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Abstract—The exposure of location information in location-
based services (LBS) raises users’ privacy concerns. Recent
research reveals that in LBSs users concern more about the
activities that they have performed than the places that they have
visited. In this paper, we propose a new attack with which the
adversary can accurately infer users’ activities. Compared to
existing attacks, our attack provides the adversary not only
with the places where users perform activities but also with the
information when they stay at each of these places. To achieve this
objective, we propose a new model to capture users’ mobility and
their LBS requests in continuous time, which naturally expresses
users’ behaviour in LBSs. We then formally implement our attack
by extending an existing framework for quantifying location
privacy. Through experiments on a real-life dataset, we show
the effectiveness of our new tracking attack.

I. INTRODUCTION

Nowadays, most people are equipped with mobile devices
which can obtain their locations in real time. Location-based
services (LBS) benefit from this technical progress and bring
great convenience to people’s daily life by offering responses
customised to their whereabouts. However, the frequent ex-
posure of whereabouts in LBS requests may leak users’
personal information and thus breach their privacy [1], [2].
As a consequence, many location privacy preserving methods
(LPPM) [3], [4] have been proposed. In general, the purpose of
an LPPM is to break the link between users and their locations.
Their main idea is to anonymise user identities and obfuscate
location coordinates by replacing them with pseudonyms and
regions, respectively. Meanwhile, many attacks on location
privacy have been proposed and successfully demonstrated
that attackers can still manage to associate users to their
locations in the presence of LPPMs [5], especially when
users’ background information (e.g., velocity, occupation) is
explored. For instance, Shokri et al. [6] implement a tracking
attack using user mobility profiles through which the adversary
can learn the locations of a user when he requested LBSs. Ex-
isting attacks in the literature mostly target at deriving ‘where
users actually visited’. However, recent research requires us
to revisit this objective from the viewpoint of attackers in
practice. Namely, what the adversary is really curious about,
with respect to location privacy, is what users did during their
movement, i.e., their activities [3]. Users’ location privacy is
thus exposed to a new threat which has not been studied in
the literature. In this paper, we address how to effectively
formalise and implement this threat.

A number of methods have been proposed to fill the
gap between where users visited and what activities they
performed. The concept of points of interest (PoI) is introduced
to represent places where a user may stay and perform activ-
ities. PoIs subsequently leads to the exploitation of location
semantics (e.g., hospital, school) to infer the possible activities
that a user can perform [7], [8], [9], [10]. Since PoIs, such
as a commercial centre, are usually annotated with multiple
semantics, e.g., cinema and supermarket, probability distri-
butions over location semantics are extracted to decrease the
adversary’s uncertainty about the real location semantics [11].
Although PoIs and their semantics are widely accepted in the
literature, they are not sufficient to accurately infer users’
activities. The adversary still has a high probability to be
incorrect as the distributions only capture users’ choice of
activities statistically and do not consider the purposes of a
single visit for individual users.

Motivations. Services offered by a PoI normally possess
certain patterns with respect to their busy time and the amount
of delivery time. With this observation, we can further reduce
the adversary’s uncertainty by making use of such temporal
patterns. Therefore, to accurately infer users’ activities, the
adversary should take into account when they enter each PoI
and the amount of time for which they stay in it. We cannot
simply explore existing attacks, e.g., the ones described by
Shokri et al. [6] to achieve this goal: these attacks target at
users’ locations at given time points and thus users’ profiles
are constructed to capture their behaviour (e.g., mobility) in
discrete time space. Furthermore, the computational overhead
grows in the numbers of targeted time points and locations [6].
To achieve a similar goal, the attacks should be constructed
with (i) sufficiently fine-grained locations to correctly identify
PoIs; (ii) a fine-grained time space, e.g., in seconds, to
capture the exact entering and exiting time of a PoI. These
two requirements make the attacks [6] infeasible in practice,
especially with long periods of movements in a large area.

Contributions. In this paper, we propose a new activity track-
ing attack. It enables the adversary to directly learn a new form
of trajectories: activity trajectories which contain not only the
sequence of PoIs where a user performed activities but also
his entering and exiting time at each of the PoIs. With activity
trajectories, the adversary can deduce users’ activities with a
high correctness rate. To perform this attack, we propose a



new model for user profiles capturing users’ mobility patterns
and temporal patterns when issuing LBS requests. Compared
to existing models, our new model has two main differences:
(i) users’ behaviour is modelled with continuous time; (ii)
users’ movements are modelled with transitions between PoIs
instead of locations. We make use of the former to describe
users’ behaviour in a more flexible and natural manner while
the latter makes our model more expressive as it allows us
to explicitly specify users’ transitions between activities and
their temporal patterns in movements, i.e., the stay time in
PoIs and transition time between two PoIs. We formally define
our new tracking attack by extending a well-recognised formal
framework in the literature [6]. For validation, we implement
and apply our activity tracking attack on a real-life trajectory
dataset. The experimental results demonstrate that our model
and tracking attack are rather effective.

II. RELATED WORK

In this section, we briefly discuss the state-of-the-art from
the following two perspectives.

Protecting location privacy. In general, location privacy
preserving mechanisms (LPPM) can be divided into two
classes. The first class exploits cryptographic methods to
encrypt LBS requests [12] and to prevent locations from being
exposed or eavesdropped. However, this class of methods incur
additional computational overhead due to the cryptographic
primitives used. The second class of LPPMs adopt a different
approach which modifies LBS requests and hides the link
between users and their accurate locations. We can further
categorise the methods of this class into two types: anonymi-
sation and obfuscation. Anonymising LPPMs replace users’
identities with pseudonyms while obfuscating LPPMs modify
the geographic information in LBS requests. Cloaking [3], [4]
and perturbation [13] are two of the most used obfuscating
methods. The former reduces the precision of locations while
the latter adds other locations as noise. Hiding request and
adding dummy requests [13] are another two obfuscating
methods. In practice, such methods are implemented in many
different ways, which lead to various LPPMs. For instance,
a user can choose to use different pseudonyms according to
the types of LBSs or just use one common for all requests,
while the precision of locations can be tailored to kilometres
or metres. The implementations usually determine the amount
of privacy ensured by the LPPMs.

Attacking location privacy. Despite of the development
of LPPMs, location privacy can still be violated, especially
when background knowledge is exploited by the adversary.
For example, it has been shown that anonymous trajectories
can be associated with their originators’ home and work
addresses [14]. Mulder et al. [15] show that it is possible to
de-anonymise trajectories once users’ previous movements are
made available. In this attack, location profiles of Markovian
models are extracted and used.

Due to the diversity of user profiles and attacks, a uni-
fied framework is needed to implement attacks in a way

which allows quantitative evaluation of LPPMs. Shokri et
al. in [6] made the first successful and impressive attempt.
Next, their framework was extended and explored in a number
of ways [6], [16], [17]. In [16] the original framework was
augmented to allow the modelling of sporadic requests to
LBSs: the actual issuing of an LBS request at each of the
considered time points was governed by a Bernoulli distri-
bution. The original framework was also adopted in [18] to
calculate the optimal parameters for LPPMs where strategic
adversaries were assumed to be aware of the implementation
details of the deployed LPPMs and to know user mobility
profiles. This work was further refined by Herrmann et al.
in [17] by considering the bandwidth constraints in cases
where dummy requests are issued to perturb the real requests.

III. SYSTEM MODEL

In this section, we describe our extension of the formal
framework in [6] to model the components required to define
our new tracking attack. The framework can be denoted as a
quadruple 〈U ,LPPM ,ADV ,M〉 where U is a set of users,
LPPM represents the set of deployed LPPMs, ADV is the
adversary and M denotes privacy metrics.

Users. We consider a set of users U = {u1, . . . , un} who
subscribe certain LBSs and move within a common area, e.g.,
a city. We use L to denote all possible geographical locations
in the area which users can visit. Their formats and accuracy
are determined by positioning devices. Since users request
LBSs and expose their locations whenever needed, we should
not exclude any time instant from being a possible location
exposure time. Thus, we model the issuing time of an LBS
request as a random variable whose value is chosen from a
subset of non-negative real line. We denote this subset by T
and we use [t, t′] (t, t′ ∈ T and t ≤ t′) to represent a time
interval from time t to t′ (t and t′ included).

The trajectory of user u is the path that the user follows
through the considered area in time. We model it as a function
mapping a time point in T to the location where user u was
located at that time instance, i.e., traju : T → L.

A user moves from one place to another for some purposes,
e.g., shopping or working. This indicates that the user has to
perform different activities to achieve these purposes. Thus,
users’ trajectories actually record users’ geographical traces
when they move around to perform such activities. To capture
users’ activities, in addition to trajectories, we propose a new
concept to record users’ activities performed in a given time
interval. An activity of a user includes at least three types of
information: where it is performed, when it starts and ends.
We introduce the concept of points of interest (PoI) from
the literature to represent the places where users can perform
an activity. Specifically, a PoI stands for a region, which is
actually a set of adjacent locations in L. We use P ⊂ 2L to
denote the set of all PoIs of all users.1 With respect to the
time when users start and finish the activities in a PoI, we use
the entering time and exiting time of the PoI to approximate

12X denotes the power set of the set X .



them. With all these three types of information, we denote
an activity as a quadruple 〈u, p, [tb, te]〉, where u ∈ U , p ∈ P
and tb, te ∈ T . It represents the fact that user u was performing
an activity in PoI p in the time interval from tb to te. We
represent all activities of user u that he performed within
a time interval [t, t′] with the following sequence:

at,t
′

u = (〈u, p1, [t
1
b , t

1
e]〉, . . . , 〈u, pn, [tnb , tne ]〉),

where tib < tie and tie < ti+1
b for any 1 ≤ i < n. Note that

users may have different states at time t which are entering
PoI p1, staying in p1 or on the way to p1. Formally,

(t1b ≤ t < t1e) ∨ (t1b ≥ t∧ 6 ∃〈u, p, [tb, te]〉, t < te < t1b).

At t′, we have three similar states: just exiting pn, staying
in pn or on the way to the next PoI after pn which the user
reaches after time t′. Formally,

(tnb < t′ ≤ tne ) ∨ (tne ≤ t′∧ 6 ∃〈u, p, [tb, te]〉, tne < tb < t′).

Therefore, at,t
′

u can be considered as the shortest sequence of
activities which cover the time in [t, t′] which are not spent
on transitions between activities. We call this sequence the
activity trajectory of user u in [t, t′].

In the setting of LBSs, a user exposes his locations to
request LBSs. We call such an action an exposure event
and denote it by a triple 〈u, t, traju(t)〉 if user u requested
LBSs at time t while being at traju(t). We call the time
ordered sequence of exposure events of user u his exposed
trajectory. Given a time interval [t, t′], we can denote the
exposed trajectory of user u as follows:

et,t
′

u = (〈u, t1, traju(t1)〉, . . . , 〈u, tk, traju(tk)〉)
where t ≤ ti < ti+1 ≤ t′ (1 ≤ i < k).

We observe that in popular LBSs such as Foursquare and
Facebook, a user’s exposure events are intensively issued in
some small regions. For instance, users make check-ins in
places they visit for certain purpose, e.g., restaurants and bars.
In order to capture this new characteristic in currently popular
LBSs, we make an assumption in this paper that users request
LBSs in PoIs and thus all locations in exposure events belong
to certain PoIs. Formally, for any 1 ≤ i ≤ k, there always
exists a PoI p ∈ P such that traju(ti) ∈ p.

LPPMs. LPPMs are designed to protect users’ privacy by
processing their LBS requests before sending them to LBS
providers. In other words, an LPPM takes users’ exposure
events as input and modifies or distorts certain information
involved. In practice, LPPMs can be implemented locally on
user devices or remotely on other trusted agents. In addition,
according to the time when LBS requests are processed,
LPPMs can be divided into two classes: on-line and off-line
LPPMs. On-line LPPMs provide real-time services while off-
line services process all requests at a time. Since in practice,
people require real-time services, we only consider on-line
LPPMs in this paper. For the same reason, we follow the
assumption of Shokri et al. [6] that LPPMs do not modify
temporal information.

Focusing on popular LBSs, we consider three types of
LPPMs: anonymisation, cloaking, and perturbation. For ob-
fuscating mechanisms, we do not take into account the two
frequently studied LPPMs: hiding and adding dummies, as
they either result in frequent loss of access to LBSs or
cause extra communication overhead which compromises user
experience and wastes data allowance.

Anonymisation replaces user identities in exposure events
with pseudonyms. Although a different pseudonym can be
assigned to each exposure event, as our goal is to address
location privacy issues in real-life applications, e.g., Facebook
or Twitter, we follow the assumption in [6] that each user is as-
signed a unique pseudonym. Let U ′ = {u′1, . . . , u′n} be the set
of pseudonyms which users in U select. Then, an anonymising
LPPM can be modelled as a bijective function mapping a
user identity in U to a pseudonym in U ′, i.e., σ : U → U ′.
In this paper, we follow the minimal information principle.
Although users may have their own preference on selecting
their own pseudonyms, we assume that such preference is out
of our analysis. Thus, the anonymising function is selected
uniformly from all candidate functions. Thus, the probability
of σ (denoted by anony(σ)) is 1

|U|! .
Obfuscation mechanisms substitute the locations in ex-

posure events with other locations (perturbation) or set of
locations, i.e., regions (cloaking). Such substitutions can be
computed in many different ways, which can be divided
into two classes based on whether previous exposure events
are referred to or not. A straightforward implementation is
to treat each exposure event independently. We focus on
this implementation in this paper due to its popularity and
simplicity. The obfuscating mechanism replaces the location
` ∈ L in an exposure event with a location pseudonym r ∈ R
according to the probability obf (r | `) where R ⊆ 2L is the
set of location pseudonyms.

The modified exposure events of a user can be observed
by outside observers, e.g., attackers. Therefore, we refer to
them as observed events. The observed trajectory of user
u in time interval [t, t′] records the list of all observed
events exposed within the time period [t, t′] ordered in the
increasing order of exposure time. We represent this trajectory
as ot,t

′

u′ = (〈u′, t1, r1〉, . . . , 〈u′, tk, rk〉), where u′ = σ(u) and
∀1 ≤ i ≤ k, ri ∈ 2L. Further, we use ot,t

′
to denote the set of

all observed trajectories in the time interval [t, t′] of all users.

The adversary. The adversary should be modelled to capture
attackers in practice in terms of their objectives, knowledge,
and attacks. Intuitively, an objective of the adversary is the
information she aims to obtain. Knowledge is some a priori
information being in possession of the adversary. An attack
consists of a number of steps in accordance with the ad-
versary’s knowledge and executing these steps allows the
adversary to achieve her objectives. In this paper, we discuss
the objectives related to users’ activities, which complement
the existing research only targeting at users’ whereabouts.

We consider a strong adversary, i.e., we make the following
three assumptions with respect to the adversary’s knowledge.



(i) The adversary is aware of the anonymising and obfus-
cating mechanisms exploited, i.e., anony and obf , with
all relevant details concerning their implementation.

(ii) The adversary is in possession of users’ observed tra-
jectories in the time intervals of interest.

(iii) For each user, his trajectory has been recorded for a
sufficiently long period with a relatively high recording
frequency and good accuracy. This information can be
obtained by side channel attacks, e.g., breaking into
the servers which users trust and expose his detailed
movements to.

Based on the above information, the adversary can de-
duce additional information that enhances her knowledge. In
particular, from users’ travel history, the adversary can infer
characteristic patterns in their movements. We refer to them as
users’ mobility profiles. The mobility profiles are constructed
to foster the performing of attacks and thus their specific
formats vary between attacks. We propose a new model for
mobility profiles in Section IV which facilitates the attacks
on users’ activities. In the sequel, we use K to denote the
adversary’s knowledge about all users in U and Ku to represent
the knowledge about user u ∈ U ′.
The metric. The adversary performs an attack to learn certain
information, which constitutes the adversary’s objectives. With
the purpose of generality of presentation, we model an objec-
tive as some generic random variable Y that takes values in
the set Y . We assume that given a set of observed trajectories
o and the adversary’s knowledge K, the actual but unknown
information value is distributed in accordance with some
posterior probability distribution denoted Pr(Y = y | o,K).
This probability distribution is used as the basis for measuring
the users’ privacy guaranteed by LPPMs against attacks. In
particular, we adopt the expected estimation error proposed
by Shokri et al. [6] to measure users’ privacy. In their work,
this metric has been proved to outperform others in terms of
accuracy in evaluating users’ privacy. If y′ ∈ Y is the real
value of the objective, the estimation error of the adversary is
calculated as follows:

privacy(o,K) = EPr(Y=y|o,K)(‖ y, y′ ‖), (1)

where the expected value is taken with respect to Pr(Y =
y | o,K) and ‖ y, y′ ‖ denotes the distance between y and y′.
The exact definition of the distance depends on the type of
information the adversary is interested in. For example, if the
objective is to discover the real identity of the user u′, then
‖u, u′ ‖ is 0 when u = u′ and 1, otherwise.

IV. PROFILING USERS

In this section, we propose a new model for user mobility
profiles and LBS request issuing patterns.

Mobility profiles. A user mobility profile captures his move-
ment patterns. It is necessary for location privacy attacks
because it facilitates the prediction of future moves performed
by the user. Additional information, e.g., observed trajectories,
can be further used by the adversary to reduce the uncertainty
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Fig. 1. An example of user u’s mobility profile.

of the prediction. User mobility profiles should be designed in
a way which assures that the movement predictions obtained
from them can be efficiently exploited for further inference of
user’s private information.

The idea of our new model is inspired by an intuitive
observation. Namely, a user always moves with certain pur-
poses which actually determine the places the user will visit.
Furthermore, to accomplish a purpose, a user usually stays
in a PoI. Therefore, a user’s trajectory can be divided into
two types of segments: stay at a PoI and transition between
PoIs. This division subsequently leads to our new model for
mobility profiles:

• Pu: the set of PoIs of users in U .

• Pru(p′ |p): the probability that a user u will move to PoI
p′ after leaving p.

• Γstay : Pu × R≥0 → R≥0: for any p ∈ Pu, Γstay(p, δ)
is the probability density of user u staying at PoI p for
the amount of time δ when he visits the PoI. It holds that∫
δ≥0

Γstay(p, δ)dδ = 1.

• Γtran : Pu × Pu × R>0 → R≥0: for any p, p′ ∈ Pu,
Γtran(p, p′, δ) is the probability density of a user spend-
ing the amount of time δ transiting from PoI p to p′. In
consequence, we have

∫
δ>0

Γtran(p, p′, δ)dδ = 1.

• δmin : Pu×Pu → R>0: for any p, p′ ∈ Pu, δmin(p, p′) is
the minimum amount of time required to transit from p to
p′. For any p ∈ Pu, δmin(p, p) > 0. Having δmin(p, p) =
0 implies that a user does not actually leave p.

Figure 1 depicts part of user u’s mobility profile in terms of
two PoIs. Intuitively, after user u enters a PoI p, he stays at p
for a certain amount of time δs according to Γstay(p, δs). Then,
user u selects his next PoI p′ with probability Pru(p′ |p) and
the transition time δt from p to p′ follows the density function
Γtran(p, p′, δt).

In this model, we have made the following assumptions.
First, a user determines his next destination based on his
past location. In other words, the sequence of visited PoIs
follows a first-order Markov chain. Second, the time spent
in a PoI is only related to the PoI itself. This is reasonable
because the amount of stay time in a PoI is determined by the
activities performed. Third, the transition time between two
PoIs depends on the source and destination. This is reasonable
because transition time is mainly determined by the distance
between two PoIs and factors affecting movement, e.g., traffic
and weather. Last, users require a minimum time to move



between two PoIs which is restricted by the distance and avail-
able means of transport. Similar to [6], our mobility profiles
do not consider the fact that users may behave distinctively in
various time periods. For instance, an accountant works in the
shopping mall where he usually does shopping on weekends.
Obviously, he will stay much longer on weekdays than on
weekends because the purposes of the visits are different. This
can be solved by constructing separate mobility profiles for
different time periods.

The starting PoI of an activity trajectory is determined by
two probability distribution: πu(t |p) and Pru(p). The former
is the probability density of the user entering PoI p at time t
while the latter is the probability of the user visiting the PoI.

Given user u’s mobility profile, we can calculate the prob-
ability density of at,t

′

u = (〈u, p1, [t
1
b , t

1
e]〉, . . . , 〈u, pk, [tkb , tke ]〉)

can be expressed as follows:

f(at,t
′

u |Ku) = πu(t |p1)Pru(p1)

· (
∏

1<i≤k

(Pru(pi |pi−1) · Γtran (pi−1, pi, t
i
b − t

i−1
e ))

·
∏

1≤i≤k

Γstay (pi, t
i
e − tib).

Note that in the rest of this paper, we use f(· | ·) to denote
the conditional probability density of a continuous variable
and Pr(· | ·) to denote the conditional probability distribution
of a discrete variable for the purpose of being concise.

Request issuing patterns. Users have some patterns with
respect to when and where they prefer to request LBSs. For
instance, the local-search services of nearby restaurants are
usually requested during lunch or dinner time from residential
areas. Especially, with the recent development of LBS leads
to new features, two of which can be described as follows:
(i) a user may request LBSs at any time point with certain
preference; and (ii) the time interval between two consecutive
requests issued in a PoI is not uniformly distributed. This
indicates that the issuing time of a request is related to
that of the previous request issued in the same PoI. These
two observations lead to the following new approach to the
modelling of time when users issue LBS requests.

In the extension of the framework in [6] to sporadic
LBSs [16], a binary probability distribution is assigned to each
time point and it governs the issuing of an LBS request at
this time point. This model is reasonable for continuous LBSs
where users issue requests independently. In our framework
we relax the assumption and propose a more general model.
We allow a user to issue a request at any time during his stay
in a PoI and we assume that the process of issuing requests is
controlled by certain continuous probability density function.

We model the time between two consecutive LBS requests
from the same PoI to be exponentially distributed with param-
eter λ with the shift ∆:

fint(t |u) =

{
λ · e−λ(t−∆) t ≥ ∆
0 t < ∆

Notice that if the available knowledge advocates the use

of different distributions, the calculation presented in the
remaining of this section can be easily adapted.

Suppose that user u enters a single PoI p at time in-
stance tb and exits it at time instance te. Furthermore,
we suppose that the user is assigned a pseudonym u′ in
accordance with some anonymising strategy σ. With these
information, we can calculate the probability density that user
u, anonymised as u′, issues a sequence of observed events
otb,teu′ = (〈u′, t1, r1〉, . . . , 〈u′, tk, rk〉) within the time interval
[tb, te] of the user’s presence in PoI p:

f(otb,teu′ |p, σ(u) = u′,Ku)

= fint(t1 − tb |u) ·
k∏
i=2

fint(ti − ti−1 |u)·︸ ︷︷ ︸
Part I

c(te − tk)·︸ ︷︷ ︸
Part II∑

`∈p
obf(r |`) ·

∏
2≤i≤k

∑
`∈p

Pr(` |p) · obf (rk |`k)︸ ︷︷ ︸
Part III

,

where

c(t) =

{
e−λ(t−∆) t ≥ ∆
1 t < ∆

.

The above calculation can be divided into three parts which
are labelled by numbers. The first two parts are to calculate
the probability density that user u exposed exactly k locations
at t1, . . . , tk during the stay at p. Specifically, in Part I, we
calculate the probability density of user u issuing k requests
within the time interval [tb, te] at time points t1, . . . , tk. Part II
gives the probability that no requests are issued in the remain-
ing time interval [tk, te]. Parts I and II together provide the
probability density of user u issuing exactly k requests within
the time interval [tb, te] at time points t1, . . . , tk. Part III is the
joint probability that the location pseudonyms r′i (1 ≤ i ≤ k)
are output by the deployed obfuscating LPPM. The probability
Pr(` |p) is the likelihood that user u is located at ` given that
he is in PoI p. If no further information is available, we assume
that Pr(` |p) = 1

|p| , i.e., we assume a uniform distribution on
all ` in p.

V. ACTIVITY TRACKING ATTACK

In this section, we implement a tracking attack in which the
adversary tries to infer the most likely activity trajectories of
users using user profiles in our new model.

In the attack, we assume that the adversary has learnt the
observed trajectories of all users in U in the time period
[t, t′], i.e., ot,t

′
. Furthermore, we assume that all users are in

a PoI at both time t and t′. We make this assumption for two
reasons: (i) to give a concise presentation; (ii) to simulate the
adversary’s curiosity of users’ daily activities which in most
of cases start and end in PoIs, e.g., home. With users’ profiles
constructed based on users’ behaviour in this period, we can
approximately interpret that users enter a PoI at t and exits
a PoI at t′. Our attack presented in this section can also be
generalised to more generic situations where users’ states at t



and t′ are not known. However, this will increase calculation
complexity because we have to consider three possible user
states at the two ends: just entering or exiting a PoI, in a PoI
and during transition. Formally, this attack can be formulated
as the following optimisation problem:

arg max
a,σ

f(a, σ |ot,t′)

where a represents all possible sets of activity trajectories of
users in U . As mentioned above, we user f(x |y) to denote the
conditional probability density of x when y is available. Thus
f(a, σ |ot,t′) is the probability density that users travel activity
trajectories a when ot,t

′
is observed. In this attack, we target

at two types of information: users’ activity trajectories and the
bijective mapping relation between users’ activity trajectories
and their observed trajectories.

With this understanding, we split this tracking attack into
two steps. At the first step, we calculate the most likely
anonymising strategy called de-anonymising attack. At the
second step, we proceed calculating users’ most probable
activity trajectories given the anonymising strategy obtained in
the first step. Note the independence of the two steps, which
facilitates the split.

A. De-anonymisation

The purpose of de-anonymising attack is to find the most
likely owner of each observed trajectory in ot,t

′
. In other

words, the goal of the adversary is to find the most probable
anonymising mapping function σ∗ . This can be formulated as
follows: σ∗ = arg maxσ Pr(σ |ot,t′ ,K). We use f(ot,t

′ |σ,K)
to represent the density of ot,t

′
given the anonymising strategy

σ and the adversary with the knowledge K. By applying the
Bayesian theorem, we have that

Pr(σ |ot,t′ ,K) =
f(ot,t

′ |σ,K) · Pr(σ)

f(ot,t′ |K)
. (2)

Note that since the denominator f(ot,t
′ |K) can be seen as

a proportionality factor, it is independent of σ and can thus
be considered constant. Due to the assumption that the choice
of the anonymising strategy follows a uniform distribution,
we have that Pr(σ) is 1

|U|! . Thus, the optimisation is reduced
to finding σ that maximises f(ot,t

′ | σ,K). Since users are
independent of each other when travelling and their exposure
events are anonymised and obfuscated independently, f(ot,t

′ |
σ,K) can be factorised into a product of probability density
functions as follows:

f(ot,t
′ |σ,K) =

∏
u′∈U ′

f(ot,t
′

u′ |σ,Kσ−1(u′)).

Notice that σ is a bijection between U and U ′, so σ−1 is well
defined. Thus, the problem is further reduced to calculating
the mapping function σ∗ which maximises the above product.

This problem can be solved as the minimum weight assign-
ment problem, which assigns a single task to each agent in a
group and guarantees the minimum total cost. This is because
the de-anonymising attack can be interpreted as assigning

pseudonyms in U ′ to users in U . If we take − log f(ot,t
′

u′ |Ku)
to be the cost of assigning u′ to u, then the existing solutions
to the minimum weight assignment problem can be used
due to the fact that arg maxσ f(ot,t

′ | σ,K) is equivalent to
arg minσ − log f(ot,t

′ |σ,K).
This indicates that for each user u ∈ U , we have to calculate

the density of each observed trajectory ot,t
′

u′ ∈ ot,t
′

given user
u’s profiles, i.e., f(ot,t

′

u′ |Ku). In the following, we proceed to
present an efficient method to calculate users’ patterns with
respect to their observed trajectories, i.e., f(ot,t

′

u′ |Ku).
Let A be the set of all possible activity trajectories of user

u in the time interval [t, t′]. Then we have

f(ot,t
′

u′ |Ku) =

∫
α∈A

f(α, ot,t
′

u′ |Ku)dα

which marginalises out activity trajectories. We proceed to
show how to calculate the marginalisation.

We notice that f(α, ot,t
′

u′ |Ku) is zero when the activity tra-
jectory α is not compatible with ou′ , where the compatibility
is understood as follows. We say that an activity trajectory
α is compatible with ou′ if and only if for the time point
given by any observed event in ou′ , user u is at a PoI and not
in transition between two PoIs. To make further computation
efficient, we introduce a scheme to consider only the activity
trajectories that are compatible with ou′ .

Let S be the set of all sequences of PoIs that user u
could potentially visit in [t, t′] which are allowed by the
minimum time required to move between successive PoIs.
If we use N(s) to denote the length of sequence s and
psi be the ith PoI in s, then S =

{
s | ∀i=1,...,N(s) p

s
i ∈

P,∑N(s)−1
i=1 δmin(psi , p

s
i+1) ≤ t′ − t

}
. Two remarks are in

place. First, for each user u ∈ U and [t, t′], the set S is finite
since user u has finite PoIs and the minimum transition time
between any two PoIs is non-zero. Second, by the definition of
activity trajectories, the sequence of PoIs visited by u within
any activity trajectory is contained in S.

We proceed to consider how an observed trajectory ot,t
′

u′

could be obtained given that the user visited a sequence of
PoIs s ∈ S. The following restrictions are in place: (i) each
observed event in ot,t

′

u′ is issued from a PoI in s; (ii) any two
consecutive observed events are issued either from the same
PoI or the second event is issued from some subsequent PoI
in s; (iii) s may contain PoIs where no events are issued.

With these restrictions, we can decompose ot,t
′

u′ into N(s)
disjoint blocks of contiguous observed events. The ith block
is the sequence of all observed events issued from PoI psi .

We use Ξ
s,ot,t

′

u′
i to denote the ith block and Ξs,o

t,t′

u′ =

(Ξ
s,ot,t

′

u′
1 ,Ξ

s,ot,t
′

u′
2 , . . . ,Ξ

s,ot,t
′

u′
N(s) ) is a decomposition of ot,t

′

u′ with

respect to s. Note that for the same s, ot,t
′

u′ usually has a
number of different decompositions with respect to s which
is actually exponential in the number of observed events.

We say that an activity trajectory α complies with PoI
sequence s and Ξs,o

t,t′

u′ if the ith PoI in α is equal to psi

and user u enters it before issuing the first request in Ξ
s,ot,t

′

u′
i



and exits it after having issued the last request in Ξ
s,ot,t

′

u′
i . Let

tib and tie are the entering and exiting time points of the ith

PoI in α, then tib ≤ min{t′′ | ∃〈u′, t′′, r〉 ∈ Ξ
s,ot,t

′

u′
i )} and

tie ≥ max{t′′ | ∃〈u′, t′′, r〉 ∈ Ξ
s,ot,t

′

u′
i )}. These two conditions

lead to a small interval for the entering (exiting) time of each

PoI in s. We use T i,s,o
t,t′

u′
b and T i,s,o

t,t′

u′
e (1 ≤ i ≤ N(s)) to

denote such time intervals for the entering and exiting time
of PoI psi , respectively. Let α be an activity trajectory that
complies with Ξs,o

t,t′

u′ and s = (p1, . . . , pk). In Equation 3,
we calculate the joint probability density of user u travelling
α (Part I) and generating the observed trajectory (Part II):

f(α, ot,t
′

u′ |Ku) = f(au |Ku)︸ ︷︷ ︸
Part I

·
N(s)∏
i=1

f(Ξ
s,ot,t

′

u′
i |psi ,Ku)︸ ︷︷ ︸
Part II

.
(3)

With the above density function, in the following, we present a
method to marginalise over all activity trajectories and obtain
our target f(ot,t

′

u′ | Ku), i.e., the density function of user u
issuing an observed trajectory.

We start with constructing the activity trajectories compat-
ible with an observed trajectory ot,t

′

u′ . We observe that the
following two inference rules hold: (i) if α and ot,t

′

u′ are

compatible, there exists s and Ξs,o
t,t′

u′ that α complies with;
(ii) if α complies with s and Ξs,o

t,t′

u′ , then α is compatible
with ot,t

′

u′ . These two rules allow us to construct all activity
trajectories that are compatible with the observed trajectory by
considering (i) each s ∈ S; (ii) each possible decomposition
of the observed trajectory with respect to s; and (iii) every
possible combination of the entering and exiting time points
within the time intervals determined by s and the decomposi-
tion. Therefore, we can write

f(ot,t
′

u′ |Ku)

=
∑
s∈S

∑
Ξ

s,o
t,t′
u′

∫
T

1,s,o
t,t′
u′

b ×T
1,s,o

t,t′
u′

e ×...×T
N(s),s,o

t,t′
u′

b ×T
N(s),s,o

t,t′
u′

e

f(α, ot,t
′

u′ |Ku)dtN(s)
e dtN(s)

b . . . dt1e dt1b .
(4)

B. De-obfuscation

In this step, the adversary’s purpose is to reconstruct a user’s
most likely activity trajectory when his observed trajectory is
learnt. Formally, arg maxau f(au | ot,t

′

σ(u),Ku). With Bayesian
theorem, we have

f(au |ot,t
′

σ(u),Ku) =
f(ot,t

′

σ(u) |au,Ku) · f(au |Ku)

f(ot,t
′

σ(u) |Ku)
. (5)

Since the denominator is a constant for all activity trajectories,
the problem can be reduced to find the activity trajectory
that maximises the nominator. This can be seen as global

optimisation problem which can be formulated as follows:

arg max

s∈S,Ξs,o
t,t′
u′

arg max
(t1b ,t

1
e,...,t

N(s)
b ,t

N(s)
e )

f(α, ot,t
′

u′ |Ku)

where α = (〈u, ps1, [t1b , t1e]〉, . . . , 〈u, psN(s), [t
N(s)
b , t

N(s)
e ]〉) and

tib ∈ T
i,s,ot,t

′

u′
b and tie ∈ T

i,s,ot,t
′

u′
e for all 1 ≤ i ≤ N(s).

To solve this optimisation problem, first, for each s ∈ S ,
we consider all of its possible decompositions. Then for
each pair (s,Ξs,o

t,t′

u′ ), we search for a sequence of entering
and exiting time points that maximise the joint probability
density function and record the largest probability density. To
find the (approximate) optimal sequence, we can refer to a
number of algorithms. We use Simulated Annealing in our
implementation. Last, we choose the pair with the largest
probability density and with the corresponding time sequence,
in this way the optimal activity trajectory is constructed.

VI. VALIDATION

In this section, we pursue two goals: (i) constructing user
profiles and identify their main features in users’ real-life
movements; (ii) evaluating the effectiveness of our new activity
tracking attack. With respect to the former goal, we focus on
users’ mobility profiles. We explore a real-life GPS trajectory
dataset to justify our model for user mobility profiles which
is collected in the Geolife project of Microsoft Research
Asia [19]. The dataset consists of 17,621 daily trajectories
from 182 users in over five years which mainly took place
in Beijing, China. The trajectories are collected in a high
frequency and over 90% of the locations are recorded in less
than every 5 seconds. We select ten representative users based
on the number of their collected trajectories in our validation.
On average, each user has over 200 daily trajectories.

Constructing mobility profiles. We adopt the method and
the tool by Chen et al. [8], [9], [20] to dynamically compute
users’ PoIs. Their method explores the heuristic that a PoI is
usually a small region where a user tends to stay for certain
amount of time. To extract the transition matrix, we use the
maximum likelihood estimation method as described in [21].
In Figure 2 we plot the calculated PoIs of the ten users with
circles whose sizes represent their area. On average, the area
of these PoIs is 0.317 km2 and each user has 28 PoIs. We
can see that the introduction of PoIs leads to fewer states in
the Markov chains but meanwhile a relatively high precision.

We explore the Gaussian kernel smoothing method to es-
timate the probability density functions Γstay and Γtran and
the shapes of the estimated functions are similar to Gamma
distributions. We then fit Gamma distributions to the data and
feed the fitted functions to the Chi-square test to evaluate
their goodness of fit. The results are mostly positive meaning
that the density functions of stay and transition time can be
assumed to be gamma distributions.

The Geolife dataset does not contain sufficient amount of
data to extract complete mobility profiles for all the selected
users, especially for the probabilistic density functions related
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Fig. 2. The distribution of users’ PoIs.

to stay time in some PoIs and transition time between some
PoI pairs. We thus partially simulate users’ profiles when the
required information is not extractable. This will not impose
much impact on our validation since our target focuses on the
effectiveness of our tracking attack under the assumption of
the availability of user mobility profiles.
Evaluating the attack. We implement our activity tracking
attack as explained in Section V.
Experimental setting. We need to set up our experiments from
two perspectives: activity trajectories and observed trajecto-
ries. With respect to activity trajectories, for each user we
choose 40 of their daily trajectories. The time information of
these trajectories are not consistent with user mobility profiles
as part of user profiles are simulated rather than extracted
directly from the dataset. Thus, we only extract the sequences
of PoIs in them and make use of the simulated user profiles to
generate the amount of time that users spend in and between
the PoIs. The simulated activity trajectories span from 2 to
12 hours depending on the number of PoIs involved. We
generate the observed trajectories of the selected users due
to the lack of users’ exposed trajectories. Given an activity
trajectory, we calculate the corresponding exposed trajectory
based on the owner’s request issuing rate. In order to analyse
the influence of the number of issued requests, we generate
two exposed trajectories for an activity trajectory with lengths
of one and three, respectively. For obfuscating LPPMs, we
consider the cloaking mechanism which reduces the precision
of the coordinates of the locations in the exposed trajectories
due to its popularity. In our experiments, we set two precisions,
namely, 0.001 and 0.01, and examine the sensitivity of location
privacy to them. These two precisions enlarge a position to a
region with area of about 0.02 to 2.25 km2, respectively.
Location privacy metric. Recall that in our framework, we
make use of the estimation error of the adversary to evaluate
the effectiveness of attacks against LPPMs. As we split our
attack into de-anonymisation and de-obfuscation attacks, we
evaluate their effectiveness separately. The performance of our
tracking attack can be guaranteed if they are both effective. For
de-anonymisation, given a set of observed trajectories, each of
which corresponds to a unique user, we define the adversary’s
estimation error as the percentage of the user identities that
are not correctly assigned to the observed trajectories. For any
observed trajectory and its owner, the de-obfuscation attack

TABLE I
THE DISTRIBUTION OF ESTIMATION ERROR.

Attacks ≤ 0.2 0.2− 0.4 0.4− 0.6 0.6− 0.8 ≥ 0.8

de-anonym. 0.01 0.16 0.46 0.32 0.04
de-obfuscation 0.11 0.18 0.26 0.31 0.14

outputs the most probable activity trajectory. Let α∗ be the
calculated activity trajectory. According to Equation 1, the
location privacy is determined by the distance between α∗

and user u’s real activity trajectory α. Intuitively, if we simply
treat the positions during transition as a specific PoI, then two
activity trajectories are equivalent if and only if two users
are in the same PoIs at any time. This leads us to use the
proportion of time when two users are not in the same PoI to
assess the de-obfuscation attack.

Experimental results. In this section, we present the exper-
imental results of the two attacks from two aspects: their
effectiveness and their sensitivity to other factors. In the
attacks, we assume that the adversary has access to the time
periods when users travelled their activity trajectories, which
are called observation periods in the following discussion. We
construct 5,000 daily observations for the selected users in
each of which a user has a unique observed trajectory and
feed them to the de-anonymisation attack. The de-obfuscation
attack aims to infer information from observed trajectories
whose owners have been already learnt.

Table I summarises the percentages of samples whose
estimation errors fall into different intervals when the reduced
precision is set to 0.001. Generally, most of the estimation
errors range from 0.2 to 0.8. We can see that for over 60% of
the samples, the adversary has at least a probability of 0.4 to
get users’ right pseudonyms. Our obfuscating attack can even
ensure at least a correctness of 0.6 for 30% users. Therefore,
from these statistics, we can see that our attacks are rather
effective even if they are combined in our tracking attack.

We study four parameters that may have impact on users’
location privacy: the number of issued LBS requests, the length
of observation periods, the number of visited PoIs and the
reduced precision. Our first observation is that more issued
requests lead to more privacy loss. The estimation errors
when only one request is issued (annotated by red curve) are
always larger than those when three requests are issued. Our
second observation is that the length of observation periods
has different influence on the effectiveness of our attacks
(see Figures 3(a) and 3(c)). We group observed trajectories
according to the (mean) length of their observation periods
and depict the mean estimation error of the trajectories in
each case. In the de-anonymisation attack, the mean estimation
error decreases along with with the length of observation
periods. This can be explained by the fact that users are more
likely to travel distinctive trajectories in a longer time period.
Meanwhile, it is opposite in the de-obfuscation attack. The
estimation error increases significantly when users travel a
longer time. This is because in a longer period, users have
more flexibility to arrange their visits to PoIs as well as the
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Fig. 3. Estimation error (E.E.) of the attack (DA for de-anonymisation and DF fro de-obfuscation).

stay time in them. Our third observation (see Figures 3(b)
and 3(d)) is that in both attacks the number of visited PoIs has
a similar impact to that of the length of observation periods.
This is because of the fact that a longer period indicates more
PoIs that can be visited. Last, we observe that the increase of
reduced precision from 0.001 to 0.01 does not have a visible
improvement for users’ location privacy. This is because the
exploration of PoIs has decreased the adversary’s uncertainty
eliminated the impact of the reduced precision, especially
when the precision is not reduced significantly enough.

VII. CONCLUSION

In this paper, we proposed a new model for user profiles and
a new tracking attack with the aim to provide the adversary
with more information to accurately infer users’ activities.
Namely, the places where users visits and the entering and
stay time of these places can be obtained through our attack
in a direct way. Other attacks on location privacy in [6]
can be formalised in our framework as well [22]. Compared
to existing works on user mobility profiles, our model can
describe users’ patterns with respect to mobility and requesting
LBS in continuous time. By making use of PoIs, our attack
has a reasonable efficiency and can be extended to cover more
general cases with little increase in computational overhead.
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