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ABSTRACT
We study the target control problem of asynchronous Boolean net-

works, to identify a set of nodes, the perturbation of which can

drive the dynamics of the network from any initial state to the

desired steady state (or attractor). We are particularly interested

in temporary perturbations, which are applied for sufficient time

and then released to retrieve the original dynamics. Temporary

perturbations have the apparent advantage of averting unforeseen

consequences, which might be induced by permanent perturba-

tions. Despite the infamous state-space explosion problem, in this

work, we develop an efficient method to compute the temporary

target control for a given target attractor of a Boolean network.

We apply our method to a number of real-life biological networks

and compare its performance with the stable motif-based control

method to demonstrate its efficacy and efficiency.
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1 INTRODUCTION
Cell reprogramming has garnering attention for its therapeutic

potential for treating the most devastating diseases characterised

by diseased cells or a deficiency of certain cells. It is capable of

reprogramming any kind of abundant cells in the body into desired

cells to restore functions of the diseased organ [8, 9, 38]. It has

shown promising benefits for clinical applications, such as cell and

tissue engineering, regenerative medicine and drug discovery.

In their seminal work, Yamanaka et al. showed that human so-

matic cells can be converted to induced pluripotent stem cells (iP-

SCs) by a cocktail of defined factors [43]. The generated iPSCs have

the ability to further propagate and differentiate into many cell

types. However, the application of iPSC reprogramming is often
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restricted, due to that: (1) the generated iPSCs have a risk of can-

cerous tumour formation [8, 9]; (2) the iPSC reprogramming and

differentiation process usually requires long time to produce suffi-

cient cells for application, which leads to a significant experimental

cost [9]; and (3) the iPSCs often encounter cell cycle arrest after

differentiation, which makes it impossible to expand the number of

cells [8]. The limitations of iPSC reprogramming reinforce the need

of direct reprogramming, also called transdifferentiation. Direct

reprogramming reprograms somatic cells directly into the desired

cell type bypassing the pluripotent state. As a consequence, direct

reprogramming can not only reduce the risk of tumourigenesis

and teratoma formation, but also shorten the period of time for

producing enough desired cells for therapeutic application.

Amajor challenge of cell reprogramming lies in the identification

of effective target proteins or genes, the manipulation of which can

trigger desired changes. Lengthy time commitment and high costs

hinder the efficiency of experimental approaches, which perform

brute-force tests of tunable parameters and record corresponding

results [41]. This strongly motivates us to turn to mathematical

modelling of biological systems, which allows us to identify key pro-

teins or genes that can trigger desired changes using computational

methods. Boolean network (BN), first introduced by Kauffman [13],

is a well-established modelling framework for gene regulatory net-

works and their associated signalling pathways. BN has apparent

advantages compared to other modelling frameworks [1]. It pro-

vides a qualitative description of biological systems and thus evades

the parametrisation problem, which often occurs in quantitative

models, such as models of ordinary differential equations (ODEs).

In BNs, molecular species, such as genes and transcription factors,

are described as Boolean variables. Each variable is assigned with

a Boolean function, which determines the evolution of the node.

Boolean functions characterise activation or inhibition regulations

between molecular species. The dynamics of a BN is assumed to

evolve in discrete time steps, moving from one state to the next,

under one of the updating schemes, such as synchronous or asyn-
chronous. Under the synchronous scheme, all the nodes update their

values simultaneously at each time step, while under the asynchro-

nous scheme, only one node is randomly selected to update its

value at each time step. We focus on the asynchronous updating

scheme since it can capture the phenomenon that biological pro-

cesses occur at different time scales. The steady-state behaviour of

the dynamics is described as attractors. Attractors are hypothesised
to characterise cellular phenotypes [12]. Each attractor has a weak
basin and a strong basin. The weak basin contains all the states that

can reach this attractor, while the strong basin includes the states

that can only reach this attractor and cannot reach any other at-

tractors of the network. In the context of BNs, cell reprogramming
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is interpreted as a control problem: modifying the parameters of a

network to lead its dynamics towards a desired attractor.

Control theories have been employed to modulate the dynamics

of complex networks in recent years. Due to the intrinsic non-

linearity of biological systems, control methods designed for linear

systems, such as structure-based control methods [4, 6, 17], are not

applicable – they can both overshoot and undershoot the number of

control nodes for non-linear networks [7]. For nonlinear systems of

ODEs, Fiedler et al. proved that the control of a feedback vertex set is
sufficient to control the entire network [25, 46]; and Cornelius et al.
proposed a simulation-based method to predict instantaneous per-

turbations that can reprogram a cell from an undesired phenotype

to a desired one. However, further study is required to figure out if

these two methods can be lifted to control BNs. Several methods

based on semi-tensor product (STP) have been proposed to solve

different control problems for Boolean control networks (BCNs)

under the synchronous updating scheme [16, 19, 42, 44, 47, 48]. For

synchronous BNs, Kim et al. developed a method to compute a

small fraction of nodes, called ‘control kernels’, that can be modu-

lated to govern the dynamics of the network [14]; and Moradi et al.
developed an algorithm guided by forward dynamic programming

to solve the control problem [26]. However, all these methods are

not directly applicable to asynchronous BNs. To tackle this problem,

we have developed several decomposition-based methods, which

exploit both the structural and dynamical information, to cope with

the source-target control with instantaneous, temporary and per-

manent perturbations [20, 21, 31, 32, 39] and the target control with

instantaneous perturbations [2] for asynchronous BNs. In view of

the difficulties and expenses in conducting biological experiments,

our methods compute the minimal control sets, which can be easily

translated for wet-lab validation.

Cells in tissues and in culture normally exist as a population of

cells, corresponding to different stable steady states [36]. There is a

need of target control methods to compute a subset of nodes, the

control of which can drive the system from any initial state to a

desired target attractor. The target control method developed in

our previous work [2] adopts instantaneous perturbations, that are

only applied instantaneously, but at a cost, a rather larger number

of control nodes is required than the control with temporary or

permanent perturbations [39]. Moreover, it is difficult to guarantee

that all the perturbations take effect at the same time in biological

experiments. Thus, target control with temporary perturbations is

more appealing.

In this paper, we develop a target control method with temporary

perturbations for asynchronous BNs. Our idea is to find a control

C = (0, 1), which is a tuple of two sets, such that the application

of C – setting the value of a node, whose index is in 0 (or 1), to 0
(or 1) – can drive the network from any initial state to the weak

basin of the target attractor. We hold the control for sufficient time

and let the network evolve to a state in the strong basin of the

target attractor. After that, the control can be released and the net-

work will eventually and surely reach the target attractor. Since

the network can take any state s ∈ S as an initial state, the possible

intermediate states form a subset S ′ of S , called schema. According
to our previous work [39], we know that all the intermediate states

should fall into the weak basin of the target attractor. Therefore, we

partition the weak basin into a set of mutually disjoint schemata.

Each schema results in a candidate control, which is further min-

imised and verified. Clinical applications are highly time-sensitive,

controlling more nodes may shorten the period of time for gener-

ating sufficient desired cells [9]. Hence, we integrate our method

with a threshold ζ on the number of perturbations. By increasing

ζ , we can obtain solutions with at most ζ perturbations. It is worth

noting that more perturbations may cause a significant increase in

the experimental costs, hence, the parameter ζ should be considered

individually based on specific experimental settings.

We have implemented ourmethod and compared its performance

with the stable motif-based control (SMC) [45] on various real-life

biological networks, as both methods focus on temporary target

control of asynchronous BNs. The results show that our method

outperforms SMC in terms of the computational time for most of

the networks. Both methods find a number of temporary controls,

but our method is able to identify more controls with fewer pertur-

bations for some networks. Another interesting observation is that

the number of perturbations is often quite small compared to the

sizes of the networks. This agrees with the empirical findings that

the control of few nodes can reprogram biological networks [27].

2 BACKGROUND AND NOTATIONS
In this section, we give preliminary notions of Boolean networks.

2.1 Boolean networks
A Boolean network (BN) describes elements of a dynamical system

with binary-valued nodes and interactions between elements with

Boolean functions. It is formally defined as:

Definition 2.1 (Boolean networks). A Boolean network is a tuple

G = (X , F ) where X = {x1, x2, . . . , xn }, such that xi , xi ∈ X is

a Boolean variable and F = { f1, f2, . . . , fn } is a set of Boolean

functions over X .

For the rest of the exposition, we assume an arbitrary but fixed

network G = (X , F ) of n variables is given to us. For all occur-

rences of xi and fi , we assume xi and fi are elements of X and F ,
respectively. A state s of G is an element in {0, 1}n . Let S be the

set of states of G. For any state s = (s[1], s[2], . . . , s[n]), and for

every i ∈ {1, 2, . . . ,n}, the value of s[i], represents the value that
xi takes when the network is in state s . For some i ∈ {1, 2, . . . ,n},
suppose fi depends on xi1 , xi2 , . . . , xik . Then fi (s) will denote the
value fi (s[i1], s[i2], . . . , s[ik ]) and xi1 , xi2 , . . . , xik are called parent
nodes of xi . For two states s, s ′ ∈ S , the Hamming distance between
s and s ′ is denoted as hd(s, s ′).

Definition 2.2 (Control). A controlC is a tuple (0, 1), where 0, 1 ⊆

{1, 2, . . . ,n} and 0 and 1 are mutually disjoint (possibly empty) sets

of indices of nodes of a BNG . The size of the controlC is defined as

|C | = |0|+ |1|. Given a state s ∈ S , the application ofC to s , denoted
as C(s), is defined as a state s ′ ∈ S , such that s ′[i] = 0 for i ∈ 0 and

s ′[i] = 1 for i ∈ 1. s ′ is called the intermediate state w.r.t. C .

The control can be lifted to a subset of states S ′ ⊆ S . Given
a control C = (0, 1), C(S ′) = S ′′, where S ′′ = {s ′′ ∈ S |s ′′ =
C(s ′), s ′ ∈ S ′}. S ′′ includes all the intermediate states with respect

to C . The application of C results in a new BN, defined as follows.
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Definition 2.3 (Boolean networks under control). The Boolean

network G under control C , denoted as G |C , is defined as a tuple

G |C = (X̂ , F̂ ), where X̂ = {x̂1, x̂2, . . . , x̂n } and F̂ = { ˆf1, ˆf2, . . . , ˆfn },
such that for all i ∈ {1, 2, . . . ,n}:
(1) x̂i = 0 if i ∈ 0, x̂i = 1 if i ∈ 1, and x̂i = xi otherwise;

(2)
ˆfi = 0 if i ∈ 0, ˆfi = 1 if i ∈ 1, and ˆfi = fi otherwise.

The state space of G |C , denoted S |C , is derived by fixing the

values of the variables inC to their respective values and is defined

as S |C = {s ∈ S | s[i] = 1 if i ∈ 1 and s[j] = 0 if j ∈ 0}. Note that
S |C ⊆ S . For any subset S ′ of S , we let S ′ |C = S ′ ∩ S |C .

2.2 Dynamics of Boolean networks
In this section, we define several notions that can be interpreted

on both G and G |C . We use the generic notion G = (X , F ) to rep-

resent either G = (X , F ) or G |C = (X̂ , F̂ ). We assume that a BN

G = (X , F ) evolves in discrete time steps. It starts in an initial state

s0 and its state changes in every time step according to the update

functions F . Different updating schemes lead to different dynamics

of the network [23]. In this work, we are interested in the asynchro-
nous updating scheme as it allows biological processes to happen at

different classes of time scales and thus is more realistic.

The asynchronous evolution ofG is a function ξ : N → ℘(S) such
that ξ (0) = {s0} and for every j ≥ 0, if s ∈ ξ (j) then s ′ ∈ ξ (j + 1)
is a possible next state of s iff either hd(s, s ′) = 1 and there exists

an i such that s ′[i] = fi (s) = 1 − s[i] or hd(s, s ′) = 0 and there

exists an i such that s ′[i] = fi (s) = s[i]. It is worth noting that

the asynchronous dynamics is non-deterministic. At each time

step, only one node is randomly selected to update its value and

a different choice may lead to a different next state s ′ ∈ ξ (j + 1).
Henceforth, when we talk about the dynamics of G, we mean the

asynchronous dynamics. The dynamics of a BNG can be described

as a transition system, denoted as TS. It is defined as a tuple (S, E),
where the vertices are the set of states S and for any two states s
and s ′ there is a directed edge from s to s ′, denoted s → s ′ iff s ′ is
a possible next state of s according to the asynchronous evolution

function ξ of G. Similarly, we denote the transition system of a BN

under control G |C , as TS |C .
A path ρ from a state s to a state s ′ is a (possibly empty) sequence

of transitions from s to s ′ in TS, denoted ρ = s → s1 → . . . → s ′.
A path from a state s to a subset S ′ of S is a path from s to any state

s ′ ∈ S ′. For a state s ∈ S , reach(s) denotes the set of states s ′ such
that there is a path from s to s ′ in TS.

Definition 2.4 (Attractor). An attractor A of TS (or of G) is a
minimal non-empty subset of states of S such that for every state

s ∈ A, reach(s) = A.

Attractors are hypothesised to characterise the steady-state be-

haviour of the network. Any state which is not part of an attractor

is a transient state. An attractorA of TS is said to be reachable from
a state s if reach(s)∩A , ∅. The network starting at any initial state

s0 ∈ S will eventually end up in one of the attractors of TS and re-

main there forever unless perturbed. Under asynchronous updating

scheme, there are singleton attractors and cyclic attractors. Cyclic

attractors can be further classified into: (1) a simple loop, in which

all the states form a loop and every state appears only once per tra-

versal through the loop; and (2) a complex loop, which has intricate

(a) (b) (c)
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Figure 1: Different types of attractors of an asynchronous
BN. We omit selfloops for all the states.
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Figure 2: (a) Transition system TS and (b) transition system
under control TS |C for Example 2.5.We omit selfloops for all
the states except for state 101 in (a).

topology and includes several loops. Figure 1 (a), (b) and (c) show a

singleton attractor, a simple loop and a complex loop, respectively.

LetA denote all the attractors of TS. For an attractorA, A ∈ A, we

define its weak basin as basWTS (A) = {s ∈ S | reach(s) ∩A , ∅}; the

strong basin of A is defined as basSTS(A) = {s ∈ S | reach(s) ∩ A ,
∅ and reach(s) ∩ A′ = ∅ for any A′ ∈ A,A′ , A}. Intuitively, the
weak basin ofA, basWTS (A), contains all the states s from which there

exists at least one path toA, and there may also exist paths from s to

other attractors A′ (A′ , A) of TS. The strong basin of A, basSTS(A),
consists of all the states from which there only exist paths to A.

Example 2.5. Consider a BN G = (X , F ), where X = {x1, x2, x3},
F = { f1, f2, f3}, and f1 = x2, f2 = x1 and f3 = x2 ∧ x3. Its
transition system TS is given in Figure 2 (a). This network has

three attractors A1, A2 and A3, indicated as dark grey nodes. For

attractor A1, its strong basin basSTS(A1) = {000, 001} is shown

as the shaded grey region; its weak basin contains six states, i.e.

basWTS (A1) = {000, 001, 101, 011, 100, 010}. Given a control C =
(0, 1), 0 = {2}, 1 = ∅ (i.e. {x2 = 0}), the transition system under

control TS |C is given in Figure 2 (b). We can see that only attractor

A1 is preserved in TS |C in Figure 2 (b).

2.3 The control problem
As described in the introduction, many devastating diseases, such as

Parkinson’s disease and Alzheimer’s disease, are caused by diseased

cells or a deficiency of particular cells. Cell reprogramming can

transform abounding somatic cells into the desired cell type. In the

context of BNs, this process is, indeed, stirring the dynamics of

the network from a source attractor to a desired target attractor.

However, cells in culture and in situ are usually not isolated but

exist in a population consisting of various cell phenotypes or even

transient cell states. Hence, it is important to develop a target

control method to identify key nodes that can guide the network

towards a desired target attractor from any other distinct steady

states or transient states.
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This can be defined as a target control problem: given a BN G
and a target attractor At , finding a control C , the application of

which can drive the network from any source state s ∈ S to At .
When the source state s is fixed, finding a control C to drive the

network from s to At , is a source-target control problem. Based on

the application time of control, we have: (1) temporary control -
perturbations are applied for a finite (possibly zero) number of

steps and then released; and (2) permanent control - perturbations
are applied for all the following steps. When perturbations are

applied instantaneously, we call it instantaneous control, which is a

special case of temporary control. Temporary control has shown its

apparent advantages in reducing the number of perturbations [39],

thus in this work, we focus on temporary target control, formally

defined as follows.

Definition 2.6 (Temporary target control). A temporary target

control is a control C = (0, 1), such that there exists a t0 > 0, for

all t > t0, the network always reaches the target attractor At on
the application of C to any source state s ∈ S for t steps.

3 RESULTS
In this section, we shall develop a method to solve the temporary

target control problem. First, we introduce the following lemma,

which is crucial for the development of the method.

Lemma 3.1. A controlC = (0, 1) is a temporary target control to a
target attractorAt from any source state s ∈ S iff basSTS(At )∩S |C , ∅

and C(S) ⊆ basSTS |C (bas
S
TS(At ) ∩ S |C ).

Instead of presenting a formal proof for Lemma 3.1, we give an

intuitive explanation below. Definition 2.3 shows that the applica-

tion of a control C results in a new BN G |C , whose state space is

restricted to S |C . To guarantee the inevitable reachability of At , by
the time we release the control, the network has to reach a state s
in the strong basin of At in the original transition system TS, i.e.
basSTS(At ), from which there only exist paths to At . This requires

the remaining strong basin in S |C , i.e. (basSTS(At ) ∩ S |C ), is a non-
empty set, otherwise, it is not guaranteed to reachAt . Furthermore,

the conditionC(S) ⊆ basSTS |C (bas
S
TS(At )∩S |C ) ensures any possible

intermediate state s ′ ∈ C(S) is in the strong basin of the remaining

strong basin (basSTS(At ) ∩ S |C ) in the transition system under con-

trol TS |C , so that the network will always evolve to the remaining

strong basin. Once the network reaches the remaining strong basin,

the control can be released and the network will evolve sponta-

neously towards the target attractor At . Based on the definition of

the weak basin, it is sufficient to search the weak basin basWTS (At )
for temporary target control.

A noteworthy point is that the temporary control needs to be

released once the network reaches a state in (basSTS(At ) ∩ S |C ). On
one hand, Lemma 3.1 guarantees that some states in the strong

basin ofAt in TS are preserved in TS |C , while it does not guarantee
the presence of At in TS |C . In that case, the control C has to be

released at one point to recover the original TS, which at the same

time retrieves At . On the other hand, in clinic, it is preferable to

eliminate human interventions to avoid unforeseen consequences.

Concerning the timing to release the control, since it is hard to

interpret theoretical time steps in diverse biological experiments, it

would be more feasible for biologists to estimate the timing based

on empirical knowledge and specific experimental settings.

Previously, we have developed efficient decomposition-based

algorithms to compute the exact basins of an attractor, which exploit

both the structural and dynamical properties of the network [31, 32].

In the algorithm we develop here, we shall use these procedures

to compute the weak basin and the strong basin of an attractor

and refer them as Comp_WB and Comp_SB, respectively. Next, we

define the projection of a state s ∈ S to a subset B of {1, 2, . . . ,n},
which represents the indices of a subset of nodesX ′ ⊆ X as follows.

Definition 3.2 (Projection). Let X ′ = {xi1 , xi2 , . . . , xik } be a sub-
set of X and B = {i1, i2, . . . , ik } be the set of indices of X ′

. The

projection of a state s to B, is an element of {0, 1}k , defined as

s |B = (s[i1], s[i2], . . . , s[ik ]). The projection is lifted to a subset S ′

of S as S ′ |B = {s |B |s ∈ S ′}.

Given a control C = (0, 1), the possible intermediate states with

respect to C , denoted S ′ = C(S), form a schema defined as follows.

Definition 3.3 (Schema). A subset S ′ of S is a schema if there exists

a tripleM = (0, 1,D), where 0 ∪ 1 ∪ D = {1, 2, . . . ,n}, 0, 1 and D
are mutually disjoint (possibly empty) sets of indices of nodes of

G, such that S ′ |0 = {0} |0 | , S ′ |1 = {1} |1 | and S ′ |D = {0, 1} |D |
. 0, 1

and D are called off-set, on-set and don’t-care-set of S ′, respectively.
The elements in 0 ∪ 1 are called indices of support variables of S ′.

Intuitively, for a node xi , i ∈ 0, it has a value of 0 in any state

s ∈ S ′; for a node xi , i ∈ 1, it has a value of 1 in any state s ∈ S ′. The
projection of S ′ to the don’t-care-set D contains all combinations

of binary strings with |D| bits. Thus, any schema S ′ is of size 2 |D |
.

Since the total number of nodes n = |0| + |1| + |D| is fixed, a larger

schema implies more elements in D and fewer elements in 0 ∪ 1.

Example 3.4. To continue with Example 2.5, let us consider the

setW1 = {000, 001, 010, 011}, which is a subset of the weak basin

of A1. There exists a triple M1 = (01, 11,D1), where 01 = {1},

12 = ∅ and D2 = {2, 3}, such thatW1 |01
= {0},W1 |11

= ∅ and

W1 |D1
= {00, 01, 10, 11}. Therefore,W1 is a schema. Let us denote

the value of xi , i in 01, 11 and D1, as 0, 1 and ∗, respectively. Then,

W1 can be represented as 0 ∗ ∗.

The notion of schema leads the way to find temporary target

control. Each schemaWi of the weak basin basWTS (At ) gives a candi-
date temporary target controlCi = (0i , 1i ) for further optimisation

and validation. A larger schema results in a smaller control set.

To explore the entire weak basin basWTS (At ), we partition it into a

set of mutually disjoint schemataW = {W1,W2, . . . ,Wm }, where

W1 ∪W2 ∪ . . . ∪Wm = basWTS (At ). EachWi ∈ W is one of the

largest schemata in basWTS (At ) \ (W1 ∪ . . . ∪Wi−1). ForWi , the in-

dices of its support variables in 0i and 1i form a candidate control

Ci = (0i , 1i ). Each candidate control Ci is primarily optimised

based on the properties of input nodes. Because input nodes do

not have any predecessors, it is reasonable to assume that specified

input nodes I s are redundant control nodes, while non-specified
input nodes Ins are essential for control. For the remaining non-

input nodes in Ci , denoted C
r
i , we verify its subsets of size k based

on Lemma 3.1 from k = 0 with an increment of 1, until we find a

valid solution.
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Algorithm 1 Temporary Target Control

1: procedure Temp_Target_Control(G,At )
2: initialise L := ∅ and Ω := ∅ to store valid temporary

control sets and the checked control sets, respectively.

3: I , Ins :=Comp_input_nodes(G)
4: SB :=Comp_SB(F ,At ) //strong basin of At in TS
5: WB :=Comp_WB(F ,At ) //weak basin of At in TS
6: W :=Comp_schemata(WB),m := |W|

7: generate a vector Θ of lengthm, set all its elements to false
8: ζ := n //the threshold on the number of perturbations
9: for i = 1 :m do //traverse the schemata
10: if Θ[i] = true, then continue
11: Ci :=Comp_support_variables(Wi ) // Ci := (0i , 1i )
12: Ce

i := (0i ∩ Ins, 1i ∩ Ins), Cri := (0i \ I , 1i \ I )
13: k := 0, isValid := false
14: while isValid = false and k ≤ min(ζ − |Ce

i |, |C
r
i |) do

15: Csub
i :=Comp_subsets(Cri ,k) //compute all subsets

of Cri of size k
16: for Csub

j ∈ Csub
i do

17: C
j
i := C

sub
j ∪Ce

i , Φ := C
j
i (S)

18: if C j
i < Ω then //C j

i has not been checked.
19: isValid :=Verify_TTC(F ,C

j
i , SB,Φ)

20: add C
j
i to Ω.

21: if isValid = true then
22: add C

j
i to L, ζ := min(ζ , |C

j
i |)

23: Θ[z] := true ifWz ⊆ Φ for z ∈ [i + 1,m]

24: end if
25: end if
26: end for
27: if isValid = false, then k := k + 1
28: end while
29: end for
30: return L

31: end procedure

32: procedure Verify_TTC(F ,C, SB,Φ)
33: isValid := false
34: if Φ ⊆ SB then
35: isValid := true
36: else
37: SB|C :=Comp_state_control(C, SB) //compute the

remaining strong basin w.r.t. C in TS |C
38: F |C :=Comp_Fn_control(C, F )
39: basSTS |C (SB |C ) :=Comp_SB(F |C , SB|C )

40: if Φ ⊆ basSTS |C (SB |C ) then
41: isValid := true
42: end if
43: end if
44: return isValid
45: end procedure

To improve the efficiency of our method, we use binary decision

diagram (BDD) as a symbolic representation of large state space. The

size of a BDD is determined by the set of states being represented

and the chosen ordering of the variables. In BDD, a schema is

represented as a cube and each state is the smallest cube, also called

a minterm. To compute the largest schema Si of S is equivalent to

compute the largest cube of S . The partitioning of the weak basin

into schemata is then transformed into a cube cover problem in BDD.

A different variable ordering may lead to a different partitioning.

Given a fixed ordering, the partitioning remains the same. Even

though finding the best variable ordering is NP-hard, there exist

efficient heuristics to find the optimal ordering. In this work, we

compute a partitioning under one variable ordering as provided

by the CUDD package [37] and compute the smallest subsets of

candidate controls that are valid temporary target control sets.

Algorithm 1 implements the idea in pseudo-code. It takes as

inputs the BN G = (X , F ) and the target attractor At . It first ini-
tialises two vectors L and Ω to store valid controls and the checked

controls, respectively. (We use Ω to avoid duplicate control vali-

dations.) Then, it computes input nodes I and the non-specified

input nodes Ins, Ins ⊆ I (line 3). The strong basin SB and the weak

basin WB of At of TS are computed using procedures Comp_SB

and Comp_WB developed in [31, 32] (lines 4-5). The weak basin

WB is then partitioned into m mutually disjoint schemata with

procedure Comp_schemata. Realisation of this procedure relies on

the function to compute the largest cube provided by the CUDD

package [37]. For each schemaWi , the indices of its support vari-

ables computed by procedure Comp_support_variables form a

candidate control Ci (line 11). The essential control nodes C
e
i of Ci

consist of the non-specified input nodes. The non-input nodes inCi
constitute a set Cri for further optimisation (line 12). We search for

the minimal subsets of Cri starting from size k = 0 to the threshold

(min(ζ − |Ce
i |, |C

r
i |)) with an increment of 1 and verify whether the

union of a subset Csub
j of Cri and the essential nodes Ce

i , namely

C
j
i = C

sub
j ∪Ce

i , is a valid temporary target control using the proce-

dure Verify_TTC in Algorithm 1. If C
j
i is valid, save it to L. When

all the subsets have been traversed or a valid control has been found,

we proceed to the next schemaWi+1. In the end, all the verified

temporary target controls are returned.

The most time-consuming part of our method lies in the verifi-

cation process. As shown in the procedure Verify_TTC in Algo-

rithm 1, for each candidate control C , we need to reconstruct the

associated transition relations F |C and compute the strong basin of

the remaining strong basin in TS |C , i.e. basSTS |C (SB |C ) (lines 38 and
39). Although we have developed an efficient method for the strong

basin computation, the computational time still increases when the

network size grows. To improve the efficiency of our algorithm,

we further propose two heuristics: (1) skip a schema (line 10) if it

is a subset of intermediate states Φ of a pre-validated control C
j
i

(line 23); and (2) set a threshold ζ on the number of perturbations,

keep ζ updated with the smallest size of valid temporary target

control C
j
i (line 22) and only compute control sets with at most ζ

perturbations.

Algorithm 1 can be adapted to solve target control problem with

instantaneous perturbations by focusing on the schemata of the

strong basin of At . In this way, we don’t need to use procedure

Verify_TTC for additional verification and the indices of support

variables of each schema form an instantaneous control.
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4 EVALUATION
Our temporary target control method, described in Algorithm 1,

is implemented in the tool ASSA-PBN [23, 24] based on the model

checker MCMAS [18] to encode BNs into the efficient data structure

BDD. All the experiments are performed on a high-performance

computing (HPC) platform, which contains CPUs of Intel Xeon

Gold 6132 @2.6 GHz.

As discussed in the introduction, both our method (TTC) and the

stable motif-based control (SMC) [45] focus on temporary target

control of asynchronous BNs. We apply our method on several real-

life biological networks and compare its performance with SMC.

Here we give a brief description on the networks. An overview of

the networks can be found in Table 1.

• The myeloid differentiation network is designed to model

myeloid differentiation from common myeloid progenitors

to four cell types, including megakaryocytes, erythrocytes,

granulocytes and monocytes [15].

• The apoptosis network consists of necessary pro-apoptotic

and anti-apoptotic pathways to capture decision-making on

cell survival or apoptosis [40].

• The cardiac gene regulatory network integrates major genes

that play important roles in early cardiac development and

FHF/SHF determination [11].

• The ERBB receptor-regulated G1/S transition protein net-

work combines ERBB signalling with G1/S transition of the

mammalian cell cycle to identify new targets for breast can-

cer treatment [34].

• TheHSPC-MSCnetwork describes intercommunication path-

ways between hematopoietic stem and progenitor cells and

mesenchymal stromal cells (MSCs) in bone marrow (BM) [5].

• The PC12 cell network models temporal sequence of pro-

tein signalling, transcriptional responses and subsequent

autocrine feedbacks [29].

• The network of hematopoietic cell specification covers major

transcription factors and signalling pathways for lymphoid

and myeloid development [3].

• The bladder cancer network allows us to identify deregu-

lated pathways and their influence on bladder tumourigene-

sis [33].

• TheMAPK network is constructed to studyMAPK responses

to different stimuli and their contributions to cell fates [10].

• The model of HGF-induced keratinocyte migration captures

the onset and maintenance of hepatocyte growth factor-

induced migration of primary human keratinocytes [35].

• The Th-cell differentiation network models regulatory ele-

ments and signalling pathways controlling Th-cell differen-

tiation [28].

• The HIV-1 network models dynamic interactions between

human immunodeficiency virus type 1 (HIV-1) proteins and

human signal-transduction pathways that are essential for

activation of CD4+ T lymphocytes [30].

Attractors of the networks. Before the computation of target

control, attractors are identified with our decomposition-based

attractor detection method [22] and SMC, respectively. Our method

identifies all the exact attractors (the number of states and the

structures for both singleton and cyclic attractors) introduced in

Section 2.2, while SMC identifies exact singleton attractors and

quasi-attractors, which correspond to cyclic attractors. A quasi-

attractor can be considered as a superset of an attractor: the values

of oscillate nodes in the corresponding attractor are not specified in

a quasi-attractor. Columns 2-3 of Table 1 give the number of nodes

and edges of the networks. Columns 4-5 and 6-7 of Table 1 show

the number of attractors computed by the two methods. Most of

the attractors identified by the two methods are the same except

for the cyclic attractor of the apoptosis network (marked in bold

in Table 1). SMC identifies its quasi-attractor, which consists of

64 states, while the corresponding cyclic attractor has 56 states.

Columns 8 and 9 of Table 1 show the execution time for attractor

detection. We can see that our attractor detection method is more

efficient than SMC.

Efficacy. We compute temporary target control for each attractor

of the networks with TTC and SMC. Since neither of the methods

guarantees the minimal control, they may find control sets of dif-

ferent sizes for one attractor. For comparison, we only consider the

smallest control sets.

Figure 3 (a) shows the number of smallest control sets for the

myeloid differentiation network. The blue bars and grey bars rep-

resent the control sets that only appear in the results of TTC and

SMC, respectively. The green bars denote the intersection of the

two methods. The equation above each bar |C | = k describes the

size of the control sets. For attractorsA1,A5 andA6, TTC identifies

smaller control sets than SMC. Taking A5 as an example, the mini-

mal number of perturbations required by TTC and SMC is 3 and

4, respectively. Since we only consider the smallest controls, SMC

identifies zero control set of size 3, thus we can only see the blue

bar for this case. For other attractors (A2,A3 andA4) of the myeloid

network in Figure 3 (a) and all the attractors of the cardiac network
in Figure 3 (b), two methods require the same number of perturba-

tions, but our method has the potential to identify more solutions

than SMC. For the other networks listed in Table 1, we summarise

the number of control sets for one of the attractors in Figure 3 (c).
It shows that our method is able to identify smaller control sets

than SMC for the bladder cancer network (SMC failed to compute

results for hematopoiesis, HGF and HIV-1 networks). Our method

also has the capability to provide more solutions, which may give

more flexibility for clinical applications. Another interesting obser-

vation is that even for large networks, the number of perturbations

is relatively small.

Now we use the myeloid differentiation network as an example

to show the consistency of our results with biological conclusions

in [15]. This network consists of six attractors, four of which corre-

spond to erythrocytes, megakaryocytes, monocytes and granulo-

cytes. To realise the conversion to granulocytes (A5 in Figure 3 (a))
from any initial state, TTC needs to perturb C/EBPα , PU.1, together
with one of the nodes in {cJun, EgrNab, Gfi1}. It has been verified

that coordinated overexpression of C/EBPα and PU.1 is required for

the convergence to GM lineage (granulocytes and monocytes) [15].

One more control node in {cJun, EgrNab, Gfi1} helps to further

distinguish granulocytes from monocytes.

Efficiency. The last two columns of Table 1 summarise the ex-

ecution time for computing temporary target control for all the

attractors of the networks. We can see that our method is more
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Network #nodes #edges

Number of attractors Time (seconds)

TTC SMC Attractor detection Control

#singleton #cyclic #singleton #quasi TTC SMC TTC SMC

myeloid 11 30 6 0 6 0 0.002 7.100 0.025 7.710

apoptosis 12 26 2 1 2 1 0.004 2.423 0.010 2.679

cardiac 15 39 6 0 6 0 0.004 10.710 0.200 10.279

ERBB 20 52 3 0 3 0 0.004 6.400 0.105 5.788

HSPC-MSC 26 81 2 2 2 2 0.101 33.910 0.099 11.433

PC12 33 62 7 0 7 0 0.013 84.904 14.953 191.299

hematopoiesis 33 88 5 0 - - 0.452 - 97.773 -

bladder 35 116 3 1 3 1 0.735 25.662 2.181 34.035

MAPK 53 105 2 0 2 0 1.749 6.461 7.980 86.073

HGF 66 103 2 0 2 0 2.443 20.694 58.727 -

T-diff 68 175 6 0 6 0 1.245 13.475 18.790 14.103

HIV-1 136 321 8 0 - - 28.274 - 270.617 -

Table 1: An overview of the networks and a comparison of the twomethods (TTC and SMC). Symbol ‘-’ means that the method
failed to finish the computation within five hours.
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Figure 3: An overview of the control results. The blue bars and grey bars represent the control sets that only appear in the
results of TTC and SMC, respectively. The green bars denote the intersection of the two methods.

efficient than SMC for most of the cases. SMC failed to finish the

computation for three networks (hematopoiesis, HGF, and HIV-1)

within five hours. For the hematopoiesis network, SMC failed in

the identification of stable motifs, which has been pointed out to

be the most time-consuming part of SMC [45]. The reason could

be that the number of cycles and/or SCCs in its expanded network

is computationally intractable. For the HGF-induced keratinocyte

migration network, SMC is blocked in the optimisation of stable

motifs due to that this network has 19 stable motifs and most of

the stable motifs contain more than 16 nodes. SMC failed to con-

struct the expanded network representation for the HIV-1 network

because some of its Boolean functions depend on many parent

nodes (k ≥ 10). Detailed discussion on the complexity of SMC can

be found in [45]. The efficiency of our method is influenced by

not only the network size, but also the number of attractors and

the number of required perturbations. The results show that our

method is quite efficient and scales well for large networks.

5 CONCLUSION
In this work, we have developed a temporary target control method

for asynchronous BNs to identify a set of nodes, the temporary

perturbation of which can drive the network from any initial state

to the desired target attractor. We have evaluated our method on a

variety of real-life biological networks to demonstrate its efficacy

and efficiency.

We compared our method with SMC, a promising method to

solve the same control problem. SMC explores both structures

and Boolean functions of BNs, and is potentially more scalable for

large networks. In contrast, our method is essentially based on

the dynamics of the networks, and it will suffer the state space
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explosion problem for networks of several hundreds of nodes. We

believe that these two methods complement each other well. In

the near future, we aim to find a way to combine the strengths of

both methods by simultaneously exploring network structure and

dynamics to achieve more efficient computational methods for the

control of large biological networks.
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