
Target Control of Boolean Networks with
Permanent Edgetic Perturbations

Olivier Zeyen1, Jun Pang2

Abstract— Boolean network is a popular and well-established
modelling framework for gene regulatory networks. The steady-
state behaviour of Boolean networks can be described as
attractors, which are hypothesised to characterise cellular
phenotypes. In this work, we study the target control problem of
Boolean networks, which has important applications for cellular
reprogramming. More specifically, we want to reduce the total
number of attractors of a Boolean network to a single target
attractor. Different from existing approaches to solving control
problems of Boolean networks with node perturbations, we aim
to develop an approach utilising edgetic perturbations. Namely,
our objective is to modify the update functions of a Boolean
network such that there remains only one attractor. The design
of our approach is inspired by Thomas’ first rule, and we
primarily focus on the removal of cycles in the interaction graph
of a Boolean network. We further use results in the literature
to only remove positive cycles which are responsible for the
appearance of multiple attractors. We apply our solution to a
number of real-life biological networks modelled as Boolean
networks, and the experimental results demonstrate its efficacy
and efficiency.

I. INTRODUCTION

Complex diseases such as cancer and diabetes are chal-
lenging for modern medicine. To understand complex dis-
eases and their progression, it is crucial to understand the
mechanisms of cell transformation. Cellular reprogramming
is a way to change one cell phenotype to another, allowing
to reprogram any abundant cell into the desired cells [1], [2].
The identification of potential target genes and reprogram-
ming paths remains a major challenge in in vivo cellular
reprogramming [3]. Conventional experimental approaches
are usually prohibited by the high complexity of biological
systems and the high cost of experiments [4]. This leads to
the need for developing efficient in silico approaches towards
cellular reprogramming based on mathematical modelling.

In this work, we focus on the control of gene regulatory
networks (GRNs) modelled as Boolean networks (BNs).
GRNs are networks capturing the relationships between
genes and their regulators in the cells, they represent bio-
logical systems characterised by the orchestrated interplay
of such complex interactions resulting in highly nested feed-
back and feed-forward cycles. Among various mathematical
modelling frameworks for GRNs, BNs have a distinct advan-
tage [5], being simple and yet able to capture the important
dynamical properties of the biological system under study,

1O. Zeyen is with the Interdisciplinary Centre for Security, Reliability
and Trust, University of Luxembourg.

2J. Pang is with the the Faculty of Science, Technology and Medicine and
the Interdisciplinary Centre for Security, Reliability and Trust, University
of Luxembourg.

*Correspondence should be addressed to J. Pang (jun.pang@uni.lu).

thus facilitating the modelling of large biological systems as
a whole. In BNs, genes are modelled as binary variables,
being either ‘expressed’ (value ‘1’) or ‘not expressed’ (value
‘0’) and activation/inhibition regulations between genes are
described by Boolean update functions. The dynamics of
a BN are determined by Boolean functions together with
the update mode, either synchronous or asynchronous. The
asynchronous updating scheme is considered more realistic
than the synchronous one, since it randomly updates one
node at each time step and therefore can capture different
biological processes at different time scales [6]. The steady
states of biological systems are described as attractors in
BNs, to one of which the network eventually settles down. In
biological context, attractors are hypothesised to characterise
cellular phenotypes [5] and correspond to functional cellular
states such as proliferation, apoptosis, differentiation, etc. [7].

In the context of BNs, cellular reprogramming, or the
control of the GRNs, amounts to being able to drive the
dynamics of the associated BN from an attractor to another
‘desirable’ target attractor by controlling or reprogramming
the nodes of the BN. This has been recognised as the source-
target control of BNs. The non-determinism of the asyn-
chronous dynamics of BNs contributes to a better depiction
of biological systems. As a consequence, it makes the control
problem more challenging and renders the control methods
designed for synchronous BNs inapplicable [8], [9]. Another
major obstacle to BNs is the infamous state space explosion
problem — the state space is exponential in the size of the
network. It motivates the development of efficient solutions
for the source-target control of BNs with instantaneous,
temporary and permanent node perturbations [10], [11], [12],
[13], [14]. The perturbation of a node means to change
the expression of the node to either ‘1’ or ‘0’. In view
of the difficulties and expenses in conducting biological
experiments, these node-perturbation based methods aim
to compute the minimal control sets, which can be easily
translated for wet-lab validation. In practice, cells in tissues
and in culture normally exist as a population of cells,
corresponding to different stable steady states [2]. This gives
rise to the necessity of designing target control methods for
BNs to compute a subset of nodes, the control of which
can always drive the system from any initial state to a
desired target attractor. The target control method developed
in [15] adopts instantaneous node perturbations which are
only applied instantaneously, but at a cost, a rather large
number of control nodes are required when compared to
temporary and permanent perturbations. In addition, it is
difficult to guarantee that all the perturbations take effect at

the same time in biological experiments. Therefore, target
control methods with temporary node perturbations were
developed [16], [17], which compute a rather small set of
node perturbations that solves the target control problem.

All the above control methods focus on identifying node
perturbations in BNs, corresponding to ‘knock-out’ gene
mutations in biological experiments. However, for complex
diseases it is more common that several subtle changes cause
the diseases. Mutations causing a molecular defect to a
protein may lead to a distinct perturbation of a specific inter-
action [18], [19], [20], [21]. To account for this phenomena,
novel predictive models of genotype-phenotype relationships
are required. Towards this requirement, the conceptual model
of ‘edgetic perturbations’ was proposed [18], [20], which
corresponds to the removal of an edge in the original biolog-
ical network. Control strategies using edgetic perturbations
may pave the way for novel therapeutic strategies. However,
there exist few works on identifying edgetic perturbations for
cellular reprogramming in the context of BNs, where edgetic
perturbations correspond to modifications of the Boolean
update functions. An initial effort on identifying edgetic
perturbations in BNs was made by Biane and Delaplace [22],
but their method only works for Boolean control networks
with the synchronous updating mode.

In this paper, we tackle the target control problem of
asynchronous BNs with edgetic perturbations. We aim to
identify a set of edgetic perturbations (preferably small) for a
BN, such that when applied, the network eventually reaches
a given target attractor independently of its initial state.
We focus on perturbing the edges (Boolean functions) of a
Boolean network instead of the nodes. This is equivalent to
perturbing the interactions between nodes instead of directly
perturbing the nodes themselves. Our approach to the target
control problem is based on the work of Richard [23] which
was originally inspired by Thomas’ first rule [24]. Thomas
conjectured that positive cycles in the interaction graph of
a dynamical system is a necessary condition for multiple
steady states. Following the result in [23], if all the local
interaction graphs of a BN have no positive cycles then the
network has at most one attractor. This is a generalisation
of Thomas’ first rule [24]. One naive approach would be
to remove every positive cycle from the BN and thus there
would only remain one attractor. However, this approach
often produces larger solutions which might be infeasible
or very costly for wet-lab validation. A refined approach is
to try and reduce the set of positive cycles before removing
them, because a positive cycle is a necessary but not sufficient
condition for multiple attractors. In other words, multiple
attractors mean multiple positive cycles but multiple positive
cycles do not necessarily give rise to multiple attractors. This
leads to the main idea of our approach that before removing
the cycles we would filter the cycles to only focus on the
relevant cycles. We then compute a feedback edge set (FES)
to remove these relevant cycles. In this way, we can identify a
smaller set of edgetic perturbations than the naive approach,
ensuring that the BN, after applying the perturbations, will
have only one attractor, i.e., the given target attractor.

We have implemented our approach and evaluated it
through a number of real-life biological networks modelled
as BNs. The experimental results show that our approach is
quite effective — it identifies relatively small sets of edgetic
perturbations to solve the target control problem of these
networks, when compared to the number of edges in the
networks. We also present the time to compute the solutions
which also demonstrates the efficiency of our approach.

II. PRELIMINARIES

A. Concepts for Boolean networks

Boolean network is a modelling framework for GRNs,
which was first introduced by Kauffman [5] and later refined
and improved by Thomas [25].

Definition 1 (Boolean network [25]): A Boolean network
(BN) G(V, f̄) consists of a set of nodes V = {v1, . . . , vn}
and a vector of Boolean update functions f̄ = (f1, . . . , fn),
where each fi : {x1, . . . , xn} → {0, 1} is an update function
associated with node vi and xj ∈ {0, 1} is a value assigned
to node vj , with i, j ∈ {1, . . . , n}.

For the rest of the exposition, we assume that an arbitrary
but fixed network BN G(V, f̄) of n variables and update
functions fi (1 ≤ i ≤ n) is given to us.

Definition 2 (State of a Boolean network): A state of a
BN is given by a vector x̄ = (x1, . . . , xn) ∈ {0, 1}n, where
xi ∈ {0, 1} is a value assigned to the node vi. The state of
the network at a discrete time point t (t = 0, 1, . . .) is given
by a vector x̄(t) = (x1(t), x2(t), . . . , xn(t)), where xi(t) is
a value assigned to the node vi at time point t. The value of
a node at the next time step t + 1 is given by the function
fi, i.e., xi(t+ 1) = fi(x̄(t)).

A BN evolves in discrete time steps. It starts initially in
a state and its state changes in every time step according
to the Boolean update functions. According to how the
updating may happen, BNs are classified into two types, i.e.,
synchronous and asynchronous. In the synchronous updating
scheme, all the nodes are updated simultaneously. On the
other hand, in the asynchronous updating scheme, at each
time step a node in the network is picked randomly and
updated according to its update function. In this work, we
shall be interested primarily in the asynchronous updating
scheme. The transition relation of an asynchronous BN is
given by the following definition [23]:

Definition 3 (State transition system): For a given BN we
define Γ(f̄) as its state transition system. The state set is
{0, 1}n and for every state x̄ and every component i such
that fi(x̄) ̸= xi, there is an arc x̄ → x̄i, with x̄i the state
obtained by flipping the ith component in the state x̄.

We write (x̄, ȳ) ∈ Γ(f̄) to denote an arc going from the
state x̄ to the state ȳ which belongs to the state transition
system Γ(f̄). The state space of a BN consists of all the
states in {0, 1}n. The concept of trap domain captures a set
of states that the network cannot leave.

Definition 4 (Trap domain [26]): A trap domain A of
Γ(f̄) is a non-empty subset of states such that ∀(x̄, ȳ) ∈
Γ(f̄) ∧ x̄ ∈ A =⇒ ȳ ∈ A.

The long-run behaviour of a BN is described by its steady
states, which are formally known as attractors. The attractors
of a BN are of particular interest due to their biological
interpretation as, for instance, attractors are hypothesised to
characterise cellular phenotypes [5].

Definition 5 (Attractor [27]): An attractor A of a BN is
a smallest trap domain, i.e., a trap domain which does not
include any other trap domains except for itself.

From the definitions, we can see that an attractor is a
bottom strongly connected component in the state transition
system of a BN.

Next, we define hyperrectangular regions in the state space
of BNs. This definition allows us to classify the steady states
of BNs (i.e., attractors) into two types.

Definition 6 (Hyperrectangular region [26]): Let x̄ and ȳ
be two states of a BN. We define π(x̄, ȳ) to be the smallest
hyperrectangular region containing both x̄ and ȳ as follows:

π(x̄, ȳ) =

n∏
i=1

{min(xi, yi), . . . ,max (xi, yi)}

We distinguish two types of attractors, simple cyclic attrac-
tors and complex cyclic attractors. Simple cyclic attractors
are a type of attractors that can be expressed using a single
hyperrectangular region π(x̄, ȳ). Notice that fixed points are
a special case in which x̄ = ȳ. Complex cyclic attractors
are a type of attractors that if expressed using hyperrectan-
gular regions, require at least two hyperrectangular regions⋃n

i=1 π(x̄i, ȳi) (with n ≥ 2) to be fully expressed without
containing any other states that are not part of the attractor.
In this paper, we will only consider the case in which the
target attractor ∆ is either a fixed point or a simple cyclic
attractor.

For two states x̄ and ȳ of a BN, we define I(x̄, ȳ) as
the set of nodes such that for each node vi if xi ̸= yi then
vi ∈ I(x̄, ȳ) [26]. If either x̄ or ȳ is not a state but a trap
domain, we choose the states such that the set I(x̄, ȳ) is
minimal.

Definition 7 (Discrete partial derivative [23]): The dis-
crete partial derivative of fi with respect to the component
j is the function f j

i :{0, 1}n → {−1, 0, 1} defined by:

f j
i (x̄) := fi((x1, . . . , xj−1, 1, xj+1, . . . , xn))−

fi((x1, . . . , xj−1, 0, xj+1, . . . , xn))

Definition 8 (Local interaction graph): The local interac-
tion graph of a BN with update functions f̄ at state x̄,
denoted G f̄(x̄), is the signed directed graph with the vertex
set V = {1, . . . , n} and for all i, j ∈ V there is an edge
from j to i of the same sign as f j

i (x̄) if f j
i (x̄) is nonzero.

The global interaction graph G (f̄) is the union of all the
local interaction graphs. We write e = i → j to denote an
edge going from node i to node j in the interaction graph. We
have two functions: src and dst, which return the source and
destination of e, respectively. Namely, we have src(e) = i
and dst(e) = j. We use the function sign to return the sign
of the edge: sign(e) ∈ {−,+}.

B. Data structures

In this section, we define several notations and data
structures that we use to present our approach. We define
C as the set of cycles in the global interaction graph of a
BN. The sign of a cycle can be obtained by computing the
product of the signs of all the edges in the cycle. With this,
we define C+ as the set of positive cycles. We only consider
elementary cycles, and define A as the set of attractors of the
BN. We define E as the set of edges and thus we can define
a cycle as being a set of edges. The symbol ↔ represents
a relation. For example, if we write C ↔ P(A), this is a
relation between cycles and sets of attractors. In this way,
we can create new types from existing types. We define
a function vertices which takes a cycle as parameter and
returns a set of vertices. If we use V for the set of vertices
the function vertices is defined as vertices : P(E)→ P(V).

We need to define how a BN is represented in syntax.
The Boolean functions can be represented as a disjunction
of conjunctions of positive and negative literals, i.e., the so-
called disjunctive normal form (DNF) or prime implicants.
We define BN as being a shorthand for the type of Boolean
networks which can be written as V → P(P(L)), with L the
set of literals. We then use the sign : L → {+,−} function
to get the signs of the literals and vertex : L → V to get the
associated vertex.

C. Edgetic perturbations

We now define edgetic perturbations following [28]. In
this work, we perturb edges in the local interaction graphs
instead of the global interaction graph. Edgetic perturbations
involve setting an edge to either true or false. This means
that from the target genes perspective, the source of the edge
will always be seen as either true or false. For example,
suppose the Boolean update function for node v5 is f =
(x1 ∧ x2 ∧ x3) ∨ (x2 ∧ x3 ∧ x4). We now decide to perturb
the edge v1 → v5, and set the edge to true. The function
would become f = (true ∧ x2 ∧ x3) ∨ (x2 ∧ x3 ∧ x4). If,
on the other hand, we set the edge to false, we get f =
(false ∧x2 ∧x3)∨ (x2 ∧x3 ∧x4) = x2 ∧x3 ∧x4. Moreover,
if we want to perturb an edge coming from v2, we would
have two possible edgetic perturbations because x2 has two
occurrences in f . In this case, both occurrences are positive
which means that setting both to true or false will have the
effect we are looking for. In general, however, a literal could
appear both positive and negative in an update function and
thus would be set to different values. However, this is not the
case in the context of biological networks where we consider
that a node can only have one type of effect on other nodes.

D. Target control of BNs

We formulate our research problem as follows.
Definition 9 (Target control of BN): Given a BN, the tar-

get control problem aims at perturbing some parameters (i.e.,
nodes or Boolean update functions) of the network so that
from any state in the network, it will eventually reach a given
target attractor ∆ of the original BN.

In our case, the solution is going to be a set of permanent
edgetic perturbations such that there remains only a single
attractor in the BN, and the remaining attractor would be
an attractor that we are given at the beginning. Moreover,
we aim to use as few perturbations as possible because
applying edgetic perturbations in wet-lab experiments is
often complicated and costly, and we want to perturb the
networks as little as possible.

A running example. We have an example BN ex with four
nodes {v1, v2, v3, v4}. The corresponding Boolean update
functions are given below:

f1 = x1 ∨ x2; f2 = x1 ∧ x4;
f3 = ¬x1 ∧ x4; f4 = x3.

The update functions are already in the required DNF form.

v1

v2

v3

v4

Fig. 1. The global interaction graph for BN ex.

With these functions we can derive the state transition
system. From the state transition system and following
Definition 5, we find that BN ex has three attractors, namely
0000, 0011 and 1000. Figure 1 shows the global interaction
graph of BN ex. The edges with an arrow head in a ‘T’ shape
are negative edges (e.g., the edge from x1 to x3).

III. OUR APPROACH

We first present results from the literature on which our
solution is based. We continue by giving an overview of our
approach and explain the details of how each component of
our approach works.

By Thomas’ first rule [24], we know that if G(f̄) has
no positive cycles, then Γ(f̄) has at most one fixed point.
Theorem 1 below gives us a local version of Thomas’ first
rule for local interaction graphs.

Theorem 1: (Thomas’ first rule, local version [23]). If
G f̄(x̄) has no positive cycle for every x̄ ∈ {0, 1}n then
Γ(f̄) has a unique attractor.

With Theorem 1, we can see that if we simply remove
all the edges from the feedback edge set computed on the
subgraph of the global interaction graph containing only the
positive cycles, then there would only remain one attractor.
This would still remove too many edges because a positive
cycle in a local interaction graph is a necessary but not
a sufficient condition for the presence of two disjoint trap
domains [26]. This is why the local interaction graphs
may contain more cycles than necessary. Moreover, when
computing the union of all the local interaction graphs,
new cycles may appear. Therefore, if we focus on the
global interaction graph instead, the algorithm will return
more edgetic perturbations. The efficiency gains would be
substantial and we thus use the global interaction graph.

Procedure target-control(BN, ∆)
Input: BN ∈ BN , ∆ ∈ A
Output: BN
begin

attrs← compute-attractors(BN)
while |attrs| ≠ 1 do

G(f̄)← interaction-graph(BN)
c+ ← positive-cycles(G(f̄))
C ← filter-cycles(c+,∆, attrs\∆)
FES ← filter-edges(C)
BN ← perturb-BN(BN,FES)
attrs← compute-attractors(BN)

end
return BN

end

Richard and Commet [26] give us further details on the
nodes involved in the positive cycle.

Theorem 2: (Thomas’ conjecture, discrete version [26]).
Suppose that A and B are two disjoint trap domains of
Γ(f̄). Let (x̄, ȳ) ∈ A × B such that for all (x̄′, ȳ′) ∈
A × B.π(x̄′, ȳ′) ̸⊂ π(x̄, ȳ). Then there exists z ∈ π(x̄, ȳ)
such that Gf̄(z) has a positive cycle.

Richard and Commet [26] show that the positive cycle
responsible for the presence of two disjoint trap domains A
and B only contains nodes in which x̄ and ȳ are different
(i.e., I(x̄, ȳ)), with x̄ ∈ A and ȳ ∈ B (see Theorem 2).

To apply Theorem 2 on two attractors A and B we
need to pick two states x̄ ∈ A and ȳ ∈ B such that
the hyperrectangular region is as small as possible. We
know that the positive cycle responsible for the presence
of A and B uses a subset of the nodes in I(x̄, ȳ) and we
can filter the cycles accordingly. Theorem 2 thus allows
us to focus on searching relevant positive cycles and to
identify which edgetic perturbations are required. However,
we cannot ensure that the interaction graph of the resulting
BN is acyclic and thus ensure that the BN has only one
attractor left. Therefore, we now need to repeat the detection
and removal of cycles until there is indeed only one single
attractor left.

Our final approach is now captured by the overall pro-
cedure target-control. The procedure simply starts by com-
puting the set of attractors of a BN. The procedure then
computes the global interaction graph G(f̄) for the BN.
Using the graph G(f̄), it computes the set of positive cycles
c+ which is then reduced using Theorem 2 to identify only
relevant cycles for the appearance of multiple attractors. This
is achieved with the procedure filter-cycles. We then proceed
to invoke filter-edges to obtain at least one FES. We then
simply perform the necessary perturbations. If there exist
multiple solutions to solve the target control of the BN with
respect to ∆, the procedure perturb-BN just randomly picks
one of the solutions to apply.1 This is repeated until there is

1It is straightforward to update the procedure if it is desired to have all
the solutions.

only a single attractor left. The re-computation of attractors
is necessary because perturbing the edges permanently may
create new attractors.

To compute the set of elementary cycles of a graph we
refer the readers to the work of Johnson [29]. We then simply
compute the signs of the cycles by computing the product
of the signs of the edge, and remove all the negative cycles
from the set (i.e., positive-cycles).

Continuing with our example BNex in Section II,
from its global interaction graph depicted in Fig-
ure 1, we can find the set of positive cycles: C+ =
{(v1, v1)}, {(v1, v2), (v2, v1)}, {(v3, v4), (v4, v3)}}.

The next step is to apply the procedure filter-cycles to
filter out all the cycles that are considered irrelevant fol-
lowing Theorem 2. This procedure takes as input a set of
positive cycles C, a target attractor ∆ and a set of attractors
Ψ to remove from the network. Thanks to Theorem 2, we
know that all nodes involved in a positive cycle c need to
be in a set I(x̄, ȳ) with x̄ ∈ ∆ and ȳ ∈ a ∈ Ψ. We can
thus filter the set of cycles. To remove the edges afterwards,
we need some context to know exactly what the necessary
edgetic perturbations are, i.e., how to modify the update
functions so that the only remaining attractor is ∆. Thus
the procedure filter-cycles returns a map from the cycles
to sets of attractors. We obtain the relation C+ ↔ P(A)
such that for every pair (c, ϕ) in the relation we have
∀a ∈ ϕ, vertices(c) ⊆ I(a,∆), with c ∈ C+ and ϕ ⊆ A.

For our running example BNex, its attractors are
0000, 0011 and 1000. Let us choose the target attrac-
tor ∆ as 1000, so we have Ψ = {0000, 0011}. Now
we compute I(∆, 0000) = {v1} and I(∆, 0011) =
{v1, v3, v4}. We thus obtain: result = {{(v1 , v1)} 7→
{0000 , 0011}, {(v3 , v4), (v4 , v3)} 7→ {0011}}

We can see that the attractor 0011 is mapped to two cycles
instead of just one. The reason for this is because we keep
all the cycles that are in the subgraph defined by the set of
nodes I(∆, 0011). This subgraph contains the two cycles.
The comparison I(∆, 0000) returns a single node, thus the
only possibility is the self loop on node v1.

Following the relation returned by the procedure filter-
cycles, we would need to compute a FES on the cycles in
the relation. We also want to keep the relation between the
identified edges and the attractors. To reduce the number
of possibilities, the procedure filter-edges simply looks for
overlap between the cycles. If there is overlap between two
cycles in the relation, we merge the relations by computing
the intersection of the cycles and the union of the sets of
attractors. This allows us to reduce the total number of
perturbations. The result contains multiple solutions.

In our example BNex, there is no overlap between the
cycles that we aim to remove, so the procedure filter-
edges would simply return its input. For our example, the
sets {(v1, v1), (v3, v4)} and {(v1, v1), (v4, v3)} are valid FES
both returned by our procedure.

We are now ready to compute the required edgetic pertur-
bations in the BN as described in the procedure perturb-BN.

The procedure perturb-BN (randomly) picks one FES,

Procedure perturb-BN(FES, ∆, BN)
Input: FES ∈ P(E)↔ P(A) , ∆ ∈ A, BN ∈ BN
Output: BN
begin

foreach s in dom(FES) do
e← pick one edge from s
if ∆ has the gene dst(e) set to true then

clauses ← pick the clauses for dst(e)
containing src(e)

remove src(e) from the clauses
else

foreach a in FES(s) do
clauses ← pick the clauses for dst(e)

satisfied by a containing src(e)
remove clauses from the network for

gene dst(e)
end

end
end
return BN

end

then for each edge e in the FES, the procedure first checks if
the target of e (dst(e)) is true in ∆. Because of the way we
filter the cycles, we know that if a node is true in ∆, it is false
in all the attractors that we aim to remove (and similarly if a
node is false in ∆). We have established that dst(e) is true in
∆. Now we remove all the occurrences of src(e) from node
dst(e)’s update function except the ones that correspond to
negative self loops. If we have established that dst(e) is false
in ∆, then we have to go through all the attractors associated
with the edge e, namely the ones in the set FES (e). For each
attractor a ∈ FES (e), we select the conjunctive clauses of
the function associated with node dst(e) which are satisfied
in a and contain the node src(e). Since we want to make
the node dst(e) false, we want to set the node src(e) to
true when it is negative and false when it is positive. Notice
that this is the absorbing element of the conjunction, thus
the complete conjunction becomes false. In both cases we
need to take care not to directly remove any negative self
loops as removing them may also modify cyclic attractors
while not contributing to our goal. Negative self loops may
be perturbed as a side effect from other perturbations.

Let us continue with our example BNex. The first edge we
need to remove is the edge (v1, v1). Our target attractor being
∆ = 1000, we have the destination of our edge set to true.
The function we will modify is the function f1 = x1 ∨ x2.
The clause x2 is not satisfied by our target ∆ and it does
not contain the source of our edge, namely v1. Let us now
consider the clause x1. We see that x1 is satisfied by ∆ and
it contains v1. Following our procedure perturb-BN, we will
remove x1 making the clause x1 empty. We get f1 = true ∨
x2 = true . There is still one edge to be removed following
our procedure, but for our example, if we recompute the
attractors after performing the first identified perturbation,

we notice that there is only a single attractor left, namely
∆. We can thus observe that our approach does not always
return the smallest number of perturbations. This indicates
that our approach cannot return a set of perturbations of
minimal size.

Since the attractors of the BN need to be recomputed
at each run, we have the following theorem stating the
complexity of our procedure target-control.

Theorem 3: In the worst case target-control terminates in
exponential time.

When performing edgetic perturbations we are only mak-
ing it easier for the target attractor ∆ to be present. Moreover,
for the case in which ∆ is a simple cyclic attractor, notice
that we only modify the nodes in which ∆ is different from
the other attractors, and thus we only modify the nodes which
are fixed in ∆. We cannot make such guarantees in case of
complex cyclic attractors.

Theorem 4: Under the assumption that the target attractor
∆ is a simple cyclic attractor or a fixed point, the procedure
target-control is a sound solution to the target control
problem of a BN.

However, as explained previously, the solutions returned
by target-control are not guaranteed to be of minimal size.

IV. EVALUATION

In this section, we present an evaluation of the proposed
approach to solve the target control of BNs. Table I (left
part) gives general information about the tested networks.
The first column is the name of the network, the second
column gives the number of nodes in the network and the
third column gives the number of edges in the unsigned,
directed global interaction graph. The columns ‘#CA’ and
‘#CX’ give the number of simple cyclic attractors (which
includes fixed points) and complex cyclic attractors in the
networks, respectively.

For most of the networks, their detailed description can
be found in [30]. The other networks have been taken from
the repository for the project PyBoolNet [31]. The PyBool-
Net [31] and the software tool CABEAN [32] have been
used to implement and test our approach. The PyBoolNet
tool being written in Python and CABEAN in C, another
library rendering CABEAN accessible through Python [33]
has been used as well. For our experiments, the networks are
first loaded using the PyBoolNet library, then we compute
the attractors using the CABEAN tool. For each attractor
of a network, we set it as the target and compute the
corresponding FES. We then test every FES returned by
the procedure filter-edges. Once an FES is applied, the
attractors are computed using the CABEAN tool to check
how many attractors are left and if the target attractor still is
an attractor of the network. All the computations were done
on a desktop computer with 16 GB of RAM and a quad core
Intel i5-4460 processor running at 3.2 GHz.

Table I (right part) presents the experimental results on
the networks. The first and second columns of the right
part indicate the minimum and maximum number of ed-
getic perturbations identified across all the possible target

attractors and across all the FESs returned by filter-edges.
Every modification of a clause (i.e. setting a literal to either
true or false) is counted as a perturbation. The columns min
and max time indicate the minimum and maximum time in
seconds required to compute the results. The computation
time includes the time required to compute the attractors of
the network once, the time required to test all the FESs and
the time required to compute the attractors of all the networks
after the FESs have been removed. The computation time
however does not include the time required to load the
Boolean network using the PyBoolNet [31] library. The last
column indicates the maximum number of FESs returned by
the procedure filter-edges.

From Table I, we see that the number of edgetic per-
turbations (at least the minimum ones) required to solve
the target control of real-life BNs is relatively small when
compared with the number of edges in the networks. The
computation time also looks promising. If we take the largest
network T-diff as an example, we see that the number of
perturbations are between 7 and 12 across all attractors
taken as the targets. The time required to test one attractor
is between 63 seconds and 635.7 seconds even though for
some attractors the procedure had to test 216 FESs. The
network that required the longest computation time, is the T-
LGL network, which requires at most 918.8 seconds for one
attractor to be tested as the target. These results demonstrate
that our approach scales reasonably well.

It is worth comparing the results of our approach with
the method to solve target control of BNs with node per-
turbations. Table II (left part) shows the minimum and
maximum number of perturbations required to achieve target
control using permanent node perturbations implemented in
CABEAN [32]. Table II (right part) shows the ratios obtained
by dividing the maximum number of perturbations by the
number of nodes or edges depending if the perturbations
are node perturbations or edgetic perturbations. The dashes
simply indicate that we did not manage to compute the node
perturbations within one hour with CABEAN. From Table II,
we see that, in most cases except for the hema network, the
ratio for edgetic perturbations is smaller than the ratio for
node perturbations.

In our experiments, we observe that after a single iteration
of the loop in the procedure target-control, most networks
have a single attractor left except for the networks dinwoodie
life and hema which sometimes have two attractors left after
the first iteration. We can thus see that in most cases the loop
in the procedure target-control is not necessary. The target
attractor has never been removed by our procedure except for
the network dahlhaus neuroplastoma where the target was a
complex cyclic attractors.2

V. RELATED WORK

A lot of research has been devoted to developing control
methods for complex networks including biolgoical networks

2This is an example explaining why we focus on taking a simple cycle
or a fixed point as the target attractor.

networks #nodes #edges #CA #CX min #P max #P min time max time max #FES
davidich yeast 10 28 13 0 3 13 0.1 0.2 1
faure cellcycle 10 35 1 1 3 3 0.0 0.0 1
myeloid 11 30 6 0 6 9 0.1 1.5 12
dinwoodie life 15 35 7 0 4 6 1.7 3.1 32
cardiac 15 38 3 0 3 5 0.1 0.1 2
dahlhaus neuroplastoma 23 47 16 16 7 8 3.1 10.3 4
tumour 32 158 9 0 5 33 3.6 639.5 8
hema 33 86 5 0 6 14 8.2 59.5 64
mapk 53 103 12 0 4 7 10.7 11.3 4
T-LGL 60 142 3 0 4 8 58.2 918.8 40
T-diff 68 151 12 0 7 12 63.0 635.7 216

TABLE I
GENERAL INFORMATION ABOUT THE NETWORKS WITH OUR MAIN EXPERIMENTAL RESULTS.

min #P (node) max #P (node) #max-node-p/#nodes #max-edge-p/#edges
davidich yeast 1 5 0.5 0.464
faure cellcycle 1 1 0.1 0.086
myeloid 2 4 0.364 0.3
dinwoodie life 2 4 0.267 0.171
cardiac 1 3 0.2 0.132
dahlhaus neuroplastoma - - - 0.17
tumour - - - 0.209
hema 2 4 0.121 0.163
mapk 3 4 0.075 0.068
T-LGL - - - 0.056
T-diff - - - 0.079

TABLE II
RESULTS OF THE NODE PERTURBATIONS COMPUTED WITH THE TOOL CABEAN [32], TOGETHER WITH THE RATIOS THAT COMPARE THE MAXIMUM

NUMBER OF PERTURBATIONS TO THE NUMBER OF EDGES OR NODES DEPENDING IF THE PERTURBATIONS WERE NODE OR EDGETIC PERTURBATIONS.

(GRNs in particular). In this section, we review some of the
related work, i.e., methods developed for the control of BNs,
which are used as models of GRNs.

BNs are a widely accepted modelling framework for
GRNs. Many research projects have been conducted for
developing control methods for BNs with the synchronous
updating scheme [34], [35], [36], [37], [38], [39]. However,
all of these methods are not applicable to asynchronous BNs,
which are considered to be more realistic to capture the
dynamics of GRNs. Developing efficient and scalable control
methods is considered more difficult for asynchronous BNs,
mainly because of the non-deterministic behaviours in their
state transition systems introduced by the asynchronous
updating schemes. To cope with this challenge, new control
methods employing the ‘divide and conquer’ strategy to
explore both the structural and dynamical properties of a
BN are proposed to identify key network nodes that can
drive the the BN into a desired attractor. The methods
proposed in [10], [11], [12], [13], [14] aim to solve the
source-target control problem for BNs with instantaneous,
temporary and permanent node perturbations in which both
the source and target attractors are given, while the methods
proposed in [15], [17] solve the target control problem for
BNs in which only the target attractor is specified. The
‘stable motifs’ based method [16] also solves the target
control problems for BNs by taking both network structure
and functional information, which proves to be very efficient
when dealing with large BNs.

All the above discussed methods for asynchronous BNs
identify node perturbations for the corresponding control
problems. Efficient methods for identifying edgetic pertur-
bations for controlling BNs are still lacking in the literature.
There exist a few works studying the impact of function
perturbations [40], [41], [42] on BNs, and the one mostly
related to ours is achieved by Campbell and Albert [28].
Their method computes a set of edgetic perturbations for the
purpose of eliminating a specific fixed-point attractor, while
our approach solves the target control problem of BNs by
finding edgetic perturbations in order to make the perturbed
BN only have one specified target attractor.

VI. DISCUSSION AND CONCLUSION

In this work, we have shown how to compute edgetic
perturbations to solve the target control problem of asyn-
chronous BNs. Our approach is not optimal (in terms of
the number of computed perturbations) and may still be
improved, even though the experimental results on a number
of BNs seem encouraging – it is effective in terms of the
relatively small number of identified edgetic perturbations;
meanwhile, the small amount of time used to compute the
solutions demonstrates its efficiency.

Through the experimental results, we noticed that the
identified edgetic perturbations are very close to the node
perturbations to solve a same target control problem. There
may be an efficient way to further reduce the number of
edgetic perturbations by integrating the control methods on
node perturbations and our current approach.

REFERENCES

[1] T. Graf and T. Enver, “Forcing cells to change lineages,” Nature, vol.
462, no. 7273, pp. 587–594, 2009.

[2] A. d. Sol and N. J. Buckley, “Concise review: A population shift view
of cellular reprogramming,” Stem Cells, vol. 32, no. 6, pp. 1367–1372,
2014.

[3] D. Srivastava and N. DeWitt, “In vivo cellular reprogramming: the
next generation,” Cell, vol. 166, no. 6, pp. 1386–1396, 2016.

[4] L.-Z. Wang, R.-Q. Su, Z.-G. Huang, X. Wang, W.-X. Wang, C. Gre-
bogi, and Y.-C. Lai, “A geometrical approach to control and control-
lability of nonlinear dynamical networks,” Nature Communications,
vol. 7, p. 11323, 2016.

[5] S. A. Kauffman, “Homeostasis and differentiation in random genetic
control networks,” Nature, vol. 224, pp. 177–178, 1969.

[6] J. A. Papin, T. Hunter, B. O. Palsson, and S. Subramaniam, “Re-
construction of cellular signalling networks and analysis of their
properties,” Nature Reviews Molecular Cell Biology, vol. 6, no. 2,
p. 99, 2005.

[7] S. Huang, “Genomics, complexity and drug discovery: insights from
Boolean network models of cellular regulation,” Pharmacogenomics,
vol. 2, no. 3, pp. 203–222, 2001.

[8] J. Kim, S.-M. Park, and K.-H. Cho, “Discovery of a kernel for con-
trolling biomolecular regulatory networks,” Scientific Reports, vol. 3,
no. 2223, 2013.

[9] Y. Zhao, J. Kim, and M. Filippone, “Aggregation algorithm towards
large-scale Boolean network analysis,” IEEE Transactions on Auto-
matic Control, vol. 58, no. 8, pp. 1976–1985, 2013.

[10] C. Su, S. Paul, and J. Pang, “Controlling large boolean networks with
temporary and permanent perturbations,” in Proceedings of the 23rd
International Symposium on Formal Methods, ser. Lecture Notes in
Computer Science, vol. 11800. Springer-Verlag, 2019, pp. 707–724.

[11] C. Su and J. Pang, “Sequential temporary and permanent control of
Boolean networks,” in Proceedings of the 18th International Confer-
ence on Computational Methods in Systems Biology, ser. Lecture Notes
in Computer Science, vol. 12314. Springer-Verlag, 2020, pp. 234–
251.

[12] H. Mandon, C. Su, J. Pang, S. Paul, S. Haar, and L. Paulevé,
“Algorithms for the sequential reprogramming of boolean networks,”
IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics, vol. 16, pp. 1610–1619, 2019.

[13] H. Mandon, C. Su, S. Haar, J. Pang, and L. Paulevé, “Sequential
reprogramming of Boolean networks made practical,” in Proceedings
of the 17th International Conference on Computational Methods in
Systems Biology, ser. Lecture Notes in Computer Science, vol. 11773.
Springer, 2019, pp. 3–19.

[14] S. Paul, C. Su, J. Pang, and A. Mizera, “An efficient approach
towards the source-target control of Boolean networks,” IEEE/ACM
Transactions on Computational Biology and Bioinformatics, vol. 17,
pp. 1932–1945, 2020.

[15] A. Baudin, S. Paul, C. Su, and J. Pang, “Controlling large boolean
networks with single-step perturbations,” Bioinformatics, vol. 35, pp.
i558 – i567, 2019.

[16] J. G. T. Zañudo and R. Albert, “Cell fate reprogramming by control
of intracellular network dynamics,” PLoS Computational Biology,
vol. 11, 2015.

[17] C. Su and J. Pang, “A dynamics-based approach for the target control
of Boolean networks,” in Proceedings of the 11th ACM Conference
on Bioinformatics, Computational Biology, and Health Informatics.
ACM Press, 2020, pp. 50:1–50:8.

[18] Q. Zhong, N. Simonis, Q.-R. Li, B. Charloteaux, F. Heuze, N. Klitgord,
S. Tam, H. Yu, K. Venkatesan, D. Mou, V. Swearingen, M. A.
Yildirim, H. Yan, A. Dricot, D. Szeto, C. Lin, T. Hao, C. Fan,
S. Milstein, D. Dupuy, R. Brasseur, D. E. Hill, M. E. Cusick, and
M. Vidal, “Edgetic perturbation models of human inherited disorders,”
Molecular Systems Biology, vol. 5, p. 321, 2009.

[19] M. Dreze, B. Charloteaux, S. Milstein, P.-O. Vidalain, M. A. Yildirim,
Q. Zhong, N. Svrzikapa, V. Romero, G. Laloux, R. Brasseur, J. Van-
denhaute, M. Boxem, M. E. Cusick, D. E. Hill, and M. Vidal, “Edgetic
perturbation of a c. elegans bcl2 ortholog,” Nature Methods, 2009.

[20] B. Charloteaux, Q. Zhong, M. Dreze, M. Cusick, D. Hill, and
M. Vidal, “Protein-protein interactions and networks: forward and
reverse edgetics,” Methods in Molecular Biology, vol. 759, pp. 197–
213, 2011.

[21] J.-P. Lambert, G. Ivosev, A. L. Couzens, B. G. Larsen, M. Taipale,
Z. yuan Lin, Q. Zhong, S. Lindquist, M. Vidal, R. Aebersold,
T. Pawson, R. Bonner, S. Tate, and A. Gingras, “Mapping differential
interactomes by affinity purification coupled with data independent
mass spectrometry acquisition,” Nature Methods, vol. 10, pp. 1239 –
1245, 2013.

[22] C. Biane and F. Delaplace, “Abduction based drug target discovery
using Boolean control network,” in Proceedings of the 15th Interna-
tional Conference on Computational Methods in Systems Biology, ser.
Lecture Notes in Computer Science, vol. 10545. Springer, 2017, pp.
57–73.

[23] A. Richard, “Positive and negative cycles in Boolean networks,”
Journal of Theoretical Biology, vol. 463, pp. 67–76, 2019.

[24] R. Thomas, “On the relation between the logical structure of systems
and their ability to generate multiple steady states or sustained oscil-
lations,” in Numerical Methods in the Study of Critical Phenomena.
Springer-Verlage, 1981, pp. 180–193.

[25] ——, “Boolean formalization of genetic control circuits,” Journal of
Theoretical Biology, vol. 42, no. 3, pp. 563–585, 1973.

[26] A. Richard and J.-P. Comet, “Necessary conditions for multistation-
arity in discrete dynamical systems,” Discrete Applied Mathematics,
vol. 155, pp. 2403–2413, 2007.

[27] A. Mizera, J. Pang, H. Qu, and Q. Yuan, “Taming asynchrony for
attractor detection in large Boolean networks,” IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics, vol. 16, no. 1,
pp. 31–42, 2019.

[28] C. Campbell and R. Albert, “Edgetic perturbations to eliminate fixed-
point attractors in Boolean regulatory networks,” Chaos, vol. 29, p.
023130, 2019.

[29] D. B. Johnson, “Finding all the elementary circuits of a directed
graph,” SIAM Journal on Computing, vol. 4, pp. 77–84, 1975.

[30] C. Su, S. Paul, and J. Pang, “Scalable control of asynchronous Boolean
networks,” in Proceedings of the 17th International Conference on
Computational Methods in Systems Biology, ser. Lecture Notes in
Computer Science, vol. 11773. Springer-Verlag, 2019, pp. 364–367.

[31] H. Klarner, “Pyboolnet,” https://github.com/hklarner/PyBoolNet, ac-
cessed on 2021-03-16.

[32] C. Su and J. Pang, “CABEAN: A software for the control of asyn-
chronous Boolean networks,” Bioinformatics, vol. 37, no. 6, pp. 879–
881, 2021.

[33] L. Paulevé, “CABEAN-python,” https://github.com/algorecell/
cabean-python#cabean-python, accessed on 2021-03-16.

[34] J. Liang, H. Chen, and J. Lam, “An improved criterion for controlla-
bility of Boolean control networks,” IEEE Transactions on Automatic
Control, vol. 62, pp. 6012–6018, 2017.

[35] H. Zhou, J. Su, X. Hu, C. Zhou, H. Li, Z. Chen, Q. Xiao, B. Wang,
W. Wu, Y. Sun, Y. Zhou, C. Tang, F. Liu, L. Wang, C. Feng, M. Liu,
S. Li, Y. Zhang, H. Xu, H. Yao, L. Shi, and H. Yang, “Glia-to-Neuron
Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological
Disease in Mice,” Cell, vol. 181, no. 3, pp. 590–603, 2020.

[36] J. Lu, J. Zhong, D. W. Ho, Y. Tang, and J. Cao, “On controllability
of delayed Boolean control networks,” SIAM Journal on Control and
Optimization, vol. 54, no. 2, pp. 475–494, 2016.

[37] J. Zhong, Y. Liu, K. Kou, L. Sun, and J. Cao, “On the ensemble
controllability of boolean control networks using stp method,” Applied
Mathematics and Computation, vol. 358, pp. 51–62, 2019.

[38] Y. Wu, X. Sun, X. Zhao, and T. Shen, “Optimal control of boolean
control networks with average cost: A policy iteration approach,”
Automatica, vol. 100, pp. 378–387, 2019.

[39] H. Chen, L. Albergante, J. Y. Hsu, C. Lareau, G. L. Bosco, J. Guan,
S. Zhou, A. N. Gorban, D. E. Bauer, M. Aryee, D. Langenau,
A. Zinovyev, J. Buenrostro, G. Yuan, and L. Pinello, “Single-cell
trajectories reconstruction, exploration and mapping of omics data with
stream,” Nature Communications, vol. 10, 2019.

[40] M. Meng and J. Feng, “Function perturbations in boolean networks
with its application in a D. melanogaster gene network,” European
Journal of Control, vol. 20, pp. 87–94, 2014.

[41] X. Qian and E. R. Dougherty, “Effect of function perturbation on
the steady-state distribution of genetic regulatory networks: Optimal
structural intervention,” IEEE Transactions on Signal Processing,
vol. 56, pp. 4966–4976, 2008.

[42] X. Li, H. Li, Y. Li, and X. Yang, “Function perturbation impact on sta-
bility in distribution of probabilistic boolean networks,” Mathematics
and Computers in Simulation, vol. 177, pp. 1–12, 2020.

https://github.com/hklarner/PyBoolNet
https://github.com/algorecell/cabean-python#cabean-python
https://github.com/algorecell/cabean-python#cabean-python

	Introduction
	Preliminaries
	Concepts for Boolean networks
	Data structures
	Edgetic perturbations
	Target control of BNs

	Our Approach
	Evaluation
	Related Work
	Discussion and Conclusion
	References

