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Abstract
Recently, increasing attention has been paid to heterogeneous graph representation
learning (HGRL), which aims to embed rich structural and semantic information in
heterogeneous information networks (HINs) into low-dimensional node representa-
tions. To date, most HGRL models rely on hand-crafted meta-paths. However, the
dependency on manually-defined meta-paths requires domain knowledge, which is
difficult to obtain for complex HINs. More importantly, the pre-defined or generated
meta-paths of all existing HGRL methods attached to each node type or node pair
cannot be personalised to each individual node. To fully unleash the power of HGRL,
we present a novel framework, Personalised Meta-path based Heterogeneous Graph
Neural Networks (PM-HGNN), to jointly generatemeta-paths that are personalised for
each individual node in aHIN and learn node representations for the target downstream
task like node classification. Precisely, PM-HGNN treats the meta-path generation as
a Markov Decision Process and utilises a policy network to adaptively generate a
meta-path for each individual node and simultaneously learn effective node represen-
tations. The policy network is trained with deep reinforcement learning by exploiting
the performance improvement on a downstream task.We further propose an extension,
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PM-HGNN++, to better encode relational structure and accelerate the training during
the meta-path generation. Experimental results reveal that both PM-HGNN and PM-
HGNN++ can significantly and consistently outperform 16 competing baselines and
state-of-the-art methods in various settings of node classification. Qualitative analy-
sis also shows that PM-HGNN++ can identify meaningful meta-paths overlooked by
human knowledge.

Keywords Meta-path generation · Heterogeneous graph neural networks

1 Introduction

The complex interactions in real-world data, such as social networks, biological
networks and knowledge graphs, can be modelled as Heterogeneous Information Net-
works (HINs) (Sun and Han 2012), which are commonly associated with multiple
types of nodes and relations. Take the academia HIN depicted in Fig. 1a as an exam-
ple; it involves 4 types of nodes, including Papers (P), Authors (A), Institutions (I)
and publication venues (V ), and 8 types of relations. Due to the capability of HINs to
depict the complex inter-dependency between nodes, they have attracted increasing
attention in the research community and have been applied in the fields of relational
learning (Van Otterlo 2005), recommender systems (Zheng et al. 2021), information
retrieval (Wan et al. 2020), etc. However, the complex semantics and non-Euclidean
nature of HINs render them challenging tomodulate by conventional machine learning
algorithms designed for tabular or sequential data.

Over the past decade, a significant line of research onHINs isHeterogeneousGraph
Representation Learning (HGRL). The goal of HGRL is to learn latent node represen-
tations, which encode complex graph structure andmulti-typed nodes, for downstream
tasks, including link prediction (Wan et al. 2020), node classification (Wang et al. 2019)
and node clustering (Fu et al. 2020). As discussed in a recent survey (Dong et al. 2020),
one of the paradigms on HGRL is to manually define and use meta-paths to model
HIN’s rich semantics and to leverage random walks to transform the graph structure
into a set of sequences (Dong et al. 2017; Fu et al. 2017; Shi et al. 2019), which can
be further exploited by shallow embedding learning algorithms (Mikolov et al. 2013;
Le and Mikolov 2014). A meta-path scheme is defined as a sequence of relations over
HIN’s network schema. For instance, an illustrative meta-path in the academia HIN

in Fig. 1a is A
Cite−−→A

Write−−−→P. Some follow-up shallow HGRL models try to avoid the
requirement of manually defined meta-paths by developing jump and stay random
walk strategies (Hussein et al. 2018), performing random walk with the guide of node
contexts (Jiang et al. 2020), or switching to utilising network schema (Zhao et al.
2020). Nevertheless, these “shallow” methods neither support end-to-end training to
learn more effective representations for a specific task nor fully utilise node attributes
due to the limitation of the embedding algorithms.

Recently, in viewof the impressive success ofGraphNeuralNetworks (GNNs) (Kipf
and Welling 2017; Velickovic et al. 2018), the second paradigm of HGRL attempts
to devise Heterogeneous Graph Neural Networks (HGNNs) for HGRL (Schlichtkrull
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(a) (b)

Fig. 1 An example HIN and few meth-paths: a an academia HIN; b meta-paths designed for senior vs.
junior authors

et al. 2019; Zhang et al. 2019; Fu et al. 2020), which extend various graph convolutions
on HIN. Compared with “shallow” HGRL methods, HGNNs support an end-to-end
training mechanism that can learn node representations with some labelled nodes’
assistance and are also empowered by more complex encoders instead of using the
shallow embedding learning methods. HGNNs can model both structure and node
attributes in HINs with the guidance of meta-paths. However, they still rely on the
hand-crafted meta-paths to explicitly model the semantics of HINs, and obtaining
meaningful and useful meta-paths for nodes in HINs to guide HGNNs is still highly
non-trivial.

More precisely, existing meta-path guided HGRL methods simply assume that
nodes with the same type share the same meta-path. Take the academia HIN as an
example (Fig. 1a) and assume we plan to learn node representations to determine

the research area of Authors. A meta-path �1: A
Write−−−→P

Published−−−−−→V may be useful
to learn a representation of a senior researcher since his/her published papers and
attended venues may provide sufficient information to decide his/her research area.
While learning the representation of a junior PhD candidate with just a few published
papers, we may need to extract information from his collaborators following the meta-

path: �2: A
Cite−−→A

Write−−−→P, because �1 retains little information in the case of junior
PhD candidates. Hence, we argue that we should generate a personalised meta-path
for each “individual node” according to its attributes and neighbouring relational
structures instead of giving each “node type” several pre-definedmeta-paths in general.

Motivated by the outstanding success of Reinforcement Learning (RL) in strategy
selection problems (Mnih et al. 2015), previous methods attempt to apply RL tech-
niques to find paths between given node pairs which model the similarity between
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two nodes (Meng et al. 2015; Yang et al. 2018; Wan et al. 2020). The found paths
are then fed into the encoder to learn representations for pairwise tasks like link pre-
diction. Nevertheless, challenges still remain in designing personalised meta-paths of
individual nodes for node-wise tasks.

Key challenges in personalised meta-paths generation. First, the definition of
meta-paths requires rich domain knowledge that is extremely difficult to obtain in
complex and semantic rich HINs (Dong et al. 2020). Specifically, given a HIN G with
a node type set N , a relation type set R and a fixed meta-path length T . The possible
meta-paths are contained in a set of size (N × R)T . Such a huge set can result in
a combinatorial explosion when increasing the scales of N , R and T . Second, the
representation capacities of manually-defined meta-paths are limited to a specific task
on specific HIN since different G with the same N and R may have different node
attributes and relation types distributions. It requires defining appropriate meta-paths
for each task on each HIN, which is extremely difficult for practical applications.

In light of these challenges, we propose to investigate HGRL with the objec-
tives of (i) learning to generate a personalised meta-path for each individual node
in HINs automatically, (ii) learning node representations effectively and efficiently
with personalised meta-paths, and (iii) retaining the end-to-end training strategy to
achieve task-oriented optimisation. To achieve these objectives, we present a novel
Personalised Meta-path based Heterogeneous Graph Neural Network (PM-HGNN),
to unleash the power of HGRL.

Key Ideas of PM-HGNN. Generally, we aim to replace the human efforts on meta-
path generation with an RL agent to address the limitations of the dependency on
hand-crafted meta-paths of HGNNs. Compared with experts with domain knowledge,
the RL agent can adaptively generate personalised meta-paths for each individual
node in terms of a specific task/HIN through sequential exploration and exploitation.
That said, the obtained meta-paths are no longer for specific types of nodes but are
personalised for each individual node. Both graph structure and node attributes are
considered in the meta-path generation process, and it is practicable for HINs with
complex semantics.

As illustrated in Fig. 2, themeta-path generation process can be naturally considered
as a Markov Decision Process (MDP), in which the next relation to extending the
meta-path depends on the current state in a meta-path. Moreover, an HGNN model
is proposed to learn node representations from the derived meta-paths that can be
applied to a downstream task, such as node classification. We propose to employ a
policy network (agent) to solve this MDP and use an RL algorithm enhanced by a
reward function to train the agent. The reward function is defined as the performance
improvement over historical performance, which encourages the RL agent to achieve
better and more stable performance. In addition, we find that there exists a large
computational redundancy during the information aggregation on meta-paths, thus we
develop an efficient strategy to achieve redundancy-free aggregation.

We showcase an instance of our framework, i.e. PM-HGNN, by implementing
it with a classic RL algorithm, i.e., Deep Q-learning (Mnih et al. 2015). Besides, we
further propose an extension of PM-HGNN++ to deal with the issues of high computa-
tional cost and ignoring relational information in PM-HGNN.Specifically, PM-HGNN
generates ameta-path for each node according to node attributes, while PM-HGNN++
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further enables the meta-path generation to explore the structural semantics of HIN.
PM-HGNN++ is able to not only significantly accelerate the HGRL process but also
improve the effectiveness of learned node representationswith promising performance
on downstream tasks.

Main contributions. We summarise our contributions below:

• We present a framework, PM-HGNN,1 to learn node representations in a HIN
without hand-crafted meta-paths. An essential novelty of PM-HGNN is that the
generated meta-paths are personalised to every individual node rather than general
to each node type.

• We propose an attention-based redundancy-free mechanism to reduce redundant
computation during heterogeneous information aggregation on the derived meta-
path instances.

• We further develop an extension of PM-HGNN, PM-HGNN++, which not only
improves the meta-path generation by incorporating node attributes and relational
structure but also accelerates the training process.

• Experiments conducted on node classification tasks with unsupervised and
(semi-)supervised settings exhibit that our framework can significantly and con-
sistently outperform 16 competingmethods (up to 5.6%Micro-F1 improvements).
Advanced studies further reveal that PM-HGNN++ can identifymeaningful meta-
paths that human experts have ignored.

2 Related work

Relational learning In the past decades, research focused on using frameworks that
could represent a variable number of entities and the relationships that hold amongst
them. The interest in learning using this expressive representation formalism soon
resulted in the emergence of a new subfield of machine learning that was described
as relational learning (Van Otterlo 2005; Raedt 2008). For instance, TILDE (Blockeel
and Raedt 1998) learns decision trees within inductive logic programming systems.
Serafino et al. (2018) proposed an ensemble learning-based relational learning model
for multi-type classification tasks in HINs. Petkovic et al. (2020) proposed a rela-
tional feature ranking method based on the gradient-boosted relational trees towards
relational data. Lavrac et al. (2020) presented a unifying methodology combining
propositionalisation and embedding techniques, which benefit from the advantages
of both in solving complex relational learning tasks. Nevertheless, most of them are
not in virtue of neural networks, which fall behind in automatically mining complex
HINs.

Graph neural networks Existing GNNs generalise the convolutional operations of
deep neural networks to deal with arbitrary graph-structured data. Generally, a GNN
model can be regarded as using the input graph structure to generate the computation
graph of nodes formessage passing, the local neighbourhood information is aggregated
to getmore effective contextual node representations in the network (Bruna et al. 2014;
Defferrard et al. 2016; Kipf and Welling 2017; Velickovic et al. 2018). However,

1 Code and data are available at: https://github.com/zhiqiangzhongddu/PM-HGNN
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the complex graph-structured data in the real world are commonly associated with
multiple types of objects and relations. All of the GNN models mentioned above
assume homogeneous graphs, thus it is difficult to apply them to HINs directly.

Heterogeneous graph representation learning HGRL aims to project nodes in
a HIN into a low-dimensional vector space while preserving the heterogeneous
node attributes and edges. A recent survey presents a comprehensive overview of
HGRL (Dong et al. 2020), covering shallow heterogeneous network embedding meth-
ods (Dong et al. 2017; Fu et al. 2017; Fan et al. 2018), and heterogeneous GNN-based
approaches that are empowered by rather complex deep encoders (Meng et al. 2015;
Schlichtkrull et al. 2019; Zhang et al. 2019; Wang et al. 2019; Fu et al. 2020; Hu et al.
2020; Zheng et al. 2021). The “shallow” methods are characterised as an embedding
lookup table, meaning that they directly encode each node in the network as a vec-
tor, and this embedding table is the parameter to be optimised. However, they cannot
utilise the node attributes and do not support the end-to-end training strategy. On the
other hand, inspired by the recent outstanding performance of GNN models, some
studies have attempted to extend GNNs for HINs. R-GCNs (Schlichtkrull et al. 2019)
keep a distinct linear projection weight for each relation type. HetGNN (Zhang et al.
2019) adopts different recurrent neural networks for different node types to incorpo-
rate multi-modal attributes. HAN (Wang et al. 2019) extends GAT (Velickovic et al.
2018) by maintaining weights for different meta-path-defined edges. MAGNN (Fu
et al. 2020) defines meta-path instance encoders, which are used to extract the struc-
tural and semantic information ingrained in the meta-path instances. However, all of
these models require manual effort and domain expertise to define meta-paths in order
to capture the semantics underlying the given heterogeneous graph.

A recent model, HGT (Hu et al. 2020), attempts to avoid the dependency on hand-
crafted meta-paths by devising transferable relation scores, but the number of layers
limits its exploration range, and it introduces a large number of additional parameters
to optimise. GTN Yun et al. (2019) selects meta-paths from a group of adjacency
matrices with learnable weights. The weights are shared among all nodes and are thus
not flexible to generate node-specific meta-paths for each individual node. In addition,
FSPGMeng et al. (2015), AutoPath Yang et al. (2018) and MPDRLWan et al. (2020)
attempt to employ RL technologies to discover paths between pairs of nodes and
further learn node representations for predicting the possibility of the existing edges
between node pairs. They assume the founded paths explicitly represent the similarity
between two nodes. However, they can only identify meta-paths that describe two
nodes’ similarities instead of generating meta-path for individual nodes to learn their
representations for node-wise tasks.Moreover, somework (Tanon et al. 2018; Ahmadi
et al. 2020) concerns the discovery of frequent patterns in a HIN and the subsequent
transformation of these patterns into rules, aka rule mining. But the found patterns
are not designed for specific tasks or nodes. Consequently, we believe it is necessary
and essential to developing a new HGRL framework that can support the adaptive
generation of personalised meta-paths for each node in HIN for node-wise tasks.

Discussion Table 8 summarises the key advantages of PM-HGNN and compares
it with a number of recent state-of-the-art methods. PM-HGNN is the first HGRL
model that can adaptively generate personalised meta-paths for each individual node
to support node-wise tasks and maintain the end-to-end training mechanism.

123



Personalised meta-path generation for heterogeneous graph…

3 Preliminaries

3.1 Problem Statement

Definition 1 (Heterogeneous information network): A HIN is defined as a directed
graph G = (V , E, N , R), associated with a node type mapping function φ : V → N
and a relation type mapping function ϕ : E → R, where N and R are the sets of node
and edge types, respectively. Node vi ’s attribute vector is denoted as xi ∈ R

λ (with
the dimensionality λ).

Definition 2 (Meta-path): Given a HIN G, a meta-path � with length T is defined as:

ω0
r1−→ ω1

r1−→ . . .
rT−→ ωT , where ω j ∈ N denotes a certain node type, and ri ∈ R

denotes a relation type.

Definition 3 (Meta-path Instance): Given a meta-path �, a meta-path instance p is
defined as a node sequence following the schema defined by �.

Problem: Heterogeneous graph representation learning. We formulate heteroge-
neous graph representation learning (HGRL) as an information integration optimi-
sation problem. For a given HIN G, f : (V , E) → R

d be a function to integrate
information from node attributes and network structure as node representations. With-
out manually specifying any meta-paths, we aim to jointly generate ρ (e.g., ρ=1)
meta-paths {� j }ρj=1 for each node vi ∈ V to guide f to encode rich structural and
semantic information in HIN, and accordingly learn representations for all nodes in
G.

3.2 Markov decision process

Markov Decision Process (MDP) is an idealised mathematical form to describe a
sequential decision process that satisfies theMarkovProperty (Sutton andBarto 1998).
An MDP can be formally represented with the quadruple (S, A,P,R), where S is a
finite set of states, A is a finite set of actions, and P : S × A → (0, 1) is a decision
policy function to identify the probability distribution of the next action according to
the current state. Specifically, the policy encodes the state and the available action at
step t to output a probability distribution P(at |st ), where st ∈ S and at ∈ A. R is
a reward function R : S × A → R, evaluating the result of taking action at on the
observed state st .

Modelling HGRL with MDP. As illustrated in Fig. 2, the meta-path generation
process of HGRL can be naturally modelled as an MDP. To generate a meta-path
with maximum of 3 steps for vA-1, we take the first step as an example, the state s1
is identifiable information of vA-1 and the action set includes relations in the HIN,
i.e., {Work,Cite, . . . }. The decision maker selects one relation from the action set to
extend the meta-path as a1 = argmaxa∈A(P(a | s1)). Then, the selected meta-path is
fed into HGNN to learn node representation and apply it to the downstream task to
obtain a reward score R(s1, a1) that can be used to update P . We refer to Sect. 4 for
more details about modelling HGRL with MDP.
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Fig. 2 Illustration of generating meta-paths as an MDP

3.3 SolvingMDPwith reinforcement learning

Deep Reinforcement Learning (RL) is a family of algorithms that optimise the MDP
with deep neural networks. At each step t , the RL agent takes action at ∈ A based
on the current state st ∈ S, and observes the next state st+1 as well as a reward
rt = R(st , at ). Looking at the definition of MDP, the agent acts as the decision
policy with P . We aim to search for the optimal decisions that maximise the expected
discounted cumulative reward, i.e., we aim to learn an agent network π : S → A to
maximise Eπ [∑T

t ′=t γ
t ′rt ′ ], where T is the maximum number of steps, and γ ∈ [0, 1]

is a discount factor to balance short-term and long-term gains, and smaller γ values
place more emphasis on immediate rewards (Arulkumaran et al. 2017).

Existing RL algorithms are mainly classified into two series: model-based and
model-free algorithms. Compared with model-based algorithms, model-free algo-
rithms have better flexibility, as there is always the risk of suffering frommodel under-
standing errors, which in turn affects the learned policy (Arulkumaran et al. 2017).
We adopt a classic model-free RL algorithm, i.e., Deep Q-learning (DQN) (Mnih
et al. 2015). The basic idea of DQN is to estimate the action-value function by using
the Bellman equation (Mnih et al. 2015) (Q∗) as an interactive update based on the
following intuition: if the optimal value Q∗(st , at ) of the state st was known for all
possible actions at ∈ A, then the optimal policy is to select the action ai maximising
the expected value R(st , at ) + γQ∗(st+1, at+1). And it is common to use a function
approximator Q to estimate Q∗ (Mnih et al. 2015):

Q(st , at ; θ) = Est+1

[

R(st , at ) + γ max
at+1∈A

(Q(st+1, at+1; θ))

]

, (1)
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(a) (b)

Fig. 3 Overview of PM-HGNN and PM-HGNN++

where θ stands for the trainable parameters in the neural network that is used to estimate
the decision policy. A value iteration algorithmwill approach the optimal action-value
Q̃, i.e., Q → Q̃, as t → ∞.

DQN exploits two techniques to stabilise the training: (1) thememory buffer D that
stores the agent’s experience in a replay memory, which can be accessed to perform
the weight updating. (2) the separate target Q-network (Q̂) to generate the target for
Q-learning, which is periodically updated.

4 The PM-HGNN Framework

We present the overview of the proposed PM-HGNN in Fig. 3a, which consists of two
components: the RL agent module and an HGNNmodule. According to states, the RL
agent aims at predicting actions for each individual node to arrive at better rewards.
Next, we generate meta-path instances based on generated personalised meta-paths to
support the information aggregation of HGNN to learn effective node representations.
Finally, we apply generated representations on the downstream task for performance
evaluation to obtain reward scores and save states, actions, and reward scores into the
RL agent for the subsequent updating.

4.1 PersonalisedMeta-path Generation with RL

A personalised meta-path generation process with maximum T steps for each node
can be modelled as a T -round decision-making process that can be naturally treated
as an MDP. We elaborate on the alignment between each MDP component and the
personalised meta-path generation process in the following.

State (S): The state is a vector used to assist the decision policy to select a rela-
tion type to extend the personalised meta-paths for each node. Hence, it is crucial to
comprehensively encode existing parts of a meta-path into a state. We adopt a gating
mechanism to adaptively update the state. Take vi ’s meta-path � (starting from node
type Nvi ) as an example, the state st of � at step t is formally defined as:

st = q ◦
⎛

⎝ 1

|D(vi )|
∑

j∈D(vi )

x j

⎞

⎠ + (1 − q) ◦ st−1, (2)
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where ◦ stands for the Hadamard product, D(vi ) represents a set of past nodes at
step t , and 1

|D(vi )|
∑

j∈D(vi )
x j represents the average vector of past nodes’ attributes.

st−1 stands for the state at step t − 1. q is the update gate that can determine
whether to update a state with past nodes’ attributes, and we estimate it by explor-
ing the relationship between past nodes’ attributes and states. It is formally defined

as: q = Sigmoid
(
fϕ

(
( 1
|D(vi )|

∑
j∈D(vi )

x j ) ‖ st−1

))
. fϕ can be seen as a shared

convolutional kernel (Velickovic et al. 2018), and 1 − q is the reset gate.
Action (A): The action space is a set of relation types to be chosen by the policy

network to extend the meta-path, and each relation type is labelled with a positive
integer. Note that we add a special action STOP to allow each node to have flexible-
length meta-paths. Beginning with the starting node vi , the decision policy iteratively
predicts which relation can lead to higher reward scores and accordingly use it to
extend the current meta-path. The decision policy selects the action STOP to finish
the path generation process if encountering a state that includes any extra relationship
to the current meta-path hurts the performance on the downstream task.

Decision policy (P): The decision policy aims at mapping a state in S into action in
A. The state space and the action space are continuous and discrete, respectively. Thus
we use a deep neural network to approximate the action-value function: P(at |st ; θ) :
S× A → (0, 1). Besides, since any arbitrary action a ∈ A is always a positive integer,
we use DQN (Mnih et al. 2015) to optimise the meta-path generation problem. We
utilise an MLP (Haykin 1999) as the decision policy network in the DQN, defined as:
z1 = WT

1 st + b1, z2 = WT
2 z1 + b2, ..., P̂ = Softmax(φm(WT

m zm−1 + bm)), where
Wm and bm denote the weight matrix and bias vector for the m-th layer’s perceptron,
respectively. The output P̂ ∈ (0, 1) stands for the possibilities of selecting different
relations at ∈ A to extend the meta-path. Note that it is possible to adopt other RL
algorithms to optimise the policy network. Here, we utilise a basic RL algorithm to
illustrate our framework’s main idea and demonstrate its effectiveness.

Reward function (R): We devise a reward function to encourage the RL agent
to achieve better and more stable performance on downstream tasks. We define the
reward function R as the performance improvement on the specific downstream task
comparing with the historical performances, given by:

R(st , at ) = M(st , at ) −
∑t−1

j=t−b M(s j , a j )

b
, (3)

where
∑t−1

i=t−b M(s j ,a j )

b is the baseline performance value at step t , which contains the
historical performances of the last b steps.M(st , at ) is the performance based on the
learned node representation Ht [vi ] on the downstream task (e.g., node classification).
And use its accuracy on the validation set as the evaluation performance M.

Optimisation The proposed meta-path generation at step t consists of three phases:
(i) obtaining state st ; (ii) predicting an action at = argmaxa∈A(Q(st , a; θ)) to extend
the meta-path according to the current state st ; (iii) updating state st to st+1. Moreover,
we train the policy network Q-function by optimising Eq. 1 with the reward function
as defined in Eq. 3, and the loss function is given by:
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(a)

(b)

Fig. 4 Comparison between information aggregation by conventional meta-path instances and the proposed
redundancy-free computation. a The sequential aggregation path instances generated from the meta-path

�: P
Written_by−−−−−−−→A

Cite−−→A
Write−−−→P (A: Author, P: Paper). b The improved aggregation structure by our

redundancy-free computation method with attention scores to distinguish messages from different nodes

LQ(θ) = ET ∼U (D)[(R(st , at ) +γ max
at+1∈A

Q̂(st+1, at+1; θ−)

− Q(st , at ; θ))2], (4)

where T = (st , at , st+1,R(st , at )) is randomly sampled replay memory from the
memory buffer D, θ− is the set of parameters in the separate target Q-network Q̂,
max
at+1∈A

Q̂(st+1, at+1; θ−) stands for the optimal target value, and Q(st , at ; θ) is the

predicted reward value based on the training Q-network.We optimise the Q-network’s
parameters by minimising the loss function.

4.2 Information aggregation with personalisedmeta-paths

Due to the heterogeneity of nodes in HIN, various types of nodes have different
attribute spaces. Before the information aggregation, we first do a node type-specific
transformation to project the latent features of different node types into the same
space, given by: H0[vi ] = Wωi ·xi , where xi and H0[vi ] are the original attributes and
projected features of node vi , andWωi is a learnable transformation matrix for the type
node ωi = φ(vi ). Next, we perform the information aggregation using the generated
meta-path instances to learn effective node representations for the downstream task.
Take node vi as an example, and its corresponding obtained meta-path is assumed to
be �.

We first generate meta-path instances {p1, p2, . . . } based on meta-path �. As the
example shown in Fig. 4, there could be many meta-path instances that follow meta-

path �, (e.g., � : Paper Written_by−−−−−−→ Author
Cite−−→ Author

Write−−−→ Paper). An intuitive
approach to performing information aggregation is to adopt sequential aggregation,
e.g., HetGNN Zhang et al. (2019) and HAN Wang et al. (2019). But we argue that
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these aggregated paths have computation redundancy, and the approach to aggregation
can be further improved. For example, P3 → A2 and P5 → A2 are repeatedly
calculated in the first aggregation step. We aim to merge these two instances into one
process {P3, P5} → A2 to reduce redundant computations, termed as redundancy-free
aggregation. Besides, we learn the attention scores Att(vi , v j ), where nodes vi and
v j are two ends of a link, for each link in the aggregation path so that messages on
different nodes can be distinguished from each other.

Let H0[vi ] be the projected features of node vi involved in the instance set
{p1, p2, . . . } of meta-path �. We give the updating procedure of H [vi ]:

Hl [vi ] = Aggregate
v j∈I (vi )

(
Att(vi , v j ) · Hl−1[v j ]

)
, (5)

where I (vi ) indicates the set of past nodes of vi in {p1, p2, . . . }, l ∈ {1, 2, . . . , t}
is the id of aggregator to perform information aggregation, and Aggregate(·) =
Relu(Mean(·)). The operator Att(·) calculates the importance of the received mes-
sages using the relation between past messages and node features, given by:

Att(i, j) = Softmax
j∈I (vi )

(
LeakyRelu

(
WHl−1[v j ] ‖ WHl−1[vi ]

))
, (6)

where W are the trainable parameters, and ‖ is the concatenation operator. Sect. 5.4
presents an empirical study to reveal how the redundancy-free aggregation affects the
time efficiency.

Algorithm 1 PM-HGNN
Input: HIN G = (V , E), Max step T , Number of RL agent training epochs K , Number of HGNN

training epochs B,
Output: Node representations HT

1: Initialise memory buffer D and Q-function
2: for k ← {1, 2, . . . , K } do Initialise information aggregators (HGNN)
3: for t ← {0, 1, 2, . . . , T } do
4: Sample a batch of nodes Vj from V
5: for vi ∈ Vj do
6: Obtain state st [vi ] via Eq. 2;
7: Get action at [vi ] = argmaxa∈AQ(st [vi ], a; θ)

8: Extend �t [vi ] with at [vi ] and generate {p0, p1, . . . }
9: end for
10: for β ← {1, 2, . . . , B} do
11: Perform information aggregation on {p0, p1, . . . } via Eq. 5
12: Optimise HGNN’ parameters via Loss-function L
13: end for
14: Information aggregation on pt with trained HGNN via Eq. 5
15: Obtain the learned node representations Ht

16: Obtain R(st , at ) on validation dataset via Eq. 3
17: Store the quartuple T = (st , at , st+1,R(st , at )) into D
18: Optimise Q-function using the data in D via Loss-function-Q (Eq. 4)
19: end for
20: end for
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4.3 Model training

Training of HGNN Finally, the updated node representation Ht [vi ] can be applied
to downstream tasks. Take semi-supervised node classification as an example, with
a small fraction of labelled nodes, we can optimise the HGNN’s parameters by
minimising the Cross-Entropy loss L via back-propagation and gradient descent:

L = − ∑

v∈VL

C−1∑

c=0
yv[c] · log(Ht [v][c]), where VL stands for the set of nodes with

labels, C is the number of classes, yv is the one-hot label vector of node v and Ht [v]
is the learned representation vector of node v. Meanwhile, the learned node repre-
sentation can be evaluated by task-specific evaluation matrix Meval for obtaining a
reward score. We summarise our PM-HGNN framework in Algorithm 1. Note that
PM-HGNN framework maintains the ability of HGNN in learning node representa-
tions for newly added nodes to the graph. The trained RL agent can adaptively generate
a meta-path for the new node to compute its representations.

4.4 PM-HGNN++

As seen in previous sections, PM-HGNN adopts the RL agent to generate meta-
paths for HGRL adaptively. However, reviewing the overall workflow of PM-HGNN,
we identify two limitations. (1) PM-HGNN neglects the relational structures of HIN
while generating meta-paths; (2) HGNN requires a large number of epochs to train
their parameters and obtain node representations, which restricts the efficiency of PM-
HGNN. To be more specific, PM-HGNN generates meta-paths by only considering
the node attribute information from the HIN, i.e., state st summarising the attributes
of nodes involved in the meta-path as Eq. 2. However, HIN’s semantic structure is
also important information to assist the meta-path generation. In addition, similar
to the training process of other deep neural networks (Kipf and Welling 2017), the
encoder of PM-HGNN needs a number of epochs to train their parameters to learn
effective node representations in terms of a set of meta-path instances. In this way,
if HGNN needs B epochs to train their parameters, then we need T × B epochs
to complete a meta-path generation process with the maximum number of steps T .
Meanwhile, the RL agent also needs lots of explorations to obtain numerous samples
(T = (st , at , st+1,R(st , at ))) to train the policy network that can result in a combi-
natorial scale explosion. In the end, following the average aggregation approach to
defining node states, PM-HGNN is not able to distinguish node states with categorical
attributes, as shown in Eq. 2.

New State (S). To address the identified limitations, we propose an extension of
PM-HGNN, PM-HGNN++, which can utilise the structure information of HIN and
significantly accelerate the meta-path generation process. Our solution is to define a
novel state instead of Eq. 2. Because we notice that the encoder (i.e., HGNN) of PM-
HGNN can summarise node attributes and topological structure information involved
in meta-paths to assist meta-path generation. In particular, we utilise the latest node
representation vector Ht−1[vi ] of meta-path’s starting node vi as the state. The new
state (S) can be formally described as:
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st = Normalise(Ht−1[i]), (7)
whereNormalise is a normaliser trained on the first B generated states to convert the

states into the same distribution.Hence, inputwill be normalized as H [vi ]−Hmean
Hstd

, where
Hmean and Hstd is calculated by the first B states. Note that normaliser is a common
trick used in deep RL for stabilising the training when the S is very sparse (Hou et al.
2017). In addition, Ht [i] contains not only node attributes but also the relevant graph
structure information of each node, hence st of Eq. 7 can distinguish different nodes
with categorical attributes. So, it endows PM-HGNN++ with the ability to handle
graphs with diverse node attributes.

Algorithm 2 PM-HGNN++
Input: HIN G = (V , E), Max timesteps T , Number of RL agent training epochs K ,
Output: Node representations HT

1: Initialise information aggregators (HGNN), memory buffer D and Q-function
2: for k ← {0, 1, K − 1} do
3: Step t = mode(k, T ) + 1
4: Sample a batch of nodes Vj from V
5: for vi ∈ Vj do
6: Obtain state st [vi ] via Eq. 7
7: Get the action at [vi ] = argmaxa∈AQ(st [vi ], a; θ)

8: Extend the meta-path �t [vi ] with at [vi ]
9: Generate meta-path instances {p0, p1, . . . }
10: end for
11: Perform information aggregation on {p0, p1, . . . } via Eq. 5
12: Obtain the learned node representations Ht

13: Obtain R(st , at ) on validation dataset via Eq. 3
14: Store the quartuple T = (st , at , st+1, Rt ) into D
15: Optimise HGNN’s parameters via Loss-function L
16: Optimise Q-function using the data in D via Loss-function-Q (Eq. 4)
17: end for

New trainingprocess. The trainingprocess canbe further improvedbasedon thenew
definition of the state. The learned node representation can be further used to optimise
HGNN’s parameters and update the RL agent. We achieve such a kind of mutual
optimisation between the RL agent and HGNN since the meta-paths are generated
based on the current status of HGNN. With this novel training process, we only need
T epochs to complete ameta-path generation procedure becausewe do not need towait
for the encoder to complete an entire training process, instead of T × B epochs. We
summarise PM-HGNN++ in Algorithm 2. We perform empirical analysis to compare
the time consuming of PM-HGNN and PM-HGNN++ in Sect. 5.4. Note that, similar
to PM-HGNN, PM-HGNN++ framework can adaptively generate a meta-path for the
new node to compute its representation, which maintains the ability of HGNN to learn
representations for newly added nodes.

4.5 Model analysis

The proposed models can deal with various types of nodes and relations and fuse
rich semantics in HINs. Benefiting from the RL agent, personalised meta-paths are
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generated for different nodes, and the HGNN encoder allows information to transfer
between nodes via diverse relations. The RL agent that we adopted in this paper, i.e.,
Deep Q-learning (DQN), is hard to give the precise computation complexity (Fan et al.
2020), hence we give the empirical meta-path generation time in IMDb and DBLP
datasets in Sect. 5.4 (Fig. 8). Given a meta-path � and the dimensionality of (hidden)
node representations is d. The time complexity of the node representation learning
process isO(V�d2+E�d), where V� is the number of nodes following the meta-path
� and E� is the number of meta-paths based node pairs. O(V�d2) accounts for the
representation transformation process andO(E�d) represents the Att(·) computation
process of relevant edges. To further unfold the relationship between the complexity of
generated meta-paths and the performance, we also report how the maximum step T
and the number of aggregation paths affect the node classification performance based
on the IMDb dataset in Sect. 5.4 (Table 6).

5 Experiments

5.1 Experimental settings

Datasets We adopt three HIN datasets (IMDb and DBLP, ACM) (Wang et al. 2019;
Fu et al. 2020) from different domains to evaluate our models’ performance. Statistic
information is summarised in Table 4 and themeta-relation schema are shown in Fig. 9.
The detailed description of datasets refers to Appendix A.

Competing methods and model configuration We compare their performance
against various state-of-the-art models. They include 5 homogeneous graph repre-
sentation learning models: LINE Tang et al. (2015), DeepWalk Perozzi et al. (2014),
MLP, GCN Kipf and Welling (2017), GAT Velickovic et al. (2018); and 10 HGRL
models: Esim Shang et al. (2016), metapath2vec Dong et al. (2017), JUST Hussein
et al. (2018), HERec Shi et al. (2019), NSHE Zhao et al. (2020), RGCN Schlichtkrull
et al. (2019), HAN Wang et al. (2019), GTN Yun et al. (2019), MAGNN Fu et al.
(2020) and HGT Hu et al. (2020); and 1 state-of-the-art relational learning model
PropStar (Lavrac et al. 2020). Note that FSPG Meng et al. (2015) AutoPath Yang
et al. (2018) and MPDRLWan et al. (2020) do not support node-wise tasks since they
learn paths that explicitly represent the similarity between pairs of nodes (as discussed
in Sec. 2). Therefore we cannot compare them. The detailed model description and
configuration for implementation refer to Appendix C and Appendix E.

Evaluation settingsWe evaluate our models under node classification. For the semi-
supervised setting, we adopt the same settings as in MAGNN Fu et al. (2020) to use
400 instances for training and another 400 instances for validation, the rest nodes
for testing. The generated node representations are further fed into a support vector
machine (SVM) classifier to get the prediction results. For the supervised setting, we
use the same percentage of nodes for training and validation, respectively. Use the rest
of the nodes for testing. We report the average Micro-F1 and Macro-F1 scores of 10
runs with different seeds.
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5.2 Experimental results

Semi-supervised node classification. We present the results in Table 1, in which com-
peting methods that cannot support semi-supervised settings utilise the unsupervised
settings. PM-HGNN++ performs consistently better than all competing methods
across different proportions and datasets. On IMDb, the performance gain obtained by
PM-HGNN++ over the best competingmethod (MAGNN) is around (3.7%−5.08%).
GNN models designed for homogeneous and heterogeneous graphs perform better
than shallow HGRL models. This demonstrates that the modelling of heterogeneous
node attributes improves the performance significantly. On DBLP and ACM, the per-
formances of all models are overall better compared with the results on IMDb. It is
interesting to observe that different from the results on IMDb, the shallow hetero-
geneous network methods, i.e., JUST and NSHE obtain better performances than a
few number of homogeneous GNNs. That said, the heterogeneous relations on DBLP
and ACM are useful for the node classification task. PM-HGNN++ apparently out-
performs the strongest competing method (i.e., MAGNN) up to 2.4%, showing the
generality and superiority of PM-HGNN++. In addition, among unsupervised com-
peting methods, NSHE obtains better performance than other unsupervised methods,
showing that network schema in HIN is helpful to obtain better representations.

Supervised node classification. We present the results in Table 2. We can see that
PM-HGNN++ consistently outperforms all competing models on IMDb, DBLP and
ACM datasets, with up to 5.6% in terms of Micro-F1. Heterogeneous GNNs out-
perform homogeneous GNNs, and our PM-HGNN++ achieves the best performance.
This demonstrates the usefulness of heterogeneous relations and the advantages of gen-
erating appropriate personalised meta-paths for each node according to its attributes
and relational structure.

5.3 Meta-path analysis

Meta-path generation process visualisation We visualise how the RL agent in PM-
HGNN++ generates personalised meta-paths for each target node in Figs. 10,11 and
Figs. 12.10 summarises the actions made by the RL agent on IMDb with different
max steps under the semi-supervised setting. The percentages marked in the figure
present the fraction of nodes choosing the corresponding relation to extend the meta-

path at that step. For example, the meta-pathM
64.8%−−−→ A

8.8%−−→ M with T = 2. 64.8%
means there are 64.8% Movie nodes select MA relation at step-1, and 8.8% means
among thoseMovie nodes who selectedMA at step-1, there are 8.8% nodes selecting
AM to extend the meta-path. It is interesting to see that the RL agent selects the
relationMA at the first step more often than the other oneMD. It means that a movie’s
characteristic is more related to its actors than its director. Besides, when step T = 2,
the RL agent selects plenty of STOP actions. This shows that two short meta-paths, i.e.,

Movie
MA−−→ Actor and Movie

MD−−→ Director are informative enough for the majority
of nodes to learn effective representations. Moreover, there are 6.7% − 9.4% nodes
that do not need any meta-paths to learn their representations. This implies that their
attributes can provide enough information. This has also been reflected in the results
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Table 3 Meta-paths designed by PM-HGNN++ on IMDb

T Meta-paths Designed by PM-HGNN++ Percentage (%)

T = 1 Movie →Actor 58.1

Movie → Director 32.9

T = 2 Movie → Actor 59.1

Movie→Director 23.8

Movie→Actor→Movie 5.7

Movie→Director→Movie 4.7

Movie→Actor 42.7

Movie→Director 25.8

T = 3Movie →Actor→Movie→Actor 5.9

Movie→Actor→Movie→Director 4.9

Movie→Actor→Movie 3.2

Manual Movie→Actor→Movie,Movie→Director→Movie

GTN Yun et al. (2019) Movie→ Director, Movie→ Actor

Movie→Director→Movie

of MLP in Sect. 5.2, which does not utilise any structural information but only node
attributes. More analyses on Figs. 11 and12 can be found in Appendix B.

Overall meta-path statistics. We further present meta-paths generated for most of
the target nodes in Table 3,2 which are summarised from Fig. 10. Table 6 and7 present
the generated meta-paths on DBLP and ACM, respectively. We can find from Table 3
that theRL agent can generate the samemeta-paths asmanually-defined ones. Besides,
wefind that thesemeta-paths specified by human experts are not themost useful ones to

learn node representations for Movie nodes. Two short meta-paths Movie
MA−−→ Actor

and Movie
MD−−→ Director are the most useful ones. This indicates that participants

(director and actors) of the movie largely determine its type as the task is to predict the
class of a movie. The top three meta-paths generated by the most potent competing
method, GTN, confirm our observation that two shorter meta-paths are more valuable
to learn Movie nodes’ representations. However, GTN can only select several meta-
paths for every node type; our model can identify personalised meta-paths for each
node. More analyses on Tables 6 and 7 can be found in Appendix B.

Meta-path comparison In order to understand how does PM-HGNN++ generate
personalised meta-paths for different nodes, we hereby present another analysis to
investigate the designed meta-path lengths for nodes that can be correctly classi-
fied according to raw node attributes. Specifically, we devide nodes into two groups,
pos and neg, according to whether applying multi-layer perceptron (MLP) with node
attributes can produce correct classification under supervised settings. That said,
correctly-classified nodes and incorrectly-classified ones are grouped into pos and
neg, respectively. Then, we calculate the average lengths of PM-HGNN++ generated
meta-paths for nodes belonging to twogroups. The results are reported inFig. 5.Wecan

2 We do not present the relation types for all meta-paths in3.
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Fig. 5 The average meta-path
length generated by
PM-HGNN++ on different
datasets. MLP (pos)/ MLP (neg)
are groups of nodes that MLP
makes correct and wrong
classifications, respectively

Fig. 6 Micro-F1 and the number
of aggregations of
PM-HGNN++ on IMDb, with
different max steps

find that nodes that cannot be correctly classified by MLP are associated with longer
personalised meta-paths. Such results deliver an important insight: PM-HGNN++
tends to explore deeper relational neighbouring structure to enhance node represen-
tation learning, i.e., discriminating nodes with different labels from one another, if
node attributes themselves cannot provide sufficient information. Moreover, in the
DBLP dataset, which has more complicated heterogeneous semantic patterns (4 node
types and 6 relation types), node group MLP (neg) has relatively longer meta-paths
because PM-HGNN++ can have more options to explore and generate personalised
meta-paths.

5.4 Model snalysis on PM-HGNN++

Maximum step T . We study how the influence of maximum step T and the number
of aggregation paths affect on the classification performance. The results on IMDb
dataset are presented in Fig. 6. Setting T ≥ 2 leads to the most significant perfor-
mance improvement in terms of Micro F1 over T = 1. As T increases, the number
of aggregation paths also increases. Considering that more aggregation paths bring
higher computational cost, we choose T = 2 for the experiments in Sect. 5.2, even
though T >2 can produce better performance.

Redundancy-free aggregation We investigate the influence of the redundancy-free
improvement according to the number of aggregations with/without the improvement.
Fig. 7 shows the results. We can find that our redundancy-free aggregation strategy
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Fig. 7 The relative numbers of aggregations (# of without the redundancy-free aggregation divided by # of
with the redundancy-free aggregation) under different maximum steps on IMDb (left) and DBLP (right)

Fig. 8 Run time analysis of meta-path generation for PM-HGNN and PM-HGNN++ under different max
steps based on IMDb (left) and DBLP (right) datasets. The x-axis is the number of maximum timestep in
generating meta-paths, and the y-axis is the relative time (i.e., the run time of PM-HGNN++ divided by
the run time of PM-HGNN). Besides, the numbers at tops of bars indicate the run time values in seconds

significantly reduces the number of information aggregations. Besides, as the maxi-
mum step T increases, the reduction effect is more obvious. On IMDb, our method
reduces near 50% aggregations with T = 2, and the reduced ratio is more than 80%
when T = 4.

Run time analysis ofmeta-path generationAs described in Sect. 4.4, PM-HGNN++
can accelerate the meta-path generation process through the proposed novel training
process. Here we compare the run time of PM-HGNN and PM-HGNN++ for person-
alised meta-paths generation. We report their actual run time in seconds, and calculate
the run time of PM-HGNN++ relative to PM-HGNN (i.e., relative time). The results
on IMDb and DBLP datasets are shown in Fig. 8. We can find that PM-HGNN++
is less than 5% of PM-HGNN’s run time on both datasets. Such results exhibit the
promising time efficiency of PM-HGNN++.
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6 Conclusions and future work

We have studied in this paper the HGRL problem and identified the limitation of exist-
ing HGRL methods, i.e., mainly due to their dependency on hand-crafted meta-paths.
In order to fully unleash the power of HGRL, we presented a novel framework PM-
HGNN and proposed one extension model PM-HGNN++. Compared with existing
HGRLmodels, the most significant advantages of our framework lie in avoiding man-
ual efforts in defining meta-paths of HGRL and generating personalised meta-paths
for each individual node. The experimental results demonstrated that our framework
generally outperforms the competing approaches and discovers useful meta-paths that
have been ignored by human expertise. In the future, we plan to extend our framework
to other tasks on HINs, such as online recommendation and knowledge graph com-
pletion and understanding PM-HGNN’s generated meta-paths is another promising
direction.
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A Datasets

The statistics of datasets are summarised in Table 4. Detailed descriptions of two
datasets are presented as follows:

IMDb3 is an online dataset about movies and television programs, including infor-
mation such as cast, production crew and plot summaries.We extract a subset of IMDb
that contains 4, 278movies, 2, 081 directors and 5, 257 actors. Themovies are labelled
as one of the three classes, i.e., Action, Comedy and Drama, according to their genre
information. The attribute of each movie corresponds to elements of a bag of words
(i.e., their plot keywords, 1, 232 in total).

DBLP4 is an online computer science bibliography. We extract a subset of DBLP
that contains 4, 057 movies, 1, 4328 papers, 7, 723 terms and 20 venues. The authors
are labelled as one of the following four research areas: Database, Data mining,
Machine learning and Information retrial. Each author can be described by a bag of
words (i.e., their paper keywords, 334 in total).

3 https://www.imdb.com/
4 https://dblp.uni-trier.de/
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Table 4 Statistics of the datasets

Dataset Node Relation # Attributes

# Movie (M): 4,278 # M-D, # D-M: 4,278 1,232

IMDb # Director (D): 2,081 # M-A, # A-M: 12,828

# Actor (A): 5,257

DBLP # Author (A): 4,057 # A-P # P-A: 19,645 334

# Paper (P): 14,328 # P-T # T-P: 85,810

# Term (T): 7,723 # P-V # V-P: 14,328

# Venue (V): 20

ACM # Paper (P): 3,025 # A-P # P-A: 9,744 1,830

# Author (A): 5,835 # P-S # S-P: 3,025

# Subject (S): 56

(a)

(b) (c)

Fig. 9 Meta-relation schema of three datasets

ACM5 is an online academic publication dataset. We extract papers published in
KDD, SIGMOD, SIGCOMM, MobiCOMM and VLDB and divided the papers into
three classes (Database, Wireless Communication, and Data Mining). Then, we con-
struct a HIN that comprises 3, 025 papers, 5, 835 authors and 56 subjects. Paper
features correspond to elements of a bag of words represented by keywords. We label
the papers according to the conference they published.

5 https://dl.acm.org/
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(a) (b) (c)

Fig. 10 Actions that the RL agent takes on IMDb: a, b and c correspond to PM-HGNN++ with max step
T = 1, 2, 3, respectively. The red triangles with “S” indicate the “STOP” action. The thickness of links
represents the ratio of the corresponding action (Color figure online)

B MoreMeta-paths Analysis

We have introduced three datasets that we used in the experimental Sections in
Sect. 5.1 and Section A. Here we further present the set of meta-paths that are possibly
generated in each step in Table 5.6 It should be noted that as we discussed in Section 4,
there is always an available STOP action at each step. That said, PM-HGNN variants
allow to design meta-paths with flexible lengths at each step.

We present more meta-path analysis here. Figures 117 and12 visualise how the
reinforcement learning agent in PM-HGNN++ generates personalised meta-paths for
each target node on DBLP and ACM datasets with different max steps under the semi-
supervised setting, respectively The percentages marked in the figure represent the
fraction of nodes choosing the corresponding relation to extend the meta-path at that
step. Tables 6 and 7 summarise the predefined meta-paths, the found important meta-
paths by GTNYun et al. (2019) and the top-frequent personalisedmeta-paths designed
by PM-HGNN++ for the target nodes of DBLP and ACM datasets, respectively. The
meta-path generation process is shown in Figures 11 and 12, the RL agent makes
decisions to extend the meta-paths for different nodes according to the defined state S.
Note that, we only present the top-5 frequent meta-paths if there are more possibilities.

C CompetingMethods

We adopt 5 homogeneous graph representation learning models and 10 heterogeneous
graph representation learning models and 1 state-of-the-art relational learning model
as competing methods.

6 We only discuss the meta-paths that started with target nodes of each dataset.
7 We present the visualisation results of T < 4, since the figure will be too dense to see the content clearly
with T = 4
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(a) (b) (c)

Fig. 11 Actions that the RL agent takes on DBLP: a, b and c correspond to PM-HGNN++ with max step
T = 1, 2, 3, respectively. The red triangles with “S” indicate the “STOP” action. The thickness of links
represents the ratio of the corresponding action (Color figure online)

(a) (b) (c)

Fig. 12 Actions that the RL agent takes on ACM: a, b and (c) correspond to PM-HGNN++ with max step
T = 1, 2, 3, respectively. The red triangles with a black “S” indicate the “STOP” action. The thickness of
links represents the ratio of the corresponding action (Color figure online)

1. LINETang et al. (2015) is a traditional homogeneousmodel that exploits the first-
order and second-order proximity between nodes. We apply it to the datasets by
ignoring heterogeneous information network heterogeneity and node attributes.

2. DeepWalk Perozzi et al. (2014) is a random walk-based graph representation
learning method for homogeneous graphs, we apply it to the datasets by ignoring
heterogeneous information network heterogeneity and node attributes.

3. ESimShang et al. (2016) is a heterogeneous graph representation learningmethod
that learns different semantics frommultiple meta-paths. It requires a pre-defined
weight for each meta-path, we assign all meta-paths with the same weight.

4. metapath2vec Dong et al. (2017) is a heterogeneous graph representation learn-
ing approach that performs randomwalks on heterogeneous information networks
with the guidance of pre-defined meta-paths and utilises skip-gram to generate
node representations.

5. JUST Hussein et al. (2018) is a heterogeneous graph representation learning
method that does not rely on manually defined meta-paths.
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6. HERec Shi et al. (2019) is a heterogeneous graph representation learning method
that designs a type constraint strategy to filter the node sequence and utilises
skip-gram to generate node representations.

7. NSHEZhao et al. (2020) is a heterogeneous graph representation learningmethod
that tries to maintain network schema during network representation learning.

8. MLP Haykin (1999) is a class of feed-forward neural networks that learns infor-
mation from node attributes without structural information.

9. GCN Kipf and Welling (2017) is a homogeneous graph neural network that
extends the convolution operation to graphs. Here we test GCN on meta-path-
based homogeneous graphs and report the results from the best meta-path.

10. GAT Velickovic et al. (2018) is a homogeneous graph neural network that
performs convolution on graphs with an attention mechanism. Similar to the
implementation of GCN, here we test GAT on meta-path-based homogeneous
graphs and report the results from the best meta-path.

11. RGCN Schlichtkrull et al. (2019) is a heterogeneous graph neural network model
which keeps a different weight for each relation to perform convolution on graphs.
The graph neural network encoder is the same as GCN.

12. HAN Wang et al. (2019) is a heterogeneous graph neural network model which
learns meta-path guided node representations from different meta-path-based
homogeneous graphs and integrates them with using attention.

13. GTN Yun et al. (2019) is a heterogeneous graph neural network model which
transforms a heterogeneous graph into multiple new graphs defined by given
meta-paths and selects from them by transition probability.

14. PropStar Lavrac et al. (2020) is state-of-the-art relational learning which uses
embedding vectors to represent the features of the data set. Individual relational
features obtained as the result of pro-positionalisation by Wordification, are used
by supervised embeddings learners to obtain representations, co-located with
instance labels.

15. MAGNN Fu et al. (2020) is a heterogeneous graph neural network model which
defines meta-path instance encoders to extract the structure and semantics in
meta-paths to improve generated representations.

16. HGTHu et al. (2020) is a heterogeneous graph neural network model which uses
each meta-relation to parameterise transformer-like self-attention architecture to
capture common and specific patterns of relationships.

For LINEandDeepWalk,we utilise the integrated implementations fromGraphEm-
bedding.8 For metapath2vec, RGCN, HAN and HGT, we utilise the integrated
implementations fromDeepGraphLibrary.9 ForGCNandGAT,we use the implemen-
tation fromPytorGeometric.10 For othermethods,we adopt the official implementation

8 https://github.com/shenweichen/GraphEmbedding
9 https://www.dgl.ai/
10 https://pytorch-geometric.readthedocs.io/en/latest/
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Table 8 Model comparison from various aspects: Heterogeneous Information Network (HIN), Node-wise
Task (NT), End-to-end Training (E2E), Without Manual-defined Meta-paths (WMM), Adaptive Meta-path
Generation (AMG), Meta-paths Attached (MPA) to each node-pair (∗), each node type (◦) or each node (•)

HIN NT E2E WMM AMG MPA

LINE Tang et al. (2015) � �
DeepWalk Perozzi et al. (2014) � �
FSPG Meng et al. (2015) � � � ∗
Esim Shang et al. (2016) � � � ◦
metapath2vec Dong et al. (2017) � � � ◦
JUST Hussein et al. (2018) � � � �
HERec Shi et al. (2019) � � � ◦
NSHE Zhao et al. (2020) � � � ◦
GCN Kipf and Welling (2017) � � �
GAT Velickovic et al. (2018) � � �
RGCN Schlichtkrull et al. (2019) � � � ◦
AutoPath Yang et al. (2018) � � � � ∗
HAN Wang et al. (2019) � � � ◦
GTN Yun et al. (2019) � � � � ◦
MAGNN Fu et al. (2020) � � � ◦
HGT Hu et al. (2020) � � � � � ◦
MPDRL Wan et al. (2020) � � � � ∗
PM-HGNN � � � � � •

provided in their publishedpapers: ESim,11 JUST,12 HERec,13 NSHE,14 GTN,15 Prop-
Start16 and MAGNN.17

D Model comparison

In Section 2, we have systematically discussed related work and highlighted the differ-
ences betweenPM-HGNNand them.Here,we further present Table 8 to summarise the
key advantages of PM-HGNN and compares it with a number of recent state-of-the-art
methods. PM-HGNN is the first HGRL model that can adaptively generate person-
alised meta-paths for each individual node to support node-wise tasks and maintain
the end-to-end training mechanism.

11 https://github.com/shangjingbo1226/ESim
12 https://github.com/eXascaleInfolab/JUST
13 https://github.com/librahu/HERec
14 https://github.com/AndyJZhao/NSHE
15 https://github.com/seongjunyun/Graph_Transformer_Networks
16 https://github.com/SkBlaz/PropStar
17 https://github.com/cynricfu/MAGNN
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E Model configuration

For the DQN of the proposed PM-HGNN and PM-HGNN++, we use the implemen-
tation in Mnih et al. (2015) with a few modifications to fit it with our frameworks. We
develop a 5-layers MLP with (32, 64, 128, 64, 32) as the hidden units for Q function.
The memory size is 50 × b, where b is the number of validation nodes in the dataset.
For the HGNN module of PM-HGNN and PM-HGNN++, we randomly initialise
parameters and optimise the model with Adam optimiser. We set the learning rate to
0.005, the regularisation parameter to 0.0001, the representation vector dimension is
128, the dimension of the attention vector Att(·) to 16, the training batch size to 256
and the number of attention head is 8, with a dropout ratio to 0.5. The max steps (T )
for IMDb and DBLP are 2 and 4, respectively. For a fair comparison, we set the node
representation dimension of all the models mentioned above to 64.

For random walk-based methods, including DeepWalk, ESim, metapath2vec and
HERec, we set the window size to 5, walk length to 100, walks per node to 40 and the
number of negative samples to 5. For GAT, HAN, and MAGNN, we set the number
of attention heads to 8. For HAN and MAGNN, we set the dimension of the attention
vector in inter-meta path aggregation to 128. For meta-path guided methods, including
Esim, metapath2vec, HERec, HAN andMAGNN, we give them the pre-defined meta-
paths as in Wang et al. (2019). For IMDb, there are two meta-paths: Movie → Actor
→ Movie and Movie → Director → Movie. For DBLP, there are three meta-paths:
Author → Paper → Author, Author → Paper → Term → Papper → Author, Author
→ Paper → Venue → Papper → Author, and Venue → Paper → Author. For the
relational learning model, we use the implementation published with the official paper
and adopt model settings the same as the official settings for the IMDb dataset. For
relational learning and graph neural network-basedmodels, we test themwith the same
parameters as PM-HGNN on the same data split. Competing models are implemented
with Pytorch18 following the published implementations .
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