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Abstract—Graph Neural Networks (GNNs) have emerged as a
dominant paradigm in machine learning for graphs, and

recently developed Recommendation System (RecSys)
models have significantly benefited from them. However,
recent research has highlighted a limitation in classical GNNs,
revealing that their message-passing mechanism is inherently
flat, making it unable to capture hierarchical semantics within
the graph. Recognizing the potential richness of information
in the hierarchical structure of user-item bipartite graphs for
RecSys, this paper introduces a novel end-to-end GNN-based
RecSys model called Hierarchical Bipartite Graph Convolutional
Network (HierBGCN). Specifically, we devise a BiDiffPool
layer capable of performing differentiable pooling operations
on the bipartite graph while preserving crucial properties.
Through the stacking of multiple BiDiffPool layers, the
bipartite graph undergoes hierarchical coarsening, enabling the
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extraction of multi-level knowledge. This allows GNNs to
operate at each level, capturing diverse, high-order user-item
interactions. Ultimately, the information from each coarsening
level is aggregated to generate final user/item representations,
effectively encapsulating the hierarchical knowledge inherent
in user-item interactions. Empirical experiments conducted on
four established RecSys datasets consistently demonstrate the
superior performance of the proposed HierBGCN compared
to competing models.

I. Introduction

R
ecommendation Systems (RecSys) techniques
have found widespread application in various
online services [1]. The primary challenge lies
in accurately predicting future user-item inter-

actions by effectively capturing user preferences. Traditional
recommendation approaches heavily rely on Collaborative Fil-
tering (CF) [2] techiniques. For example, Matrix Factorization
(MF) [3] translates user and item IDs into low-dimensional
representation vectors, calculating their interaction probability
through their inner product. Neural Collaborative Filtering
(NCF) [4] enhances this approach by replacing the MF inner
product with a neural network, thereby gaining nonlinear
encoding capability. However, these methods achieve CF
implicitly, using user-item interactions as supervision signals
without directly embedding these interactions into the repre-
sentations. Consequently, they fail to explicitly encode CF sig-
nals into user and item representations.

Graph Neural Networks (GNNs) have emerged as a trans-
formative paradigm, sparking significant scholarly interest due
to their proficiency in learning intricate patterns from graph
data [5]. This data type is pervasive across diverse domains,
including social networks [6], natural language processing [7],
[8], molecular structures [9], geographical layouts [10], e-com-
merce recommenders [11], tabular data prediction [12], [13],
fraud detection [14], urban computing [15], and financial tech-
nology [16]. Prominent GNN architectures like Graph Convo-
lutional Network (GCN) [17], GraphSAGE [18], and Graph
Attention Network (GAT) [19] stand out for their ability to
integrate neighboring node information and induce nonlinear
transformations, grounding their operations in the inherent
graph topology. In particular, GNNs adeptly capture both local
and global structural patterns through iterative aggregation,
allowing node embeddings to be influenced by a comprehensive
context beyond immediate neighbors. This capability is vital for
generating embeddings that effectively represent the graph’s
structure and node attributes. These embeddings play a pivotal
role in achieving state-of-the-art performance across various
downstream tasks, encompassing graph classification, node
labeling, and the prediction of potential links between entities.

Motivated by the remarkable effectiveness of Graph Neu-
ral Networks (GNNs), numerous recent studies have inte-
grated GNNs into Recommendation Systems (RecSys). For
instance, NGCF [20] utilizes interaction records between users

and items to construct a bipartite graph, employing neighbor-
hood aggregation to formulate their representations. In con-
trast, LightGCN [21], acknowledging the minimal impact of
nonlinear feature transformations in GNNs on recommenda-
tion performance, adopts a simpler linear approach for
increased simplicity and accuracy. While GNNs have set new
benchmarks across various graph-based applications, recent
scholarly explorations [22], [23] reveal a nuanced yet signifi-
cant limitation embedded in their fundamental design. GNNs
inherently feature a flat message-passing mechanism, allowing
information flow exclusively along explicitly observed edges
of a graph, lacking a sophisticated, hierarchical data aggrega-
tion approach. Taking the example of an e-commerce net-
work landscape: a flat GNN architecture may adeptly
encapsulate granular, micro-level semantics, such as individual
shopping behaviors linking users and items, but it may inade-
quately capture overarching, macro-level nuances that encom-
pass broader affiliations to user or item categories. This
intrinsic limitation potentially impedes a comprehensive
understanding of complex graph structures, creating a niche
for more hierarchical models capable of seamlessly integrating
micro and macro perspectives. Recent advancements [24],
[25], [26] highlight the crucial role of hierarchical structures in
graph machine learning tasks, particularly in recommender sys-
tems [27], [28]. Consequently, various studies [25], [27], [28],
[29], [30], [31] have sought to address the flatness limitation of
GNNs by employing diverse graph pooling operations, selec-
tively filtering and retaining beneficial nodes on the graph to
form a series of coarsened graphs conducive to hierarchical
message passing.

Certain recent studies have delved into modeling the
concealed hierarchical knowledge within user-item bipartite
graphs for recommendation purposes. While these efforts
have at times led to performance improvements, they are not
without noteworthy limitations and challenges. Initially, vari-
ous differentiable graph pooling techniques [29], [31] have
sought to conduct dimension reduction on a graph’s adja-
cency matrix to extract hierarchical knowledge. However,
these techniques are inherently designed for homogeneous
graphs that incorporate only a single node type, making them
not directly applicable to bipartite graphs. Secondly, several
approaches founded on manual cluster construction methods
have been proposed [27], [28], utilizing traditional clustering
algorithms such as K-Means [32] to discern the hierarchical
structure. However, these approaches cannot be seamlessly
trained end-to-end, and the introduction of manual opera-
tions jeopardizes their practicality. Lastly, it is noteworthy
that certain works [33], [34], [35] have explored the implicit
hierarchical structure within different mathematical spaces.
Nevertheless, these related studies specifically focus on the
hierarchical relationship hidden within the explicit user-item
bipartite graph.

In this study, our aim is to develop a GNN-based recom-
mendation model with superior accuracy, proficiently extract-
ing the hierarchical structure from a bipartite graph, and

50 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2024

Authorized licensed use limited to: University of Luxembourg. Downloaded on April 07,2024 at 08:50:21 UTC from IEEE Xplore.  Restrictions apply. 



subsequently learning user and item representations for pre-
dicting user-item interactions. We introduce Hierarchical Bipar-
tite Graph Convolutional Network (HierBGCN) to achieve this
goal. Specifically, we propose a novel Bipartite DiffPool (BiDiff-
Pool) layer capable of performing differentiable pooling opera-
tions on the bipartite graph while preserving its inherent user-
item relationship properties. By stacking multiple BiDiffPool
layers, the bipartite graphs are coarsened into a multi-level
hierarchical bipartite structure in an end-to-end manner. Inte-
grating GNN into each level of the resulting hierarchical
bipartite graph facilitates the acquisition of user and item repre-
sentations at various levels, effectively encoding their latent
hierarchical knowledge.

The contributions of this work are outlined as follows.
❏ This study introduces a pioneering recommendation model

based on Graph Neural Networks, named HierBGCN. At
its core, the Bipartite DiffPool (BiDiffPool) mechanism is
devised to extract hierarchical insights for both users and
items, seamlessly transforming the user-item bipartite graph
into a layered hierarchical structure.

❏ HierBGCN is designed to simultaneously cluster users and
items while deriving their intricate representations using
graph neural networks, all within an end-to-end frame-
work. Notably, HierBGCN autonomously identifies an
optimal hierarchical structure, significantly improving rec-
ommendation performance.

❏ Through comprehensive experiments on four benchmark
datasets, HierBGCN demonstrates a significant advantage
over existing GNN-based recommendation models. These
findings highlight a crucial insight: harnessing the graph-

aware hierarchical nuances inherent in user and item inter-
actions serves as a robust catalyst for enhancing recommen-
dation quality.
The structure of this paper unfolds as follows. In Section II,

we delve into relevant studies. The technical intricacies of the
proposed HierBGCN model are expounded in Section III.
Section IV outlines the experimental results, while Section V
encapsulates the concluding remarks.

II. Related Work
Graph Neural Networks (GNNs) have consistently demon-
strated superior performance in a variety of graph-related
tasks [5]. As a considerable portion of data in the recommenda-
tion system (RecSys) domain, like user-item interactions, can
be represented as a bipartite graph, there has been a notable
increase in studies investigating the application of GNNs to
recommendation systems in recent years. A comprehensive
overview of recent GNN-based recommendation models is
presented in the survey [46].

Table I presents an overview of relevant studies. The differ-
ence between this work and the preceding research is four-fold.
First, the prevailing GNNs and recommendation approaches
(rows 1-4) primarily derive representations from a flat graph
structure, lacking the sophistication of hierarchical models. Sec-
ond, while a few GNNmethods (rows 5-9) introduce the con-
cept of learning hierarchical structures for node and graph
representations, their architectures are primarily tailored for
generic graphs. Yet, these studies tackle tasks such as node and
graph classification and are not inherently designed
for recommendation systems. Third, delving into

TABLE I Comparison of relevant studies. The “Task” column gives the mapping between abbreviations and its meaning: Node
Classification (NC), Text Classification (TC), Link Prediction (LP), and Graph Classification (GC). In the “# Levels” column, Pre-defined
indicates the number of levels in the hierarchical structure, which requires manual specification with some hyperparameters. The
“end-to-end” column indicates whether a method can be trained in an end-to-end manner.

ROW REFERENCE TASK GRAPH TYPE REPRESENTATION LEARNING # LEVELS END-TO-END

1 NeuMF [4] RecSys N/A Flat N/A @

2 GCN [17], GAT [19], GraphSAGE [18] NC Homogeneous Flat N/A @

3 NGCF [20], DGCF [36], LightGCN [21] RecSys Bipartite Flat N/A @

4 MKR [37], KGAT [38], KGCL [39] RecSys Knowledge Flat N/A @

5 DiffPool [29], G-UNets [30], SAGPool [31] GC Homogeneous Hierarchical Pre-defined @

6 ASAP [25] GC Homogeneous Hierarchical Pre-defined @

7 SHINE [40] TC Heterogeneous Hierarchical 2 @

8 HCGNN [26] NC, LP Homogeneous Hierarchical Pre-defined

9 AdamGNN [24] NC, LP, GC Homogeneous Hierarchical Adaptive @

10 HGE [41] RecSys Knowledge Hierarchical Items Pre-defined

11 RGNN [42] RecSys Homogeneous Hierarchical Text Pre-defined @

12 TaxoRec [43] RecSys Knowledge Hierarchical Tags Pre-defined

13 HUIGN [44] RecSys Multi-modality Hierarchical Users & Items Pre-defined

14 HAKG [45] RecSys Knowledge Hierarchical KG 2 @

15 Bi-HGNN [27] RecSys Bipartite Hierarchical Users Pre-defined @

16 HiGNN [28] RecSys Bipartite Hierarchical Users & Items Pre-defined

17 HierBGCN (this work) RecSys Bipartite Hierarchical Users & Items Pre-defined @
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recommendation systems, some studies (rows 10-14) have
embraced hierarchical data. However, these models often rely
heavily on supplementary information sources, like knowledge
graphs [41], [43], [45], multi-modal data [44], or text con-
tent [42], and such sources are not universally available. Fourth,
both Bi-HGNN [27] (row 15) and HiGNN [28] (row 16)
exhibit potential in discerning hierarchical structures from user-
item bipartite graphs. Notably, Bi-HGNN predominantly
focuses only on the user hierarchy, and HiGNN’s structure is
not amenable to end-to-end optimization geared towards rec-
ommendation enhancements. In light of the above studies, our
HierBGCN emerges with a novel stance. To our understand-
ing, it pioneers the recommender system landscape by adap-
tively learning hierarchical bipartite structures, encapsulating
both user and item groupings, straight from the user-item bipar-
tite graph. This adaptive learning not only distinguishes our
approach but also augments recommendation efficacy.

Flat GNN-based Recommendation. PinSage employs a ran-
dom walk sampling method on the bipartite graph, strategi-
cally selecting a fixed number of nodes for aggregation [47].
This approach not only manages memory consumption dur-
ing training but also prioritizes crucial nodes during neigh-
borhood aggregation, thereby enhancing recommendation
performance. To facilitate inductive recommendation,
empowering the model to predict new nodes absent from
the training set, IGMC [48] constructs subgraphs using the
target user/item and its first-order neighbor nodes and trains
GNN on each subgraph. This method minimizes depen-
dence on the original comprehensive graph structure, bol-
sters the model’s generalization capability, facilitates model
transfer to alternate datasets, and enables the recommenda-
tion of new items to be not present in the training set.
NGCF [20], a GCN-based recommendation model, employs
neural networks to approximate collaborative filtering opera-
tions. Recognizing that nonlinear feature transformation in
GNNs marginally contributes to–or even complicates–rec-
ommendation performance, LightGCN [21] strategically
omits nonlinear transformation units, simplifying the model
without sacrificing (and potentially enhancing) performance.
Additional research integrates knowledge graphs with graph
neural networks to amplify recommendation capabilities,
exemplified by MKR [37], KGAT [38], and KGCL [39].
Although GNNs exhibit proficiency in numerous tasks,
recent studies [22], [23] have identified an intrinsic limita-
tion: the message-passing mechanism of GNN is fundamen-
tally flat and lacks hierarchical aggregation capabilities for
node information, restricting message passage to directly-
connected edges on the original graph [24], [26]. Neverthe-
less, the graph’s hierarchical structure inherently encapsulates
higher-level semantics within nodes. As a result, recent
research has endeavored to address the flat nature of GNNs,
aiming to explore and exploit the hierarchical organization
of the graph. A flat GNN configuration excels at capturing
specific behaviors and interactions, such as an individual
user’s distinct shopping choices, whether it involves

purchasing a particular book or downloading a specific song.
However, its ability to discern broader contexts may be lim-
ited. For instance, it might miss the nuances of users catego-
rized as “young adult” readers or “classical music”
aficionados, and items grouped under labels like “science fic-
tion” or “rock genre.” While the model adeptly details indi-
vidual actions, it may not transparently represent overarching
categories. This underscores the imperative for hierarchical
models that seamlessly integrate both granular behaviors and
their associations with larger grouping contexts.

Hierarchical GNNs. Hierarchical GNNs employ “graph
pooling” to categorize nodes in assorted manners, thereby
generating a higher-level structure – a super graph derived
from the original, which constitutes a layer within the emerg-
ing hierarchy. This grouping process iterates several times,
resulting in a multi-level hierarchical structure designed to
improve the representation learning of nodes or the entire
graph. BiGraphNet [49] highlighted the impracticality of
vanilla GNNs for direct use in graph pooling due to the
requirement for identical structures for GNN inputs and out-
puts. As a consequence, traditional hierarchical GNNs have
had to resort to using a non-parameterized pooling method to
construct the hierarchical structure. DiffPool [29], a differen-
tiable pooling operation, leverages GNNs to create assignment
matrices facilitating node mapping into clusters and coarsening
the graph’s adjacency matrix. By stacking multiple DiffPool
layers and setting the node quantity in the final layer to one,
the resulting embedding in that last layer can be interpreted as
the representation of the entire graph. Graph U-Nets [30]
determine a scalar score for each node, indicating the likeli-
hood of its retention during graph pooling, and select the top-
k nodes to construct the hierarchical structure. However, since
the graph structure is excluded from pooling considerations, it
fails to effectively capture the graph’s topological structure.
SAGPool [31] extends top-k graph pooling by incorporating
the local graph structure and using an attention mechanism
to learn the scalar score of each node. Recent advancements
encompass learning to pool local substructures (e.g.,
ASAP [25]), enabling hierarchical message passing (e.g.,
HCGNN [26]), and adaptively producing the hierarchical
structure based on the downstream task (e.g., AdamGNN
[24]). The concept of hierarchical GNNs has also been applied
to enhance text classification performance [40]. Despite the
successful development of hierarchical GNNs, there has been
a noticeable lack of attention given to bipartite graphs in rec-
ommender systems.

Hierarchical GNN-based Recommendation. In recommenda-
tion tasks, users/items sharing similar preferences and attributes
may be aggregated into user/item clusters, which can then
form a coarsened graph. This encapsulates the core concept of
recommendations based on the hierarchical structure of a
bipartite graph. Bi-HGNN [27] delves into the hierarchical
structure of bipartite graphs, learning user embeddings at both
individual and cluster tiers. However, it restricts its exploration
to a single hierarchy level and exclusively clusters users,
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omitting potentially beneficial item hierarchical information
for recommendations. HiGNN [28] initiates its process by
employing GraphSAGE [18] to learn the embeddings of each
node, followed by the use of K-Means [32] to cluster users and
items. The resultant user and item clusters are viewed as new
user and item nodes, respectively, forming a new coarsened
graph. By iteratively applying the coarsening process, HiGNN
can attain a multi-level hierarchical bipartite graph. Neverthe-
less, HiGNN is not conducive to end-to-end training. It
requires alternate training between GNNs and K-Means. The
supervised signal cannot be back-propagated through all learn-
able parameters at each level, hindering the model’s capacity
to cluster in alignment with the requirements of the
downstream recommendation task. HUIGN [44] generates
hierarchical bipartite structures with multi-modal content
information to learn multi-level representations of users and
items. Yet, its content-based coarsening mechanism does not
adequately consider interactions between users and items.
While some recent studies, like RGNN [42], TaxoRec [43],
and HAKG [45], leverage the hierarchical structures of knowl-
edge graphs for recommender systems, they necessitate
additional information to derive the hierarchy, such as tag
taxonomy [43], text content [42], and categorization
mapping [45].

Hyperbolic Collaborative Filtering. Our research extensively
explores the intricacies of hierarchical relationships within the
explicit structure of the user-item bipartite graph. This sets our
approach apart from the prevailing methods primarily centered
around hyperbolic-space collaborative filtering, such as
HGCF [33], HRCF [34], HICF [35], and HNCR [50]. The
core of hyperbolic approaches lies in uncovering implicit hierar-
chical relationships, leveraging the distinctive geometric prop-
erties of hyperbolic spaces inherently suitable for representing
hierarchies. However, the exploration of hierarchies occurs in
mathematical spaces, and the implicit relationships distin-
guishes hyperbolic-space methods from our approach. While
our Hierarchical Bipartite Graph Convolutional Networks
directly extract insights from explicit connections and relation-
ships in the user-item bipartite graph, hyperbolic methods
project data into a different mathematical domain to discern
patterns where hierarchical relationships might naturally
manifest. This fundamental difference in approach–direct
interrogation of an explicit graph structure versus nuanced
exploration of an implicit hierarchy in an alternate mathemati-
cal space–sets our method apart. Although both approaches
aim to capture and leverage hierarchical relationships for
enhanced insights, the methodologies, foundational ideas, and
resultant interpretations exhibit significant variations. Our
work is firmly grounded in extracting meaningful relationships
from the given bipartite graph, avoiding assumptions inherent
in hyperbolic representation learning. Despite differences in
foundational principles and methodologies between our
HierBGCN and hyperbolic recommenders, conducting
experimental evaluations would provide valuable insights for
comparison.

III. Proposed Approach
The proposed HierBGCN is structured into three key
components, as depicted in Figure 1. These components
are delineated as follows: (1) the hierarchical coarsening pro-
cess, where the Bipartite Differentiable Pooling (BiDiffPool)
layer executes differentiable pooling operations on the
bipartite graph, generating the hierarchical structure; (2)
the multi-level aggregation that consolidates information
across micro- to macro-levels of the hierarchical structure,
producing user and item representations; and (3) the predic-
tion layer, which yields the final score indicating the likeli-
hood of a user interacting with an item.

A. Preliminaries
Bipartite Graph. A bipartite graph is a special graph whose
nodes can be divided into two disjoint subsets. A user-item
bipartite graph G ¼ ðU ; I;AÞ can be divided into user set U
and item set I . Edges only exist between nodes belonging to
different subsets. Given a user-item bipartite graph G with nu
users and ni items. If user u 2 U interacts with the item i 2 I ,
the corresponding element in the interaction matrix Rui is 1
(R 2 Rnu�ni ), otherwise it is 0. With the assistance of R, the
adjacency matrix A of G can be defined as:

A ¼ 0 R

R> 0

� �
;A 2 RðnuþniÞ�ðnuþniÞ (1)

Flat Graph Convolution. This work chooses to use an efficient
flat GNN module, LightGCN [21], as the basic graph convo-
lution operator of HierBGCN. LightGCN is utilized to learn
node representations at each level of the generated hierarchical
structure. LightGCN first normalizes the adjacency matrix:
Â ¼ D�

1
2AD�

1
2, where D is the degree matrix. The Light

Graph Convolution (LGC) layer is defined as follows:

Xkþ1 ¼ LGCðÂ;XkÞ ¼ ÂXk (2)

where k is the number of LGC layers. Xkþ1 2 RðnuþniÞ�d is the
obtained node embedding matrix, d is the dimensionlity of
embeddings. One LGC layer aggregates one-hop neighbor-
hood information to update all nodes’ embeddings while
stacking multiple LGC layers can capture high-order user-
item interactions. LGC allows us to have the only trainable
parameters, the initial embedding matrix X0. Note that to
maintain the bipartite property of the coarsened graph, i.e.,
edges only exist between user and item cluster nodes from dif-
ferent sets, LGC in Eq. (2) is performed on interaction matrix
R, rather than on adjacency matrix A.

B. BiDiffPool Layer
In order to grasp the hierarchy inherent in the bipartite graph,
this study introduces the Bipartite Differentiable Pooling
(BiDiffPool) layer. Through this layer, HierBGCN can sys-
tematically condense the bipartite graph, transitioning from
micro to macro levels. Unlike HiGNN [28], which relies on a
deterministic clustering method like K-Means for end-to-end
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training, HierBGCN opts for our BiDiffPool layer. This layer
efficiently reduces the size of the adjacency matrix through
matrix operations while preserving the essential characteristics
of the bipartite graph.

The process of graph coarsening is achieved through the
acquisition of the cluster assignment matrix. Determining the
clusters to which nodes should be assigned involves the consid-
eration of both node features and graph topology. Therefore,
BiDiffPool condenses nodes into clusters based on the repre-
sentations generated by graph convolutions. Initially, the user

cluster assignment matrix is represented as Sð‘ÞU 2 Rnð‘Þu �nð‘þ1Þu

and the item cluster assignment matrix as Sð‘ÞI 2 Rnð‘Þi �n
ð‘þ1Þ
i ,

where ‘ signifies the level within the hierarchical structure.
These matrices delineate the mapping of nodes between level-
(‘) and level-(‘þ 1) coarsened graphs.

Learning Cluster Assignment Matrices.This work utilizes
GCN to learn the cluster assignment between levels of coars-
ened graphs. By applying the row-wise softmax function, the
cluster assignment of each node can be vectorized into a prob-
ability distribution. The calculation process is as follows:

Sð‘ÞU ¼ softmaxðreluðRð‘ÞXð‘ÞI W ð‘Þ
U ÞÞ

Sð‘ÞI ¼ softmaxðreluðRð‘Þ>Xð‘ÞU W ð‘Þ
I ÞÞ (3)

where Xð‘ÞU and Xð‘ÞI are the embedding matrices of users and
items at level ‘, respectively. Different from the Eq. (2) of
LGC, GCN here uses W ð‘Þ

U and W ð‘Þ
I as trainable weight

matrices to implement the graph coarsening procedure.

Generating Coarsened Graphs.This work utilizes cluster
assignment matrices Sð‘ÞU and Sð‘ÞI to coarsen the bipartite
graph. The assignment matrices of consecutive two levels
(i.e., from level ‘ to level ‘þ 1) are multiplied by the inter-
action matrix R to simultaneously group users and items
into clusters, given by:

Rð‘þ1Þ ¼ Sð‘Þ
>

U Rð‘ÞSð‘ÞI : (4)

With Eq. 4, the coarsening can be realized by generating the

next-level interaction matrix R 2 Rnð‘þ1Þu �nð‘þ1Þi . The next-
level coarsened adjacency matrix can also be obtained as

Að‘þ1Þ 2 Rðn
‘þ1
u þn‘þ1i Þ�ðn‘þ1u þn‘þ1i Þ.

Obtaining Cluster Embeddings.To perform message passing
via GNN, initial node representations are generated in the
coarsened graphs. The initial embeddings of coarsened users
and items can be obtained using the assignment matrices, given

by Xð‘þ1ÞU ¼ Sð‘Þ
>

U X ð‘ÞU and X ð‘þ1ÞI ¼ Sð‘Þ
>

I Xð‘ÞI , respectively.
Thus far, the input bipartite graph G has undergone coarsen-
ing, resulting in changes in the numbers of users and items
from n‘u to n‘þ1u and from n‘i to n‘þ1i , respectively. A hyperpara-
meter, the coarsening coefficient a, is created to dictate the
coarsening rate from level ‘ to ‘þ 1. Specifically, a is
employed to decrease the count of users and items during the
coarsening process, expressed as n‘þ1u ¼ n‘u=a and n‘þ1i ¼
n‘i =a. The impact of a on performance is discussed in
Section IV-D.

FIGURE 1 An overview of the proposed HierBGCN model.
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C.Multi-Level Aggregation Mechanism
By stacking multiple BiDiffPool layers, the hierarchical
bipartite graph structure can be obtained. Afterwords, this
section presents the multi-level aggregation mechanism to
capture the multi-grained semantics on the coarsened
multi-level graphs.

Encoding Multi-grained User-Item Interactions.Performing
LGC on each coarsened graph captures multi-grained high-
order user-item interactions. The user and item cluster
embeddings Xð‘þ1ÞU and Xð‘þ1ÞI at level (‘þ 1) serve as the
initial vectors Xð‘þ1;0Þ for LGC. Subsequently, executing K
layers of LGC operation in Eq. (2) aggregates K-hop high-
order interactions between user and item clusters, producing
node embeddings at each coarsened graph. Mean pooling is
then applied to all intermediate LGC embeddings to derive
the final embedding matrix at the level (‘þ 1) graph, as
expressed by:

X ð‘þ1Þ ¼ MEANðXð‘þ1;0Þ;X ð‘þ1;1Þ; . . .;Xð‘þ1;KÞÞ (5)

Here, Xðlþ1;kÞ represents the embedding matrix of level ð‘þ
1Þ after the execution of the k-th LGC layer, and MEAN
denotes the mean pooling function.

Generating Final Representations. After the application of
L BiDiffPool layers, individual user and item embeddings at
different levels are obtained, denoted as xð0Þu ; xð1Þu ; . . .; xðLÞu

and xð0Þi ; xð1Þi ; . . .; xðLÞi . These embeddings at various levels
effectively capture the hierarchical knowledge inherent in
user-item interactions. Lower levels enable the capture of
personalized preferences, while higher levels illustrate
generalized tendencies. Consequently, the aggregation of
all embeddings at L þ 1 layers results in the final represen-
tations of users and items, denoted as xFu and xFi , as
expressed by:

xFu ¼ MEANðxð0Þu ; xð1Þu ; . . .; xðLÞu Þ
xFi ¼ MEANðxð0Þi ; xð1Þi ; . . .; xðLÞi Þ: (6)

D. Prediction Layer
In the prediction layer, the inner product operation is per-
formed to calculate user u’s preference score on item i as the
final prediction, given by:

ŷui ¼ InnerProduct xFu ; x
F
i

� �
: (7)

The higher the ŷui, the model believes that the higher the
probability that user u will interact with item i.

E.Model Training
The trainable parameters of HierBGCN include user and item
embedding matrices, and the weight matrices for GCN-based
cluster assignment learning in each BiDiffPool layer fW ð0Þ

U ;

W ð1Þ
U ; . . .;W ðL�1Þ

U g, fW ð0Þ
I ;W ð1Þ

I ; . . .;W ðL�1Þ
I g. This work

uses the typical loss function, Bayesian Personalized Ranking
(BPR) [51] Loss, to learn these parameters. Specifically, BPR

loss is defined as follows:

Lossbpr ¼
X

ðu;iÞ2Pþ;ðu;jÞ2P�
� lnðsðŷui � ŷujÞÞ; (8)

where Pþ is the positive pair set, inclusive of the observed
user-item interaction pairs, P� is the negative pair set sampled
from the unobserved user-item interaction pairs, and the size
of P� is the same as that of Pþ. ŷui and ŷuj are the prediction
scores of a positive pair and a negative pair, respectively. s is
the sigmoid function.

Furthermore, a key arguement is that when coarsening
users and items in the bipartite graph, the assignment should
concentrate on a few significant clusters rather than distribut-
ing the assignment over a large number of clusters. Therefore,
an entropy loss that calculates the row-wise entropy values of
user and item cluster assignment matrices at each BiDiffPool
layer is additionally devised. Such an entropy loss can be also
treated as a kind of regularization. The goal of entropy loss is
to encourage the model to centralize the assignment vector of
each node so as to reduce entropy loss. The entropy loss is
defined as follows:

Lossentropy ¼
X
S2S

1
nS

Xn
i¼1

Xm
j¼1

Si;j � log ðSi;jÞ; (9)

where S is the set of all cluster assignment matrices, Si;j is the
element in S at i-th row and j-th column, indicating the prob-
ability that the i-th node is assigned to the j-th cluster, and nS
is the number of elements in matrix S.

The final loss function can be obatined by combining BPR
loss and entropy loss, given by:

Losstotal ¼ Lossbpr þ �1Lossentropy þ �2kQk22 (10)

where �1 and �2 are hyperparameters to control the effect of
entropy loss and L2-regularization, respectively. Q is the set of
all learnable parameters.

Note that entropy regularization serves as a countermea-
sure to overfitting by coaxing the model towards assigning
more equitably distributed and tempered probabilities across
various classes. At its core, entropy is a measure of randomness
or unpredictability in a set of data. By integrating entropy as a
regularization technique, this work introduces an additional
term to the loss function that penalizes extreme confidence in
class predictions. This encourages the model to be more intro-
spective, resulting in predictions that are not just spuriously
high in confidence but are genuinely reflective of the underly-
ing data distribution. The advantages of entropy regularization
become readily apparent when considering the model’s perfor-
mance on unseen data. Our HierBGCN, equipped with
entropy regularization, tends to be more judicious, reducing
the chances of it making overly assertive and potentially erro-
neous hierarchical structure determinations and subsequent
predictions.
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Entropy regularization and softmax temperature are both
instrumental techniques in deep learning, employed to adjust
the distribution of the model’s output probabilities. However,
when it comes to instilling a specific form of balance and tem-
perance in model predictions, entropy regularization holds
certain advantages over softmax temperature. The advantages
of entropy regularization can be outlined below. (a) Entropy
regularization specifically penalizes predictions that are overly
confident or skewed towards a particular class. This encourages
a more balanced probability distribution across classes. In con-
trast, while softmax temperature adjusts the sharpness of the
output probabilities, it does not intrinsically promote such bal-
ance. (b) Entropy regularization directly addresses overfitting
by discouraging extreme confidence, whereas softmax temper-
ature focuses primarily on adjusting the overall scale of logits
and may not directly combat overfitting in the same manner.
(c) A well-calibrated model is one where the predicted proba-
bilities closely match the true outcomes. By discouraging over-
confident predictions, entropy regularization can aid in model
calibration, ensuring that predicted confidence levels are more
in line with actual outcomes. (d) Entropy regularization is con-
ceptually straightforward: it directly penalizes imbalanced
probability distributions. Softmax temperature, by scaling the
logits, can indeed impact the resulting distribution, but its pri-
mary purpose is not to enforce balance.

F.Model Analysis
A model analysis is conducted to demonstrate the relationality
behind the effective design of HierBGCN. First, the hierarchi-
cal design and its advantages are discussed and compared with
LightGCN [21], which is a linear graph convolution model
specializing in RecSys. Yet, LightGCN only considers flat
graph structure and cannot capture the crucial hierarchical
structure. HierBGCN proposes the BiDiffPool layer to coarsen
the bipartite graph from micro to macro level and maintain the
end-to-end training.

Besides, the model complexity of HierBGCN mainly con-
sists of two components: BiDiffPool layer to coarsen level-(‘)
to level-(‘þ 1) and aggregations of multi-level to encode
multi-grained user-item interactions. Take the level-(0) to
level-(1) as an example, BiDiffPool’s computation complexity
is Oððnð‘Þu Þ2 þ ðnð‘Þi Þ2Þ, LightGCN’s computation complexity
is Oðnð‘Þu þ nð‘Þi Þ since it removes unnecessary feature transfor-
mation and nonlinear actvation. Therefore, the HierBGCN’s
computation complexity isOðPL�1

‘¼0 ððnð‘Þu Þ2 þ ðnð‘Þi Þ2 þ nð‘Þu þ
nð‘Þi ÞÞ, which is significantly improved, compared with the
complexity of DiffPool [29] OðPL�1

‘¼0 ðnð‘Þu þ nð‘Þi Þ2Þ. Our
experimental results in Section IV-D validate our design’s
advantage. The entire HierBGCN model is summarized in
Algorithm 1, which provides a general view of our model.

IV. Experiments
This section presents a set of experiments to answer the fol-
lowing evaluation questions.
1) Does the learning of hierarchical structures within bipartite

graphs enhance the performance of recommendation
systems?

2) Is our proposed HierBGCN capable of surpassing the per-
formance of traditional flat and hierarchical GNN models?

3) Does each constituent component within HierBGCN pos-
itively impact recommendation performance?

4) How do various hyperparameters within HierBGCN
influence the effectiveness of recommendations?

A. Dataset Description
In this study, four public datasets are used: MovieLens100k1,
Gowalla2, Yelp20183, and Amazon-book4. The descriptive statis-
tics of the datasets are listed in Table II. For each data set, each
user’s 70% and 20% historical interactions are used as training
and testing sets, respectively. The remaining 10% interactions
are used as the validation set to tune the hyperparameters. To
calculate BPR Loss during model training, the observed user-
item interaction instance are treated as positive samples. An
equal number of unobserved interactions are randomly
selected as negative samples.

B. Experimental Settings
Evaluation Metrics. The preference scores between a user and all
items they haven’t interacted with are the output of the

TABLE II Statistics of the four datasets.

DATASET #USERS #ITEMS #ITERACTIONS DENSITY

MovieLens100 k 943 1683 100000 0.063

Gowalla 29858 40981 1027370 0.00084

Yelp2018 31668 38048 1561406 0.0013

Amazon-Book 52643 91599 2984108 0.00062

Algorithm 1. Hierarchical Bipartite GCN.

Input: graph G ¼ ðU; I;AÞ.
Output: user and item representations: xFu , x

F
i

for ‘ f0;1;2; . . . ; Lg do
for k f0;2; . . . ;K � 1g do
Xð‘Þðkþ1Þ ¼ LGCðÂð‘Þ; Xð‘ÞÞðkÞ

end for
Sð‘ÞU ¼ softmaxðreluðRð‘ÞXð‘ÞI W ð‘ÞU ÞÞ
Sð‘ÞI ¼ softmaxðreluðRð‘Þ>Xð‘ÞU W ð‘ÞI ÞÞ
Rð‘þ1Þ ¼ Sð‘Þ

>
U Rð‘ÞSð‘ÞI

Xð‘þ1ÞU ¼ Sð‘Þ
>

U Xð‘ÞU

Xð‘þ1ÞI ¼ Sð‘Þ
>

I Xð‘ÞI

end for
Xð‘þ1Þ ¼ MEANðXð‘þ1Þ; Xð‘þ1Þ; . . .; Xð‘þ1ÞÞ
xFu ¼ MEANðxð0Þu ; xð1Þu ; . . .; xðLÞu Þ
xFi ¼ MEANðxð0Þi ; xð1Þi ; . . .; xðLÞi Þ

1https://grouplens.org/datasets/movielens/100k/
2https://snap.stanford.edu/data/loc-gowalla.html
3https://github.com/kuandeng/LightGCN/tree/master/Data/yelp2018
4http://jmcauley.ucsd.edu/data/amazon/
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proposed HierBGCN model. Sorting the scores of all items
allows us to select the top K items, which form the user’s rec-
ommendation list. Subsequently, the effectiveness of this rec-
ommendation list is assessed using the testing set. The
evaluation follows the approach of LightGCN [21], employing
metrics such as Precision@K , Recall@K , and NDCG@K ,
with K set to 20.

Baseline Methods. The performance comparison is con-
ducted by comparing the proposed HierBGCN with several
competing methods, including Matrix Factorization (MF),
NeuMF [4], NGCF [20], LightGCN [21], DiffPool [29],
HUIGN [44], HiGNN [28], and the state-of-the-art hyper-
bolic recommender HICF [35], which is a hyperbolic recom-
mender. It is noteworthy that LightGCN has demonstrated
superiority over various conventional recommendation meth-
ods such as GRMF [52], HOP-Rec [53], GCMC [54], PinS-
age [47], and Mult-VAE [55]. As the comparison is made on
the same datasets using a consistent evaluation protocol, these
methods are not reevaluated in this study. HUIGN also
appears to outperform MacridVAE [56] and DisenGCN [57],
while HICF [35] outperformed HGCF [33]. The proposed
HierBGCN, which builds upon LightGCN and incorporates
hierarchical graph representation, considers LightGCN as a
crucial comparison method. Notably, DiffPool, initially
designed for homogeneous graphs, serves as another important
baseline, as HierBGCN is specifically tailored for bipartite
graphs. For hyperparameter settings of the baseline models, we
adhere to the specifications outlined in their original papers
and follow their tuning strategies.

Hyperparameter Settings. For a fair comparison, the embed-
ding size of all models is set to 20, with the Xavier initial-
izer [58] used for initializing the models’ parameters. The
Adam optimization algorithm [59] is employed for the pro-
posed HierBGCN with a default learning rate of 0.001, and

the batch size is fixed at 1024. To determine the optimal value,
the weight of L2 regularization, �2, is tuned within the range
of 1e�5; 1e�4; 1e�3; 1e�2. HierBGCN introduces additional
hyperparameters that require specific settings: the weight of
entropy loss, �1, is tuned in the range of 0; 1e�4; 1e�3;
1e�2; 1e�1. A value of �1 ¼ 0 signifies the exclusion of entropy
loss. Further tuning involves setting the BiDiffPool layer count
L in the range of 1,2,3,4. The LGC depth of each layer is
adjusted within the range of 1; 2; 3; 4. The cluster shrinking
coefficient a is constrained by the coarsened graph level L as
well as the initial number of users n0u and items n0i in each data-
set. This restriction is necessary to ensure that the number of
user clusters and item clusters on the final level of the graph
remains no smaller than 1, i.e., n0u � aL and n0i � aL . It is
essential to note that any performance disparities observed in
LightGCN between this study and the original paper stem
from variations in settings and hyperparameter tuning.

C. Performance Comparison
A thorough comparison is conducted between HierBGCN
and each competing method across various datasets. The results
of all methods are presented in Table III, yielding the follow-
ing observations.
❏ HierBGCN has secured the most exemplary results across

all metrics within the four datasets, with average improve-
ment percentages being 6.32%, 16.27%, 13.34%, and
4.70% for MovieLens100 k, Gowalla, Yelp2018, and Ama-
zon-Book, respectively. These outcomes underscore
HierBGCN’s commendable proficiency in recommenda-
tion tasks.

❏ While HICF stands out as a formidable competitor among
the methods considered, HierBGCN consistently outper-
forms HICF across diverse datasets and metrics. This sug-
gests that, despite HICF’s efficacy in capturing user-item

TABLE III Performance comparison between HierBGCN and the competing methods on different datasets. For each metric, the best
score and the second-best score are highlighted in bold face and underline, respectively. The performance improvement in
percentage (Improv.) is calculated by: the difference between HierBGCN’s score and the best competitor’s score divided by the best
competitor’s score, and then multiplied by 100. Note that for the results of DiffPool, “OOM” means out of memory. For each dataset
and metric, a significance test via one-sample t-tests against the best reproducible model is conducted. The symbol * means that the
improvement is significant at a 0.05 significance level.

DATASET MovieLens100 K GOWALLA YELP2018 AMAZON-BOOK

METHOD PRECISION RECALL NDCG PRECISION RECALL NDCG PRECISION RECALL NDCG PRECISION RECALL NDCG

MF 0.1359 0.0806 0.0832 0.0229 0.0847 0.0732 0.0097 0.0204 0.0163 0.0097 0.0213 0.0145

NeuMF 0.1391 0.0972 0.0915 0.0253 0.0913 0.0837 0.0112 0.0262 0.0201 0.0115 0.0252 0.0177

NGCF 0.1537 0.0919 0.1164 0.0312 0.1003 0.0917 0.0133 0.0378 0.0282 0.0131 0.0303 0.0223

LightGCN 0.1722 0.1022 0.1201 0.0383 0.1211 0.1026 0.0193 0.0421 0.0343 0.0148 0.0350 0.0275

DiffPool 0.1562 0.0965 0.1052 OOM OOM OOM OOM OOM OOM OOM OOM OOM

HiGNN 0.1663 0.1001 0.1130 0.0348 0.1106 0.0971 0.0149 0.0373 0.0304 0.0133 0.0320 0.0232

HUIGN 0.1708 0.1049 0.1233 0.0399 0.1198 0.1081 0.0192 0.0396 0.0335 0.0148 0.0342 0.0269

HICF 0.1759 0.1102 0.1224 0.0404 0.1337 0.1150 0.0199 0.0448 0.0339 0.0151 0.0350 0.0282

HierBGCN 0.1815* 0.1210* 0.1307* 0.0467* 0.1529* 0.1367* 0.0231* 0.0507* 0.0380* 0.0158* 0.0362* 0.0299*

Improv. (%) 3.18 % 9.80 % 6.00 % 15.59 % 14.36 % 18.87 % 16.08 % 13.17 % 10.79 % 4.64 % 3.43 % 6.03 %
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interactions through implicit hierarchical knowledge,
HierBGCN’s explicit and learnable hierarchical structure
formation contributes to superior recommendation perfor-
mance. The confined geometric properties associated with
hyperbolic spaces may somewhat limit the ability to learn
hierarchical structures, whereas HierBGCN allows for
more flexibility in explicit hierarchical learning.

❏ HierBGCN, utilizing the flat GNN, LightGCN, as the
foundational GCN and concurrently learning the hierar-
chical structure, demonstrates that its improvement over
LightGCN substantiates the hypothesis that the proposed
hierarchical structure learning can enhance the recommen-
dation performance of a flat GNN.

❏ Consistently eclipsing HiGNN across datasets and met-
rics, HierBGCN highlights the criticality of end-to-end
training and conjoint user-item hierarchical structure
learning, both of which are ingeniously integrated
within our HierBGCN.

❏ HierBGCN persistently yields superior performance
when juxtaposed with another robust competitor,
HUIGN. This supremacy of HierBGCN accentuates the
efficacy of learning the hierarchical structure from the
user-item bipartite substructure, which is not effectively
harnessed in HUIGN.

❏ DiffPool encounters an Out of Memory (OOM) error on
larger datasets due to its utilization of the entire adjacency
matrix for computations, thereby incurring a considerably
high computational overhead. Conversely, HierBGCN, by
employing the interaction matrix for calculations, mini-
mizes the computational overhead and, thus, can be suc-
cessfully executed on larger datasets.

❏ DiffPool, being a hierarchical GNN designed specifically
for homogeneous graphs, is not adept for bipartite graphs,
which involve user and item interactions. Consequently,
its performance substantially lags behind HierBGCN and is
even outperformed by the flat model LightGCN.

D. Empirical Model Analysis
Effect of L. To understand the impact of the number of coars-
ened graph levels L, the remaining hyperparameters are held
constant, with a ¼ 2 and �1 ¼ 1e�4, while L is tuned within
the range of 1,2,3,4. The performance of HierBGCN with
different L is reported in Table IV, revealing diverse trends
across various datasets. In MovieLens100 k and Gowalla, the
optimal performance for HierBGCN is observed at L ¼ 2,

with a decline in performance as L increases. Conversely, in
Yelp2018 and Amazon-Book, performance gradually reaches
its peak as L increases, reaching the highest point at L ¼ 3.
However, a serious drop in performance is noted when L
increases to 4. These observations underscore the dataset-
dependent nature of the optimal number of coarsened graph
levels L. Moreover, it becomes apparent that a larger L does
not necessarily translate to better performance; an excess of
levels may introduce redundancy. Speculatively, users and
items may not require an excessively intricate hierarchical
representation, and an abundance of coarsened levels could
pose challenges in model training, potentially diminishing
performance.

Effect of a. The cluster shrinking coefficient a plays a vital
role in influencing the rate at which the number of nodes
reduces. A larger a corresponds to a faster reduction in the
number of nodes. The other hyperparameters are held con-
stant, with L ¼ 2 and �1 ¼ 1e�4, while a is tuned in two dif-
ferent ranges. Due to significant variations in the scale of the
four datasets, it is essential to ensure that n0u � aL and n0i � aL .
For the smaller dataset MovieLens100 k, with only 943 users,
the largest value of a is set to 30, and a is tuned in the range of
2; 5; 10; 30. For the larger-scale datasets Gowalla, Yelp2018,
and Amazon-Book, the range of a is uniformly set to
2; 5; 10; 100. The performance of HierBGCN with different a
is reported in Figure 2, revealing variations in the optimal a
depending on the dataset. In MovieLens100 k, the best perfor-
mance of HierBGCN is observed at a ¼ 2. In Gowalla and
Yelp2018, the optimal a is 5, while in Amazon-Book, the best
value is 10. Across all datasets, it is observed that excessively
large values of a lead to a significant decline in performance.

TABLE IV Effect of the number of levels L for the Hierarchical structure in HierBGCN.

DATASET MovieLens100 k GOWALLA YELP2018 AMAZON-BOOK

METHOD PRECISION RECALL NDCG PRECISION RECALL NDCG PRECISION RECALL NDCG PRECISION RECALL NDCG

HierBGCN-1 0.1737 0.1132 0.1225 0.0407 0.1356 0.1174 0.0195 0.0449 0.0351 0.0137 0.0341 0.0262

HierBGCN-2 0.1815 0.1210 0.1307 0.0434 0.1504 0.1348 0.0217 0.0498 0.0372 0.0144 0.0342 0.0263

HierBGCN-3 0.1745 0.1157 0.1259 0.0426 0.1370 0.1208 0.0231 0.0507 0.0380 0.0158 0.0362 0.0279

HierBGCN-4 0.1710 0.1015 0.1185 0.0375 0.1193 0.1015 0.0187 0.0416 0.0333 0.0126 0.0325 0.0245

FIGURE 2 Results of the effect of varying a.
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This decline is speculated to be a result of clusters shrinking too
rapidly, making it challenging to preserve node features
effectively.

Effect of �1.�1 governs the significance of entropy loss dur-
ing model training, with a larger �1 indicating a more con-
certed effort by the model to centralize cluster assignments.
The remaining hyperparameters are fixed at L ¼ 2 and a ¼ 2,
while �1 is tuned in the range of 0; 1e�4; 1e�3; 1e�2; 1e�1. The
results are presented in Figure 3. It is evident that the optimal
value of �1 varies across different datasets, but a consistent sub-
optimal performance is observed when �1 ¼ 0, indicating the
exclusion of entropy loss. As �1 increases, the performance
improves across all datasets. For Movielens100 k and Amazon-
Book, the best results are achieved when �1 ¼ 0:0001, while
for Gowalla and Yelp2018, the optimal value is 0.001. A sig-
nificant deterioration in performance is noted across all datasets
when �1 becomes excessively large. This suggests that an
overly large �1 might lead HierBGCN to over-centralize clus-
ter assignments, possibly attempting to consolidate all nodes
into the same cluster, resulting in suboptimal performance.

Ablation study. To assess the effectiveness of each compo-
nent in HierBGCN, an ablation study was conducted. After
fixing the hyperparameters, specific components in the model
were replaced as follows: the soft clustering method was
replaced with the hard clustering method, assigning each node
to a single cluster with the highest value in the corresponding
assignment vector (referred to as HierBGCN-HardCluster);
the base LGC was replaced with a standard GCN, resulting in
HierBGCN-GCN; the mean pooling operation in the multi-
level aggregation mechanism was replaced with max-pooling

(HierBGCN-Max) or concatenate (HierBGCN-Concat). The
performance of each version of HierBGCN was reported in
Table V. The complete HierBGCN, utilizing soft clustering,
LGC as the base, and mean pooling, consistently demonstrated
superior performance in most cases. Notably, the performance
of HierBGCN-HardCluster was noticeably lower than that of
HierBGCN, confirming the effectiveness of the soft clustering
method. HierBGCN-GCN closely matched the performance
of HierBGCN, suggesting that LGC is not indispensable and
can be replaced with other GNN methods. While the perfor-
mance of HierBGCN-Concat was slightly lower than
HierBGCN in most cases and slightly higher or equal in a few
instances, this might be attributed to the concatenate operation
preserving the entire information of all graph levels, potentially
burdening model training on certain datasets due to longer
embeddings. The performance of HierBGCN-Max signifi-
cantly declined, possibly because max-pooling led to substan-
tial information loss during the pooling process, adversely
affecting model performance.

V. Conclusion
This article presents HierBGCN, a novel end-to-end hierar-
chical bipartite graph neural network-based recommendation
model. The proposed HierBGCN involves a BiDiffPool layer
that can perform differentiable pooling operations on the
bipartite graph while maintaining the crucial properties of the
bipartite graph. BiDiffPool layer can be stacked with multiple
layers so that the user-item bipartite graph can be coarsened
hierarchically to obtain multi-level graphs. Then the flat graph
convolutional operation can be used on each level to capture
high-order neighbor information. Finally, the information of
each level is aggregated to obtain the final user/item represen-
tation to capture the rich information in the hierarchical struc-
ture. Extensive experiments conducted on four real-world
datasets demonstrate the consistent and outstanding perfor-
mance of HierBGCN over competing models. The proposed
hierarchical structure learning can improve the recommenda-
tion performance of flat GNNs.
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TABLE V Results of the ablation study: how do different components in HierBGCN contribute to the performance?

DATASET MovieLens100 k GOWALLA YELP2018 AMAZON-BOOK

METHOD PRECISION RECALL NDCG PRECISION RECALL NDCG PRECISION RECALL NDCG PRECISION RECALL NDCG

HierBGCN 0.1815 0.1210 0.1307 0.0434 0.1504 0.1348 0.0217 0.0498 0.0372 0.0144 0.0342 0.0263

HierBGCN-HardCluster 0.1748 0.1124 0.1259 0.0397 0.1356 0.1262 0.0202 0.0455 0.0350 0.0137 0.0329 0.0256

HierBGCN-GCN 0.1813 0.1208 0.1305 0.0435 0.1501 0.1346 0.0215 0.0496 0.0375 0.0145 0.034 0.0267

HierBGCN-Max 0.1702 0.1013 0.1191 0.0374 0.1199 0.1025 0.0195 0.0424 0.0352 0.0131 0.0317 0.0247

HierBGCN-Concat 0.1814 0.1198 0.1306 0.0432 0.1501 0.1346 0.0218 0.0497 0.0374 0.0143 0.0342 0.0262

FIGURE 3 Results of the effect of varying �1 .
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