TS. Note that, by
definition, hd(s, preTS(s)) ≤ 1 and hd(s, postTS(s)) ≤ 1. preTS and
postTS can be lifted to a subset S

′
of S as: preTS(S

′) =
⋃

s∈S′ preTS(s)
and postTS(S

′) =
⋃

s∈S′ postTS(s). For a state s ∈ S, reachTS(s)
denotes the set of states s′ such that there is a path from s to s′

in TS and can be defined as the transitive closure of the postTS
operation. Thus, reachTS(s) is the smallest subset of states in S such
that s ∈ reachTS(s) and postTS(reachTS(s)) ⊆ reachTS(s).

Definition 3.4 (Attractor). An attractor A of TS (or of BN) is a
subset of states of S such that for every s ∈ A, reachTS(s) = A.

Any state which is not part of an attractor is a transient state. An

attractorA of TS is said to be reachable from a state s if reachTS(s)∩
A , ∅. Attractors represent the stable behaviour of the BN accord-

ing to the dynamics. The network starting at any initial state s0 ∈ S
will eventually end up in one of the attractors of TS and remain

there forever unless perturbed.

Observation 1. Any attractor of TS is a bottom strongly con-

nected component of TS.

For an attractor A of TS, we define subsets of states of S called
the weak and strong basins of attractions of A, denoted as basWTS(A)
and basSTS(A), respectively, as follows.

Definition 3.5 (Basin of attraction). Let A be an attractor of TS.
• Weak basin: The weak basin of attraction ofAwith respect

to TS, is defined as basWTS(A) = {s ∈ S | reachTS(s) ∩A , ∅}.

• Strong basin: The strong basin of attraction of A with re-

spect to TS, is defined as basSTS(A) = basWTS(A) \ bas
W
TS(A

′)

where A′
is an attractor of TS and A′ , A.

Thus theweak basin of attraction ofA is the set of all states s from
which there is a path to A. It is possible that there are paths from
s to some other attractor A′ , A. However, the notion of a strong

basin does not allow this. Thus, if s ∈ basSTS(A) then s < basWTS(A
′)

for any other attractor A′
. We need the notion of strong basin to

ensure reachability to the target attractor after applying control.

Example 3.6. Consider the three-node network BN = (x, f)
where x = (x1,x2,x3) and f = (f1, f2, f3) where f1 = ¬x2 ∨ (x1 ∧
x2), f2 = x1 ∧x2 and f3 = (¬x1 ∧x2) ∨ (¬x2 ∧x3). The graph of the

network GBN and its associated transition system TS is given in

Figure 1. TS has three attractors {(100)}, {(110)} and {(101)} shown
by dark grey rectangles. Their corresponding strong basins of at-

tractions are shown by enclosing grey regions of a lighter shade.

Note that, there is a path from the state (010) to both the attractors

{(100)} and {(101)}. Hence (010) is not in the strong basin of either

of these attractors but is in the weak basins of both of them.

Observation 2. Given an attractorA, we can compute the weak

basin basWTS(A) by an iterative fixpoint procedure. Indeed, basWTS(A)
is the smallest subsetW of S such that A ∈W and preTS(W ) ⊆W .

We shall call this procedure Compute_Weak_Basin which will

take as arguments the function tuple f and an attractor A.

Henceforth, to avoid clutter, we shall drop the subscript TSwhen
the transition system is clear from the context. Also, we shall often
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Figure 1: The graph of BN and its transition system.

drop the superscript S as well the mention of the word “strong”

when dealing with strong basins. Thus the “basin of A” will always
mean the strong basin of attraction ofA unless mentioned otherwise

and will be denoted as bas(A).

3.4 The control problem
As described in the introduction, the attractors of a Boolean network

represent the cellular phenotypes, the expressions of the genes etc.

Some of these attractors may be diseased, weak or undesirable

while others are healthy and desirable. Curing a disease is thus

in effect, moving the dynamics of the network from an undesired

‘source’ attractor to a desired ‘target’ attractor.

One of the ways to achieve the above is by controlling the various

‘parameters’ of the network, for eg. the values of the variables, or

the Boolean functions themselves. In this exposition, we shall be

interested in the former kind of control, that is, tweaking the values

of the variables of the network. Such a control may be (i) permanent
– the value(s) of one or more variables are fixed forever, for all the

following time steps or (ii) temporary – the values of (some of) the

variables are fixed for a finite number (one or more) of time steps

and then the control is removed to let the system evolve on its own.

Moreover, the variables can be either controlled (a) simultaneously
– the control is applied to all the variables at once or (b) sequentially
– the control is applied over a sequence of steps.

In this work we shall be interested in the control of type (ii) and

(a). Moreover, for us, the perturbations are applied only for a single
time step. Thus we can formally define control as follows.

Definition 3.7 (Control). A control C is a (possibly empty) subset

of {1, 2, . . . ,n}. For a state s ∈ S, the application of a control C to s,
denoted C(s) is defined as the state s′ ∈ S such that s′[i] = (1− s[i])
if i ∈ C and s′[i] = s[i] otherwise. Given a control C, the set of
vertices {vi | i ∈ C} of GBN will be called the driver nodes for C.

Our aim is to make the control as less invasive to the system as

possible. Thus not only is the control applied for just a single time

step, it is also applied to as few of the nodes of the Boolean network

as possible. The minimal simultaneous single-step target-control

problem for Boolean networks that we are thus interested in can

be formally stated as follows.

Minimal simultaneous target-control: Given a Boolean net-

work BN, a ‘source state’ s ∈ S and a ‘target attractor’ At of TS,
compute a controlC such that after the application ofC(s),BN even-

tually reaches At and C is a minimal such subset of {1, 2, . . . ,n}.

We shall call such a control a minimal control from s to At . The set
of all minimal controls from s to At will be denoted as Cs→At

min
.

Note that the requirement of minimality is crucial, without which

the problem is rendered trivial - simply pick some state s′ ∈ At
and move to it. The nodes required to be controlled will often be

called the driver nodes for the corresponding control. Our goal

is to provide an efficient algorithm for the above question. That

is, to devise an algorithm that takes as input only the Boolean

functions f of BN, a source state s and a target attractor At of TS
and outputs the indices of aminimal subset of nodes of s that need to
be toggled or controlled (the driver nodes) so that after applying the

control, the dynamics eventually and surely reachesAt . It is known
that in general the problem is computationally difficult – PSPACE-

hard [11] and unless certain open conjectures in computational

complexity are false, these questions are computationally difficult

and would require time exponential in the size of the Boolean

network. That is intuitively because of the infamous state-space

explosion phenomenon – the number of states of the transition

system is exponential in the network-size.

Observation 3. It is important to note that if the BN is in some

state s ∈ bas(A) in some time step t , that is if ξ (t) = s then by

the definition of bas(A) it will eventually and surely reach a state

s′ ∈ A. That is, there exists a time step t ′ > t such that ξ (t ′) = s′.
Hence given a source state s and a target attractor At , C

s→At
min

can

easily be seen to be equal to arg(hd(s, bas(At ))). In other words

Proposition 3.8. A control C from s to At is minimal if and only
if C(s) ∈ bas(At ) and C ∈ arg(hd(s, bas(A))).

Proof. If C(s) < bas(At ) then either (a) C(s) < basWTS(At ) or (b)
C(s) ∈ basWTS(At ). If (a) holds, then there is no path from C(s) to At
and if (b) holds, then there is a path fromC(s) to some other attractor

A , At . In either case BN is not guaranteed to reach a state in At
after the control C is applied to s. And, if C < arg(hd(s, bas(A))),
thenC cannot be minimal (by definition of Hamming distance), and

conversely. □

Thus, solving the minimal simultaneous target-control problem

efficiently boils down to how efficiently we can compute the strong

basin of the target attractor.

Example 3.9. Continuing with Example 3.6, suppose we are in

source state s = (101) (which is also an attractor) and we want to

apply (minimal simultaneous) control to s so the system eventually

and surely moves to the target attractorAt = {(110)}. We could flip

s[2] and s[3] to move directly to At which would require a control

C = {2, 3}. However, if we notice that the state (111) is in the basin

of At we can simply apply a control C′ = {2} and the dynamics of

the BN will ensure that it eventually reaches At . Indeed, C′
is also

the minimal control in this case.

3.5 A global algorithm
In the rest of this section, we first describe a procedure for comput-

ing the (strong) basin of an attractor based on the computation of

fixed point. We then use this procedure to design a simple global

algorithm for solving the minimal simultaneous target-control prob-

lem based on a global computation of the basin of the target at-

tractor At . This algorithm will act as a reference for comparing



Algorithm 1 Fixpoint computation of strong basin

1: procedure Compute_Srong_Basin(f ,A)
2: LetWB = Compute_Weak_Basin(f ,A)
3: Initialise SB = ∅

4: Till SB ,WB do

5: If SB, ∅ do WB = SB
6: SB=WB\(pre(post(WB) \WB)∩WB)

7: done

8: return SB

9: end procedure

Algorithm 2 Global minimal simultaneous target control

1: procedure Global_Minimal_control(f , s,At )
2: Let SB = Compute_Strong_Basin(f ,At )
3: return arg(hd(s,SB))
4: end procedure

the decomposition-based algorithm which we shall later develop.

We first introduce an algorithm called Compute_Strong_Basin,

described in Algorithm 1, for the computation of the strong basin

of an attractor A based on a fixpoint approach. The most important

step of this algorithm is Line 6, which is repeated till the set SB

settles down to a fixed point, which is the strong basin ofA. Initially
WB is equal to the weak basin ofA (Line 2). In each iteration of Line

6, we take the current set WB, which is a subset of the weak basin

of A, and remove from it all the states that have transitions to any

state outside the currentWB. These are the states from which there

are paths to some other attractor A′ , A and hence they cannot

be in the strong basin of A. Finally, when WB stabilises, we are

left with the strong basin of A. A formal proof of correctness of

Algorithm 1 can be found in the appendix of [17]. We shall use this

algorithm in both the global minimal control algorithm and later

in the decomposition-based algorithm.

We now use the algorithm Compute_Strong_Basin to give a

global algorithm, Algorithm 2, for the minimal simultaneous target

control problem. Note that Algorithm 2 is worst-case exponential in

the size of the input (the description of BN). Indeed, since the basin
of attraction of At might well be equal to all the states of the entire

transition system TS which is exponential in the description of BN.
Now, although an efficient algorithm for this problem is highly

unlikely, it is possible that when the network has a certain well-

behaved structure, one can do better than this global approach. Most

of the previous attempts at providing such an algorithm for such

well-behaved networks either exploited exclusively the structure of

the network or failed to minimise the number of driver nodes. Here

we show that, when we take both the structure and the dynamics

into account, we can have an algorithmwhich, for certain networks,

is much more efficient than the global approach.

4 A DECOMPOSITION-BASED APPROACH
Note that our global solution for the minimal control problem, Algo-

rithm 2, is generic, in that, we can plug into it any other algorithm

for computing the basin of the target attractor and it would still

work. Its performance, however, directly depends on the perfor-

mance of the particular algorithm used to compute this basin.

In this section, we demonstrate an approach to compute the

basin of attraction of At based on the decomposition of the BN

into structural components called blocks. This will then be used

to solve the minimal control problem. The approach is based on

that of [13] for computing the attractors of asynchronous Boolean

networks. The overall idea is as follows. The network is divided

into blocks based on its strongly connected components. The blocks

are then sorted topologically resulting in a dependency graph of

the blocks which is a directed acyclic graph (DAG). The transition

systems of the blocks are computed inductively in the sorted order

and the target attractor At is then projected to these blocks. The

local strong basins for each of these projections are computed in

the transition system of the particular block. These local basins are

then combined to compute the global basin bas(At ).

4.1 Blocks
Let SCC denote the set of maximal strongly connected components

(SCCs) of GBN.
2
LetW be an SCC of GBN. The set of parents ofW

is defined as par(W ) = (
⋃
v ∈W par(v)) \W .

Definition 4.1 (Basic Block). A basic block B is a subset of the

vertices of V such that B =W ∪ par(W ) for someW ∈ SCC.

Let B be the set of basic blocks of GBN. Since every vertex of

GBN is part of an SCC, we have

⋃
B = V . The union of two or

more basic blocks of B will also be called a block. For any block B,
|B | will denote the number of vertices in B. Using the set of basic
blocks B as vertices, we can form a directed graph GB = (B,EB),
which we shall call the block graph of BN. The vertices of GB are

the basic blocks and for any pair of basic blocks B′,B ∈ B,B′ , B,
there is a directed edge from B′

to B if and only if B′ ∩ B , ∅ and

for every v ∈ (B′ ∩ B), par(v) ∩ B = ∅. In such a case, B′
is called a

parent block of B and v is called a control node for B. Let par(B) and
ctr(B) denote the set of parent blocks and the set of control nodes

of B, respectively. It is easy to observe that

Observation 4. GB is a directed acyclic graph (DAG).

A block B (basic or non-basic) is called elementary if par(v) ⊆ B
for every v ∈ B. B is called non-elementary otherwise. We shall

henceforth assume that BN has k basic blocks and they are topolog-

ically sorted as {B1,B2, . . . ,Bk }. Note that for every j : 1 ≤ j ≤ k ,

(
⋃j

ℓ=1
Bℓ) is an elementary block. We shall denote it as B j .

For two basic blocks B and B′
where B is non-elementary, B′

is

said to be an ancestor of B if there is a path from B′
to B in the block

graph GB . The ancestor-closure of a basic block B (elementary or

non-elementary), denoted ac(B) is defined as the union of B with

all its ancestors. Note that ac(B) is an elementary block and so is

{ac(B′) | B′ ∈ par(B)}, which we denote as ac(B)−.

4.2 Projection of states and the cross operation
We shall assume that the vertices {v1,v2, . . . ,vn } of GBN inherit

the ordering of the variables x of BN. Let B be a block of BN. Since
B is a subset of V its state space is {0, 1} |B |

and is denoted as SB .

2
By convention, we assume that a single vertex (with or without a self loop) is always

an SCC, although it may not be maximal.



For any state s ∈ S, where s = (s1, s2, . . . , sn ), the projection of s
to B, denoted s|B is the tuple obtained from s by suppressing the

values of the variables not in B. Thus if B = {vi1 ,vi2 , . . . ,vik } then
s|B = (si1 , si2 , . . . , sik ). Clearly s|B ∈ SB . For a subset S′ of S, S′ |B
is defined as {s|B | s ∈ S′}.

Definition 4.2 (Cross Operation). Let B1 and B2 be two blocks of

BN and let s1 and s2 be states of B1 and B2, respectively. s1 ⊗ s2 is
defined (called crossable) if there exists a state s ∈ SB1∪B2

such that

s|B1
= s1 and s|B2

= s2. s1 ⊗ s2 is then defined to be this unique

state s. For any subsets S1 of SB1
and S2 of SB2

, S1 ⊗ S2 is a subset
of SB1∪B2

and is defined as:

S1 ⊗ S2 = {s1 ⊗ s2 | s1 ∈ S1, s2 ∈ S2 and s1 and s2 are crossable}

Note that S1 ⊗ S2 can be the empty set. The cross operation

is easily seen to be associative. Hence for more than two states

s1, s2, . . . , sk , s1⊗s2⊗ . . . sk can be defined as (((s1⊗s2)⊗ . . .)⊗sk ).
We have a similar definition for the cross operation on more than

two sets of states.

Example 4.3. Let BN = (x, f) be a Boolean network where x =
(x1,x2, . . . ,x5). Suppose BN has 2 blocks B1 and B2 with B1 =
{x1,x3,x4} and B2 = {x2,x3,x4,x5}. Let s = (10011) be a state of

BN. Then s|B1
= (101), i.e. the 1st, 3rd and 4th components of s

and s|B2
= (0011), i.e. the 2nd, 3rd, 4th and 5th components of s.

Now, let s1 = (001) be a state of B1 and s2 = (1010) be a state of B2
then s1 ⊗ s2 = (01010) since this is the unique state of BN whose

projections to B1 and B2 are s1 and s2, respectively.

4.3 Transition system of the blocks
The next step is to describe how to construct the ‘local’ transition

systems of each of the blocks. These transition systems will be

inductively defined starting from the elementary blocks andmoving

to the blocks further down the topological order. For an elementary

block B (basic or non-basic), its transition system TSB is given

exactly as Definition 3.3 with the vertices being SB . This is well-
defined since by the definition of an elementary block, the update

functions of the vertices of B do not depend on the value of any

vertex outside B. On the other hand, the transition system of a

non-elementary block B depends on the transitions of its parent

blocks (or its control nodes in its parent blocks). The transition

system of such a block thus has to be defined based on (some or all

of) the transitions of its parent blocks.

Towards that let B be a non-elementary basic block of BN and let

A be an attractor of the transition system of the elementary block

ac(B)− and let bas(A) be its (strong) basin of attraction. Then

Definition 4.4 (TS of non-elementary blocks). The transition sys-

tem of B generated by bas(A) is defined as a tuple TSB = (S,→)

where the set of states S of TSB is a subset of Sac(B) such that s ∈ S
if and only if s|ac(B)− ∈ bas(A) and for any two states s, s′ ∈ Sac(B)
there is a transition s → s′ if and only if either hd(s, s′) = 1 and

s′[i] = fi (s) where i = arg(hd(s, s′)) or hd(s, s′) = 0 and there

exists i such that s′[i] = fi (s).

Remark. Our construction of the transition system of the non-

elementary blocks is different from that used in [13]. There, for a

non-elementary block B, the set of states of TSB was a subset of

SB and the transitions for the control nodes of B were derived by

B1

B2

v1 v2 v3

Figure 2: The blocks of BN.

projecting the transitions in the attractor of the parent block of

B to these control nodes. It can be shown that such an approach

does not work for the decomposition-based solution to the minimal

simultaneous target-control problem that we aim for here and we

need the full behaviour of the basin of the attractor of the parent

blocks of B to generate the transition system of B.

4.4 The main results
We now give the key results of the above constructions which will

form the basis of the decomposition-based control algorithm that

we shall develop in the next section. The detailed proofs can be

found in the appendix of [17].

Suppose BN has k blocks which are topologically ordered as

{B1,B2, . . . ,Bk }. Let TS be the transition system of BN and for

every attractor A of TS and for every j : 1 ≤ j ≤ k let Aj = A|Bj be
the projection of A to Bj . We then have

Theorem 4.5 (Preservation of attractors). Suppose for every
attractorA of TS and for every i : 1 ≤ i < k , if Bi+1 is non-elementary
then TSi+1 is realised by bas(⊗j ∈IAj ), its basin w.r.t. the transition
system for (

⋃
j ∈I Bj ), where I is the set of indices of the basic blocks in

ac(Bi+1)−. We then have, for every i : 1 ≤ i < k , Ai+1 is an attractor
of TSi+1, (⊗j ∈IAj ⊗ Ai+1) is an attractor of the transition system for
the elementary block (

⋃
j ∈I Bj ∪ Bi+1), (⊗i+1j=1Aj ) is an attractor of

the transition system TSi+1 of Bi+1 and A is an attractor of TSk .

Theorem 4.6 (Preservation of basins). Given the hypothesis
and the notations of Theorem 4.5, we have (⊗i≤kbas(Ai )) = bas(A)
where bas(A) is the basin of attraction of the attractor A = (A1 ⊗

A2 ⊗ . . . ⊗ Ak ) of TS.

Example 4.7. Continuing with Example 3.6 and 3.9, we note that

BN has two maximal SCCs {v1,v2} and {v3}. These give rise to two
blocks B1 = {v1,v2} and B2 = {v1,v2,v3} shown in Figure 2. B1 is
elementary whereas B2 is non-elementary where B1 is its parent
and it has control nodes v1 and v2.

The transition system of block B1 is shown in Figure 3(a). It has

two attractors {(10)} and {(11)} shown in dark grey rectangles with

their corresponding strong basins shown in grey regions of a lighter

shade. The transition system of the block B2 generated by the basin
of the attractor {(10)} of the block B1 is shown in Figure 3(b). It

has two attractors {(100)} and {(101)} shown again in dark grey

rectangles with their corresponding basins of attractions shown in

lighter grey. Note that, indeed, according to Theorem 4.5 we have

that {(10)} ⊗ {(100)} = {(100)} and {(10)} ⊗ {(101)} = {(101)}

are attractors of the global transition system of BN. Also note that

taking the cross of the local basins of attractions does indeed result

in the global basins.



00 01

10 11

(a) The TS of B1, its at-
tractors and basins.
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(b) The TS of B2 generated by the
basin of the attractor {(10)} of B1.

Figure 3: The transition systems of the blocks B1 and B2.

4.5 The decomposition-based algorithm
Equipped with the results in Theorems 4.5 and 4.6, we can describe

our procedure for computing the strong basin of the target attractor

based on decomposing the BN into smaller blocks.We shall later use

this procedure to give an algorithm for the minimal control problem.

Towards that, Theorem 4.6 tells us that in order to compute bas(At )
it is sufficient to compute the local basins of the projection of At
to each block Bi (which by Theorem 4.5 is an attractor of Bi ) and
finally merge these local basins using the cross operation.

Algorithm 3 implements this idea in pseudo-code. It takes as

input the graph GBN and the update functions f of a given Boolean

network, and an attractor A and returns the strong basin of at-

traction of A. Line 2 decomposes GBN into the blocks B (resulting

in k blocks) using the procedure Form_Block from [13] and line

3 topologically sorts the blocks by constructing the block graph

GB . Lines 5-7 decomposes the attractor A into its projection to the

blocks. Lines 9-18 then cycles through the blocks ofB in topological

order and for each block Bi : if Bi is elementary then constructs its

transition system TSi independently or, if Bi is non-elementary it

constructs TSi realised by the basin of (A1 ⊗A2 ⊗ . . .⊗Ai−1)which
by Theorem 4.5 is an attractor of TSi−1, the transition system for the

elementary (non-basic) block Bi−1. Thus at every iteration i of the
for-loop the invariant that Ai is an attractor of TSi is maintained.

The procedure Compute_Strong_Basin (lines 12,15), described

in Algorithm 1, computes the strong basin of the attractor of TSi
for the current block Bi . Line 17 extends the global strong basin

SB computed so far by crossing it with the local basin computed at

each step. At the end of the for-loop SB will thus be equal to the

global basin (by Theorem 4.6). It then easily follows that

Proposition 4.8. Algorithm 3 correctly computes the strong basin
of the attractor A.

We now plug the procedure Compute_Strong_Basin_Decomp

of Algorithm 3 into Algorithm 2 to derive our decomposition-based

minimal target control algorithm, Algorithm 4, from source state s
to target attractor At .

5 CASE STUDIES
To demonstrate the correctness and efficiency of our control frame-

work, we compare our decomposition-based approach with the

global approach on both real-life biological networks and randomly

generated networks. Note that we do not compare our approach

with the works by Mandon et al. [11, 12], as we are informed by

the authors, through personal communication, that their current

Algorithm 3 A decomposition-based procedure for the computa-

tion of strong basin

1: procedure Compute_Strong_Basin_Decomp(GBN,f ,A)
2: B := Form_Block(GBN);

3: B := Top_Sort(B);

4: k := size of B; SB = ϕ; SBi = ∅; //for all i
5: for i = 1 to k do
6: Ai :=Decompose(A,Bi ); //Decompose the target
7: attractor into block Bi
8: end for
9: for i := 1 to k do
10: if Bi is an elementary block then
11: TSi := transition system of Bi ;
12: SBi :=Compute_Strong_Basin(f |Bi ,Ai );
13: else
14: TSi := transition system of Bi based on the basin of

(⊗j<iAj ) in TSi−1;
15: SBi :=Compute_Strong_Basin(f |Bi , (⊗j≤iAj ));

16: end if
17: SB =Cross (SB, SBi );
18: end for
19: return SB
20: end procedure

Algorithm 4 Decomposition-based minimal simultaneous target

control

1: procedure Decomp_Minimal_control(GBN, f , s,At )
2: Let SB = Compute_Strong_Basin_Decomp(GBN, f ,At )
3: return arg(hd(s,SB))
4: end procedure

methods cannot deal with networks with more than around 20

nodes. The global approach and the decomposition-based approach,

described by Algorithm 2 and Algorithm 4, are implemented in

the software tool ASSA-PBN [14], which is based on the model

checker [10] to encode BNs into the efficient data structure binary

decision diagrams (BDDs). All the experiments are performed on

a high-performance computing (HPC) platform, which contains

CPUs of Intel Xeon X5675@3.07 GHz.

5.1 Real-life biological networks
The PC12 cell differentiation network was developed by Offer-

mann et al. [16]. It is a comprehensive model used to clarify the

cellular decisions towards proliferation or differentiation. It com-

bines the temporal sequence of protein signalling, transcriptional

response and subsequent autocrine feedback. The model shows

the interactions between protein signalling, transcription factor

activity and gene regulatory feedback in the regulation of PC12 cell

differentiation after the stimulation of NGF. The PC12 cell network

is simulated in the synchronous updating mode in [16], while we

treat the network in the asynchronous mode, as per Definition 3.2.

The PC12 cell network consists of 32 nodes and it has 7 single-state

attractors. The network structure is divided into 19 blocks by our

decomposition procedure (Form_Block in Algorithm 3).



Attractor

1 2 3 4 5 6 7

HD #D HD #D HD #D HD #D HD #D HD #D HD #D

1 − − 2 1 21 7 22 8 22 8 23 9 7 1

2 2 1 − − 23 8 22 7 24 9 23 8 9 1

3 21 10 23 11 − − 1 1 1 1 2 2 28 1

4 22 11 22 10 1 1 − − 2 2 1 1 29 1

5 22 10 24 11 1 1 2 2 − − 1 1 29 1

6 23 11 23 10 2 2 1 1 1 1 − − 30 1

7 7 1 9 3 28 9 29 10 29 10 30 11 − −

Table 1: The Hamming distance between attractors and the number of driver nodes computed for the PC12 cell network.

Attractor

1 2 3 4 5 6 7

HD #D HD #D HD #D HD #D HD #D HD #D HD #D

9 1 1 6 2 3 2 8 3 21 2 26 3 23 3

10 6 2 1 1 8 3 3 2 26 3 21 2 28 4

11 3 2 8 3 1 1 6 2 23 3 28 4 21 2

12 8 3 3 2 6 2 1 1 28 4 23 3 26 3

13 10 2 15 3 12 3 17 4 12 1 17 2 14 2

14 15 3 10 2 17 4 12 3 17 2 12 1 19 3

15 12 3 17 4 10 2 15 3 14 2 19 3 12 1

16 17 4 12 3 15 3 10 2 19 3 14 2 17 2

Table 2: The Hamming distance between attractors and the number of driver nodes for the apoptosis network.

The apoptosis network was constructed by Schlatter et al. [18]

based on extensive literature research. Apoptosis is a kind of pro-

grammed cell death, that has been linked to many diseases. In [18],

Schlatter et al. took into consideration the survival and metabolic

insulin pathways, the intrinsic and extrinsic apoptotic pathways

and their crosstalks to build the Boolean network, which simulates

apoptotic signal transduction pathways with regards to different

input stimulus. The apoptosis network comprises 97 nodes and can

be decomposed into 60 blocks. Using the asynchronous updating

mode of BNs [Definition 3.2] 16 single-state attractors are detected

when the housekeeping node is set to on and six nodes (FASL,

FASL_2, IL_1,TNF, UV, UV_2) are set to off.

For the PC12 cell network and the apoptosis network, we aim

to compute a minimal control C that can realise the minimal si-

multaneous single-step target control as explained in Section 3.4.

That is to say, we compute the minimal set of driver nodes, whose

simultaneous single-step control can drive the network from a

source state to a target attractor. Since the attractors of the two

networks are all single-state attractors, each of them can be taken

as a source state. All possible combinations of source and target

attractors of the networks are explored and each case is repeated

100 times.
3
The Hamming distances between attractors and the

number of driver nodes are summarised in Table 1 and Table 2.

The attractors are labelled with numbers. The numbers in the first

column and the first row represent the source and target attractors,

respectively. For each combination of source and target attractors,

we list its Hamming distance (HD) and the number of driver nodes

(#D). The numbers of driver nodes computed by the global and our

decomposition-based approaches are identical, demonstrating the

correctness of our decomposition-based approach. #D represents

the results of both approaches.

3
Due to the space limit, here we only give parts of the results. More details on the

networks and the evaluation results can be found in [17].

Table 1 and Table 2 show that compared to the size of the network

and the Hamming distance between the source and target attractors,

theminimal set of driver nodes required is quite small. Especially for

the apoptosis network with 97 nodes, the numbers of driver nodes

are less than or equal to 4 for all the cases. The PC12 cell network

always reaches the same steady state with "cell differentiation" set

to on by setting NGF to ‘on’ [16]. To drive the network from any

other attractor to this steady state, only NGF is required, which

also shows the outstanding role of NGF in the network.

The speedups gained by our decomposition-based approach for

different combinations of source and target attractors of the two

networks are shown in Table 3 and Table 4. Each entity in the tables

is an average value of the repeated experiments (100 times). The

results show that our decomposition-based approach outperforms

the global approach for any combination of source and target at-

tractors. It is also obvious that the speedups are highly related to

the target attractors, the speedups with different target attractors

vary a lot regarding to the same source attractor.

5.2 Randomly generated networks
The same procedures are applied to three randomly generated

Boolean networks with 100, 120 and 180 nodes. An overview of

the three networks and their evaluation results is given in Table 6.

The BNs with 100, 120 and 180 nodes are labelled as BN-100, BN-

120 and BN-180 and they have 9, 4 and 2 single-state attractors,

respectively. The global approach fails to compute the driver nodes

for the BN-180 network and some cases of the BN-100 and BN-120

networks. The corresponding results are denoted as ∗.

Table 5 shows the time costs of the global approach and the

decomposition-based approach on the BN-100 network. When the

target attractors are 1, 6 and 8, the global approach fails to return any

results within five hours. From Table 5, it is clear that the execution

time is highly dependent on the target attractor. Especially for the



Attractor

Speedups

1 2 3 4 5 6 7

1 − 5.08 9.63 6.14 5.52 4.46 1.38

2 5.57 − 9.38 6.37 5.50 4.42 1.38

3 5.44 4.26 − 8.11 5.66 3.14 1.93

4 5.34 4.26 9.67 − 5.36 3.41 2.30

5 5.20 4.08 8.99 6.04 − 3.70 1.85

6 5.25 4.28 9.65 5.83 5.74 − 1.91

7 5.29 4.27 9.66 5.72 5.70 4.33 −

Table 3: Speedups achieved on the PC12 network.

Attractor

Speedups

1 2 3 4 5 6 7

9 2.06 2.00 2.26 2.22 20.27 17.44 24.88

10 2.13 1.93 2.37 2.14 22.13 17.58 24.95

11 2.14 1.94 2.37 2.15 22.22 17.24 24.71

12 2.17 1.98 2.38 2.18 22.11 17.12 25.31

13 2.17 1.96 2.40 2.18 22.58 17.65 24.86

14 2.15 1.95 2.40 2.17 22.30 17.46 25.09

15 2.14 1.95 2.39 2.17 22.24 18.09 24.85

16 2.16 1.97 2.42 2.19 22.58 17.53 25.23

Table 4: Speedups achieved on the apoptosis network.

global approach, it may cost a considerable amount of time when

the basin of the target attractor is large. In terms of the number

of driver nodes, the results computed by the two approaches are

identical and they are not shown here due to the page limit.

Table 6 gives an overview of the networks and their evaluation

results. Benefited from the fixpoint computation of strong basin, as

described in Algorithm 1, both approaches are efficient. Compared

with the global approach, our decomposition-based approach has

an evident advantage in terms of efficiency, especially for large

networks, thanks to its ‘divide and conquer’ strategy. The global

approach fails to compute the results in some cases as it deals with

the entire networks at once.

6 CONCLUSIONS AND FUTUREWORK
In this work, we have described a decomposition-based approach

towards the computation of a minimal set of nodes (variables) to be

simultaneously controlled of a BN so as to drive its dynamics from

a source state to a target attractor. Our approach is generic and

can be applied based on any algorithm for computing the strong

basin of attraction of an attractor. For certain modular real-life

networks, the approach results in significant increase in efficiency

compared with a global approach and its generality means that the

improvement in efficiency can be attained irrespective of the exact

algorithm used for the computation of the strong basins.

We have only scratched the surface of an exciting approach

towards the control of BNs which utilises both its structure and

dynamics. We conclude by looking back critically at our approach,

summarising various extensions and discussing future directions.

As mentioned in Section 1, the problem of minimal control is

PSPACE-hard and efficient algorithms are unlikely for the general

cases. Yet in retrospect, one might ask what is the inherent char-

acteristic of our decomposition-based approach that makes it so

efficient compared with the global approach for the real-life net-

works that we studied. We put forward a couple of heuristics which

we believe explains and crucially determines the success of our

approach. One such heuristic is that the basins of attraction com-

puted at each step is small compared with the size of the transition

system. This reduces the state space that needs to be considered in

every subsequent step thus improving efficiency.

Another heuristic, which depends on the structure of the net-

work, is that the number of blocks is small compared with the total

number of nodes in the network. Otherwise, the approach has to

compute a large number of local transition systems (as many as

the number of blocks) which hampers its efficiency. However, the

number of blocks in the network cannot be too few either. Other-

wise, our approach comes close to the global approach in terms of

efficiency. Note that if the entire network is one single giant block,

then the decomposition-based approach is the same as the global

approach (given that the same procedure is used for the computa-

tion of the strong basins) and there is no gain in efficiency. One

might thus conjecture that there is an optimal block-to-node ratio,

given which, our decomposition-based approach fares the best.

As discussed in Section 4.3, in [13] the construction of the TS of

a non-elementary block B depends on the transitions of the control

nodes of B which can be derived by projecting the transitions in

the attractors of the parent block(s) of B to these control nodes.

By this process of projection, the states of the TS of B had smaller

dimension (equal to |B |) as compared with our current approach

where the states of B have dimension equal to |ac(B)|. This, in effect,
can speed up the decomposition-based approach. Unfortunately, it

turns out that such a projection does not work when we require to

preserve the basins of the attractors across the blocks. Projection

results in loss of information, without which it is not possible to

derive the global basin of an attractor of the entire BN in terms

of the cross of the local basins. However, it can be shown that if

we do generate the transition system of a non-elementary block B
by projecting the basins of attractions of the parent blocks to the

control nodes of B, the cross of the local basins is a subset of the
corresponding global basin of the attractor of the entire network.

Thus, if we are ready to sacrifice accuracy for efficiency, such a

projection-based technique might be faster for certain networks

while not exactly giving the minimal nodes to control but a good-

enough approximation of it. We would like to study the gain in

efficiency in our approach by applying the above technique.

One way to reduce the number of ‘small’ blocks (which, as dis-

cussed, might degrade efficiency) might be to combine multiple ba-

sic blocks into larger blocks. While constructing the local transition

systems, such merged blocks are treated as single basic blocks and

their dynamics, attractors and basins are computed in one-go. We

believe there are many real-life networks which might benefit from

such a process of merging before applying our decomposition-based

approach. This is another line of work that we are pursuing at the

moment. As mentioned in the related work, the control approaches

based on computation of the feedback vertex set [2, 15, 24] and the

stable motifs [23] are promising approximate control algorithms

for nonlinear dynamical networks. We would like to compare our

approaches with these two in terms of efficiency and the number of

driver nodes. Finally, we plan to extend our decomposition-based

approach to the control of probabilistic Boolean networks [19, 21].



Attractors

Time (ms)

1 2 3 4 5 6 7 8 9

1

− 20, 812 70, 816 3, 674 8, 278 ∗ 4182, 340 ∗ 3, 935

− 595 388 279 259 276 131 114 96

2

∗ − 74, 023 3, 694 7, 732 ∗ 4072, 920 ∗ 3, 808

1, 136 − 389 281 260 275 123 112 96

3

∗ 19, 956 − 3, 706 7, 688 ∗ 3750, 570 ∗ 3, 865

1, 138 595 − 282 260 275 123 112 98

4

∗ 19, 747 72, 511 − 7, 721 ∗ 2021, 220 ∗ 3, 904

1, 138 595 388 − 260 276 123 112 97

5

∗ 22, 598 29, 760 3, 275 − ∗ 4424, 750 ∗ 4, 249

1, 137 595 389 279 − 275 123 112 94

6

∗ 19, 744 73, 355 3, 707 7, 750 − 2149, 410 ∗ 3, 883

1, 141 595 389 282 259 − 121 111 96

7

∗ 19, 742 72, 197 3, 706 7, 689 ∗ − ∗ 3, 886

1, 139 595 390 280 259 274 − 111 97

8

∗ 19, 763 73, 115 3, 706 7, 701 ∗ 2089, 800 − 3, 842

1, 139 594 388 281 259 274 124 − 96

9

∗ 19, 719 73, 397 3, 710 7, 460 ∗ 2343, 120 ∗ −

1, 139 595 389 283 259 274 124 111 −

Table 5: Time costs of the global approach and the decomposition-based approach on the BN-100 network.

Networks

#

nodes

#

blocks

#

attractors

Range of Range of Range of

tglobal (ms) tdecom (ms) speedups

PC12 32 19 7 16 − 56 5 − 12 1.375 − 9.672

apoptosis 97 60 16 1, 472 − 46, 560 747 − 994 1.932 − 51.504

BN-100 100 36 9 3, 275 − 4424, 750 94 − 1, 141 11.738 − 35973.577

BN-120 120 27 4 257, 3 − 14774, 2 2, 840 − 6, 466 39, 89 − 4818, 72

BN-180 180 62 2 ∗ 1, 402 − 1, 462 ∗

Table 6: An overview of the evaluation results.
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