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Temporal networks are networks that edges evolve over time, hence link prediction
in temporal networks aims at inferring new edges based on a sequence of network
snapshots. In this paper, we proposed a graph wavelet neural network (TT-
GWNN) framework using topological and temporal features for link prediction in
temporal networks. To capture topological and temporal features, we developed a
second-order weighted random walk sampling algorithm (SWRW). It combines
network snapshots with both first-order and second-order weights into one
weighted graph. Moreover, it incorporates a damping factor to assign greater

weights to more recent snapshots.

Next, we adopted graph wavelet neural

networks (GWNN) to embed the vertices and used gated recurrent units (GRUs)
for predicting new links. Extensive experiments demonstrated that TT-GWNN
can effectively predict links on temporal networks.
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1. INTRODUCTION

Networks are often used to describe complex systems,
where each node represents an entity and each edge
represents the interaction between a pair of entities.
The vast majority of the real-world network is not
static but evolving, which can be modeled as temporal
networks [1]. In recent years, temporal networks have
been extensively studied and applied in many research
fields, such as social networks [2], biological networks [3]
and co-authorship networks [4]. Link prediction is an
important analytical tool in temporal networks, which
aims at inferring new links based on a sequence of
network snapshots and can help us better understand
network evolution [5].

Many methods for link prediction in temporal
networks have been proposed in the literature,
including [6, 7, 8, 9, 10, 11, 12]. However, most
earlier studies [13] ignore the connection information
among the consecutive network snapshots, thereby
resulting in undesirable performance in link prediction.
Network structure representation, including both
topological structure features and temporal evolution

features, is the key information for effective link
prediction in temporal networks. The topological
structure features represent the topology information
of the network, while the temporal evolution features
represent network topology evolving pattern from
the current snapshot to the next snapshot. It is
thus essential to use both topological and temporal
features to comprehend complex behaviours of temporal
networks. One common approach is to explore
networks’ topology information based on non-negative
matrix factorisation [6, 11, 8, 9, 10]. However, real-
life networks are often sparse and large, methods using
matrix factorisation may cause high computational
cost. In addition, these methods have limited ability
in extracting the correlation of high dimensional
features, as recently discussed in [14].  Different
from the matrix factorisation-based methods, the
DynamicTriad model [12] adopts the triadic closure
process mechanism for the formation and evolution
of temporal networks. However, it is inefficient in
dealing with sparse networks, due to the fact that the
closed triad is difficult to form from open triad in more
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FIGURE 1. (a) Raw input: a temporal network G; with a number of network snapshots. (b) A topological and temporal
features sampling layer which samples features according to the first-order and second-order weights of each snapshot. (c) An
embedding layer which maps each node in the network to its low dimensional representation. (d) A GRU layer which builds

the model for link prediction. (e) The model output.

sparse networks over time (see [12] for the definition
of closed triad and open triad). Learning node
representations to effectively encode high-dimensional
and non-Euclidean network information has become a
challenging problem in temporal networks. However,
the emergence of neural network techniques, especially
deep learning techniques, brings new insights into this
field. Some representation learning methods focus on
static networks, such as DeepWalk [15], Node2vec [16],
SDNE [17], and cannot obtain temporal features in
temporal networks directly. By leveraging the temporal
features of temporal networks, the conditional temporal
restricted Boltzmann machine (ctRBM) [18] extends
the structure of a standard RBM. However, it is a
shallow model with limited ability to extract nonlinear
features. The deep belief network (DBN) [19] explores
the topological features of the static network at each
timestamp, but it fails to concurrently capture the
topological and temporal features from several network
snapshots. Li et al. [7] developed a deep dynamic
network embedding (DDNE) model to capture both
topological and temporal features using gated recurrent
units (GRUs). However, the input to the DDNE model
is still the adjacent matrix of the networks, hence this
still suffers from the problem of high computational
cost. Recently, Chen et al. [20] developed an end-to-
end E-LSTM-D model to integrate a stacked LSTM
into the architecture of encoder-decoder. However,
the input to this model is also an adjacent matrices
of networks. The flexible deep embedding approach
(NetWalk) [21] utilises an improved random walk to
extract the topological and temporal features of the
network. However, it does not take the previous
snapshot into account to extract features, so the feature
representation capability is insufficient.

To tackle the above identified problems, we proposed
in this work a novel model named TT-GWNN for
link prediction in temporal networks, an overview
of our TT-GWNN model is described in Figure 1.
The model adoptes efficient neural networks to deeply
embed topological and temporal features in order
to effectively predict links for temporal networks.
Inspired by the recent result [22], we proposed a
second-order weighted random walk sampling algorithm

(SWRW) to effectively capture both topological and
temporal features. The work [22] only considered
the weight of direct neighbors of a given node, so it
was insufficient to capture topological and temporal
features of temporal networks. However, in the real-
life networks, a node’s neighbors of neighbors also have
some useful information about the node. Hence we
proposed the SWRW algorithm to extract topological
and temporal features from a given node from its
neighbors and neighbors of neighbors in the previous
network snapshots. More specifically, our SWRW
algorithms combine previous snapshots of first-order
and second-order weight into a weighted graph, i.e., the
weighted graph combines the topological and temporal
features of the temporal network with weights. It also
incorporates a damping factor to assign greater weights
to more recent snapshots, which can better preserve
the evolving weights of temporal networks. Particles
then walke according to the weights. In this way,
SWRW can better preserve both topological structure
and temporal evolution features of the networks. In
addition, compared with the model input being the
adjacency matrix, it can decrease the input dimension
of the model. We then adopted graph wavelet neural
networks (GWNN) as proposed [23] to embed the
topological and temporal features into vectors. During
the link prediction phase, we used gated recurrent units
(GRUs) [24] to build the model and applied the main
idea of the C3D approach [25] for training, which can
effectively capture the time dependence among network
snapshots.

Our major contributions in this work can be
summarised as follows.

e We proposed a model TT-GWNN to perform
link prediction in temporal networks. The
model adopts a graph wavelet neural network
(GWNN) to deeply embed nodes in the networks.
GWNN takes graph wavelets instead of the
eigenvectors of graph Laplacian as a set of bases
and defines the convolution operator via wavelet
transform and convolution theorem. Comparing
with traditional Graph Convolutional Networks
(GCN) [26], GWNN does not require the
eigendecomposition of the Laplacian matrix and
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thus is more efficient [23].

e We proposed a second-order weighted random
walk sampling algorithm (SWRW) for both
topological and temporal feature extraction, which
can effectively capture the evolving behavior of
temporal networks. It samples neighbours of a
given node according to the weight coefficient.
More specifically, for a current snapshot, the
SWRW combines its previous snapshots of first-
order and second-order weight into a weighted
graph and uses a damping factor to assign greater
weights to more recent snapshots, which can better
preserve the evolving weights of temporal networks

e Experiments on four real-world datasets (i.e.,
Facebook friendships, Hep-Ph, Digg and Facebook
wall posts) demonstrated that our TT-GWNN
consistently outperformes a few state-of-the-art
baseline models.

The rest of the paper is organised as follows. Section 2
summarises several related works. We formulate the
problem and presents some notations in Section 3.
Sections 4 presents in detail our proposed framework
TT-GWNN for link prediction in temporal networks.
Section 5 discuss the experimental results, and we
conclude the paper in Section 6.

2. RELATED WORK

In this section, we briefly summarise related work
for link prediction in temporal networks. Link
prediction in static networks has been extensively
studied [5, 27].  Since networks are continually
evolving with time in real life, it is important and
necessary to study link prediction in temporal networks.
Sharan and Neville [13] summarizing the matrices
associated to prediction link in temporal networks.
Yu et al. [28] proposed a regularized non-negative
matrix factorization (NMF) algorithm, which improves
the accuracy of link prediction. However, both
methods heavily rely on tedious and error-prone hand-
crafted features. Other approach is based on matrix
factorisation to explore the topology of the networks [8,
9, 10]. The main idea is that the closer two nodes
are, the more likely they are to form a link in the near
future. However, real-life networks are often evolving,
methods considering only topological information may
have poor performance. There exist a few other
methods focusing on both topological and temporal
evolution features proposed in the literature [6, 11]
— the work [6] constructs a sequence of higher-order
proximity matrices to capture the implicit relationships
among nodes, while the work [11] defines the network
dynamics as a function of time, which integrates
the topology of networks at each timestamp and the
temporal network evolution. However, both of them
have limited ability in extracting the correlation of high
dimensional features due to the fact that they are still
based on matrix factorisation. Another model called

DynamicTriad [12] preserves both topological features
and temporal evolution patterns of a given network.
It models how a closed triad, which consists of three
nodes connected with each other, develops from an open
triad that has two of three vertices not connected with
each other. However, it is difficult to form such a
triad mechanism for more sparse networks over time,
so this method is not effective when dealing with sparse
networks.

In recent years, the network embedding approach
based on neural networks has gained a lot of
popularity [15], and it aims to embed each node of a
network into a low-dimensional space. This approach
has also proved to be very effective in temporal
networks for link prediction [7]. Many different
network embedding methods have been proposed in
the literature, including DeepWalk [15], node2vec [16],
and SDNE [17]. However, most of these methods
focus on representation learning for static networks and
cannot obtain temporal features in temporal networks
directly. Recently, the conditional temporal restricted
Boltzmann machine (ctRBM) [18] extends the structure
of a standard RBM by leveraging the temporal features
of temporal networks. However, the ctRBM model is
considered as a shallow model with limited ability to
extract nonlinear features. Thus, it is necessary to
extend neural network-based methods for aggregating
both topological and temporal features using deep
model for link prediction. The deep belief network
(DBN) [19] explores the topological features of the
static network at each timestamp for link prediction,
which has shown a good generalisation ability. However,
the method merely explores the topological features of
the static network at each timestamp and weak ability
to capture time dependencies. Li et al. [7] developed
a link prediction model capturing both topological and
temporal features using GRUs inspired by the machine
translation problem of encoder-decoders methods [24].
However, the input to this model is the adjacent matrix
of the networks, hence it can incur high computational
cost. Most recently, Chen et al. [20] developed an
end-to-end E-LSTM-D model to integrate a stacked
LSTM into the architecture of encoder-decoder. It
imposes more penalty to exist links in the objective
to cope with the problem of sparsity. However, the
input to this model is still the adjacent matrixes of
networks. NetWalk [21] is an flexible deep embedding
approach, and it uses an improved random walk to
extract the topological and temporal features of the
network.  The approach can update the network
representation dynamically as the network evolves by
clique embedding. However, it does not take the
previous snapshot into account to extract features, so
the feature representation capability is still insufficient.
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3. PROBLEM DEFINITION

In this section, we present the necessary definitions and
formally describe our research problem in this paper.

DEFINITION 3.1 (Network). A network can be
represented graphically: G = (V,E), where V =
{vi,...,v,} represents a set of nodes, and n is the
number of nodes in the network, and E C V x V
represents a set of links (edges).

DEFINITION 3.2 (Temporal network). A temporal
network is defined as Gy = (V, E;), which represents a
network G = (V, E) evolving over time and generates
a sequence of snapshots {Gi,...,Gr}, where t €
{1,...,T} represents the timestamps.

Note that in the above definition the set of nodes is
fixed, while the edges E; can evolve over time.

Link prediction for temporal networks: For a
temporal network G;, and its adjacency matrix can be
represented as A;, where ¢ represents the timestamps.
For the A;, it is a 2-D array that stores the vertex
relationships. The element in the A; can be represented
as aj;, where i represents a row and j represents a
column. If a;; = 0, there is no edge between vertex
i and j, otherwise, there is an edge. Given a network
sequence of T snapshots {A1,..., Ar}, the goal is to
predict the adjacency matrix Ap, 1 at time point T+ 1.

4. TT-GWNN

In this section, we introduce our model for link
prediction, which is called TT-GWNN (see its overview
in Figure 1). In our model, we firstly proposed
a second-order weighted random walk sampling
algorithm (SWRW) to extract both topological and
temporal features for each node in temporal networks
(Section 4.1). The sampled topological and temporal
features are then fed into a Graph Wavelet Neural
Network (GWNN) for network embedding (Section 4.2).
Finally, GRUs are adopted to predict new links and
GRUs output is compared with ground truth to
minimise the square loss.

4.1. Topological and temporal feature extrac-
tion

For a given temporal network G; = (V,E;), the
traditional method of sampling neighbour node is to
use either the Breadth-First-Search (BFS) algorithm or
the Depth-First-Search (DFS) algorithm. Base on the
BFS/DFS algorithms, DeepWalk [15], node2vec [16],
and role2vec [29] were proposed, and it can be used
to embed network nodes into a low dimensional vector.
However, for these methods, they sample neighbor
node in the current snapshot, which only capture
topological structure features and ignore temporal
evolution features. Instead, we proposed the SWRW
algorithm to sampling nodes for each node v of each

snapshot. More specifically, the SWRW combines
previous snapshots of first-order weight and second-
order weight into a weighted graph and uses a damping
factor v to assign greater weight to more recent
snapshots, which can combine topological and temporal
features on a weighted graph. Particles then walk
according to the weights. Based on the above ideas,
we designed the weight matrix.

Weight matrix: For a temporal network Gy = (V, E;),
which evolves over time and generates a sequence
of snapshots {Gi,...,Gr}, where t € {1,...,T}
represents the timestamps. Adjacency matrixes of each
snapshot can be represented as {Aj,...,Ar}. The
element in the A; can be represented as a;;, which
represents a binary value for unweighted networks,
and connection strength value of the links between
nodes for weighted networks. For our experiments,
we transformed unweighted networks into weighted
networks. What we do was we used the number of
shared neighbors of nodes ¢ and j plus the element a;; of
the adjacency matrix A; as the weight for nodes of each
snapshot G;. The weight matrix W, for each snapshot
is defined as 1

t
We=> 4"MAL+A4})  0<y<l, 1<t<T
k=1

1)
Where v is the damping factor. A proper value is
very important for capturing networks evolving and the
larger the value, the more efficient it is for networks
that are more stable over time, and vice versa. The
Aﬁ represents a 2-hop relationship between nodes in
timestamp k [30]. The elements in the W, can be
represented as wfj, where ¢ represents a row and
j represents a column and its value represents the
strength of the relationship between node ¢ and node
7 in timestamp t. The W, preserves previous snapshots
of first-order weight and second-order weight into a
weighted graph, which can combine topological and
temporal features on a weighted graph.

Random walk by weight matrix: For a random
walk of length L, we defined the transition probability
as s;j, which represents the probability of node i
walking to the node j.

t
t J
RN — 2)
/ ZU}CEN(’U/L') wfk?

Where wf; is the (i,7) element of the weight matrix
Wy, and N(v;) = {v | v € V,(v,v;) € E} is the set
neighbors of v;. The detailed algorithm description is
shown in Algorithm 1.

Algorithm 1 has two parameters: L the length of the
sampled paths defining the path length of a random
walk for a given start node v, and R the number of
sampled paths defining how many random walks there
are for a given start node v. In Algorithm 1, each X[i]
represents the sets of sampled neighbors for all nodes
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Algorithm 1: Second-order weighted random walk sampling algorithm (SWRW)

Input
timestamp;
L: length of the sampled paths;
R: number of sampled paths;

1 G¢(V, E}): a temporal network, we divide it evenly into a sequence of snapshots {G1,..., G} by

Output: X|[i] with ¢ € {1,...,T}, where each X[i] consists of the sample sets for every node v in the

network;
1 forie{l,...,T} do
2 Compute the transition probability matrix S according to Eq. 2;
3 Select a snapshot G;(V, E;);
4 for ve V do
5 for k€ {1,...,R} do
6 Vk,1 = U
7 for je{l,...,L} do
8 Select a node vy j+1 in N(vy ;) according to the transition probability S*;
9 Add the node v, ;41 it to z};
10 end
11 end
12 X[i].add(z?)
13 end
14 end

in the network at time ¢, and the x} represents the
sets of sampled neighbors for node v in the network at
time 7, and the N(v) represents set neighbors of v. The
first layer loop is used to select snapshot at time ¢ from
the temporal network G¢(V, E), and the purpose is to
traverse all the snapshots. The second loop is used to
traverse each node v € V for each snapshot, and the
purpose is to obtain topological and temporal features
for each v € V. The third loop and fourth loop are
used to sample topological and temporal features for
each v € V of each snapshot according the transition
probability matrix.

Time complexity analysis: Let T represent the
number of snapshots, n represents the number of nodes,
L represents the length of the sampled paths, and R
represents the number of sampled paths. The time
complexity for the SWRW algorithm to generate a set
of samples X[i] (: € {1,...,T7) is OT -R-L-n) for
each node v of each snapshot in temporal networks.
For a temporal network, Equation 1 constructs the
combined weight matrix W; for each snapshot. We
adopted sparse matrix multiplication with complexity
approaching O(n?). Line 2 of the algorithm computes
the transition probability Sfj for each node v with other
nodes in O(T) time. Therefore, it requires O(T-R-L-n)
time to compute the transition probability matrix for all
n nodes of each snapshot in temporal networks. Because
T, R, L, and n can be treated as constants, the time
complexity of our proposed algorithm SWRW is O(n?).

m+1
X

!
Input layer H Hidden layer 1 % LR #Hidden layer mHOutput layer
f

X'y
1
X1:)
2
Input layer HHidden layer 1 |—v .. -%Hidden layer mHOutput layer
)

m+1
X

Vi

Vi

FIGURE 2. GWNN model for each network snapshot
embedding: The model input is X', and the output is
X™F! where Xﬁ,i] and X[T:"‘Z.Tl are the 4-th column of X' and
X™+! regpectively and X[lz’j] and X[T;]'l are the j-th column
of X' and X™T! respectively, where ¢ and j represent any
two nodes; we train the model and update the parameters
through Formula 5.

4.2. Neural network model

Our neural network model consists of the embedding
layer and the GRU layer as described in Figure 1.

Embedding layer (GWNN). Network embedding
[15] encodes network structural properties into a low-
dimensional matrix X € RP*IVI where each column
represents the representation of a node in the network.
In the model, we adopted Graph Wavelet Neural
Network (GWNN) to map nonlinearly a node u to
its D—dimensional representation z, € RP. GWNN
is a novel graph convolution neural network, which
leverage wavelet transformer to instead of the Fourier
transformer of GCN. Comparing with traditional Graph
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Algorithm 2: Graph wavelet neural network embedding for temporal networks

Input
timestamp;

: G¢(V, E;): a temporal network, we divide it evenly into a sequence of snapshots {G1,...,Gi} by

X1 it is a feature matrix of each node of the snapshot ¢ for model input;

m: the number of layers;

Output: Y; with ¢t € {1,...,T}, where each Y; € RN*¥ (N is the number of nodes and K is the dimension)

is the representation of Gy;

1 forte{l,...,T} do
2 X=Xt

3 Compute X™*! from the our design model (see Equations 3 and 4);

4 Y;g — Xm+1
5 end

Convolutional Networks (GCN) [26], GWNN does not
require the eigendecomposition of the Laplacian matrix
and thus is more efficient (see [23] for the time
complexity analysis of the GWNN).

The GWNN focused on static networks, we designed
a m-layer GWNN for each snapshot for unsupervised
node learning for temporal networks embedding. For
the m-th layer GWNN; the input to each GWNN layer
is a node feature matrix, X!, with dimensions n x p
and the output tensor is X™*! with dimensions n x c.
The formulation of our model for each snapshot is (the
framework of GWNN is described in Figure 2)

p
XP=ReLU(p Y Flo™'Xl ) j=1,....q (3)

i=1

q
X[ = ReLU (4, Y FI X[ k=1,..c (4)
=1

where X [1 i with the dimensions n x 1 is the i-th column

of X', ReLU is a non-linear activation function, 1,
is wavelet bases, ¥~! is the graph wavelet transform
matrix at scale s which projects signal in vertex domain
into spectral domain, F}"; is a diagonal filter matrix
learned in spectral domain in layer n [23], ¢ is the
embed dimension of each node, X™*! of dimensions
n X c¢ is the embedding matrix of networks. We defined
the following loss function for each snapshot embedding
to train the model:

n

_ 1 m—+1 . m—+1 2
Loss = - ;(XM] - Average(Adj(X[:7i] ) (5)

where n is the number of nodes, and X, [ml‘]”'l represents
the vector representation of the node ¢ in layer m~+1,and
Adj(X [mﬂﬂ) obtains neighborhood node representation
of i. Average means an average processing operation.
For all snapshots, we used Algorithm 2 for node
embedding. Algorithm 2 has two parameters: Xt it

FIGURE 3. The GRU framework [7]

is a features matrix of each node of the snapshot t,
and m: the number of layers defining how many layers
GWNN has. In Algorithm 2, the ¥; € RN*F (N is
the number of nodes and K is the dimension) is the
representation of Gy with ¢ € {1,...,T}. The loop is
used to select snapshot at time ¢ from the temporal
network G(V, E), and the purpose is to compute X" +!
from the our design model 2.

GRU layer. GURs [24] is an improved Recurrent
Neural Network (RNNs), which can solve the problem
that RNNs cannot deal with long distance dependence.
GRU implements two gates, the updated gate, and the
reset gate. The update gate is used to control the state
information at the previous timestamp is brought into
the current state. Reset gate is used to control the
state information at the previous moment is ignored.
The GRU framework shown in Figure 3.

For the GRU, the computational process can be
treated as a black box. The current =’ and previous
hidden state h'~! are fed into GRU, and they merge
two inputs and compute the current hidden state
ht. This mechanism can effectively preserve historical
information for each node.

In this paper, we adopted GRU to predict new links.
We also adopted the idea of the C3D [25] approach to
train our model, which was similar to the convolution
processing of 3-D convolution kernel and can better
capture the time dependence of network snapshots. The
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Ground
GRU Output 0ss truth
Ym Y+

FIGURE 4. Our training framework for GRUs

main idea of C3D is embodied in the training process
below. The details of the model for training was shown
in Figure 4.

The input of the model is {Y7,...,Yr}, where each
Y: with ¢ € {1,...,T} represents the representation
of the G;. In the training phase, we iteratively
selected M snapshots {Y7,...,Ya} from {Y1,...,Yr}
to train the model, where where M < T represents
the number of training sets. We started with using
{Y1,..., Yy} as the training sample and used Y41
for labelling. After the completion of the training, we
continued to use the {Y3,...,Yp4+1} as the training
sample, Yasyo for labelling, and so on, until the
training sample was {Yr_ps,...,Yr_1}, and the label
was Yp. The output of our model was Yw. For
objective function we used square loss function given
by the following formula. After the model training, we
inputted {Yr_pr41,...,Yr} into the model to predict
the new link.

1 T

T—-—M
w=M

Loss =

(Vi = Yu)? (6)
+1

5. EXPERIMENTS

In this section, we described the datasets and
baseline models, and presented the experimental results
to demonstrate TT-GWNN’s effectiveness in link
prediction of temporal networks.

5.1. Datasets

We selected four temporal networks from different
domains in the KONECT project.! We utilised two
undirected temporal networks (Facebook friendships
and Hep-Ph ) and two directed networks (Digg and
Facebook wall posts). All networks have different sizes
and attributes. Their statistic properties are shown in
Table 1.

e The Facebook friendships dataset contains friend-
ship data of Facebook users. The nodes represent
users and edges are friendship between two users.
The dataset contains a very small subset of the to-
tal Facebook friendship network. We split it by
year and denote them as F} to F5 for our exper-
iments. The snapshot from F; to F4 was used to

Ihttp://konect.uni-koblenz.de/

train the model and the F5 was used as ground-
truth of network inference.

e The arXiv hep-ph dataset is the collaboration
network of authors of scientific papers from
the arXiv’s High Energy Physics-Phenomenology
section. Nodes represent authors and links
represent common publications. Timestamps
denote the date of a publication. The dataset
contains 10 years (1991 - 2002) of data. For our
experiment, we selected 5 years (1995 - 1999) and
denoted them as A; to As. Each snapshot contains
a one-year network structure, and the snapshot of
the first 4 years was used to train the model and the
last snapshot was used as ground-truth of network
inference.

e The Digg dataset is the reply network of the social
news website Digg. The nodes represent users of
the website, and edges between two nodes denote
that a user replied to another user. The dataset
contains sixteen-days records, and we split it by
day. We evenly merged it into five snapshots by
day and denote it as D1 to D5. For our experiment,
the snapshot from D; to D, was used to train
the model and the D5 was used as ground-truth
of network inference.

e The Facebook wall posts dataset is the directed
network of a small subset of posts to other user’s
wall on Facebook. The nodes represent Facebook
users, and each directed edge is one post, linking
the users writing a post to the users whose wall
the post is written on. The dataset contains 6
years (2004 - 2009) of data. For our experiment,
we combined 2004 and 2005 data into one network
snapshot and defined it as Wy. The rest of the
data was defined as W5 to W5 by year and each
snapshot contains a one-year network structure.
The snapshot of the first 4 years was used to
train the model and the last snapshot was used
as ground-truth of network inference.

For our experiments on the above datasets, the last
snapshot was used as ground-truth of network inference
and the other snapshots was used to train the model.

5.2. Evaluation metric and baseline models

In our paper, we adopted the area under the receiver
operating curve (AUC) [31] to evaluate the performance
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TABLE 1. The statistics of four temporal networks.

Network  #Nodes #Links Clustering coefficient Format

Facebook friendships 63,731 817,035 14.8%  undirected
Hep-Ph 28,093 4,596,803 28.0%  undirected

Digg 30,398 87,627 0.56% directed

Facebook wall posts 46,952 876,993 8.51% directed

of different methods. The AUC relates to the sensitivity
(true positive rate) and the specificity (true negative
rate) of a classifier. This metric is strictly bounded
between 0 and 1. The largera the AUC is, the better
the model performs.

We compared TT-GWNN with the following five
baseline models: CP-tensor [10], BCGD [8], LIST [11],
STEP [6] and NetWalk [21]. Since the input of DDNE
[7] and E-LSTM-D [20] are adjacency matrixes, which
has a high computational cost when dealing with large-
scale networks, we did not use it as the baseline.

e CP-tensor [10]: It explores matrix-based and
tensor-based approaches to solving the link
prediction problem, which the model stacks all
adjacency matrices of historical snapshots into a
tensor with the time as the third dimension. Then
the matrix factorisation method is used to predict
links.

e BCGD [8]: BCGD is considered as a scalable
approach with a temporal latent space model for
link prediction, which assumes two nodes are more
likely to form a link if they are close to each other
in their latent space.

e LIST [11]: LIST describes the network dynamics
as a function of time, which integrates the
topological and temporal consistency in temporal
networks. In its implementation, it utilises a linear
time function to model network evolving.

e STEP [6]: STEP is a relatively new framework
for link prediction in temporal networks, which
considers both topological and temporal features
at the same time. It utilises a joint matrix
factorisation algorithm to simultaneously learn the
topological and temporal constraints to model
network evolution.

e NetWalk [21]: The NetWalk model preserves
both topological feature and temporal evolution
patterns of a given temporal network. The model
updates the network representation dynamically
as the network evolves by clique embedding. It
focuses on anomaly detection, and we adopt its
representation vector to predict the link.

Parameter settings. The connected links in the
last snapshot are often very sparse with a lot of
nodes that are not connected. In the evaluation
process, we randomly generated the number of non-
linked edges smaller than twice linked edges to ensure
data balance [8]. Our proposed TT-GWNN framework

in this paper can embed network into a low dimension
vector. For the Hep-Ph (28,093 nodes) and Digg
(30,398 nodes), we set the output of 256 dimensions.
For the Facebook wall posts dataset (46,952 nodes)
and Facebook friendships (63,731 nodes), we set the
output of 512 dimensions. If we increased or decreased
the dimensions, the performance remained the same
or even becomes worse. For different datasets, the
parameters for baselines are tuned to be optimal. The
BCGD method is only for undirected networks. For
the directed networks, we transfered the adjacency
matrix of directed networks to undirected networks by
(AT+A)/2[6]. Other settings include: the learning rate
of the model was set as 0.0001; the length of the sampled
paths L was set 80;the number of sampled paths R was
set 10; the M for the training model was set as 3; the M
for layers of the GWNN was set as 5; the damping factor
~v was set as 0.75. For the result of our experiment, we
carried out five times independently and reported the
average AUC values for each dataset. The experiments
were conducted on the Ubuntu 16.04 operating system
with a 3.7GHz machine, 64GB memory, GeForce GTX
1080 Ti, and Python 3.5.

5.3. Experimental results

For experiments, we compared the performance of five
baselines on four temporal networks for link prediction.
We first embed each vertex into a vector at each
snapshot. For each dataset, we divided by timestamp,
and the last snapshot was used as ground-truth of
network inference, and the previous snapshots are used
to train the TT-GWNN model. After training, we
shifted the window one step towards the future to obtain
the vector representation of each node for last snapshot.
Last, we used the obtained representations to predict
the network structure.

Table 2 compares AUCs over the four datasets.
Compared with the baselines, our method, TT-GWNN,
achieved the best performance. Especially on the
Facebook Friendships dataset, the AUC value of our
model was higher than 11% compared to other baseline
models. The reason may be that when ~ was fixed,
the smaller the value, the more efficient it was for
networks that were more unstable over time. However,
the dataset becomes more sparse over time compared
to other datasets, thus achieving the good performance.
Essentially, we used the SWRW algorithm to sampling
topological and temporal features for each node v
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TABLE 2. Prediction results for the four datasets (AUC value).

Model Hep-Ph  Digg Facebook wall posts Facebook friendships
CP-tensor 0.54 0.66 0.71 0.52
BCGD 0.60  0.68 0.74 0.61
LIST 0.63 0.73 0.72 0.55
STEP 0.61 0.74 0.75 0.57
NetWalk 0.69 0.71 0.74 0.70
TT-GWNN 0.75 0.77 0.76 0.81
1.0 1.0
0.9 0.9
0.8 '//./.ﬂ/’\vxﬂ 0.8
0.7 Wz‘ 0.7 ././-—-\__\'\-
0 0.6 0 061
2 =)
< 0.5 < 0.5/
0.4 0.4/
—+— Hep-Ph
0.3 —=— Digg 0.31
—o— Facebook wall posts |
e —e— Facebook friends e —=— Digg
0.1 0.5 0.6 0.7 0.8 0.9 0.1 1 2 3 4 5 6 7
(a): Damping factor r (b): Temporal window size M
1.0 1.0
0.9 0.9
s e Sm— 0.8
07| —t : T o7 ﬁ
006 0 06
D -]
< 0.5 < 0.5
0.4 0.41
—e— Hep-Ph —e— Hep-Ph
0.3 —=— Digg 0.3 —s=— Digg
02 —e— Facebook wall posts 0.2] —e— Facebook wall posts
' —e— Facebook friends ' —e— Facebook friends
0.1 0.1

40 50 60 70 80 90 1060 1i0 120
(c): Length of the sampled paths L

2 4 6 8 10 12 14 16 18
(d): Number of sampled paths R

FIGURE 5. Experiments on parameters sensitivity. (a) TT-GWNN’s performance on four datasets when increasing ~.
(b)TT-GWNN’s performance on the Digg dataset when increasing M. (c) TT-GWNN’s performance on four datasets when
increasing L. (d) TT-GWNN’s performance on four datasets when increasing R.

of temporal networks, which samples neighbors of a
given node according to the first-order and second-order
weight coefficient. The algorithm preserves the evolving
weights of temporal networks and can better capture
topological and temporal features. TT-GWNN also
adopts GWNN to deeply embed node topological and
temporal features, this can better capture the nonlinear
network attributes due to it was a deep model [7] and
had a relatively low computational cost. As such, it had
advantages over the above baseline models. Moreover,
our model adopts the idea of C3D for training, which
can capture the evolution of the network and also
contributed to the improvement of performance.

5.4. Parameter sensitivity analysis

We further performed parameter sensitivity analysis in
this section, and the results are summarised in Figure 5.

Specifically, we estimated how different the damping
factor v and the M for the training and the length of
the sampled paths L and the number of sampled paths
R can affect the link prediction results.

e The damping factor v. We varied the damping
factor v range from 0.45 to 0.95, with each step
increasing by 0.1 to prove the effect of varying
this parameter. When this parameter was verified,
other parameters were set with their default values.
The results showed that the best result was
obtained when v = 0.75. As can be seen from
the Figure 5a, as = increases from 0.45 to 0.75,
the performance continued to increase. The best
result was obtained at v = 0.75, after which
the performance decreased slightly or remained
unchanged, while v continues to increase.

THE COMPUTER JOURNAL, Vol. 7?7, No. 7?7, 7777
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e The temporal window size M for the training. Due
to the fact that the Digg dataset contains sixteen-
days records, we split it by day and it will generates
16 snapshots. Since it had more snapshots than
other datasets, we selected the Digg dataset to
conduct sensitivity analysis for the parameter of
the temporal window size M. We varied the
window size from 1 to 7 to check the effect of
varying this parameter. When this parameter
was verified, other parameters were set with their
default values. The results showed that the best
results are obtained when M = 3. The reason
might be that the closer snapshot is to the current
snapshot, the more information about the current
snapshot. As can be seen from Figure 5b, the
accuracy no longer increases, when M continuously
increases.

e The length of the sampled paths L and the number
of sampled paths R. Since L and R jointly
determined the sampling size of the current node,
we analyzed these two parameters together. When
analyzing L, R was set to 10, and when analyzing
R, L was set to 80. The experimental results
showed that the performance was the best when
L = 80 and R = 10 (the detail was described in
Figure 5¢ and 5d).

5.5. Scalability analysis

In this section, we compared the efficiency of TT-
GWNN by using the Facebook friendship dataset. We
randomly generated a subset of the original Facebook
networks with different numbers of nodes (20,000,
30,000, ---, 60,000 ) and we tested the running time
for each method. We conducted five independent
experiments to report average efficiency in runtime
(seconds). As seen from the Figure 6, the running
time of our model is lower than that of the baseline
model. As the number of nodes increases, the running
time of our model increases more slowly compared to
the baseline model in the Facebook friendship dataset.
Therefore, our model has the advantage of handling
large-scale networks.

6. CONCLUSIONS

We have proposed an effective framework, TT-GWNN|,
for link prediction in temporal networks, which captures
both topological and temporal evolution features of
the networks. Essentially, we proposed the SWRW
algorithm to extract both topological and temporal
features in each snapshot to model network evolution.
The algorithm combined previous snapshots of first-
order weight and second-order weight into a weighted
graph and used a damping factor to assign greater
weight to more recent snapshots. In this way,
SWRW can better preserve both topological structure
and temporal evolution features of the networks.

10000

—e+— Cp-tensor
—s— BCGD
80001 —e— LIST
7000 SETP

—e— NetWalk
6000 TT-GWNN
5000

9000

4000

Time (Sec.)

3000
2000
1000

2000 3000 4000 5000 6000
Number of nodes

FIGURE 6. Comparison of the runtime of different
approaches on the Facebook friendship dataset with respect
to the size of the networks.

Experiments demonstrated the effectiveness of our TT-
GWNN model and it achieved significant gains in
performance than the baseline models.

Our future work will further study how to improve
the feature extraction method in order to better
capture the topological and temporal features of nodes
in temporal networks. As the use of aggregation
methods can preserve more useful node features [32],
our future work will also focus on how to aggregate
topological and temporal features more effectively
and study performance improvements from different
aggregation approaches. For real-life networks, they
usually include some heterogeneous information such as
text, locations [27] user attributes [33], etc. Therefore,
we also consider aggregating heterogeneous features to
improve the representation of features and pay more
attention to time and space complexity by conducting
more comprehensive experiments.
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