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Abstract

The Sinkhorn divergence has become a very popu-
lar metric to compare probability distributions in optimal
transport. However, most works resort to the Sinkhorn di-
vergence in Euclidean space, which greatly blocks their ap-
plications in complex data with nonlinear structure. It is
therefore of theoretical demand to empower the Sinkhorn
divergence with the capability of capturing nonlinear struc-
tures. We propose a theoretical and computational frame-
work to bridge this gap. In this paper, we extend the
Sinkhorn divergence in Euclidean space to the reproduc-
ing kernel Hilbert space, which we term “Hilbert Sinkhorn
divergence” (HSD). In particular, we can use kernel ma-
trices to derive a closed form expression of the HSD that
is proved to be a tractable convex optimization problem.
We also prove several attractive statistical properties of the
proposed HSD, i.e., strong consistency, asymptotic behav-
ior and sample complexity. Empirically, our method yields
state-of-the-art performances on image classification and
topological data analysis.

1. Introduction
As an important tool to compare probability distribu-

tions, optimal transport theory [52] has found many suc-
cessful applications in machine learning. Examples include
generative modeling [56, 19], domain adaptation [17], dic-
tionary learning [42], text mining [29], sampling [54, 55]
and single-cell genomics [41]. Optimal transport aims at
minimizing the cost of moving a source distribution to a
target distribution. The minimal transportation cost de-
fines a divergence between the two distributions, which is
called the Wasserstein or Earth-Mover distance [51, 40].
Roughly speaking, the Wasserstein distance measures the
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minimal cost required to deform a distribution to another
distribution. Different from other divergence, such as Kull-
back–Leibler divergence and the L2 distance, the Wasser-
stein distance could compare probability distributions in a
geometrically faithful manner. This entails a rich geometric
structure on the space of probability distributions.

Related work. Existing optimal transport schemes can
be mainly categorized into three classes. Methods in
the first class are the regularization-based Wasserstein
distance. Such numerical schemes add a regularization
penalty to the original optimal transport problem. For
instance, the Sinkhorn divergence [12, 13] provides a
fast approximation to the Wasserstein distance by reg-
ularizing the original optimal transport with an entropy
term. Greedy [2], Nystrom [1] and stochastic [18] ver-
sions of Sinkhorn algorithm with better empirical perfor-
mance have also been explored. Other representative contri-
butions towards regularization-based optimal transport in-
clude quantum regularization [35], sparse regularization [7]
and Boltzmann-Shannon entropy [16].

An alternative principle for approximating the Wasser-
stein distance comes from Radon transform: to project
high-dimensional distribution to one-dimensional distribu-
tions. One representative example is the sliced Wasserstein
distance [8, 23, 14, 24], which is defined as the average
Wasserstein distance obtained between random one dimen-
sional projections. In other words, the sliced Wasserstein
distance is calculated via linear slicing of the probability
distribution. Its important extensions, such as [34, 31], are
proposed recently to search for the k-dimensional subspace
that would maximize the Wasserstein distance between two
measures after projection. The sample complexity of such
estimators is investigated [15, 14] between two measures
and their empirical counterparts.

Methods in the third class include the Gromov-
Wasserstein distance, it extends optimal transport to sce-
nario where heterogeneous distributions are involved, i.e.,
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distributions defined on different metric spaces. Such an
approach was successfully applied for tasks where source
and target samples do not lie in the same Euclidean space,
e.g., for heterogeneous domain adaptation [57], shapes [46],
word embedding [3] and generative modeling [9]. From the
computational perspective, the Gromov-Wasserstein dis-
tance involves a non-convex quadratic problem, and it is
hard to lift it to large scale settings [36]. Such a heavy com-
putation burden could be remedied by the Sinkhorn diver-
gence [37] or the sliced technique [50].

Motivations. All these works consider the optimal trans-
port in original sample space (usually Euclidean space Rn).
However, various machine learning tasks are kernel depen-
dent, such as computerized tomography [32], topological
data analysis [25], geometric domain [45], kernel mean
embedding [30] and adaptive Monte Carlo [43]. There is
no straightforward way to formulate the optimal transport
problem for such tasks. The performance of these tasks
highly depends on comparing the distributions in reproduc-
ing kernel Hilbert spaces (RKHS) [48]. Thus defining the
optimal transport in the original sample space may lead to
sub-optimum performance for the above applications.

In fact, RKHS provides a platform for optimal transport
in functional spaces to be applied in real-world problems.
Recent relevant works can be found in [32, 58], where ef-
forts have been devoted to the intersection of RKHS and
optimal transport. But they involve a linear program so that
evaluating the Wasserstein distance in RHKS is a compu-
tational bottleneck in general, and they did not deliver the
convergence result such as asymptotic behavior or sample
complexity. Although various techniques mentioned previ-
ously have been extensively considered Sinhorn divergence
to accelerate the computation of Wasserstein distance, it is
still non-trivial to extend the analysis for RKHS cases. This
is mainly due to the fact that the convex relaxation of the
Sinkhorn divergence is formulated through an implicit non-
linear map in infinite dimension, making it a challenge to
optimize. Another important reason is that the theoretical
convergence of optimal transport in RKHS has not been
well studied. There are practical and theoretical demands
to develop a general framework to analyze the theory be-
tween optimal transport and RKHS, which will favor vari-
ous kernel-dependent tasks in machine learning.

Contributions. This paper makes two valuable contribu-
tions, including both practical formulations and theoretical
convergence.

• We prove that the Sinkhorn divergence has a special
structure in RKHS, which allows us to propose an
equivalent and computable “Hilbert Sinkhorn diver-
gence” (HSD) that can be fully determined by the ker-
nel function (Thm. 1) and then could be computed via
solving a convex optimization problem. Thm. 1 shows

that the proposed HSD could be solved in an efficient
manner using Sinkhorn iterations.

• We analyze the strong consistency and sample com-
plexity of the proposed HSD. We give the error
bound and prove the strong consistency when approx-
imating original Wasserstein distances with our HSD
(Thm. 3). We also focus on how the asymptotic behav-
ior (Prop. 3) and sample complexity (Thm. 4) affect
the convergence of the proposed HSD.

2. Preliminary
We begin with the background of optimal transportation.

Let c : X ×X → R denote the cost function where X ∈ Rn
is the sample space. We define Π(µ, ν) as the set of all
probabilistic couplings π with marginals µ and ν. Formally,
the Wasserstein distance is thus defined as

W (µ, ν) = inf
π∈Π(µ,ν)

∫
X×X

c(x, y)dπ(x, y) (1)

Thus the Wasserstein distance aims to find a couplings π
so as to minimize the cost function of moving a probability
mass from µ to ν. The Wasserstein distance (1) is numer-
ically intractable in general due to its high computational
complexity. Consequently, the Sinkhorn divergence [12]
is proposed to approximate (1) by regularizing the original
problem with an entropy term.

Definition 1 (Sinkhorn divergence) The Sinkhorn diver-
gence is formally defined as:

Wε(µ, ν) = inf
π∈Π(µ,ν)

[∫
X×X

c(x, y)dπ(x, y) + εH(π)

]
(2)

where ε > 0 is a coefficient and the entropic regularization
H(π) is given below

H(π) = log

(
dπ

dµ dν
(x, y)

)
(3)

The entropic regularization makes the Sinkhorn diver-
gence (2) strictly convex to guarantee the unique minimizer.
The Sinkhorn divergence allows an extremely simple itera-
tive algorithm [12], which can be implemented using only
matrix-vector products and converges quickly to a solution
of (1). Note that the Sinkhorn divergence (2) is defined in
the sample space. To further reformulate the Sinkhorn di-
vergence in RKHS, we need Hilbert embedding to trans-
form the probability measures from the sample space to
RKHS.

Definition 2 (Hilbert embedding) Let P(X ) be the set of
probability measures on sample set X and P(H) be the
set of probability measures on reproducing kernel Hilbert
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space H. Given a probability measure µ ∈ P(X ), the im-
plicit feature map φ : X → H will induce the Hilbert em-
bedding of µ:

φ∗ : P(X )→ P(H), µ 7→ φ∗µ =

∫
X
φ(x)dµ(x) (4)

For the map (φ, φ) : X × X → H×H, we similarly have

(φ, φ)∗ : (µ, ν) 7→ (φ∗µ, φ∗ν) (5)

3. Hilbert Sinkhorn divergence
In this section, we introduce the nonlinear version of

the Sinkhorn divergence in RKHS, which we term “Hilbert
Sinkhorn divergence” (HSD). Section 3.1 provides an
equivalent and computable formulation of HSD. In Sec-
tion 3.2, we further discuss how HSD could be used to com-
pare empirical probability measures.

3.1. Formulation

Let X be a sample space. A function k : X ×X is called
a kernel function of reproducing kernel Hilbert space H,
i.e., ∀x ∈ X , k(·, x) ∈ H. The kernel function k satisfies
the reproducing property

f ∈ H, 〈f, k(·, x)〉H = f(x) (6)

Define the implicit feature map φ : X → H as x 7→
φ(x) = k(·, x). Then we have kernel trick such that
〈φ(x), φ(y)〉H = k(x, y).

In order to capture the nonlinearity of optimal transport,
we employ a compact representation that not only preserves
statistical properties of arbitrary distributions, but also per-
mits efficient computation. That is, we adopt the Hilbert
embedding [6, 44, 48] to represent the probability measure
as a mean function in the RKHS.

Definition 3 (Hilbert Sinkhorn divergence, HSD) Given
measures µ, ν ∈ P(X ) and elements u, v ∈ H, the Hilbert
Sinkhorn divergence between embedding φ∗µ and φ∗ν is
written as

Sε (φ∗µ, φ∗ν) = inf
πφ

∫
H×H

cφ(u, v)dπφ(u, v) + εΦ(πφ) (7)

where πφ ∈ Π (φ∗µ, φ∗ν) is a joint probability measure
with two marginals φ∗µ and φ∗ν, and

cφ(u, v) = ‖u− v‖2H

Φ(πφ) = log

(
dπφ

d (φ∗µ) d (φ∗ν)
(u, v)

)
HSD is a natural nonlinear version of the Sinkhorn diver-

gence (2) that is extended to RKHS. Therefore, HSD can be
solved by finding an optimal joint probability measure in
P(H × H). However, as HSD in (7) is expressed by an

unknown implicit nonlinear map φ, making it difficult to
solve. Thus, we provide an equivalent and solvable formu-
lation of (7), which is completely determined by the kernel
function.

Theorem 1 Given two measures µ, ν ∈ P(X ), we write

SH,ε(µ, ν) = inf
π

∫
X×X

cH(x, y)dπ(x, y) + εH(π) (8)

where π ∈ Π(µ, ν) is the joint probability measures on X ×
X with marginals µ and ν, and

cH(x, y) = ‖φ(x)− φ(y)‖2H = k(x, x) + k(y, y)− 2k(x, y)

H(π) = log

(
dπ

dµ dν
(x, y)

)
Then we have the following conclusions:

• SH,ε(µ, ν) = Sε (φ∗µ, φ∗ν)

• If π∗ is a minimizer of (8), its Hilbert embedding
(φ, φ)∗π

∗ is a minimizer of (7).

Proof See proof in the supplement.

The reformulation (8) can be viewed as the Sinkhorn di-
vergence in sample domain X × X with cost function cH
induced by the nonlinear kernel k(·, ·), e.g., RBF kernel.

The reformulation (8) improves (7) in two promising as-
pects: First, the integral domain in formulation (8) is trans-
formed into a more tractable and computatble sample do-
main X × X rather than the Hilbert domain H × H. This
is a practically useful transformation as it effectively sim-
plifies the problem from an infinite dimensional space to a
finite dimensional space. Second, this reformulation is ben-
eficial for establishing the strong consistency and sample
complexity via leveraging standard tools from RKHS the-
ory, as shown in Section 4.
Remark. We have a special case for Eq. (8) that enables
a connection between HSD and the Wasserstein distance.
That is, if ε = 0, then SH,ε degenerates to the Wasserstein
distance in RKHS.

WH (µ, ν) = inf
π∈Π(µ,ν)

∫
X×X

cH(x, y)dπ(x, y) (9)

3.2. Discrete Hilbert Sinkhorn divergence

In most applications, probability measures µ and ν are
only discrete, i.e., empirical measures. Accordingly, we de-
fine a discrete case of our HSD for empirical measures

µn =

n∑
i=1

µ̂iδxi , νn =

n∑
j=1

v̂jδyj (10)

where δxi is the Dirac measure, and µ̂i is the probability
of mass associated to xi. Similarly, δyi and v̂j are defined
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for yj . Let us denote a set B as the probabilistic couplings
between the two empirical measures:

B =
{
π ∈

(
R+)n×n | π1n = µ, π>1n = ν

}
(11)

where 1n is a n-dimensional vector of ones. Then the dis-
crete version for HSD in (8) is

π∗ = argmin
π∈B

〈π,K〉F + εH(π) (12)

where 〈·, ·〉F is the Frobenius dot product, and K is the ker-
nel matrix with entries defined on a kernel function k

Ki,j = k(xi, xi) + k(yj , yj)− 2k(xi, yj) (13)

Apparently, the discrete HSD in (12) is a strict convex
problem. That enables a unique solution π∗ thanks to the
Sinkhorn algorithm [12, 36], which is a very simple itera-
tive algorithm involving only matrix-vector products.

4. Theoretical properties
In this section, we present several theoretical properties

of HSD SH,ε: consistency, asymptotic behavior and sample
complexity. All the proofs are provided in the supplement.

4.1. Strong consistency

Proving the consistency of our HSD can be decom-
posed into two problems: variational representation and
approximation. The first one leads to two propositions.
Prop. 1 states that HSD admits the variational represen-
tation, which results in the lower bound in Prop. 2. We
use Corollary 1 to prove the second problem in Thm. 2,
which states the almost sure convergence of SH,ε(µn, νn)
to SH,ε(µ, ν).

Proposition 1 (Variational representation) The Hilbert
Sinkhorn divergence (7) admits the following variational
representation in the reproducing kernel Hilbert space:

Sε (φ∗µ, φ∗ν) = ε

(
1 + min

πφ
Eπφ [T ]− log

(
Eξφ

[
eT
]))

where coefficient ε > 0, πφ ∈ Π (φ∗µ, φ∗ν), ξφ(x, y) =

e−‖u−v‖
2
H/ε and T = log

dπφ
dξφ

+ C for constant C ∈ R.

The variational representation relies on T which is a map-
ping from product Hilbert spaceH×H to R. Alternatively,
we hope to restrict the result of Prop. 1 on a more solvable
space X ×X . Prop. 2 will give a lower bound for our HSD
between arbitrary measures in RKHS.

Proposition 2 (Lower bound) The Hilbert Sinkhorn dis-
tance has the following lower bound:

Sε (φ∗µ, φ∗ν) ≥ ε
(

1 + min
π∈Π(µ,ν)

Eπ[k]− log
(
Eξ
[
ek
]))

where ε > 0, φ∗µ and φ∗ν are Hilbert embedding in Eq. (4)
and k is a kernel function.

More interestingly, Thm. 1 ensures that Prop. 1 and Prop. 2
are also valid for our HSD between two measures µ and ν,
as summarized in the following corollary.

Corollary 1 Given notations in Prop 1 and 2, the reformu-
lation (8) admits the following variational representation
and lower bound:

SH,ε(µ, ν) = ε

(
1 + min

πφ
Eπφ [T ]− log

(
Eξφ

[
eT
]))

SH,ε(µ, ν) ≥ ε
(

1 + min
π∈Π(µ,ν)

Eπ[k]− log
(
Eξ
[
ek
]))

Results in Corollary 1 are the necessary conditions to
prove that empirical Hilbert Sinkhorn divergence closes to
its exact version in probability, i.e., SH,ε(µn, νn) is the
strongly consistent estimator of SH,ε(µ, ν) as follows.

Theorem 2 (Strong consistency) Given µn, νn defined in
Eq. (10) and ε, η > 0, there exists N > 0 such that

∀n ≥ N, P (|SH,ε(µn, νn)− SH,ε(µ, ν)| ≤ εη) = 1

The strong consistency theorem states the almost sure con-
vergence of empirical estimator SH,ε(µn, νn), but it relies
on the sample number n ≥ N . We will analyze the upper
bound of sample number in Subsection 4.3.

4.2. Asymptotic behavior

In this section, we investigate the asymptotic properties
of the proposed HSD (8) with respect to the Wasserstein dis-
tance (1). The following proposition states that SH,ε(µ, ν)
can approximate the Wasserstein distance with the bound
determined by the diameter and dimension of sample space.

Proposition 3 (Approximation error) Define the sample
space X as a subset of Rd and its diameter |X | =
sup {‖x− y‖ | x, y ∈ X}, we have

|SH,ε(µ, ν)−Wε(µ, ν)| ≤ εη

|SH,ε(µ, ν)−W(µ, ν)| ≤ ε
(
η + 2d log

e2LD√
dε

) (14)

where ε > 0, D ≥ |X | and L is a Lipschitz constant.
We are also interested in the asymptotic bound when ap-
proximating the Wasserstein distanceW(µ, ν) with the dis-
crete HSD. Combining Prop. 3 and Thm. 2 with the trian-
gular inequality, we can have the following bound.

Theorem 3 (Asymptotic bound) With the notations
in Prop. 3, the discrete Hilbert Sinkhorn divergence
SH,ε(µn, νn) approximates the Wasserstein distance
W(µ, ν) with the following bound

∀n ≥ N, P (|SH,ε(µn, νn)−W(µ, ν)| ≤ ζ) = 1 (15)

where ζ = 2ε
(
η + d log e2LD√

dε

)
.
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Figure 1. We map the vector v to an empirical measure α as in (18), and then use Hilbert embedding φ∗ to transform α in reproducing
kernel Hilbert space. Comparing the embedded measures φ∗(α) in pairwise, we obtain a new kernel upon Hilbert Sinkhorn divergence
SH,ε, which can be used in any kernel-based learning machine, such as SVM.

4.3. Sample complexity

We will discuss the sample complexity of our HSD, i.e.,
how many samples we need for the discrete HSD at a de-
sired accuracy of a high confidence. To answer this ques-
tion, we rely on the well-known covering number for RKHS
and attained the refinement Thm. 2 of Thm. 4. The lemma
below shows there exists finite disks such that covering H,
and it will be useful to prove sample complexity in Thm. 4.

Lemma 1 [59] We assume that arbitrary function f ∈ H
is bounded (i.e., ‖f‖H ≤ M ). Given the covering disk
Bη = {f ∈ H : ‖f‖H ≤ η}, the covering number of H is

N (H, η) ≤
(

3M
η

)m
where m is the number of basis that

span the function f .

The covering number measures the size of reproducing ker-
nel Hilbert space with respect to the norm ‖ · ‖H. We will
show how this quantity affects the sample complexity of the
Hilbert Sinkhorn divergence SH,ε.
Theorem 4 Given the desired accuracy parameters η, ε >
0 and the confidence parameter η, we have,

P (|SH,ε(µ, ν)− SH,ε(µn, νn)| ≤ εη) ≥ 1− δ, (16)

whenever the number n of samples satisfies

n ≥ 2M2(log(2/δ) +m log(24M/η))

η2
(17)

where m and M are given in Lem. 1.

5. Applications
In this section, we apply our HSD on real-world tasks:

image classification and topological data analysis.

5.1. Image classification

The whole process is depicted in Fig. 1. Each image is
unfolded as a vector v = (u1, · · · , un) ∈ Rn that is further
mapped to a empirical measure

α =

n∑
i=1

aiδi with ai = ui/‖v‖ (18)

where δi is the Dirac measure at position i such that the
probability mass of αi is 1. Once the probability distribu-
tions α are embedded as φ∗α in RKHS, we then apply the
HSD reformulation (8) to construct

SH,ε-kernel : kS(I1, I2) = k(φ∗α1, φ∗α2)

def
= exp

(
−
S2
H,ε(α1, α2)

σ2

)
(19)

for two images I1 and I2 on the RKHS. We are able to apply
SH,ε-kernel in a straightforward fashion for SVM. This ac-
tually generalizes the usual kernel SVM such as RBF-SVM
to SH,ε-SVM that could deal with probability distributions
in RKHS. Namely, this amounts to solving a SVM problem
with SH,ε-kernel.

For comparison, we also apply the traditional Sinkhorn
divergence (2) to defineWε kernel

kW(I1, I2) = k(α1, α2)

def
= exp

(
−W

2
ε (α1, α2)

σ2

) (20)

5.2. Topological data analysis (TDA)

Topological data analysis extracts the topological fea-
tures that are complementary to statistical quantities, which
has found many applications in computer vision [4, 39, 25,
10, 26, 53, 47]. In TDA, persistence diagram (PD) is a
favoured tool for describing topological feature, such as
shape or graph. The space of PDs is a metric space with the
p-Wasserstein distance, which is neither an Euclidean space
nor a Hilbert space. Therefore, PDs cannot be directly used
as inputs for a variety of machine learning methods, such
as SVM. To analyze topological features encoded in PDs,
recent efforts have been devoted to vectorizing PDs in the
Hilbert space [4, 25, 39].

Motivated by these considerations, we propose a novel
intuitive kernel for TDA based on our Hilbert Sinkhorn di-
vergence SH,ε. The whole process is depicted in Fig. 2. For
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Figure 2. We represent the topological properties of visual data using the persistence diagram Di. Next, the Hilbert embedding (22) maps
persistence diagramDi to φ∗αi in reproducing kernel Hilbert space. Finally, we define SH,ε-kernel (23) for persistence diagrams to enable
the downstream machine learning tasks.

the persistence diagram D, we introduce the measure

α(D) :=
∑
x∈D

w(x)δx (21)

with a weight w(x) > 0 for each generator x = (b, d) ∈ D,
where δx is the Dirac delta measure at x. We follow [25]
to define a weight function w(x) = arctan(C · (b− d)

p
)

with C and p > 0. As in Def. 2, the measure α(D) can be
embedded in RKHS via

α(D) 7→ φ∗α(D) :=
∑
x∈D

w(x)k(·, x) (22)

Since φ∗α(D) serves as a vector representation of the per-
sistence diagram, we can apply SH,ε divergence to define
a kernel over the vector representation. Similar to (19) for
image classification, we consider the kernel

SH,ε-kernel : kS(D1, D2) = k(φ∗α1, φ∗α2)

def
= exp

(
−
S2
H,ε(α1, α2)

σ2

)
(23)

for two persistence diagrams D1 and D2 on the RKHS.

6. Experiments
6.1. Synthetic data

We study the behavior of the proposed HSD converg-
ing to the Wasserstein distance (1). Due to the approxima-
tion (14), we could have SH,ε(µ, ν) → Wε(µ, ν) if ε → 0.
According to Def. (2), we also have Wε (µ, ν) converges
to the Wasserstein distance, i.e., Wε (µ, ν) → W (µ, ν) if
regularization ε → 0. So by the triangle inequality, the
gap |SH,ε − W| is expected to decrease as the parame-
ter ε decreases. We use the universal kernel k(x, y) =

exp
(
−‖x−y‖

2
2

σ2

)
with σ = 0.1 to construct the matrix K

defined in (13). Fig. 4 plots |SH,ε−W|/SH,ε over 100 ran-
dom pairs (x, y), where x and y are sampled from the uni-
form distribution U(0, 1). This simulation reveals that the
Hilbert Sinkhorn divergence SH,ε typically approximates
the Wasserstein distance with a high accuracy when ε is less
than 0.01.

 0.01 0.1 0.5  1 10

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 3. The gap between the HSD and the Wasserstein distance
is a function of ε.

6.2. Image classification

We use the handwritten dataset USPS [21], which con-
sists of 10 classes (i.e., from digital 0 to 9). The training and
datasets are sampled uniformly at random. We fix the test-
ing size as 1000 and vary the training size accordingly. Con-
sidering identifying the handwritten digit is a multi-class
classification problem, we use one-versus-one encoding.

Note that these two kernels (19) and (20) involve regular-
ization parameter ε and width σ, we choose a small subset in
the training dataset to tune ε in {10−2, 0.1, 1, 10, 102} and
σ in {10−2, 0.1, 0.2, 1, 5, 10}×M , where M is the median
of all the squared SH,ε divergence orWε divergence.

After computing two kernels (19) and (20) between any
pair of images, we employ SVMs as the classifier for the
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image classification. In our experiments, we compare three
kernel methods based on RBF, Hilbert Sinkhorn divergence
SH,ε and traditional Sinkhorn divergence Wε. We use the

universal kernel k(x, y) = exp
(
−‖x−y‖

2
2

τ2

)
to construct the

cost function cH in (8), where τ is the median of squared
Euclidean distances among all samples.

500 600 700 800 900 1000 1100 1200

Training set size

10

12

14

16

18

20

e
rr

o
r

Figure 4. Average accuracy of SVM on USPS by using RBF,Wε-
kernel and SH,ε-kernel.

Figure 4 reports the mean together with standard devi-
ation of the classification error for all the compared meth-
ods. It is observed thatWε and SH,ε kernels outperform the
RBF. In particular, SH,ε kernel yields the best performance
when training size is varied. The out-performance attained
by our method can be explained as follows. As indicated in
Figure 1, our method can embed the image in sample space
through v → α→ φ∗α into the RKHS. Namely, rather than
training on vectorial training examples, SH,ε kernel learns
by using a collection of embedded probability distributions
φ∗α. This can potentially incorporate higher-level statisti-
cal information that represents the discriminative features
of images. Thus, SH,ε kernel should intuitively enhance the
classification power.

6.3. Topological data analysis

We compare our SH,ε-kernel (23) with several popular
TDA methods on classical tasks: 3D shape analysis and tex-
ture recognition. Because the construction of persistence di-
agram (PD) is required for TDA methods, we construct their
PDs of input data using the software DIPHA [5]. Parameter
setting of all comparison methods will be first described.
PSS. Persistence scale space kernel [39] utilizes the
multi-scale kernel function to map PD into Hilbert
space. The kernel function is defined by the solu-
tions of heat diffusion equation and has the expression:
k (D1, D2) = 1

8πt

∑
p∈D1

∑
q∈D2

exp
(
−‖p−q‖

2

8t

)
−

exp
(
−‖p−q̄‖

2

8t

)
where q̄ = (d, b) is the symmetric of

q = (b, d) along the diagonal. Since there is no clear heuris-
tic on how to tune t, we choose the kernel scale parameter t
from {10−3, 10−2, 0.2, 1, 50, 102, 103}.

PSR. Persistence square-root representation [4] models a
PD as a probability density function on the Hilbert Sphere.
Then it discretizes the density function into a K ×K grid.
A smaller K reduces the accuracy, and a larger K improves
the accuracy as well as the computational cost. Parameter
K is chosen from the set {10, 15, 30, 50, 80}.
PWG. Then the persistence weighted Gaussian kernel [25]
is defined as k(D1, D2) = exp

(
−‖α1−α2‖Hτ

σ2

)
, where α

is the embedding measure of PD defined by (22). We use
cross-validation to chose τ and σ, each of which is taken
values in 5 factors: 10−2, 0.2, 1, 5 and 100. This leads to
52 = 25 different possible grid values.
PWK. Persistence Wasserstein kernel uses Wε kernel (20)
to classify the persist diagram. Measure α is defined as
(21) with same parameters C and p as PWG. We choose
cross-validation to tune ε in {10−2, 0.1, 1, 10} and σ in
{10−2, 0.1, 0.2, 1, 5, 10, 100} ×M where M is the median
of all the squaredWε distances.
PSK. Persistence Hilbert Sinkhorn kernel refers to the pro-
posed SH,ε-kernel in Eq. (23). We use universal kernel

k(x, y) = exp
(
−‖x−y‖

2
2

τ2

)
to construct symmetric matrix

K in (13). Parameter τ is set to be the median of squared
Euclidean distances among samples. Meanwhile, parame-
ters ε, C, p and σ are set as same as PWK.
PHK. Persistence Hilbert Wasserstein kernel applies (9) to
classify the persist diagram. As discussed in (9), PHK is just
the special case of PSK under setting ε = 0 while keeping
other parameters invariant.

6.3.1 3D shape analysis

3D shape analysis uses sketch as input to retrieve 3D ob-
jects models, which mainly involves shape segmentation
and shape classification.
Shape segmentation aims to design a classifier that as-
signs the class labels to different locations in a mesh shape.
We use seven datasets of SHREC2010 [22] for both train-
ing and testing in shape segmentations, containing ANT,
FISH, BIRD, HUMAN, OCTOPUS , LIMB, BEAR. Moti-
vated by [11], we use the geodesic balls to construct 1-
dimensional PD that characterizes the specific bumps in the
shape. In particular, we construct the PD using the geodesic
distance function on the shape.
Shape classification is performed on the 3D mesh bench-
mark dataset SHREC2014 [38] which consists of both syn-
thetic (SYN) and real shapes (REAL). SYN contains 300
meshes from 15 classes of humans and REAL contains 400
meshes from 40 classes of humans. Shape classification
aims to distinguish humans of different classes within SYN
or REAL dataset. We use the popular heat kernel signa-
ture (HKS) [49] as the feature function for constructing 1-
dimensional PDs [39, 26]. The time parameter t for HKS
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Table 1. Classification performance (%) with different kernels for shape analysis.

DATA PSS PSR PWG PWK PHK PSK

ANT 85.3 ± 1.2 89.1 ± 0.5 88.2 ± 0.4 90.6 ± 0.3 91.3 ± 0.5 92.7 ± 0.3
FISH 74.2 ± 1.5 75.7 ± 0.8 79.3 ± 0.6 77.2 ± 0.7 75.6 ± 0.4 78.8 ± 0.6
BIRD 65.5 ± 2.0 67.2 ± 1.3 72.2 ± 1.4 71.8 ± 0.4 72.1 ± 0.2 73.2 ± 0.4
HUMAN 69.8 ± 1.7 68.8 ± 0.7 69.5 ± 1.1 72.3 ± 0.6 73.2 ± 0.4 74.3 ± 0.5
OCTOPUS 78.2 ± 1.5 77.1 ± 0.7 80.2 ± 0.6 84.4 ± 0.5 83.9 ± 0.5 85.9 ± 0.2
LIMB 68.1 ± 1.9 66.0 ± 1.3 70.8 ± 0.5 72.8 ± 0.8 71.7 ± 0.6 74.2 ± 0.6
BEAR 67.5 ± 1.3 67.6 ± 0.2 69.3 ± 0.7 73.9 ± 0.4 72.8 ± 0.3 73.4 ± 0.6

SYN 97.3 ± 2.8 96.2 ± 2.2 97.2 ± 1.3 97.4 ± 1.9 97.2 ± 1.5 98.1 ± 0.7
REAL 63.1 ± 1.7 60.1 ± 1.7 65.8 ± 1.7 66.3 ± 2.0 65.2 ± 1.9 68.9 ± 0.5

function is set as a fixed value in [0.005, 10], which controls
the smoothness of the input data.

Results. We summarize the 3D shape analysis results
in Tab. 1. The difference between the performance on
SHREC2010 and SHREC2014 is consistent across all
methods. Shape analysis on BIRD and LIMB is “hard”,
because there are many small prominent bumps in these
shapes. Small prominent bumps having short persistences
in PD may be mistaken for topological noise, which thus
fools the training process resulting classification accu-
racy below 75% for all methods. Our persistence Hilbert
Sinkhorn kernel PSK achieves the best accuracy in most
cases, followed by PWG and PWK. The best shape segmen-
tation accuracy of PSK is 92.7 ± 0.3 on ANT and the best
shape classification result of PSK is 98.1 ± 0.7 on SYN.
The variance of PSK is less than that of compared methods.
Shape analysis results verify that SHε metric extracts more
preferable nonlinear and meaningful features from proba-
bility measures in RKHS when compared with other meth-
ods. Although PWG can preserve these features, it may lose
some important statistical information when matching dis-
tributions by using the metric ‖µ1 − µ2‖H in RKHS.

6.3.2 Texture recognition

We use dataset OUTEX00000 [33] for texture recognition,
including 480 texture images with 24 classes and 100 prede-
fined training/testing splits. Following [39], texture images
are downsampled to 32 × 32 images. We apply CLBP de-
scriptors [20] to obtain the local region of an texture image,
named as Sign (CLBP-S) and Magnitude (CLBP-M). Then
we construct PDs for the component CLBP-S or CLBP-M.

Texture recognition results are reported in Tab. 2. Our
kernel (PSK) outperforms all comparison methods. Al-
though CLBP is sensitive to noise [20] and thus results in
the perturbations in PDs, our PSK can remedy such per-
turbations via the higher-level statistical information en-
coded in RKHS probability measures φ∗α. However, the

Table 2. Texture recognition (%) with different kernels.

METHODS CLBP-S CLBP-M

PSS 70.5 ± 2.9 56.2 ± 2.3
PSR 68.4 ± 1.6 54.3 ± 0.9
PWG 73.1 ± 1.3 59.6 ± 1.8
PWK 72.2 ± 1.2 57.3 ± 1.2
PHK 73.8 ± 1.0 60.3 ± 1.4
PSK 75.3 ± 1.0 62.3 ± 1.4

worst performance of PSR confirms that the Hilbert sphere
manifold is not robust to such perturbations. Notice that
WH-kernel PHK achieves higher recognition rates thanWε-
kernel PWK and weighted Guassian kernel PWG but less
than SHε kernel PSK. This verifies that SHε metric is more
favorable to extract the discriminative non-linear feature
representation, which can obviously improve the classifi-
cation performance.

7. Conclusion

In this paper, we present a novel computational frame-
work, i.e., Hilbert Sinkhorn divergence (HSD), to compare
distributions in RKHS. We proved that it is theoretically
robust due to strong consistency, asymptotic behavior and
sample complexity. Our approach can be naturally extended
to other kernel dependent machine learning tasks such as
metric learning, domain adaptation and manifold learning.
Moreover, it has great potential to succeed in non-vectorial
data (e.g., graph or diagram) by a valid SH,ε-kernel. While
HSD can increase the accuracy of classification tasks, it is
noted that the training also requires extra time. Our future
work will consider the scalable Sinkhorn [1] via the Nys-
trom method to accelerate the computation, and investigate
optimal transport on other non-Euclidean space, such as the
low rank manifold [28] and Grassmannian manifold [27].
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A. Nguyen, T. Du, and L. Guibas. Convolutional wasserstein

distances: Efficient optimal transportation on geometric do-
mains. ACM Transactions on Graphics (TOG), 34(4):1–11,
2015. 2
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