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Abstract—Electronic voting is a prominent example of conflict-
ing requirements in security protocols, as the triad of privacy,
verifiability and usability is essential for their deployment in prac-
tice. Receipt-freeness is a particularly strong notion of privacy,
stating that it should be preserved even if voters cooperate with
the adversary. While there are impossibility results showing we
cannot have receipt-freeness and verifiability at the same time,
there are several protocols that aim to achieve both, based on
carefully devised trust assumptions. To evaluate their security,
we propose a general symbolic definition of election verifiability,
extending the state of the art to capture the more complex
structure of receipt-free protocols. We apply this definition to
analyse, using ProVerif, recent protocols with promising practical
features: BeleniosRF and several variants of Selene. Against
BeleniosRF, we find several attacks showing that verifiability in
Belenios does indeed suffer from the attempt to introduce receipt-
freeness. On the other hand, Selene satisfies a weaker notion
of receipt-freeness, but we show that it satisfies verifiability in
stronger corruption scenarios. We introduce a general frame-
work to compare the verifiability of these protocols in various
corruption scenarios and conclude with an analysis of SeleneRF,
an attempt to get the best of both that we formalise in this paper.
In addition to extending the symbolic model, our results point to
foundational gaps in current cryptographic models for election
verifiability, as they fail to uncover attacks that we do.

I. INTRODUCTION

Electronic voting brings many advantages to the process
of running an election, providing more straightforward pro-
cedures and reducing the costs and the potential for human
errors. On the other hand, it also brings in possible security
weaknesses by increasing the scope and abilities of an adver-
sary against the election. Electronic voting protocols aim to
address this problem by incorporating a strong cryptographic
foundation, ensuring the security and robustness of the system
independently of the corruption of software, hardware or any
of the parties involved. There are two main security properties
such protocols aim to achieve: voter privacy [8], [25] and
election verifiability [20], [28]. Furthermore, privacy should
hold even when voters may cooperate with the adversary. This
is to prevent, for example, vote buying or voter coercion.
This stronger notion of privacy is typically called receipt-
freeness. Both receipt-freeness and verifiability should hold
with minimal trust assumptions, reflecting a set of maximally
admitted corruption abilities for the adversary.

There is a well-known tension between receipt-freeness
and verifiability in electronic voting protocols. On the one
hand, there are impossibility results like [14], although one

could argue that their underlying assumptions do not apply
in all cases. On the other hand, initial protocols attempting to
achieve the two, like JCJ/Civitas [15], [27], remained mostly of
theoretical interest, due to strong assumptions and weak usabil-
ity. If we drop the requirement of receipt-freeness, however,
there are several deployed practical systems satisfying both
privacy and verifiability. Most prominently, Helios [3], [4] and
Belenios [2], [21] also enjoy formal security proofs for privacy
[16], [22]–[24] and verifiability [6], [17]–[19]. Belenios is an
elaboration of Helios aiming to achieve verifiability in stronger
corruption scenarios. One step further, BeleniosRF relies on
a novel cryptographic primitive (signatures on randomizable
ciphertexts) in order to achieve receipt-freeness with trust
assumptions similar to Belenios, albeit relying on a less
intuitive individual verification procedure [12].
Selene is a recently proposed system that achieves receipt-

freeness based on a new mechanism that allows voters to
verify their vote directly in the final outcome, while hiding
the link between the credentials used for vote casting and
the credentials used for vote verification [35]. The idea is
that the verification credential (also called tracker) is held in
encrypted and committed form next to the voting credential.
Using private trapdoor keys associated to each voter, and
randomness obtained from trustees after tally, voters can open
the commitment and obtain their trackers. Furthermore, this
information also allows voters to generate fake randomness in
order to resist coercion. Selene has an advantage over Bele-
niosRF in the usability of its individual verification procedure:
voters can directly check their votes associated to trackers in
the outcome. The disadvantage is that voters have to generate
and register their private trapdoor keys, and receipt-freeness is
not immediate like in BeleniosRF. Furthermore, since ballots
are posted as such on the bulletin board, the receipt-freeness
property is also weaker, as the ballot can be part of a receipt
for the adversary.
Formal security proofs have been essential for the develop-

ment of Helios and Belenios. Many attacks against these sys-
tems were found with formal methods and have led to security
improvements. In this paper we aim to extend the required for-
mal foundations in order to perform automated verification of
election verifiability in receipt-free voting protocols, including
BeleniosRF, Selene, and others. A general symbolic definition
of election verifiability has been recently proposed in [6] and
applied to Helios and Belenios. It considers various adversarial



models and ensures strong end-to-end security guarantees.
However, it cannot capture an essential feature of some receipt-
free voting protocols, like Selene: the verification credential is
not publicly linked to the vote casting credential. This is not
a mere technicality and may hide real attacks against election
verifiability, for example if the adversary manages to map two
voting credentials onto the same verification credential, in a
variation of clash attacks [29], [30], [33].
Our contributions. We extend the symbolic definition of
election verifiability from [6] to also cover the more complex
case of receipt-free voting systems. We also improve the
definition in [6] in order to more closely match the general
definition of election verifiability used in previous works, e.g.
in [17]–[19]. We apply the definition to verify with ProVerif
the protocols BeleniosRF, Selene and variants of Selene that
improve its efficiency or receipt-freeness. We find new attacks
on BeleniosRF and provide new proofs for Selene in strong
corruption scenarios. We identify various corruption scenarios
that pinpoint the trade-offs between BeleniosRF and Selene,
and between receipt-freeness and verifiability. We give more
details about these contributions in the following.
General vs symbolic election verifiability. The symbolic defi-
nition in [6] is generic and can be applied to many corruption
scenarios. It has been used to find real attacks and proofs
for electronic voting protocols. However, it has one important
drawback, in that it was not proved to imply the general
definition of election verifiability used in previous work and
first introduced in [19]. Conversely, some attacks found with
[6] against Belenios do not represent real attacks against
election verifiability, so their definition is too strong for some
scenarios. The issue in both these cases lies in a departure
that was made in [6] from the notion of corrupted voters
towards the notion of corrupted credentials, which creates a
gap between what is proved (with respect to credentials) and
the real execution of the system (with respect to voters). We
fix this problem by introducing a stronger formal connection
between voter identities and public credentials.
Symbolic election verifiability vs receipt-freeness. End-to-
end election verifiability aims to ensure a correspondence
between the final outcome and other events that occur during
a run of the voting protocol: registration, corruption, voting,
verification, etc. Any of these events can be associated to
a particular voting credential. In Selene, each vote in the
final outcome is also associated to a verification credential.
For receipt-freeness, it is important that verification creden-
tials cannot be publicly linked to their corresponding voting
credential. This means that, in order to formalise election
verifiability in this context, we need a function to extract
the verification credential associated to a voting credential.
Of course, to preserve receipt-freeness, this function should
not be efficiently computable. For verifiability, it is sufficient
for it to be well-defined and for its arguments to come from
the bulletin board. We provide a framework that ensures the
extraction function is well-defined and, when plugged into our
updated symbolic verifiability definition, does indeed ensure

end-to-end verifiability.

Attacks vs proofs for BeleniosRF. Our attacks against Be-
leniosRF may be surprising, considering that it was formally
shown to satisfy election verifiability [12], based on a generic
transformation proved secure in [19]. In fact, our attacks
show the importance of rigorous adversarial models combined
with machine-checked proofs. There are two problems with
the definition and proofs in [19]. For the case of a corrupt
registrar and honest server, the definition in [19] (relying on
a cryptographic model) fails to provide the adversary with
the ability to control the signing key of voters. Since security
is derived following a hand-based proof, the issue of key
generation was easy to oversee. A second problem, common
to all current cryptographic models of verifiability (including
the machine-checked model proposed later for Belenios in
[17]), is that, when the voting server is honest, the ballot is
posted directly on the bulletin board, assuming in effect that
the communication network and all underlying infrastructure
on the voting platform is secure. This defeats the purpose of
verifiability, that aims to counter precisely attacks against such
infrastructure. We follow the approach standard in symbolic
definitions [5], [6], [18], [28], which is more realistic in this
respect: the only assumption is that the voting server performs
ballot verification and authentication, while the adversary is
allowed to control the communication network and block
ballots on their way to the bulletin board.
Once the adversary is allowed to control the signing key

for honest voters and the communication network, the attack
against BeleniosRF follows from the fact that voters do not
verify the cast ballot directly on the bulletin board. Instead,
when a cast ballot b reaches the server, it is rerandomized into
a ballot b′ (maintaining a signature with respect to the same
key as b) that is posted on the bulletin board. The voter verifies
b′ by ensuring it is signed with the voter’s own key, which
ensures that b′ is indeed a rerandomization of b. However,
the following clash attack can be mounted in the considered
adversarial scenario. At registration, the adversary assigns the
same key to two honest voters id1 (voting v1) and id2 (voting
v2). During voting, the adversary allows the ballot from id1
to be cast, and blocks the ballot from id2, relying on the
control of the communication network. Both of these voters
will successfully verify the ensuing ballot b′ on the bulletin
board. For id2, this will clearly violate individual verifiability
(when v2 is different from v1) or the no-clash property (when
v2 is equal to v1). Overall, end-to-end verifiability is violated
since not all votes that have been successfully verified are
included in the final outcome.
The case of corrupt voters. We find another weakness of
BeleniosRF over Belenios in the case when voter credentials
are corrupted. This possibility underlies the stronger notion of
verifiability introduced in [6] in order to offer guarantees in the
case when voters inadvertently lose their credentials. This case
is different from that of a corrupted registrar: on the one hand,
it means that all private credentials of a voter are leaked, not
only the signing key; on the other hand, the adversary cannot



choose the secret key of voters, preventing the attack presented
above. For this scenario, Belenios was proved to be secure in
[6], while a simple variation of the attack described above
leads to a violation of individual verifiability in BeleniosRF:
a voter can successfully verify a ballot b′ even if it is the
rerandomization of a ballot cast by the adversary.

The case of corrupt platforms. The case of a corrupted voting
platform can be countered in Helios and Belenios relying on
the classic cast-or-audit mechanism known as the Benaloh
challenge [7]. This type of challenge can have a usability
problem, as confirmed in a recent study [31]. An interesting
aspect of Selene is that such a mechanism is not necessary
in this case, since voters verify their votes directly in the
outcome. We note, however, that voters still need to ensure
their private trapdoor keys are secret, e.g. stored on a device
that is more trustworthy than the voting platform. A formal
model for this corruption scenario has not been considered
before, and it is another contribution of this paper. Considering
this model, election verifiability is violated in BeleniosRF (as
expected, assuming no Benaloh challenge is performed), while
we prove that Selene is indeed secure in this case - satisfying
however a weaker notion of security that allows the adversary
to cast ballots for honest voters not verifying their votes.
Towards stronger security for Selene. Our findings show
stronger verifiability properties in Selene over BeleniosRF,
while it is known that BeleniosRF satisfies a stronger no-
tion of receipt-freeness due to signatures on rerandomizable
ciphertexts. One may read this as an illustration of the trade-
off between the two properties. Yet, as suggested in [35],
we can also consider a version of Selene that relies on the
same primitive as BeleniosRF to rerandomize ballots before
posting. We call this version SeleneRF and we prove with
ProVerif that it satisfies the same verifiability properties as
Selene. We expect it to satisfy the same receipt-freeness
notion as BeleniosRF, but this has to be formally proven
in future work. Interestingly, in spite of the fact that the
ballots are rerandomized, in SeleneRF we do not find attacks
similar to the ones described above for BeleniosRF. This is
due to the fact that voters directly verify their votes in the
outcome, and not their ballots. An advantage of BeleniosRF
is that it thwarts a coercer by design, and the voter does
not have to follow any coercion-resistance strategy to achieve
receipt-freeness. In Selene and its variants, the voter needs
to construct a fake verification credential to resist coercion.
Another improvement of Selene that we consider is a recently
proposed version called Hyperion, showing a simpler way of
generating verification credentials [34]. The system description
in [34] is quite informal. We provide a formal specification and
we prove its election verifiability property with ProVerif.
Paper structure. Section II contains preliminaries for e-voting
protocols and formal verification with ProVerif. Section III
introduces receipt-free voting protocols, specifically Bele-
niosRF, Selene, and Hyperion. A general symbolic verifiability
definition revised to include receipt-free voting protocols is
presented in Section IV. Finally, a comparative verifiability

analysis of the considered protocols is presented in Section V.

II. PRELIMINARIES

A. Verifiable electronic voting protocols
Bulletin board. Electronic voting protocols utilise a public
bulletin board, which we denote by BB, to record information
regarding the execution of the protocol for the verifiability
and transparency of the election. It can be used by the voters
to verify their ballots after the voting procedure (this is also
called individual verifiability) and by any party to verify
the integrity of the election (universal verifiability). We can
distinguish different parts of the BB by annotations, e.g. BBkey
for the public key of the election or BBreg for the registered
eligible public credentials.
Setup. A voting protocol assumes a set of eligible voters rep-
resented by identities id1,… , idn. Election authorities generate
their corresponding public credentials cr1,… , crn, that we
assume recorded on BBreg. The public key of the election is
generated by authorities and posted on BBkey. At registration
time, voters obtain their (private) id, their public credential
cr, and additional private credentials which will be used for
authentication and verification.
Voting procedure. During the voting phase, voters use voting
platforms to construct a ballot b, encoding their desired vote
v. The ballot is sent to the voting server after authentication.
The server validates the ballot b and publishes corresponding
information on BB. Typically the ballot itself is published on
BB along with the public credential of the voter, but other
options are possible. For example, BeleniosRF publishes a
rerandomization of the ballot.
Individual verification. Voters can perform certain procedures
to ensure that the system correctly records their votes. Typi-
cally, voters have to check that information they expect to see
(e.g. their ballot or their vote) is present on the bulletin board
along with tracking information associated to their public
credential.
Tally procedure. The ballots to be tallied are recorded
alongside eligible public credentials on the bulletin board:
(cr1, b1),… , (crn, bn). Each ballot bi is stripped of any infor-
mation that is not needed for vote-counting, like signatures
and zero-knowledge proofs, resulting in a ciphertext ci. The
tally phase consists in computing the set of votes {v1,… , vn}
corresponding to {c1,… , cn} in an anonymous and verifiable
way, typically relying on mixnets or on the homomorphic prop-
erties of the encryption scheme. For some voting protocols,
ciphertexts are combined with trackers before decryption. In
this case, each vote in the outcome is associated to a tracker,
like (tr1, v1),… , (trn, vn).
Universal verification. External auditors can be involved in
verifying that the ballots b1,… , bn are really cast by the
corresponding public credentials and satisfy any additional
consistency properties expected from the specification of the
protocols. For example, they may check that the ballots are
signed with the right key, contain valid zero-knowledge proofs,



are the last ballots cast for the corresponding credential, there
are no duplicates, etc. In addition, auditors also verify the
proofs provided in the tally phase, to ensure that {v1,… , vn}
corresponds to {c1,… , cn}.

Example 1. Assume three election authorities: a trustee
responsible for tallying ballots, a registrar for generating and
registering voter keys, and a server for ballot casting.
Setup. The trustee generates a key pair (pk, sk) and publishes
pk on BBkey. For each voter id, the registrar generates
a signing key pair (spk, ssk) and publishes spk as cr on
BBreg. Moreover, the server generates a password pwd to
use for authentication of the voter. Each eligible voter obtains
⟨id, pwd, cr, ssk⟩.
Voting. The voter, relying on the voting platform, generates a
ciphertext c = enc(v, pk, r) for some desired vote v and fresh
randomness r. Then, the voter signs it with their ssk, obtaining
a signature s and constructs related zero-knowledge proof �,
resulting in a ballot b = ⟨c, s, �⟩. The voter authenticates to
the server with their pwd, and the ballot b is submitted to the
server. After server’s ballot validation, (cr, b) is published on
BBcast.
Verification. Voters can check their ballot on BBcast anytime
during the voting phase, or on BBtally afterwards.
Tally. The last ballot corresponding to cr on BBcast is
recorded on BBtally. The result is computed by the trustee
by decrypting each ciphertext from ballots in BBtally.

The previous example is a simplified version of Belenios
[21], an elaboration of Helios that protects improves election
verifiability relying on a relying on a registrar. Auditors ensure
that all ballots on BB are signed with keys recorded by the
registrar. The zero-knowledge proof on the ballot also helps
to protect ballot privacy against copy attacks [24]. Even if the
adversary tries to copy any ciphertext cast by any voter, they
cannot generate the zero-knowledge proof without knowing
the randomness used for the ciphertext.

B. Formal verification with ProVerif
ProVerif allows automated verification of security properties

for cryptographic protocols [9]. Messages are represented in an
equational theory where terms are built from a set of types,
a set of constants, a set  of constructors endowed with a
set  of destructors. Types are not essential for describing
our protocol specifications, so we will not use them in this
paper. A constructor is a function symbol f used to build a
term f (M1, ...,Mk), from terms M1, ...,Mk. A destructor is a
symbol with associated rewrite rules modeling the properties
of cryptographic primitives. Rewrite rules are equations u = v
that should be read from left to right. For example, we
can define a proji destructor to fetch the arguments of f :
proji(f (M1, ...,Mk)) = Mi. If a term contains a destructor for
which no rewrite rule can be applied, we denote this by t = ⊥,
i.e. the evaluation of the term fails. A term may also be a
tuple of the form (M1, ...,Mn), where M1, ...,Mn are terms.
We consider a special name pub ∈  to represent a public

communication channel. Unless declared private, names and
functions are known by the adversary. A term M can be stored
in a table, e.g. Tb(M). Tables are based on private constructors
and are not accessible by the adversary. Terms can be checked
with equality or disequality conditions, and such conditions
may be combined with logical connectors.

Example 2. The set of constructors {pk, spk, enc, pr, sign} can
model cryptographic primitives from Example 1, along with
the corresponding destructors defined by:

(1) dec(enc(x, pk(y), z), y) = x,
(2) check(sign(x, y), spk(y)) = x,
(3) ver(pr(enc(x, y, z), x, z,w), enc(x, y, z), y,w) = ok.

Equations (1) and (2) specify the standard properties of
asymmetric encryption and digital signatures. The proof sym-
bol models a zero-knowledge proof showing that a cipher-
text is constructed by a party that knows the corresponding
plaintext m and randomness r, and that party associated
another message w to this ciphertext. Equation (3) models
the corresponding verification procedure for the proof and
corresponding arguments.

M,N ∶∶= terms
a, b, c, ..., x, y, z, ... names and variables
(M1, ...,Mk), f (M1, ...,Mk) tuples and functions
M = N, M <> N term equality and disequality
M && N, M || N, not(M) conjunction, disjunction, negation

P,Q ∶∶= processes
0 P |Q !P new a ; P parallel, replication, restriction
in(N, x) ; P out(N,M) ; P message input and output
if M then P else Q conditional
let x = M in P else Q term evaluation
insert Tb(M) ; P table insertion
get Tb(x) suchthat M table extraction
event(M1, ...,Mk) ; P event

Fig. 1. Terms and processes in ProVerif grammar.

Processes are denoted by P,Q,…, and generated with the
grammar from Figure 1. Recursively, 0 represents the null
process, P | Q the parallel execution of P and Q, and !P an
arbitrary number of parallel executions of P. The restriction
new n ; P generates the name n, which can represent fresh
randomness in the process P. The process in(pub, x) ; P models
a message received from channel pub and stored in x, while the
process out(pub,M) ; P models a process sending the message
M on channel pub and continuing as P. The conditional
if M then P else Q runs P if M evaluates to true, runs Q if
M = false. If a term M contains a destructor where no rewrite
rule can be applied, we say that M fails. The term evaluation
let x = M in P else Q, bounds x to M and executes P, when M
does not fail. If M fails, it directly executes the process Q.
The table insertion insert Tb(M) ; P stores the term M in Tb.
The table extraction get Tb(x) suchthat M in P else Q selects
an entry from Tb that evaluates to M. If there is no such
entry, it executes Q.



let Voting Platform(v, pk) =
get Cred(id, cr, ssk) in
get Pwd(= id, pwd) in
new r; let c = enc(v, pk, r) in
let s = sign(c, ssk) in
let pr = proof (c, v, r, cr) in
let b = (c, s, pr) in
let a = h(id, pwd, cr, b) in
event Vote(id, cr, v);
insert Voted(id, cr, v, b);
out(pub, (id, cr, b, a)).

let Voting Server(pk) =
get BBreg(cr) in
get Pwd(id, pwd) in
in(pub, (= id,= cr, c, s, pr, a));
let b = (c, s, pr) in
if h(id, pwd, cr, b) = a then
if check(s, cr) = c then
if ver(pr, c, pk, cr) = ok then
event BBcast(cr, b);
insert BBcast(cr, b).

Fig. 2. Ballot casting processes for voting platform and server.

Example 3. The processes in Figure 2 model basic opera-
tions of a voting protocol. BB is modelled by tables. Voting
credentials are retrieved from Cred and Pwd, and a vote v
is chosen. A signature s, a proof pr, and authentication in-
formation a are computed. Information relevant for individual
verifiability is stored in the table Voted(id, cr, v, b), and an
event Vote(id, cr, v) is recorded. The tuple (id, cr, b, a) is sent to
the public channel. The voting server receives b and publishes
it on BB if validation checks are ok.

Security properties. Security properties in this paper are
modelled by correspondence assertions, capturing relations be-
tween events. For example, the formula e(M)⇒ e′(M′) states
that if the event e(M) is executed in the trace, then the event
e′(M′) has been executed before in that trace. Queries can
be more complex, combining events with relations between
terms inside the events, e.g. we can add M = M′ on the right-
hand side of the previous query. In general, we consider a
set of timepoint variables, denoted by i, j, l,…, which will be
interpreted over rational numbers. A trace atom is either a term
equality t1 = t2, or a timepoint ordering i ≺ j, or a timepoint
equality i = j, or an event atom e(M)@i - the timepoint
can be omitted from the event atom if it is not relevant for
the property. A trace formula is a first-order logic formula
obtained from trace atoms by applying the usual quantification
and logical connectives.

Example 4. Considering the processes from Figure 2 and
assuming a destructor open that reveals the vote v inside a
ballot b, we can check whether any ballot from BBcast comes
from a corresponding Vote event in the voting platform, using
formula: BBcast(cr, b) ⟹ Vote(id, cr, v) ∧ open(b) = v.
This formula allows multiple cast ballots per credential, and
for all of them it requires a corresponding voting event.

An execution trace � of a process P is defined as a sequence
of events E1, ...,En that occurred during the execution of P. The
satisfaction relation � ⊧ Φ, for a trace � and a trace formula
Φ, whose variables are all bounded, is defined recursively as
expected, with the following notable case: � ⊧ e(M)@i if and
only if e(M) occurs on the i-th position of the trace. For a
process P, we let tr(P) be the set of traces of P. For trace
formulas Ψ,Φ, we let:

P ⊧ Φ iff ∀� ∈ tr(P). � ⊧ Φ,
P,Ψ ⊧ Φ iff ∀� ∈ tr(P). � ⊧ Ψ⇒ Φ.

Fig. 3. Illustrating revoting and verifiability in various protocols. For Belenios
and Selene: b2 is a revote ballot with desired vote. For BeleniosRF: b1 contains
the desired vote rerandomized to b′

1
.

For verification of security properties, (P; Ψ) is typically a
protocol specification and Φ the property to be verified.
Having the component Ψ, also called a restriction, in a
protocol specification can help to express in a concise way
some properties that protocol parties should ensure along an
execution trace. If the equational theory  is not clear from
the context, we write (P ,Ψ, ) ⊧ Φ.

III. RECEIPT-FREE VOTING PROTOCOLS

We can distinguish three techniques that are instrumental
for receipt-free voting protocols. First, like in JCJ/Civitas
[15], [27], voters can be given the ability to construct a fake
credential, which can be used to cast a ballot according to
the request of the adversary. Second, like in BeleniosRF [12],
ballots published on the bulletin board can be derived from
cast ballots with advanced cryptography that allows to ensure
the published ballots encode the same votes as cast ballots,
while hiding the link between them. Finally, like in Selene [35]
and Hyperion [34], voters can be given the ability to derive
a tracker showing their vote in the final outcome; to resist
coercion, they have the ability to derive a fake tracker pointing
to a vote desired by the adversary, relying on their private
trapdoor keys. In Figure 3, we show how these protocols relate
to a classic protocol like Belenios. In Belenios, the ballot is
verified on the bulletin board in the same form as it was cast.
In BeleniosRF, the ballot is randomized by the voting server
before being posted on BB: it cannot be used as a coercion tool.
BeleniosRF disallows revoting; otherwise, a corrupt server
could choose which of the ballots from a given voter to cast.
In Selene and Hyperion, the vote is verified directly in

the outcome after trackers are revealed to voters. Nobody
can associate a credential to a tracker on BB, except the
voter and dedicated election authorities. In case of coercion,
a private trapdoor key allows voters to choose any tracker
from the outcome that conforms to the instructions of the
coercer. We illustrate this approach with a simple example
first. A trapdoor commitment scheme consists of two main
operations: com(m, tpk, r) allows to commit a message m for
trapdoor public key tpk with randomness r; open(cm, tsk, r)
allows to obtain the message m from a commitment relying
on the corresponding trapdoor secret key and randomness. This
key may also allow to produce fake randomness that opens the
commitment to a different message.



Example 5. Assume each voter has a trapdoor key pair
⟨tpk, tsk⟩ for a commitment scheme. Voters publish their
tpk next to their credential cr on BB. Election authori-
ties generate a tracker tr for each voter and publish en-
cryption of tr and a commitment to tr for the trapdoor
public key of the corresponding voter. After voting, we
have the following information on BB for each credential:
cri, enc(tri, pk), com(tri, tpki, ri), enc(vi, pk). Votes and trackers
are decrypted at tally: BB ∶ (tr1, v1),… , (trn, vn).
For individual verification, election authorities send the

commitment randomness ri to each voter. Voters obtain their
tracker by applying open(cm, tski, ri), where cm is the commit-
ment recorded next to their credential. For receipt-freeness,
voters can choose any tracker trj from the outcome and
construct fake randomness that opens their commitment to this
tracker.

A. BeleniosRF
BeleniosRF [12] is a variant of Belenios [21], which aims

for receipt-freeness in addition to end-to-end verifiability.
It relies on a cryptographic primitive called signatures on
randomizable ciphertexts [10], instantiated from Groth-Shai
proofs [26]. Like in Belenios, the public credential of a voter
is the public part of the signing key generated by the registrar,
and the ballots cast are of the form b = ⟨c, s, �⟩, where c is an
encryption of the desired vote, s is the signature of c, and � is
a zero-knowledge proof showing the validity of the ciphertext
and associating it to the public credential of the voter. Unlike
Belenios, the ballot is rerandomized before being posted next
to cr on BBcast. More precisely: the voting server re-encrypts
the ciphertext c and, relying on [10], adapts the signature s
and the zero-knowledge proof � for the new ciphertext c′. The
randomized ballot b′ = ⟨c′, s′, �′⟩ is now a valid ballot for the
same credential cr and is published next to it on BBcast.

The individual verification procedure for a voter with
credential cr consists in verifying that there is a ballot b′

associated to cr on BBcast, and verifying that b′ contains a
valid signature with respect to cr. Intuitively, this should be
sufficient to ensure election verifiability if either the registrar
or the server is not corrupt. If the server is honest, it will log
the identity of voters together with their public credentials, so
even if a voter’s secret key is corrupted, the adversary should
not be able to cast a ballot for the credential of an honest
voter. Symmetrically, if the registrar is honest, the only party
who can construct valid ballots for a public credential is the
corresponding voter - verifiability follows even for a corrupt
server since revoting is not allowed. In addition, BeleniosRF
satisfies receipt-freeness: a coerced voter cannot prove how
they voted, as there is no way for the adversary to determine
whether any ballot provided by the voter corresponds to the
one cast on the bulletin board - relying on the assumption that
the voting server is honest.

B. Selene
The main feature of Selene [35] is that it enables intuitive

end-to-end verifiability by allowing voters to verify their vote

directly in the outcome of the election. For this purpose voters
are provided with trackers that point to their votes in the
outcome. For receipt-freeness, trackers can be obtained by
voters only at the end of the election: relying on trapdoor
commitments like in Example 5, election authorities send
voters the information that is required to open their tracker
from a commitment, and also to construct a fake tracker
for coercion-resistance. Selene relies on ElGamal encryption,
a digital signature scheme, non-interactive zero-knowledge
proofs and Pedersen trapdoor commitments. Mixnets are used
for anonymising ciphertexts containing votes and trackers
before decryption.
Encrypted trackers enc(tr1, pk),… , enc(trn, pk) are pub-

lished on BB, where pk is the public key of the election (with
the secret key held by election trustees) and tr1,… , trn is a
random permutation obtained by encrypting each element of
a public list of trackers and passing it through a re-encryption
mixnet [13], [32]. Like in Belenios, the public credential
of each voter is a public signing key. In addition, voters
generate a trapdoor key pair ⟨tpk, tsk⟩, and register its public
part next to their credential: BB ∶ (cr1, tpk1),… , (crn, tpkn).
Trustees associate each credential with an encrypted tracker.
In addition, based on the homomorphic properties of ElGamal
and on its interaction with the Pedersen commitment scheme,
the trustees can compute a commitment to the tracker for the
public trapdoor key associated to the corresponding voter. The
commitment along with a zero knowledge proof of correctness
� iptr is recorded for each credential cri on the bulletin board:

tracking data
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
BBptr ∶ cri, tpki, enc(tri, pk), com(tri, tpki, ri), � iptr, pk

Ballots cast by the voter are of the form b = ⟨c, s, �⟩, which
is the same as in Belenios, and are posted alongside the
public credential on BB. Before the tally, zero-knowledge
proofs and signatures are verified. For computing the outcome,
the pairs of ciphertexts (enc(tr1, pk), c1),… , (enc(trn, pk), cn)
corresponding to each voter are passed through a parallel re-
encryption mixnet. Such a mixnet will produce a list of pairs
that encode the same information as the input list of pairs,
where each element is unlinkable to the corresponding element
in the input. Each pair is verifiably decrypted, resulting in
the outcome BBres ∶ (tr1, v1),… , (trn, vn), �res, where �res is
an overall proof of re-encryption and decryption, ensuring
that the outcome is correctly computed from the list of input
ciphertext pairs. After the outcome is computed, each voter
receives the randomness r for their corresponding commitment
from trustees. Using their trapdoor secret key tsk and the
randomness r, they can open the commitment and obtain
their trackers for verification. If voters are coerced, they can
construct fake randomness to open their commitment to a
different tracker. Suppose the coercer has forced the voter to
vote for v′. The voter finds a tracker-vote pair (tr′, v′) from the
outcome on BB, and computes the fake randomness r′ using
their tsk, tr and r that will open their commitment to tr′. The
trapdoor signing key tsk of the voter and fake randomness r′



can be provided to the coercer, which opens their commitment
to a different tracker tr′, showing that the voter voted as the
coercer desired.

We also consider SeleneRF, that adopts the primitive for
signatures on rerandomizable ciphertexts from BeleniosRF.
The protocol is exactly the same as Selene, the only difference
being that the signature and proofs on the ballot are performed
with the primitives from [12]. The tally and verification
procedures remain the same as in Selene, as a rerandomized
ballot b′ can be tallied in the same way as b and the trackers
can be extracted in the same way.

C. Hyperion
Hyperion improves the tracker management in Selene by

deriving the tracker for each voter directly from their public
trapdoor key [34]. This removes the need to generate, encrypt
and anonymise trackers in advance. Moreover, computing pre-
tracking information and the trackers in the final outcome
is also more efficient. The main idea in Hyperion is that,
instead of encrypted and committed trackers like in Selene,
the pre-tracking information is simply tpk raised to a power
r, where tpk is the trapdoor public key of the voter, and r is
randomness chosen by trustees, different for each voter. We
call tpkr a pre-tracker. Once the voting phase has ended, each
pre-tracker tpkr is paired with the ciphertexts c encoding the
vote of the corresponding voter. The list of all such pairs
(tpkr1

1
, c1),… , (tpkrnn , cn) is passed through a parallel mixnet

where the second component of each pair is re-encrypted
to a different ciphertext, as in a classical mixnet, while the
first component is exponentiated to a power s, where s is the
same for all the elements of the list. The mixnet for the first
component is called an exponentiation mix. After decrypting
the ciphertexts in the resulting outcome, we obtain:

BBres ∶ (tr1, v1), … , (trn, vn), �res
where tr1 = tpk

r1s
1
, … , trn = tpk

rns
n

The trustees know gri and s, from which they compute gris

and send it to the corresponding voter. Furthermore, we should
note that tpki = gspki , where spki is the trapdoor secret key of
the voter. Therefore, by exponentiating gris to the power spki,
voters can obtain their trackers tri = tpk

ris
i
. As for Selene, we

gather all data relevant for tracking on BBptr:

tracking data
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
BBptr ∶ cri, tpki, tpk

ri
i
, �

The proof � = prmix(Min, s,Mout) represents the (exponenti-
ation) mixnet proof showing that the final set of trackers Mout
is obtained by exponentiating each element in the set of pre-
trackersMin to the same secret power s. A further enhancement
proposed in [34] is to derive a separate bulletin board for each
voter. This improves receipt-freenes, since any fake tracker that
the voter may derive cannot clash with trackers owned by the
coercer. This is especially pertinent in elections with a small
number of voters. We do not consider this option in this paper,
but it should be straightforward to extend our analysis for this

case, as the individual bulletin board for each voter is derived
from a further exponentiation mix, with a separate si for each
voter, and the corresponding tracker is tpk

rissi
i

. We need to
record gsi on BB and update the tracker extraction function
accordingly.

IV. ELECTION VERIFIABILITY DEFINITIONS

Before introducing our symbolic definition for election
verifiability, we recall the definition of election verifiability
from [19], that has been adapted both to computational [17]
and symbolic models [18]. Furthermore, we introduce some
notation that will be useful for bridging the gap from the
general definition to the symbolic model, and we also extend
the definition from [19], in order to have a generic notion
that can cover stronger or weaker guarantees of election
verifiability depending on considered voting protocols or trust
assumptions.

A. General definition of election verifiability
Definition 1. A voting specification is a tuple ( ,Ψ,  ,Ω),
for a process  , a restriction Ψ, an equational theory  and
a trace formula Ω called the revote policy. Furthermore, we
assume  relies on fact symbols Vote,BBres,Verif ied,Corr to
record the following events:
– Vote(id, v): vote v is cast by the voter with identity id;
– BBres(tr, v): vote v is in the result next to a counter tr;
– Verif ied(id, cr, v): vote v is verified by a voter with identity

id and public credential cr;
– Corr(id): the voter with identity id is corrupt.

The process  and restrictions Ψ model the procedures of an
electronic voting protocol: setup, voting, tally, individual and
public verification; as well as the abilities of the adversary
to corrupt parties and control the network. The revote policy
Ω(id, v) should say under what conditions the vote v that was
cast by id should be counted. For example, it may say that v
is the first or the last vote cast by the respective voter. Some
protocols like Helios, Belenios, and BeleniosRF do not have
counters (or trackers) associated to votes in the outcome. For
such systems, the result of the election is considered to be the
multiset of votes encoded by the ballots recorded on a special
portion of the bulletin board called BBtally, where each ballot
b is recorded next to a public credential cr, resulting in events
BBtally(cr, b). The votes inside these ballots are determined
by an extraction function open, as in e.g. [6], [18]. To apply
Definition 1 to such protocols, we can therefore take tr = cr
and define: BBres(cr, v) ≡ BBtally(cr, b) ∧ open(b) = v.
The definition of election verifiability from [19] ensures that

votes in the final result can be partitioned into three multisets
V1, V2, V3, where
1) V1 are votes cast by honest voters who verified their votes;
2) V2 is a subset of the votes from honest voters who did

not verify their votes; it contains at most one vote for
each such voter, but some votes may be dropped under
the influence of the adversary;

3) V3 represents the votes cast by the adversary, and its size
should be bounded by the number of corrupt voters.



Point 1) can be strengthened by requiring that all of the
verified votes should be present in the outcome, and not only
those of honest voters. On the other hand, point 3) can be
weakened by allowing the adversary to also cast votes for
honest voters who did not verify their vote. This motivates
our definition of the following sets associated to a trace:

∙ Ver∙ - the multiset of verified votes satisfying the revote
policy;

∙ Ver◦ - as above, but only including votes of honest voters;
∙ Adv∙ - the set of corrupt voter identities;
∙ Adv◦ - the set of corrupt voter identities for which the
verification procedure has not been performed.

∙ Vote▿,⋄ - the set containing all subsets of the votes from
non-adversarial voters who have not verified their votes;
the definition of this set varies according to the scenario
(▿, ⋄) ∈ {∙, ◦} × {∙, ◦} which is used for instantiating the
notions of non-adversarial voters and verified votes.

∙ Res - the multiset of votes in the result of the election.

Definition 2. Let � be a trace produced by a voting specifi-
cation having Ω as revote policy. We consider the formulas:

Ver∙(id, cr, v) ≡ Verif ied(id, cr, v) ∧ Ω(id, v)
Ver◦(id, cr, v) ≡ Verif ied(id, cr, v) ∧ Ω(id, v) ∧ ¬Corr(id)

Adv∙(id) ≡ Corr(id)
Adv◦(id) ≡ Corr(id) ∨ ¬Verif ied(id, cr, v′)

and define the following sets, for (▿, ⋄) ∈ {◦, ∙} × {◦, ∙}:

Ver▿(�) = ⦃v | ∃id, cr. � ⊧ Ver▿(id, cr, v) ∧ v ≠ ⊥⦄
Ver▿

id
(�) = {id | ∃id′, cr, v. � ⊧ Ver▿(id′, cr, v)

∧ Reg(id, cr) ∧ v ≠ ⊥}
Adv⋄(�) = {id | � ⊧ Adv⋄(id)}
Res(�) = ⦃v | ∃tr. � ⊧ BBres(tr, v) ∧ v ≠ ⊥⦄

Additionally, we let Vote▿,⋄(�) to be the set of multisets
⦃v1, ..., vs⦄ s.t. there are distinct id1, ..., ids and for all i ∈
{1,… , s} we have:

� ⊧ Vote(idi, vi) ∧ idi ∉ (Ver▿id(�) ∪ Adv⋄(�) ).

Definition 3. Let (▿, ⋄) ∈ {◦, ∙}×{◦, ∙}. A trace � of a voting
specification  satisfies [iv▿, res⋄]-election verifiability iff there
exist multisets V1, V2, V3 of votes such that Res(�) = V1⊎V2⊎V3
and

(1) V1 = Ver▿(�),
(2) V2 ∈ Vote▿,⋄(�),
(3) |V3| ≤ |Adv⋄(�) ⧵ Ver▿

id
(�)|.

We denote this by � ⊩ E2E[iv▿, res⋄]. If all traces of  satisfy
it, we have  ⊩ E2E[iv▿, res⋄].

Definition 3 gives four different notions of verifiability:
∙ E2E[iv∙, res∙] is the strongest notion, ensuring that verified
votes of corrupt voters are also included in the final tally
(this is strong individual verifiability).

∙ E2E[iv◦, res∙] corresponds to the definition from [19],
providing individual verifiability only for honest voters.

∙ E2E[iv∙, res◦]: in addition to corrupt voters, this notion
allows the adversary to cast votes for voters who have not
successfully performed the verification procedure (this is
sometimes called ballot stuffing). However, for corrupt
voters who successfully verified their votes, we are certain
these votes are correctly counted.

∙ E2E[iv◦, res◦] is the weakest notion, only allowing in-
dividual verifiability for honest voters and allows ballot
stuffing for honest voters who did not verify their votes.

B. Symbolic definition of election verifiability
We extend the symbolic verifiability definition from [6] by

introducing two symbolic notions: one to make a stronger link
between voter identities and their public credentials, and a
second one to make a link between the public credentials
and trackers used for verification. The former helps making
a stronger connection to the general notion of election verifi-
ability from Definition 3 and [6]. The latter helps modelling
receipt-free voting systems like Selene.
The registration events. Universal verifiability of the tally
guarantees that all the votes in the final outcome correspond
to ballots recorded next to public credentials before the tally
phase, i.e. we have:

BBtally ∶ (cr1, b1),… , (crn, bn) BBres ∶ (tr1, v1),… , (trn, vn)

and we can ensure that v1,… , vn is a permutation of votes
encoded in b1,… , bn. However, how can we ensure that
b1,… , bn are ballots cast by eligible voters, i.e. that the
adversary cannot do ballot stuffing? The election verifiability
definition should precisely limit the influence of the adversary
over the ballots in the final tally. The definition in [6] considers
a notion of corrupt credentials in order to specify which
ballots among b1,… , bn should be allowed to be cast by the
adversary. This notion turns out to be distinct from the notion
of corrupt voters, which is the more natural notion used in the
general definition of election verifiability. As a consequence,
the symbolic definition in [6] cannot be used to prove election
verifiability. On the other hand, although it can find real attacks
on verifiability in voting protocols, it can also detect false
attacks. For example, if there is one corrupt voter, one corrupt
registrar and the result contains one vote cast by the adversary,
this should not be counted as an attack on verifiability, since
the number of adversarial votes is bounded by the number of
corrupt voters. However, the definition in [6] finds an attack
against Belenios in this scenario, due to the fact that the
corrupt registrar associates a so-called honest credential to the
corrupt voter. We solve this problem by introducing events
Reg(id, cr) that make a formal link between voter identities and
the corresponding public credentials, and adding a consistency
requirement for these events in the security definition.

Depending on the trust assumptions in the protocol and the
corruption scenario for which verification is performed, the
placement of the registration events may vary. For example,
Belenios and BeleniosRF are supposed to provide verifiability
if either the registrar or the voting server is honest. In the
former case, we place Reg(id, cr) in the specification of the



registrar at registration time, and in the latter case we place
it in the specification of the voting server when it receives
a ballot from that voter. This way we can obtain a general
symbolic definition that does not have to vary according
to the corruption scenario, but only requires to place the
registration facts according to it. In a previous framework
for symbolic election verifiability [18], distinct definitions and
assumptions where devised for distinct corruption scenarios
in Belenios (corrupt server or corrupt registrar). We are able
to obtain security proofs of election verifiability for both of
these scenarios using the same definition and assumptions.
Finally, we note that in general Reg(id, cr) may be recorded as
an event without requiring trust assumptions, but this would
require additional cryptographic techniques to hide the link
between id and cr.
The linking events. To account for the fact that voters may
verify their votes directly in the final tally, we need to
further link their public credentials to the credentials used for
verification, i.e. to their corresponding trackers. Since the tally
process is universally verifiable, this link can be established
without any trust assumptions, relying only on the guarantees
provided by the zero-knowledge proofs. To formalise this link,
we require the existence of a function that can extract a
tracker from the public data that is associated to a credential
if the corresponding zero-knowledge proofs are valid. Then,
if u1,… , un is all the public data associated to a credential
cr and tr = extract(u1,… , un), we add an event Link(cr, tr) to
record the fact that tr should be considered as associated to
cr. The symbolic definition of election verifiability will ensure
that this link is consistent, i.e. any credential has a unique
associated tracker, and conversely. Definition 4 introduces the
additional events that are required for registration and linking
of credentials.

Definition 4. A voting specification  is enhanced if its rules
record the following events:

– Reg(id, cr): a voter with identity id is associated with the
public credential cr;

– BBreg(cr): the public credential cr is recorded on BB as
corresponding to an eligible voter;

– BBptr(cr, u1,… , un): records auxiliary information rele-
vant for tracking votes for cr.

The event BBptr(cr, u1,… , un) puts together any pre-
tracking data and zero-knowledge proofs related to a given
credential cr. This allows for a simpler specification of the
tracker extraction function in the following. For a sequence
of terms u1,… , un, we denote ver(u1,… , un) = ok if, for any
term in u1,… , un that represents a zero-knowledge proof, the
corresponding verification equation evaluates to true. We as-
sume, implicitly, that all arguments required for the verification
of proofs are also part of u1,… , un. If all proofs related to a
credential are valid, an admissible extraction function should
always succeed in computing a corresponding tracker from
pre-tracking data, as formalised by the following definition.

Definition 5. An enhanced voting specification ( ,Ψ,  ,Ω)
has an admissible extraction function if there is a destructor
extract defined in  that, for any terms cr, u1,… , un, satisfies:

[ ( ,Ψ,  ,Ω) ⊧ BBptr(cr, u1,… , un) ∧ ver(u1,… , un) = ok ]
⟹ extract(u1,… , un) ≠ ⊥.

The satisfaction of Definition 5 can be checked automati-
cally with ProVerif, as we do for Selene and Hyperion. For
Belenios and BeleniosRF, the extraction function is trivial, as
it needs to associate cr to itself.

Example 6. In Selene, we have
BBptr(cr, ⟨tpk, etr, cm, �ptr, pk⟩) where �ptr shows, in
particular, that etr is of the form enc(tr, pk, r), for some
terms tr and r. Therefore, we can define the extraction
function by extract(x1, enc(x, y, z), x2, x3, y) = x.

For Selene, the tracker is a term encoded inside a ciphertext
in pre-tracking information, and the extraction function simply
returns this term. In Hyperion, the extraction function needs to
be more involved to account for the computation that trustees
should perform in order to derive trackers.

Example 7. In Hyperion, we have BBptr(cr, ⟨rtpk, �⟩), where
� = prmix(Min, s,Mout) shows that the set of final trackers
is equal to the set of pre-trackers where each element rtpk
is raised to the same power s. Therefore, we can define the
extraction function by extract(x, prmix(x1, y, x2)) = xy.

One may wonder if, in some sense, a wrong extraction
function could be defined, that is still admissible for a pro-
tocol. Our symbolic definition of verifiability, if satisfied by a
protocol and extraction function specification, will ensure that
the extraction function determines a bijection between the set
of credentials and the set of trackers, and furthermore that
voters derive trackers that are consistent with this function.
We show that these two properties (together with others from
our definition) are sufficient to ensure end-to-end election ver-
ifiability - regardless of the actual definition of the extraction
function. Another observation is that the extraction function is
not efficiently computable in general, as can be seen from the
previous examples. Indeed, as the corresponding tracker points
directly to the vote in Selene and Hyperion, this would violate
privacy. In Belenios and BeleniosRF this is not a problem,
since the tracker points to the ballot, and not to the vote.

Definition 6. Let  be an enhanced voting specification
with an admissible extraction function. We define the event
Link(cr, tr) to record that tr can be extracted from pre-tracking
information associated to cr. Formally, for a trace � of  ,
we have � ⊧ BBptr(cr, u1,… , un) ∧ ver(u1,… , un) = ok ∧
extract(u1,… , un) = tr ⟹ � ⊧ Link(cr, tr).

In ProVerif, the event Link satisfying the definition can
be specified in a process that applies extract and adds Link
as soon as the required information from BBptr is available.
Definition 6 formalises the association between credentials and
trackers that is ensured by any admissible extraction function.
As discussed above, our symbolic definition of verifiability,



relying on trace formulas from Figure 4, will ensure additional
constraints for the event Link.

Basic properties (for ▿, ⋄ ∈ {◦, ∙})

Φ▿
iv1
∶ Ver▿(id, cr, v) ∧ Link(cr, tr) ∧ BBres(tr, v′)⇒ v = v′

Φ▿
iv2
∶ Ver▿(id, cr, v) ∧ Ver▿(id′, cr, v′)⇒ id = id′

Φ▿
iv3
∶ Ver▿(id, cr, v) ⇒ Link(cr, tr) ∧ BBreg(cr)

Φeli ∶ BBres(tr, v)
⇒ Link(cr, tr) ∧ BBreg(cr) ∧ ( Reg(id, cr) ∨ v = ⊥ )

Φ⋄
res ∶ BBres(tr, v) ∧ Link(cr, tr) ∧ Reg(id, cr)

⇒ Vote(id, v) ∨ Adv⋄(id) ∨ v = ⊥

(formulas Ver▿ and Adv⋄ introduced in Definition 2)

Consistency properties

Φreg1 ∶ Reg(id, cr) ∧ Reg(id′, cr) ⇒ id = id′

Φreg2 ∶ Reg(id, cr) ∧ Reg(id, cr′) ⇒ cr = cr′

Φlink1 ∶ Link(cr, tr) ∧ Link(cr′, tr) ⇒ cr = cr′

Φlink2 ∶ Link(cr, tr) ∧ Link(cr, tr′) ⇒ tr = tr′

Φone ∶ BBres(tr, v) @i ∧ BBres(tr, v′) @j ⇒ i = j

Fig. 4. Formulas for symbolic election verifiability (Definition 7).

Definition 7. Consider the formulas from Figure 4. For
(▿, ⋄) ∈ {◦, ∙} × {◦, ∙}, we let

SE2E[iv▿, res⋄] = Φ▿
iv1
∧ Φ▿

iv2
∧ Φ▿

iv3
∧ Φeli ∧ Φ⋄res∧

Φreg1 ∧ Φreg2 ∧ Φlink1 ∧ Φlink2 ∧ Φone

An enhanced e-voting specification  satisfies [iv▿, res⋄]-
symbolic election verifiability iff it has an admissible extrac-
tion function and  ⊧ SE2E[iv▿, res⋄].

The formula Φ▿
iv1

represents individual verifiability, ensur-
ing that all verified votes should be part of the final outcome,
i.e. the vote recorded for that tracker is the expected one.
The formula Φ▿

iv2
requires that no clash should occur on

the public credentials of voters who verified their vote. The
formula Φ▿

iv3
makes a link from the voter credential to a vote

verification tracker tr. The formula Φeli ensures that trackers
on BBres are connected through Link to registered eligible
credentials. The formula Φ⋄res ensures that there is no ballot
stuffing. It relies on Link and Reg events to determine what is
the voter identity associated to each tracker in the outcome.
Our constraints related to Link and Reg are completed by
the consistency properties, ensuring that each credential has
a unique associated tracker and voter identity, and conversely.
Finally, the property Φone ensures that there is at most one vote
counted for each tracker, and therefore for each credential and
each voter.

C. Symbolic E2E verifiability implies general E2E verifiability
In this section we prove that, if an enhanced voting

specification satisfies SE2E[iv▿, res⋄], then it also satisfies
E2E[iv▿, res⋄]. We recall the general flow of electronic voting
protocols that we consider in this paper: a set of public
credentials is determined at registration and published on

BBreg; ballots from corresponding voters are collected, and
the ballot to be tallied for each credential is recorded on
BBtally; the final result is computed from the ballots in BBtally.
Assuming there are n public credentials, a snapshot of the end-
to-end run of the election can then be represented by:

BBreg ∶ cr1 … crn
BBtally ∶ (cr1, b1) … (crn, bn)
BBres ∶ (tr1, v1) … (trn, vn)

where bi = ⊥ and vi = ⊥ in case of abstention, invalid ballot
casting or ballot blocking by the adversary. Recall that in
Helios, Belenios and BeleniosRF, BBres is defined implicitly
from BBtally taking tri = cri and vi = open(bi). In order
to prove our result, we will make one additional assumption
about the execution trace of a voting system, namely that it
contains the final state of the bulletin board. According to our
observations above, the fact that a trace contains the final state
of the bulletin board can be formalised by the formula

ΨE2E ∶ |{cr | � ⊧ BBreg(cr)}| = |{tr | ∃v. � ⊧ BBres(tr, v)}|

stating that the number of trackers (or credentials) recorded on
the final result bulletin board is equal to the number of regis-
tered credentials. A trace that satisfied ΨE2E is called an end-
to-end voting trace. We note that the assumption of a complete
trace is inherent to the property of election verifiability, which
cannot be evaluated until the election authorities commit to
the final result.

Theorem 1. For every voting specification  , symbolic elec-
tion verifiability implies general election verifiability for end-
to-end voting traces. That is, for any trace � of  , we have

� ⊧ SE2E[iv▿, res⋄] ∧ � ⊧ ΨE2E ⟹ � ⊩ E2E[iv▿, res⋄]

The proof is given in Section A of the appendix.

V. VERIFIABILITY ANALYSIS OF BELENIOSRF AND SELENE

In this section, we present the verifiability analysis with
ProVerif of BeleniosRF, Selene, SeleneRF, and Hyperion,
which are introduced in Section III, with respect to the
definition introduced in Section IV. We start by introducing
the common components used for the formalisation of these
protocols (voting server, registrar, voting platform, etc.) and
the corruption models that we consider. We also present the
equational theories for cryptographic primitives. Then, we
provide comparative verification results for these systems ob-
tained with ProVerif, and explain the attacks and proofs found.
We show some parts from the specification of each protocol
and refer to the ProVerif code attached as supplementary
material for full details.

A. Common protocol structure
We consider the following parties common to all protocols:

- Administrator A determines the list of candidates v1, ..., vk
and voters id1, ..., idn.
- Trustees T generate the election keys (pk, sk) and publish pk
on BB.
- Registrar VR generates a signing key pair (spk, ssk) for each



voter and publishes cr = spk on BBreg. While Selene and
its variants do not explicitly mention a registrar, they assume
that voters are registered with public keys before the start of
the protocol. We consider that this registration is performed
relying on a registrar. The case when voters register themselves
is equivalent to the case of an honest registrar (if they use an
honest device) or a corrupt registrar (if they use a corrupt one).
- Voting server VS is responsible for publishing authenticated
valid ballots on BBcast in addition to generating a password
pwd for each voter. The ballots to be tallied are put on BBtally.
- Voters V use their voting platform VP to construct and cast
a ballot; they verify their ballot or vote on BB.
- Voting platform VP constructs a ballot; encrypting the desired
vote, signing it and attaching a proof, and sends it to VS with
authentication information.
Setup. Parties generate election parameters as described above,
with public elements recorded in corresponding bulletin board
tables: BBkey for the public key of the election and BBreg for
public voter credentials. Each voter records the credential tuple
⟨id, pwd, cr, ssk⟩.
Voting. Ballots are constructed by VP and posted to VS. VP
takes as input the vote v and voter credentials. The ballot b
has three parts:

c = enc(v, pk, r) (encryption of v),
s = sign(c, ssk) (signature),
� = pr(c, v, r,l) (zk proof of knowledge of v, r).

We denote the operation of generating r and constructing b by
Gen(v, pk, ssk). In BeleniosRF, the label l in � is equal to cr
and b is rerandomized before being published; in Selene and
Hyperion, l is empty. Authentication is modelled relying on a
hash function and a term h(id, pwd, cr, b), which allows VS to
verify that b was sent by a voter knowing the pwd for id. We
note that this is an abstraction of any underlying authentication
process, which allows the server to validate the identity of the
voter sending the ballot.
Tally and verification. The zk proofs and signatures are
verified before tally, which is done by verifiably decrypting
the ballots from BB, with additional procedures for deriving
trackers in Selene and Hyperion. Individual verification pro-
cedures are specific in each protocol, as shown later.

B. Corruption models
Other than the administrator, any party may be corrupted:
– Corrupt trustees:  can choose the secret key and per-
form any operations assigned to trustees in the corre-
sponding protocol.

– Corrupt registrar:  is allowed to choose the public and
private credentials for each voter.

– Corrupt server:  chooses voter passwords and accepts
any ballot without authentication checks.

– Corrupt voter: all credentials are leaked to .
– Corrupt platform: reveals to  the voter credentials

(except the trapdoor secret key in Selene and Hyperion),
and  chooses the ballot that the voter will cast.

Fig. 5. Corrupt voter (left) vs corrupt platform (right).

let VotingPlatform(v, pk) =
get Cred(id, cr, ssk) in
get Pwd(= id, pwd) in
let b = Gen(v, pk, ssk) in
let a = h(id, pwd, cr, b) in
event Vote(id, cr, v);
insert Voted(id, cr, v);
out(pub, (id, cr, b, a)).

let VotingServer(pk) =
get BBreg(cr) in
get Pwd(id, pwd) in
in(pub, (= id,= cr, b, a);
if h(id, pwd, cr, b) = a then
if Verify(b, cr) = ok then
let b′ = Rand(b, pk) in
insert BBcast(cr, b′).

let VoterVer =
get Voted(id, cr, v); BBtally(= cr, b′) in
if Verify(b′, cr) = ok then event Verif ied(id, cr, v).

Fig. 6. Voting and verification processes for BeleniosRF.

Figure 5 illustrates the difference between a corrupt V and
a corrupt VP. In the latter, we let the adversary construct the
ballot as it wishes, providing  with credentials required to
do so. Our notion of a corrupt VP is much stronger than the
one considered in [6]: their model only allows  to choose the
randomness used for the encryption; our model allows  to
construct the whole ballot. Note that, in addition to voting
credentials ⟨id, pwd, cr, ssk⟩, a voting protocol may provide
voters with separate secret material required for verification.
This is the case in Selene and Hyperion, where voters have an
additional trapdoor secret key required to derive trackers. In
the case of a corrupt VP, contrary to that of a corrupt V, we
assume these credentials are kept secret. In practice, this means
that the verification device should be different from the voting
platform, or that trapdoor keys are generated and stored on
special trusted hardware. A corruption model (or scenario) is
defined by a subset of the corruption abilities described above.
In Table I and Table II, we list all the considered corruption
models and verification results found with ProVerif. In all
cases, the communication network and voters can be corrupt.
The ProVerif code is available online [1] and the running
time for each scenario is given in its corresponding file. For
BeleniosRF, we consider the trivial extraction function that
associates cr to itself; for Selene and Hyperion, we consider
extraction functions like in Example 6 and Example 7. For all
cases, we consider the revote policy that counts the last vote
cast by each voter.

C. BeleniosRF specification and verification
To model the cryptographic primitives of BeleniosRF, in ad-

dition to equations from Example 2, we consider the equations
(4)-(6) below to model the properties that allow ciphertext
rerandomization (4) and the adaptation of the corresponding
signature (5) and zk proof (6). Equation (7) models the
verification of a proof of correct decryption, provided by



Fig. 7. Clash attack by corrupt registrar in BeleniosRF.

trustees in all protocols. Part of the specification for Bele-
niosRF is presented in Figure 6. It is similar to Example 1,
the main difference being the randomization of the ballot b
into b′ = ⟨c′, s′, �′⟩ before casting on BB. We denote this
operation, together with the generation of r′, by Rand(b, pk).
The voter verifies b′ on BB by verifying the signature s′ and
the zero-knowledge proof �′; we denote the verification result
by Verify(b, cr).

c′ = renc(c, pk, r′) (re-encryption),
s′ = resign(s, pk, r′) (adaptation of signature),
�′ = repr(pr, pk, r′, cr) (adaptation of proof).

(4) renc(enc(x, y, z1), y, z2) = enc(x, y, z2)
(5) resign(sign(enc(x, y, z1),w), y, z2) = sign(enc(x, y, z2),w)
(6) repr(pr(enc(x, y, z1), x, z1,w), y, z2,w))

= pr(enc(x, y, z2), x, z2,w)
(7) ver′(pr′(enc(x, pk(y), z), x, y),enc(x, pk(y), z), x, pk(y)) = ok

Attacks.We find an attack against individual verifiability in the
case of a corrupt registrar, i.e. the scenario 3. The weakness
comes from the fact that individual verification does not
directly check the ballot posted by voter, but its randomization.
The properties Φ▿

iv1
and Φ▿

iv2
in E2E[iv▿, res⋄] are violated for

(▿, ⋄) ∈ {◦, ∙} × {◦, ∙}, because of a clash attack as illustrated
in Figure 7. It shows a corrupt registrar communicating the
same signature key pair ⟨cr, ssk⟩ to two honest voters id1 and
id2. Assume the two voters cast their ballots separately relying
on their credential cr. A ballot b from one of the voters is
accepted, randomized, and published on BB. For the second
voter, we assume the ballot is dropped by the network, before
the voter noticing it. When verifying their ballots (possibly
later when the voting phase is finished), both voters can verify
that, for the tuple (cr, b′) on BB, b′ is the rerandomization
of a ballot submitted with their credential. They both verify
the attached signature and zk proof since they share the same
credentials. However, only one vote will be counted for these
two voters. A similar attack is possible in the case of a corrupt
voter, even when all other parties are honest (these are the
two lines filled with 7 for the case of iv∙ in Table I). It is
sufficient for the communication network to block the ballot
of that voter, and for the adversary to cast a different ballot
with the credential of that voter. In Belenios this does not lead
to an attack, but in BeleniosRF it does.
Related attacks. BeleniosVS [18] is a variant of Belenios that
uses the same ballot rerandomization feature as BeleniosRF, in
order to achieve better privacy in the case of a dishonest voting
platform. In consequence, a similar attack as ours applies to

TABLE I
VERIFICATION RESULTS FOR BELENIOS AND BELENIOSRF

Corruption Models 1 2 3 4

Trustees H C C C
Registrar H H C H
Server H H H C
Voting Platform H H H H

Belenios∗
E2E[iv∙, res∙] 3 3 3 3
E2E[iv◦, res∙] 3 3 3 3
E2E[iv∙, res◦] 3 3 3 3
E2E[iv◦, res◦] 3 3 3 3

BeleniosRF†
E2E[iv∙, res∙] 7 7 7 7
E2E[iv◦, res∙] 3 3 7 3
E2E[iv∙, res◦] 7 7 7 7
E2E[iv◦, res◦] 3 3 7 3

∗: no revoting or voter verification in the tally phase
†: no revoting

BeleniosVS in the case of a corrupted registrar, and the authors
of [18] have already observed this. As a fix, they propose that
the voting server sends an acknowledgement to the voter when
the ballot is successfully cast. In an attack scenario similar
to the one above (from Figure 7), this should counter the
dropping of the second ballot (b2) by the network, since the
voter id2 would notice that no acknowledgement was sent. We
plan to investigate in future work if a similar fix could help in
BeleniosRF, and if it still protects against a stronger adversarial
model in BeleniosVS. Indeed, in our analysis, we consider a
strong attacker model that controls the secure channel that is
established between the voting platform and the voting server.
A simple acknowledgement would not help against such an
attacker, since the attacker could impersonate the voting server
and spoof the acknowledgement.
Proofs. BeleniosRF satisfies election verifiability, i.e.
E2E[iv◦, res⋄] for ⋄ ∈ {◦, ∙}, when the registrar, the voter and
the voting platform are honest. In this case, the trustees and
the voting server can be fully corrupt. All attacks and proofs
for Belenios and BeleniosRF are found automatically with
ProVerif within several seconds.

D. Selene and Hyperion specification and verification
To model the cryptographic primitives of Selene, in addition

to equations from Example 2, and equations (4) and (7) from
above, we consider equations for additional zk proofs, for
trapdoor commitments and for deriving a commitment from
a ciphertext. We omit from the description the equations for
zk proofs, as they are similar to (3) and (7), where terms
are modified accordingly to account for the desired relation.
To model trapdoor commitments, we use a theory previously
considered in [11], [25] for verifying privacy-type properties.
The main property is that a commitment can be opened with
the corresponding trapdoor secret key, as in equation (8) below.
Furthermore, equation (9) models the fact that a trapdoor se-
cret key along with the randomness from the commitment can
be used to generate randomness that opens that commitment to



Selene
Voter(id, cr) generates ∶
Td(id, tpk, tsk)

Trustees generate ∶
BBptr(cr, tpk, enc(tr, pk, r),
com(tr, tpk, rT), prptr, pk)

BBres(tr, v),Com(cr, rT)
let VoterVerif ication =
get Voted(id, cr, v)
BBptr(= cr, x1, x2, y, x3, x4)
BBres(tr,= v),Com(= cr, rT)
Td(id, tpk, tsk) in
if open(y, tsk, rT) = tr then
event Verif ied(id, cr, v).

Hyperion
Voter(id, cr) generates ∶
Td(id, tpk, tsk)
where tpk = gtsk

Trustees generate ∶
BBptr(cr, tpkr, prexp)
BBres(tpksi , v),Exp(cr, gsi )
let VoterVerif ication =
get Voted(id, cr, v)
BBres(tr,= v)
Exp(= cr, gsi )
Td(id, tpk, tsk) in
if (gsi )tsk = tr then
event Verif ied(id, cr, v).

Fig. 8. Tracker generation and voter verification in Selene and Hyperion.

any desired value. As shown in [11], two more equations need
to be added in order to make this theory convergent for use
in ProVerif, which we will omit here. Equation (10) models a
relation between ElGamal and Pedersen commitments, which
allows trustees to compute a commitment to a tracker from an
encryption of that tracker, without decrypting it. This operation
relies on homomorphically combining the encryption of a
tracker x with the encryption of a term wz, where w will play
the role of the public trapdoor key, and z will play the role of
the randomness in the commitment. The corresponding secret
decryption key is needed to obtain the commitment.
(8) open(com(x, pk(y), z), y, z) = x
(9) com(x2, pk(y), fake(x1, x2, y, z)) = com(x1, pk(y), z)
(10) ecom(enc(x, pk(y), r), enc(wz, pk(y), r′), y) = com(x,w, z)

TABLE II
VERIFICATION RESULTS FOR SELENE, SELENERF AND HYPERION

Corruption Models ′
1 ′

2 ′
3 ′

4 ′
5 ′

6 ′
7

Trustees H C C C C C C
Registrar H H C H H C H
Server H H H C H H C
Voting Platform H H H H C C C

E2E[iv∙, res∙] 3 7 7 7 7 7 7
E2E[iv◦, res∙] 3 3 3 3 7 7 7
E2E[iv∙, res◦] 3 7 7 7 7 7 7
E2E[iv◦, res◦] 3 3 3 3 3 3 3

Part of the formal specification of parties in Selene is given
in Figure 8. We use tables for storing voter credentials and
keys, and also for the private channel Com used by the trustees
to communicate commitment randomness to voters. Trackers
are generated by trustees, encrypted with the public key of
the election and transformed to derive the corresponding
commitments for the public trapdoor key of voters, relying
on equation (10). All this pre-tracking information is then
stored in BBptr. Along with the ballot, it is used by trustees for
tally and by voters to derive their trackers, after receiving the
corresponding randomness from trustees. We assume trustees
publish zk proofs of correctness for their computation and that
these are verified for all credentials and ballots tallied.

Attacks. A trust assumption in Selene is that the voters
performing verification are honest. On the other hand, the
trustees can be fully corrupt. If both the verifying voter and
the trustees are corrupt, there is a trivial attack against election
verifiability. The main idea is that trustees can use the trapdoor
secret key of the voter to compute fake randomness that opens
their commitment to a different tracker. If that tracker points
to the same vote as chosen by the voter, this results in a clash
attack. This scenario is formally represented by the properties
iv∙ (corrupt voters) and attackers ′

2−
′
7 (corrupt trustees) in

Table II. Another notable attack is ballot stuffing (i.e. attack
against iv∙) when the voting platform is corrupt. Indeed, in
that case, the adversary can replace the vote of the voter with
any other vote, as soon as the voter does not verify their vote.
This shows that the tracking mechanism in Selene protects
voters agains corrupt platforms only if they verify their votes,
as expected.
Proofs. Notable cases are the positive results in corruption
scenarios ′

3,
′
4 and ′

6,
′
7. Assuming that the voting plat-

form is honest, the former show that the (standard) verifiability
property E2E[iv◦, res∙] is true if either the registrar or the
voting server is honest, like in Belenios. Furthermore, if the
voting platform is corrupt, the results for ′

6,
′
7 show that the

weaker notion E2E[iv◦, res◦] still holds, meaning that ballot
stuffing is possible only if voters have not verified their votes.

E. Hyperion and SeleneRF
To model the cryptographic primitives of Hyperion, one

set of new equations that needs to be added are for handling
the specific zk proofs, related to exponentiation instead of
commitment and encryption. We also need to consider a
model of exponentiation that is more general than the usual
model used in ProVerif, which only allows to capture Diffie-
Hellman-like interactions with two exponentiations. We need
three exponentiations, since trackers for voters are generated
through: tri = ((gtski )ri )s. For this, we consider the equations
(11) and (12) from below. We note that this theory is still
incomplete, as in general one needs to cover any number of
exponentiations in order to reason about security, and not only
to be able to execute the protocol.

(11) (gx)y = (gy)x
(12) (gx)y)z = (gy)z)x

(13) verify(prexp(x, y, xy), x, xy) = ok
(14) extract(x, prexp(x, y, z)) = xy

In order to add the event Link(cr, tr), according to Defi-
nition 6, Definition 5 and Example 7, we need to verify an
exponentiation mixnet proof. Since we consider an unbounded
number of voters, the verification of such proofs cannot
be directly modelled in ProVerif. Instead, we consider an
abstraction of mixnets that takes each tracker individually,
exponentiates it to a secret power s, and outputs the resulting
tracker together with a proof of exponentiation, whose veri-
fication is modelled by equation (13). Then, we can rely on
the equation (14) for extraction. This abstraction of mixnets
is sufficient in our case since we are not considering privacy
properties. In fact, this model represents a weaker guarantee
than a mixnet, which is still sufficient for election verifiability



of Selene and Hyperion. This (malicious) mixnet is allowed
to drop some of its inputs (these inputs will be considered as
dropped ballots by the definition). What is important for the
verifiability proof, is that the elements that do get output by
the mixnet are in the prescribed relation with respect to the
corresponding input elements. This is ensured by equation (13)
in case of an exponentiation mixnet, and a similar equation
for the case of a re-encryption mixnet. We also specify
SeleneRF, that combines the models for ballot randomization
from BeleniosRF and the tracking mechanism in Selene. For
these models of Hyperion and SeleneRF, we obtain the same
analysis results as for Selene.

VI. CONCLUSION AND FUTURE WORK

We have made several contributions related to automated
verification of election verifiability in electronic voting proto-
cols: we have proposed a new symbolic definition improving
on the state-of-the-art, we have applied it to verify several
protocols that were not verified before, and we have found
new attacks and security proofs as a result. Our symbolic
definition allows to cover many corruption scenarios for vari-
ous protocols in a generic way, can be applied to receipt-free
protocols and we have proved that it implies a general, realistic
notion of election verifiability. We have found new attacks on
BeleniosRF in scenarios that were previously thought to be
secure and performed automated security proofs for Selene
and its variants.

In future work, we plan to complement our analysis of
receipt-free systems by verifying the property of receipt-
freeness, aiming for a global security analysis including both
verifiability and receipt-freeness. We have seen that one of
our attacks on BeleniosRF is very similar to an attack against
BeleniosVS that was discussed [18], which also propose a
simple countermeasure based on an acknowledgement message
from the voting server. We plan to apply our framework
for verifying if a refinement of this countermeasure would
be sufficient against the stronger network attacker that we
consider in this paper.
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APPENDIX A
PROOF OF THEOREM 1

Theorem 1. For every voting specification  , symbolic elec-
tion verifiability implies general election verifiability for end-

to-end voting traces. That is, for any trace � of  , we have

� ⊧ SE2E[iv▿, res⋄] ∧ � ⊧ ΨE2E ⟹ � ⊩ E2E[iv▿, res⋄]

Proof. Assume � ⊧ SE2E[iv▿, res⋄] and � ⊧ ΨE2E for an end-
to-end voting trace � of a voting specification.

(1) Let {cr | � ⊧ BBreg(cr)} be the set of all registered
public credentials. Assume there are n such credentials in total.
By � ⊧ ΨE2E, we have n = |{tr | ∃v. � ⊧ BBres(tr, v)}|, imply-
ing that there are precisely n trackers {tr1, ..., trn} for which
� ⊧ BBres(tr, v) is true for some v. Then, by � ⊧ Φeli, each
tracker tri ∈ {tr1, ..., trn} is linked to a credential cri ∈ BBreg,
i.e. we have � ⊧ Link(cri, tri). From the consistency properties
� ⊧ Φlink1 ∧ Φlink2, for any � ⊧ Link(cri, tri) ∧ Link(crj, trj), we
have tri ≠ trj and cri ≠ crj for any i ≠ j. Furthermore, from
Φone, we know that there is at most one occurrence of the event
� ⊧ BBres(tr, v) for each tracker. Therefore, we can deduce
that there is one-to-one correspondence between the list of
trackers in the outcome, i.e. tr1, ..., trn, and the credentials that
are linked to those. Let us call these credentials cr1, ..., crn.
(2) Without loss of generality, let {tr1, ..., trk} be the sub-

set of trackers for which vi ≠ ⊥ for all 1 ≤ i ≤ k. By
� ⊧ Φeli, for each tracker tri in this subset, we have � ⊧
Link(cri, tri) ∧ Reg(idi, cri). From the consistency properties
� ⊧ Φreg1 ∧ Φreg2, for any � ⊧ Reg(idi, cri) ∧ Reg(idj, crj), we
have idi ≠ idj and cri ≠ crj, for any i ≠ j. This implies that there
are exactly k−distinct voter identities id1, ..., idk registered with
the credentials cr1, .., crk for which we have � ⊧ Reg(idi, cri)
for 1 ≤ i ≤ k. By (1), we can conclude that there is one-to-
one correspondence between the set of distinct voter identities
id1, ..., idk, and the trackers tr1, ..., trk for which vi ≠ ⊥ on
BBres.

(3) According to the one-to-one correspondence between
trackers and voter identities established at point (2), we can
define the following set:

ResID,V(�) = {(id, v) | � ⊧ BBres(tr, v) ∧ Link(cr, tr)
∧ Reg(id, cr) ∧ v ≠ ⊥}

which associates to each voter identity the corresponding
vote in the final result. Note that Res(�) = ⦃v | (id, v) ∈
ResID,V(�)⦄. By � ⊧ Φ⋄res, for each (id, v) ∈ ResID,V(�), either
� ⊧ Vote(id, v) or � ⊧ Adv⋄(id), and these events are not
mutually exclusive. If we define the following multisets,

VoteID,V(�) = ⦃(id, v) | � ⊧ Vote(id, v)⦄
AdvID,V(�) = ⦃(id, v) | id ∈ Adv⋄(�)⦄

and sets:
R′2 = (ResID,V(�) ∩ VoteID,V(�) ) ⧵ AdvID,V(�)
R′3 = ResID,V(�) ∩ AdvID,V(�)

then, each (id, v) ∈ ResID,V(�) is either in R′2 or in R′3, where
R′2 ∩R

′
3 = ∅. Intuitively, R

′
2 and R

′
3 represent the partition of

the final result according to honest or adversarial votes. Now,
let us define:

VerID,V(�) = ⦃(id, v) | ∃id′, cr. � ⊧ Ver▿(id′, cr, v) ∧ Reg(id, cr)⦄



and
R1 = ResID,V(�) ∩ VerID,V(�),
R2 = R′2 ⧵ VerID,V(�),
R3 = R′3 ⧵ VerID,V(�).

By definition, R1 ∩ R2 = R1 ∩ R3 = R2 ∩ R3 = ∅. Thus,
we can conclude ResID,V(�) = R1 ⊎ R2 ⊎ R3. It follows that
Res(�) = V1 ⊎ V2 ⊎ V3, where Vi = ⦃v | ∃id. (id, v) ∈ Ri⦄ for
i = 1, 2, 3. We show that the multisets V1, V2, V3 satisfy the
requirements of Definition 3, respectively. That is, we show:

(1) V1 = Ver▿(�) (2) V2 ∈ Vote▿,⋄(�),
(3) |V3| ≤ |Adv⋄(�) ⧵ Ver▿

id
(�)|.

(4.1) By definition, we have V1 ⊆ Ver▿(�). We have to show
Ver▿(�) ⊆ V1. Let id1,… , idq be the set of (mutually distinct)
identities of the voters who verified votes for some credential,
and for which the votes are different from ⊥. This means that
there are non-empty sets of votes A1,… , Aq such that

∀i ∈ {1,… , q},∀v ∈ Ai,∃cr. � ⊧ Ver▿(idi, cr, v).

Intuitively, for each idi, Ai represents the set of votes that are
verified by that voter and which satisfy the revote policy. By
definition, we have Ver▿(�) = A1 ⊎… ⊎ Aq.
For each i ∈ {1,… , q}, let Ci be the set of credentials for

which � ⊧ Ver▿(idi, cr, v). From � ⊧ Φ▿
iv2
, we deduce that Ci ∩

Cj = ∅ for any i ≠ j. Furthermore, assume Ci = {cr1,… , crs}
for some i ∈ {1,… , q}. From � ⊧ Φ▿

iv3
∧ Φlink2, we deduce

� ⊧ Link(cr1, tr1) ∧ … ∧ Link(crs, trs)
� ⊧ BBreg(cr1) ∧ … ∧ BBreg(crs)

for mutually distinct tr1,… , trs. Let Ti be the set of trackers
linked to the credentials in Ci, i.e. Ti = {tr1,… , trs}. Then,
from � ⊧ Φlink1 and Ci ∩ Cj = ∅, we conclude Ti ∩ Tj = ∅ for
any i ≠ j.

On the other hand, as shown at point (1), each cr on BBreg
is associated to a unique tr on BBres with � ⊧ Link(cr, tr).
From the consistency properties Φlink1 and Φlink2, the same
credential cannot be associated to two different trackers. Then,
we can deduce that each set Ti of trackers, that are linked to
the credentials in Ci, are included in the final result. Moreover,
by � ⊧ Φone, there is at most one vote per tracker in the result.
Therefore, we have � ⊧ BBres(tr1, v′1) ∧ … ∧ BBres(trs, v′s), for
some votes v′

1
,… , v′s.

For each i ∈ {1,… , q}, let A′
i
be the set of votes in the result

that correspond to the trackers in Ti. Since we have established
a one-to-one correspondence between Ci (associated to the set
Ai) and Ti (associated to the set A′

i
), we know that there is

a one-to-one correspondence between the sets Ai and A′i . We
will show that these sets are actually equal. Indeed, for any
cr ∈ Ci, v ∈ Ai and associated tr ∈ Ti, v′ ∈ A′

i
, we have � ⊧

Ver▿(idi, cr, v) ∧ Link(cr, tr) ∧ BBres(tr, v′). From � ⊧ Φ▿
iv1
, we

deduce v = v′, and we can conclude that Ai = A′i . Therefore,
we have obtained:

Ver▿(�) = A′1 ⊎… ⊎ A′q = {v
′
1, ..., v

′
p} (⋆)

for some votes v′
1
, ..., v′p and some p ≥ q (every voter verified

at least one vote).
On the other hand, by definition of the set R1, it consists

of all the pairs (id, v) ∈ ResID,V(�) such that v ≠ ⊥ and some
id′ verified v. Thus, we deduce

{(id1, v′1),… , (idp, v′p)} ⊆ R1, and therefore
{v′

1
,… , v′p} ⊆ V1 (⋆⋆)

From (⋆) and (⋆⋆), we deduce Ver▿(�) ⊆ V1 and we can
conclude V1 = Ver▿(�) as required. Furthermore, we have
also established

| ResID,V(�) ∩ VerID,V(�) | ≥ | Ver▿
id
(�) | (∗)

i.e. the number of verified votes in the final result is greater
than the number of voters for whom their votes are verified.
(4.2) We show that V2 ∈ Vote▿,⋄(�). By definition, we have

R2 = (ResID,V(�) ∩ VoteID,V(�)) ⧵ (VerID,V(�) ∪ AdvID,V(�))

and V2 = ⦃v | ∃id. (id, v) ∈ R2⦄. Furthermore, from Ψres2 and
the one-to-one correspondence between voter identities and
trackers established at point (2), we know that

R2 = {(id1, v1),… , (ids, vs)} and V2 = {v1,… , vs}

for some mutually distinct id1,… , ids. Thus, for all i ∈
{1,… , s} we have:

� ⊧ Vote(idi, vi) ∧ idi ∉ (Ver▿id(�) ∪ Adv⋄(�) )

Therefore, using the definition of Vote▿,⋄(�), we can conclude
that V2 ∈ Vote▿,⋄(�).
(4.3) We show that |V3| ≤ |Adv⋄(�) ⧵ Ver▿

id
(�)|. By defini-

tion, we have

R3 = (ResID,V(�) ∩ AdvID,V(�)) ⧵ VerID,V(�)

and V3 = ⦃v | ∃id. (id, v) ∈ R3⦄. Relying on Φone and the one-
to-one correspondence between voter identities and trackers,
we have that

ResID,V(�) ∩ AdvID,V(�) = {(id1, v1),… , (idt, vt)}

for some mutually distinct id1,… , idt. We can also deduce that

|ResID,V(�) ∩ AdvID,V(�)| ≤ |Adv⋄(�)| (†)

From (∗), since by Φone there is one and only one vote
in the result for each tracker (and therefore for each voter id
according to our established correspondence), we deduce

| ResID,V(�)∩VerID,V∩AdvID,V(�) | ≥ | Ver▿
id
(�)∩Adv⋄(�) | (††)

Thus, we can conclude that
|R3| = | (ResID,V(�) ∩ AdvID,V(�)) ⧵ VerID,V(�) |

≤ | (ResID,V(�) ∩ AdvID,V(�)) ⧵ (ResID,V(�) ∩ VerID,V(�)) |
≤ | Adv⋄(�) ⧵ Ver▿

id
(�) |

where, to deduce the second inequality, we rely on (†), (††)
and the general set theory fact that for all sets A1, A2, B1, B2:

|A1| ≤ |A2| ∧ |A1 ∩ B1| ≥ |A2 ∩ B2|
⟹ |A1 ⧵ B1| ≤ |A2 ⧵ B2|

Hence, |V3| = |R3| ≤ |Adv⋄(�) ⧵ Ver▿
id
(�)|, as required.


