
On Observability Analysis in Multiagent Systems
Chunyan Mua;* and Jun Pangb

aDepartment of Computing Science, University of Aberdeen
bDepartment of Computer Science, University of Luxembourg

Abstract. In multiagent systems (MASs), agents’ observation upon
system behaviours may improve the overall team performance, but
may also leak sensitive information to an observer. A quantified ob-
servability analysis can thus be useful to assist decision-making in
MASs by operators seeking to optimise the relationship between per-
formance effectiveness and information exposure through observa-
tions in practice. This paper presents a novel approach to quantita-
tively analysing the observability properties in MASs. The concept
of opacity is applied to formally express the characterisation of ob-
servability in MASs modelled as partially observable multiagent sys-
tems. We propose a temporal logic oPATL to reason about agents’
observability with quantitative goals, which capture the probability
of information transparency of system behaviours to an observer,
and develop verification techniques for quantitatively analysing such
properties. We implement the approach as an extension of the PRISM
model checker, and illustrate its applicability via several examples.

1 Introduction
The multiagent computing paradigm pervades nearly all aspects of
the modern intelligent computational world, enabling the creation
of net-based solutions to communication, collaboration, and coor-
dination problems in different fields such as commerce, cyber, and
conflict prevention. Agents often exploit machine learning meth-
ods, which allow them to learn from experience, and to imple-
ment decision-making mechanisms. Observation of other agents’ be-
haviours may improve the overall team performance in the learn-
ing mechanisms [26]. On the other hand, in practice, due to the
frequently adversarial nature of multiagent systems (MASs) such
solutions can also bring additional channel threat and information
leakage risks. Sensitive information can be leaked to malicious (in-
side/outside) agents during the process of collaboration and interac-
tion. Information exposure issue should also play a role in making
decisions for agents. Therefore, rigorous analysis and verification of
(sensitive) information transparency properties constitutes an impor-
tant challenge. In particular, a quantified observability analysis can
be useful in MASs design to address such concerns, for instance, for
decision-making by operators seeking to optimise the relationship
between performance effectiveness and information exposure secu-
rity risks in MASs, which are the key underpinning elements of a
progressive artificially intelligent society.

This paper addresses the problem of specifying, verifying and thus
reasoning about observability properties of MASs. Specifically, we
specify the observability properties from novel perspective of infor-
mation transparency in the opacity framework, which is formally

∗ Corresponding Author. Email: chunyan.mu@abdn.ac.uk

described in the logic oPATL. With this logic, we can express the
degree of transparency of system behaviours to an observer under a
coalition of agents’ strategy, given predefined observability of atomic
actions to the observer. We model the system in partially observable
probabilistic game structure, which maps infinite (input) sequences
onto partially observable infinite (output) sequences. The properties
of observability can then be captured by measurement upon output
sequences and input sequences. Intuitively, a transparent system, in
which the observability is maximised, reveals most information in
the input sequence; while an opaque system, in which the observabil-
ity is minimised, hides some information (with properties of interest)
contained in the input sequence. Probabilistic model checking tech-
niques can be applied to reason about the quantitative observability
analysis of the system, and allow us to calculate the degree of the
observability of the system behaviours.

The main contributions of the paper are summarised below:

• A partially observable multi-agent system (POMAS) is proposed
to model probabilistic action outcomes of system behaviours with
characterisation of multi-agents, actions and the relevant observ-
ables, and atomic state propositions.

• The logic of oPATL is presented to allow us to express (proba-
bilistic) observability properties.

• Probabilistic verification technique against oPATL is presented to
allow for automatic verification of quantified observability prop-
erties in MASs modelled as POMAS.

• A prototype of the proposed framework is built upon the PRISM
model checker [22].

Related work. In the field of formal methods for artificial intelli-
gence, logics have gained a great importance in expressing proper-
ties and providing powerful formalisms for reasoning about agents
behaviours in MASs. There have been several multiagent logics pro-
posed to express and reason about agents’ observation properties in-
cluding [19, 5, 12, 17]. These logics have centred on knowledge rep-
resentation where knowledge is built from what the agents observe.
In these logics, the formation of knowledge is modelled via epistemic
connectives which can be defined as modal operators of the form
Ki ϕ specifying “agent i knows property ϕ”, and the observability of
agents is modelled via Kripkean accessibility relations with respect
to the visibility atoms of propositional variables: agent i cannot dis-
tinguish valuation w from w′ if every variable that agent i observes
has the same value atw andw′. A number of works [18, 17, 31] have
studied multiagent planning model to adapt strategy for cooperation
and analyse trade-off between local observation and capability of
coordination based on estimation of quantified communicating and
variant costs. Various methods and accompanying implementations

have also been developed supporting the verification against the log-
ics and their variations [1, 24, 6, 23, 7]. This line of works focused on
epistemic logics regarding the knowledge about the state of the sys-
tem, mostly used for producing epistemic planning. It is not natural
to apply these approaches to investigate (sensitive) information flow
caused by observation and inference. In addition, Huang et al. [20]
proposed PATL*, which enables reasoning about MASs with incom-
plete information. While PATL* can be applied to reason about the
possible states of the system and the possible actions of other agents
based on their beliefs and strategies, it does not directly address is-
sues related to information exposure resulting from observation of
agents’ actions and behaviours for flow security concern.

In contrast, this work opens a novel perspective from informa-
tion transparency based on the concept of opacity. It builds upon
the frameworks of PATL [14] and probabilistic opacity [11, 29] to
investigate the formal expression of agents’ observations about the
information of actions taken by other agents. We are concerned with
studying the effects of agents’ behaviours on the overall system, par-
ticularly in terms of potential information leakage. Actions are a nat-
ural choice for representing the relations between states, which is
why we focused on observations over actions rather than over states.
However, the distinction between observations over states and ac-
tions is often blurred, and the choice between the two depends on
the specific research context and goals. Ultimately, our choice of us-
ing PATL was driven by its suitability for modelling complex in-
teractions among multiple agents and their strategies, as well as its
ability to reason about the effects of actions on the system over
time. Intuitively, a concerned behaviour (satisfying a property ϕ,
e.g., reaching a secret state) of a system is considered as opaque
if, whenever the behaviour has occurred, there is a non-concerned
behaviour (violating property ϕ) that is observationally equivalent.
Opacity represents a suitable option for specifying observation and
information flow properties in MASs due to the feature of partial
observability of agents, agent behaviours, the uncertainty of the en-
vironment, and the nature of information. Observation in our work
is considered as a modal operator, based on the concept of opacity,
with more intuitive semantics. Our approach can capture the infor-
mation induced/obtained via inference, a direct application is privacy
loss/information leakage analysis and assessment.

As a consequence, this work also relates to information flow secu-
rity awareness analysis and verification. Over the past years there has
been a sustained effort in exploring concepts and analyses in quan-
tified information flow for secure computing systems. Indeed, this
period has seen significant inroads made into the study of core imper-
ative languages and their probabilistic aspects [15, 21, 25, 29]; and
some attempts to study quantified approaches to flow security of sys-
tem specifications in various interactive settings [3, 2, 8, 10, 28, 29].
However, none of these studies has accounted for multiple agent sce-
narios, which involve dynamic patterns of collaborations, interac-
tions, and decision-makings. In contrast, in this work we study the
observability issues which can be naturally applied to quantified in-
formation flow security awareness in MASs, from a novel perspec-
tive of information transparency.

2 Partially Observable Multiagent Systems

Let N be the set of natural numbers with zero, Ag = {1, 2, . . . , n}
be a set of agents. An alphabet Σ is a non-empty, finite set of ac-
tions, |Σ| is its cardinality. Σ∗ denotes the set of all finite words over
Σ including the empty word ε, Σ+ = Σ∗ \ {ε}, Σω denotes the
set of all infinite words, Σ∞ denotes the set of all finite and infinite

words. Subsets L ⊆ Σ∗ are called languages, and L ⊆ Σ∞ are
called ω-languages. Let Dist(X) denote the set of discrete probabil-
ity distribution over a set X , i.e., all functions µ : X → [0, 1] s.t.∑
x∈X µ(x) = 1 and µ(x) ≥ 0. 2X denotes the power set of X .

2.1 Probabilistic (concurrent) game structure

Definition 1. A probabilistic game structure (PGS) is a tuple G =
(S,Act, δ), where:

• S is a finite set of states;
• Act = Act1 × Act2 × . . .Actn =

∏
j∈Ag Actj is a finite set of

joint actions (decisions) of the agents in Ag, Actj ⊆ Σ is the set
of actions that j ∈ Ag can perform;

• δ : S → 2Dist(Act×S) is the probabilistic transition relation; for
state s ∈ S, δ(s) is the distribution for next state; s is a terminal
state if δ(s) = ∅.

We write s → µ for s ∈ S and µ ∈ δ(s). Each agent j ∈ Ag

chooses action aj in state s ∈ S, we write s
∏

j∈Ag aj−−−−−−→ s′ and

sometimes s
p.

∏
j∈Ag aj−−−−−−−→ s′ for s, s′ ∈ S whenever s → µ and

µ(s,
∏
j∈Ag aj) > 0, where p denotes the probability of the tran-

sition from s to s′ through joint action
∏
j∈Ag aj . We use non-

deterministic PGS in this paper to accommodate the agents’ prob-
abilistic behaviour. While the game structure determines the proba-
bility of each action, agents can still make decisions based on their
probabilistic strategies or beliefs. To enable a broader range of strate-
gies, an MDP-like transition function that maps a state-action pair to
a distribution over the next state would provide greater flexibility for
agent behaviour. This extension is a potential area for future work.

Definition 2. We say G is circular, if every state has an outgoing

transition, i.e., for all s ∈ S, there is s
∏

j∈Ag aj−−−−−−→ s′. We say G is
fully probabilistic if |δ(s)| ≤ 1 for all s ∈ S. For a fully proba-
bilistic game structure, when δ(s) 6= ∅, we use δ(s) to denote the
distribution outgoing from s.

Definition 3. A path in G is a sequence ρ = s0
α0−−→ s1

α1−−→ . . .
of states and joint actions, where αi =

∏
j∈Ag a

i
j ∈ Act, aij ∈

Actj(si) for i ≥ 0 and j ∈ Ag, for all t ≥ 0, st ∈ S, αt ∈ Act and
δ(st

αt−→ st+1) > 0. Let ρs(i) denote the ith state of ρ, and ρa(i)

denote the ith joint action of ρ, so for all i, we have ρs(i)
ρa(i)−−−→

ρs(i + 1). Let ρi denote the prefix of ρ up to the ith state, i.e., ρi =

s0
α0−−→ s1

α1−−→ . . .
αi−1−−−→ si. Let Post(s) denote immediate state

successors of s in a path, and Pre(s) denote the immediate state
predecessors of s in a path. A path is finite if it ends with a state. A
path is complete if it is either infinite or finite ending in a terminal
state. Given a finite path ρ, last(ρ) denotes its last state. The length
of a path ρ, denoted by |ρ|, is the number of transitions appearing
in the path. Let PathsG(s) denote the set of G-paths, PathsG(s)∗

denote the set of all G’s finite paths, CPathsG(s) denote the set of all
G’s complete paths, starting from state s. Paths are ordered by the
prefix relations, denoted by ≤: Pref(ρ′) = {ρ | ρ ≤ ρ′}.

Definition 4. The trace of a path is the sequence of joint actions
in Act∗ ∪ Act∞ obtained by erasing the states, so for the above ρ,
we have the corresponding trace of ρ: tr(ρ) = α0α1 We use
TracesG(s) to denote the set of G-traces starting from state s.

Let G = (S,Act, δ) be a PGS, ρ ∈ PathsG(s)∗ be a finite path
starting from s ∈ S. The cone generated by ρ is the set of complete

2

paths 〈ρ〉 = {ρ′ ∈ CPathsG(s) | ρ ≤ ρ′}. Given a G = (S,Act, δ)
and a state s ∈ S, we can then calculate the probability value, de-
noted by Ps(ρ), of any finite path ρ starting at s as follows:

• Ps(s) = 1, and
• Ps(ρ

α−→ s′) = Ps(ρ)µ(s′, α) for last(ρ)→ µ.

Let Ωs , CPathsG(s) be the sample space, and let Gs be the
smallest σ-algebra induced by the cones generated by all the finite
paths of G. Then P induces a unique probabilistic measure on Gs
such that: Ps(〈ρ〉) = Ps(ρ) for every finite path ρ starting in s.

2.2 Observations

To model the observability of agents, we need to make a distinc-
tion between the actions that are observable and those that are not,
regarding different agents’ view. For each agent, we use a set of ob-
servables, distinct of the actions of the ambient PGS. Actions and
observables are connected by an observation function.

Definition 5. Let Θ be a finite alphabet for observables, and Θε =
obs∪{ε} where ε denotes the invisible/hidden action. An observation
function on paths is a labelled-based function obs : PathsG(s) →
(Θ1 × Θ2 × · · · × Θn)∞, where Θj ⊆ Θ denotes a finite set of
observables for j ∈ Ag. Specifically, we consider static observation
function, i.e., there is a map ζ : Act → Θε s.t. for every path ρ =

s0
α0−−→ s1

α1−−→ . . .
αt−1−−−→ st of G: obs(ρ) = β0 β1 . . . βt−1.

where for all 0 ≤ i < t, αi =
∏
j∈Ag a

i
j , and βi =

∏
j∈Ag ζ(a

i
j).

Observation functions on traces are defined similarly.

2.3 Partially observable MASs

Definition 6. A partially observable multiagent system (POMAS) is
a tupleM = (Ag,G, s0,Ap, L, {obsi}i∈Ag), where:

• Ag = {1, . . . , n} is a finite set of intelligent agents;
• G = (S,Act, δ) is a fully PGS that is circular;
• s0 ∈ S is the initial state;
• Ap is a finite set of atomic propositions;
• L : S → 2Ap is the state labelling function mapping each state to

a set of atomic state proposition taken from set Ap;
• obsi : PathsG(s0) → (Θ1 × · · · × Θn)∞ is an observation

function for agent i ∈ Ag.

Actions ζ1(Action) ζ2(Action) ζ3(Action) Descriptions
Op0 Op0 Op0 Op0 the chair opens a voting session
Cl0 Cl0 Cl0 Cl0 the chair closes a voting session
Wi W W W agent i is waiting, i ∈ {0, 1, 2, 3}
VX1 X1 ε X voter 1 votes candidate X
VY1 Y1 ε Y voter 1 votes candidate Y
VX2 ε X2 X voter 2 votes candidate X
VY2 ε Y2 Y voter 2 votes candidate Y
VX3 ε ε X3 voter 3 votes candidate X
VY3 ε ε Y3 voter 3 votes candidate Y

Table 1: Actions and observation functions in Example 1.

Example 1. In a toy agent-based model of voting, the process goes
as follows: 1) The chair initiates the voting procedure; 2) Voters si-
multaneously propose their votes; 3) Each voter commits his vote
once he makes his decision; 4) If a voter is waiting during this pro-
cess, he can partially observe the behaviour of other voters and
gather indications, such as identifying the dominant candidate; 5)
Based on their observations, the voter can make their own voting
decision; 6) Once all voters have committed their votes, the chair

closes the voting session. The set of agents Ag = {0, 1, 2, 3} in-
cludes a set of voters {1, 2, 3} and the chair 0. We assume there
are two candidates X and Y . The actions and the observation func-
tion are described in Table 1, where the column ζi(Action) specifies
the assumed observation function over Action under voter i’s view,
action Op0 (Cl0) denotes the chair opens (closes) a voting session,
Wi denotes agent i ∈ {0, 1, 2, 3} is waiting, VXj (VYj) denotes voter
j ∈ {1, 2, 3} votes candidate X(Y).

Assume voter 2 is the observer, voters 1, 2, 3 vote consequently,
e.g., voter 2 and 3 are waiting when voter 1 is voting. Table 1 indi-
cates that the actions of voting X by 1 and 3 are not visible to voter
2. Consider a path (with probability of actions) where e.g., voters1,
2 and 3 vote candidate X with probability 1

2
, 1

2
and 1

3
, respectively:

ρ = s0
Op0W1W2W3−−−−−−→ s1

1
2
.W0V

X
1 W2W3−−−−−−−→ s2

1
2
.W0W1V

Y
2 W3−−−−−−−→ s3

2
3
.W0W1W2V

Y
3−−−−−−−→ s4

Cl0 W1W2W3−−−−−−→ s5

the observation and its probability on the above path from voter 2’s
view would be:

obs2(ρ) = Op0WWW WWW WWY2W WWW Cl0WWW w.p.
1

6
.

Consider another example, assume voter 3 is the observer, voters
1, 2 make their voting concurrently, and voter 3 makes her voting
afterwards. The observer’s knowledge obtained from her observation
might influence her decision on voting. Consider the following path:

ρ = s0
Op0W1W2W3−−−−−−→ s1

1
4
.W0V

X
1 V Y

2 W3−−−−−−−−−→ s2

1
3
.W0W1W2V

X
3−−−−−−−−→ s3

Cl0W1W2W3−−−−−−→ s4

the observation on the above path from voter 3’s view would then be:
obs3(ρ) = Op0WWW WXY W WWWX3 Cl0WWW w.p.

1
12

.

2.4 Strategies for agents in POMASs

Given a POMAS M = (Ag,G, s0,Ap, L, {obsi}i∈Ag), a mixed
strategy of an agent i ∈ Ag specifies a way of choosing actions,
based on her observation on the finite path starting with s0 so far.

Definition 7. A mixed strategy for agent i is a function πi:

πi , obsi(PathsG(s0))→ Dist(Acti)

such that, if πi(ρ)(ai) > 0 then ai ∈ Acti(last(ρ)). The set of all
strategies of agent i is denoted Πi.

Definition 8. A strategy profile for POMASM is a tuple π =
(π1, . . . , πn) ∈ Π1 × · · · ×Πn producing a strategy for each agent
of the system.

Definition 9. A path ρ is consistent with a strategy profile π, de-
noted by ρπ , if it can be obtained by extending its prefixes using π.

Formally, ρ = s0

∏
j∈Ag a0j−−−−−−→ s1

∏
j∈Ag a1j−−−−−−→ . . . is consistent with π

if for all t ≥ 0, i ∈ Ag, under strategy πi, we have: ati ∈ Acti(ρs(t))

and δ(st
∏

j∈Ag a
t
j−−−−−−→ st+1) > 0.

Definition 10. Given a POMAS M =
(Ag,G, s0,Ap, L, {obsi}i∈Ag), a history is a finite path start-
ing with s0, the set of histories in M is written as Hist(M) and
the set of histories in M starting with history h is written as
Hist(M, h). For any agent i ∈ Ag, and two histories h and h′, we
say h and h′ are observationally equivalent to each other from i’s
view, denoted by h ∼i h′, iff obsi(h) = obsi(h

′).

3

Example 2. Consider the second scenario proposed in Example 1.
The observer’s information of knowledge obtained from her obser-
vation might influence her decision on voting. Assume the observer
(voter 3) is not able to see whom other voters have voted, but she
can see how many ballots each candidate has received as specified
in Table 1 and thus she can indicate the dominant candidate so far.
A basic strategy to reflect such an influence is that she will vote the
dominant candidate if there is one, otherwise she will vote the candi-
dates under her preferred distribution.

3 Observability Specification
This section studies the problem of formally specifying observability
of an agent on system behaviours modelled in POMAS.

3.1 Observability and opacity

Given a property ϕ and an observation function obsi of an agent
i ∈ Ag, we are interested in quantitatively expressing the observ-
ability of the agent that a set of agents has a strategy to enforce the
property ϕ. The property can be viewed as a predicate, i.e., a set
of execution paths for which it holds. The concept of Opacity [27]
provides an intuitive approach for this task via distinguishing the ob-
served behaviour and the original one. Intuitively, a property ϕ is
opaque (not observable), provided that for every behaviour (say path
ρ) satisfying ϕ there is another behaviour (say path ρ′), not satisfying
ϕ, such that ρ and ρ′ are observationally equivalent. So the observer
is not able to determine whether the property in a given path of the
system is satisfied or not. More precisely, opacity specifies whether
an agent can establish a property ϕ, enforced by a strategy of a coali-
tion A of agents, at some specific state(s) of the executions of the
system, according to her observation on the system behaviours. We
use [[ϕ]] to denote the set of paths satisfying property ϕ.

Definition 11. Let M = (Ag,G, s0,Ap, L, {obsi}i∈Ag). Given a
predicate ϕ over PathsG(s0), we say ϕ is opaque w.r.t. obsi if for
every path ρ ∈ [[ϕ]], there is a path ρ′ ∈ ¯[[ϕ]] s.t. obs(ρ) = obs(ρ′),
i.e., all paths satisfying ϕ are covered by paths in ¯[[ϕ]]: obsi([[ϕ]]) ⊆
obsi(¯[[ϕ]]) under obsi, where ¯[[ϕ]] , PathsG(s0) \ [[ϕ]].

3.2 The logic oPATL
To express the observability of an agent, we would consider the trans-
parent paths, i.e., behaviours observable (non-opaque) to her. The
level of observability can be considered as the degree of transparency
of the property enforced by the strategy of a coalition, which can be
measured by calculating the probability of the transparent paths sat-
isfying the property. We now present oPATL, an extension of prob-
abilistic alternating-time temporal logic (PATL) [14], that charac-
terises agents’ quantified ability to enforce temporal properties. The
key additions of oPATL include an observability operator and a prob-
abilistic (observability) operator.

Definition 12. LetM = (Ag,G, s0,Ap, L, {obsi}i∈A). The syntax
of oPATL includes three classes of formulae: state and path formulae,
and observability formulae ranged over by φ, ψ and Φ, respectively.

φ ::= a || ¬φ || φ ∧ φ || P./p 〈A〉[ψ] || D./p 〈A〉[Φ]
ψ ::= Xφ || φUφ || φRφ || ¬ψ || ψ ∧ ψ
Φ ::= Oi [ψ] || ¬Φ || Φ ∧ Φ

where a ∈ Ap is an atomic proposition, A ⊆ Ag is a set of agents,
〈A〉 is the strategy quantifier, 〈A〉[ψ] expresses the property that

coalition A has a strategy to enforce ψ, i ∈ A ⊆ Ag is an agent,
./ ∈ {≤, <,≥, >}, p ∈ [0, 1] is a probability bound.

Note that oPATL formula is defined relative to a state, path for-
mulae are only allowed inside the observability operator Oi [·] and
the probabilistic operator P./p 〈A〉[·]. The formula P./p 〈A〉[ψ] ex-
presses that A has a strategy such that the probability of satisfying
path formula ψ is ./ p, when the strategy is followed. The observ-
ability formula Oi [ψ] expresses the property of behaviours satisfy-
ing [ψ] are observable to agent i. Intuitively, it is satisfied if for each
path ρ satisfying ψ one cannot find a path ρ′ violating ψ such that
ρ and ρ′ observationally equivalent to each other - from agent i’s
view. This operator would allow us to reason about the observability
of agent i on system behaviours to enforce the property ψ. The quan-
titative observability formula D./p(〈A〉[Φ]) expresses that A has a
strategy πA such that the degree of the observability enforcing path
property considered in Φ is ./ p. PathsG(s, πA) is used to denote the
set of all paths of G starting from s and consistent with πA.

Definition 13. LetM = (Ag,G, s0,Ap, L, {obsi}i∈Ag). Semantics
for oPATL include three satisfaction relations regarding the three
notions of formulae (state, path, observability formulae).

For a state s ∈ S of G, the satisfaction relation s |=M φ for state
formulae denotes “s satisfies φ”:

• s |=M a iff a ∈ L(s).
• s |=M ¬φ iff s 6|=M φ.
• s |=M φ ∧ φ′ iff s |=M φ and s |=M φ′.
• s |=M P./p〈A〉[ψ] iff ∃πA, the probability of the consistent paths

with πA over the set A, from state s, that ψ is true, satisfies
./ p, i.e., Prob(s, [[〈A〉[ψ]]]) ./ p, where: Prob(s, [[〈A〉[ψ]]]) =
Ps([[〈A〉[ψ]]]) = Ps{ρ ∈ PathsG(s, πA) | ρ |= ψ}.

• s |=M D./p〈A〉[Φ] iff from state s, the probability of outgoing
observable paths enforced by Φ that are consistent with πA of a
coalition A, satisfies ./ p: Prob(s, [[〈A〉Φ]]) ./ p, where for the
case of Φ = Oi[ψ] and Φ′ = Oj [ψ

′]:

Prob(s, [[〈A〉Φ]]) = Ps([[〈A〉[ψ]]] \ obs−1
i (obsi([[¬ψ]])))

Prob(s, [[¬Φ]]) = Ps([[〈A〉[ψ]]] ∩ obs−1
i (obsi([[¬ψ]])))

Prob(s, [[Φ ∧ Φ′]]) = Ps(([[〈A〉[ψ]]] \ obs−1
i (obsi([[¬ψ]])))

∩([[〈A〉[ψ′]]] \ obs−1
j (obsj([[¬ψ′]])))).

For a path ρ of G, we define:

• ρ |=M Xφ iff ρs(1) |= φ.
• ρ |=M φUφ′ iff there exists i ∈ N s.t. ρs(i) |=M φ′ and
ρs(j) |=M φ for all j < i.

• ρ |=M φRφ′ iff for all i ∈ N at least one of the following is true:
i) ρs(i) |=M φ′, ii) ρs(j) |=M φ for some j < i.

• ρ |=M ¬ψ iff ρ 6|=M ψ.
• ρ |=M ψ ∧ ψ′ iff ρ |=M ψ and ρ |=M ψ′.

Finally, for s |=M Φ, we define observability formulae Φ:

• s |=M Oi [ψ] iff for each path ρ ∈ PathsG(s) s.t. ρ |=M ψ, and
for all ρ′ ∈ PathsG(s) s.t. ρ′ 6|=M ψ: obsi(ρ) 6= obsi(ρ

′).
• s |= ¬Φ iff s 6|= Φ, i.e., for each path ρ ∈ PathsG(s) s.t. ρ |=M
ψ, there exists a path ρ′ ∈ PathsG(s) s.t. ρ′ 6|=M ψ: obsi(ρ) =
obsi(ρ

′).
• s |= Φ ∧ Φ′ iff s |=M Φ and s |=M Φ′.

Example 3. Consider the model in Example 1. Assume we are inter-
ested in analysing the observability of voter 2 regarding her observa-
tion function in Table 1. Consider the property “eventually candidate

4

X wins", i.e., ψ = F(cx > cy ∧ o = 2), where cx and cy de-
notes the final ballots X and Y received, and o = 2 indicates the
state of voting process being closed. The operator Fφ is defined as
“true U φ”, so the probabilistic observability property is specified
as: D≤p〈1, 2, 3〉[O2[ψ]], where p = 1

3
is a probability threshold. It

is easy to notice that, the above formula would return true, since
(“wait” actions have been omitted here for simplifying the expres-
sion without introducing any confusion):

tr([[ψ]]) = { 1
12
.Op0V

X
1 V X2 V X3 Cl0,

1
6
.Op0V

X
1 V X2 V Y3 Cl0,

1
12
.Op0V

X
1 V Y2 V X3 Cl0,

1
6
.Op0V

Y
1 V X2 V X3 Cl0}

and thus,

tr([[O2[ψ]]])={
1

12
.Op0V

X
1 V X2 V X3 Cl0,

1

6
.Op0V

X
1 V X2 V Y3 Cl0},

this is because under the observation function specified in Table 1,
traces Op0V

X
1 V Y2 V X3 Cl0 and Op0V

Y
1 V X2 V X3 Cl0 are covered by vi-

olating ψ traces Op0V
X
1 V Y2 V Y3 Cl0 and Op0V

Y
1 V X2 V Y3 Cl0 respec-

tively from voter 2’s view:

obs2(Op0V
X
1 V Y2 V X3 Cl0)=obs2(Op0V

X
1 V Y2 V Y3 Cl0)=Op0Y2Cl0,

obs2(Op0V
Y
1 V X2 V X3 Cl0)=obs2(Op0V

Y
1 V X2 V Y3 Cl0)=Op0X2Cl0.

Therefore,

Prob([[〈1, 2, 3〉O2[ψ]]])

=Prob({
1

12
.Op0V

X
1 V X2 V X3 Cl0,

1

6
.Op0V

X
1 V X2 V Y3 Cl0})=

1

4

which is less than p = 1
3

and thusD≤p〈1, 2, 3〉[O2[ψ]] returns true.

4 Verification of Observability Properties
Intuitively, verification of probabilistic observability answers the
question “to which degree the system is observable to an agent
i ∈ Ag?”, relative to a task expressed as property [ψ] following the
strategy of a coalition A ⊆ Ag, and the observation function of the
agent obsi. Since oPATL is a branching time logic, the overall ap-
proach is to recursively compute the satisfaction set Sat(φ) of states
satisfying formula φ over the structure of the formula.

For the propositional logic fragment of oPATL, the computation of
this set for atomic propositions and logical connectives follows the
conventional CTL model checking [4] and is sketched below:
(1) Convert the oPATL formulae in a positive normal form, that
is, formulae built by the basic modalities O[Xφ], O[φUφ′], and
O[φRφ′], and successively pushing negations inside the formula at
hand: ¬true false, ¬false true, ¬¬φ φ, ¬(φ∧φ′)
¬φ ∨ ¬φ′, ¬(φ ∨ φ′) ¬φ ∧ ¬φ′, ¬Xφ X¬φ, ¬(φUφ′)
¬φR¬φ′, ¬(φRφ′) ¬φU¬φ′;
(2) Recursively compute the satisfaction sets Sat(φ′) = {s ∈ S |
s |= φ′} for all state subformulae φ′ of φ: the computation carries out
a bottom-up traversal of the parse tree of the state formula φ starting
from the leafs of the parse tree and completing at the root of the tree
which corresponds to φ, where the nodes of the parse tree represent
the subformulae of φ and the leafs represent an atomic proposition
α ∈ Ap or true or false. All inner nodes are labelled with an
operator. For positive normal form formulae, the labels of the inner
nodes are ¬, ∧, O[X], O[U], O[R]. At each inner node, the results
of the computations of its children are used and combined to build the
states of its associated subformula. In particular, satisfaction sets for
the propositional logic fragment state formula are given as follows:

• Sat(true) = S,
• Sat(α) = {t ∈ S | α ∈ η(t)},
• Sat(¬φ) = S \ Sat(φ),
• Sat(φ ∧ φ′) = Sat(φ) ∩ Sat(φ′),

(3) Check whether s ∈ Sat(φ).
For the treatment of subformulae of the form φ = P./p〈A〉[ψ], in

order to determine whether s ∈ Sat(φ), the probability of consistent
paths with πA under coalition A for behaviour specified by ψ, i.e.,
Prob(s |=M 〈A〉[ψ]), needs to be established, then:

Sat(P./p〈A〉[ψ]) = {s ∈ S | Prob(s |=M 〈A〉[ψ]) ./ p}

The computation of the probability can follow the conventional PATL
model checking algorithms, e.g., [14].

We now focus on the treatment state formulae of the form
D./p[Oi〈A〉ψ]. The problem reduces to computing the probability
of observable paths that are satisfying property ψ and consistent with
strategies of coalition A, from agent i’s view.

Definition 14. Given a POMASM = (G, s0,Ag,Ap, {obsi}i∈Ag),
a task in property ψ required to be completed under a strategy πA of
a coalition A ∈ Ag, the probabilistic verification problem of observ-
ability property is to decide whether s0 |=M D./p(Oi 〈A〉[ψ]), i.e.,

Ps0([[〈A〉[ψ]]] \ obs−1
i (obsi([[〈A〉[¬ψ]]]))) ./ p.

Therefore, we focus on computing Ps0(〈A〉[ψ] \
obs−1

i (obsi(〈A〉[¬ψ]))) for a given POMAS M and coalition
A. We assume that the available actions of agent i ∈ Ag of M
in state s are {ai,1, . . . , ai,ki}. The brief procedure for checking
s |=M D./p(Oi 〈A〉[ψ]) is sketched as follows.

• Find all consistent paths Π and the corresponding traces Λ, repre-
sented in regular-expression-like format (denoted by Reg(·)), sat-
isfying ψ under mixed strategy πA of coalition A, denoted by:

Π = {Reg(ρπA) | ρπA |=M ψ} Λ = {erase(ρ) | ρ ∈ Π}.

• Find all consistent paths Π′ and the corresponding traces Λ, repre-
sented in regular-expression-like format (denoted by Reg(·)), vi-
olating ψ under mixed strategy πA of coalition A:

Π′ = {Reg(ρ′πA
) | ρπA 6|=M ψ} Λ′ = {erase(ρ′) | ρ′ ∈ Π′}.

• Find all ψ-opaque traces:

Λ′′ = {λ′′ | λ′′ ∈ Λ ∧ ∃λ′ ∈ Λ′.(obsi(λ
′) = obsi(λ

′′))}.

• Compute the probability of ψ-observable traces:

d = Ps0([[Oi〈A〉[ψ]]]) =
∑

ξ∈(Λ\Λ′′)

Prob(ξ).

• Return true if d ./ p, return false otherwise.

We present the detailed procedure of computing the probability of
ψ-observable traces starting at s under mixed strategy πA of coali-
tion A from the observation of i ∈ Ag, in Algorithm 1. Algorithm 2
computes a set of regular-expression-like formatted paths satisfying
φUφ′. Similarly, an algorithm can be proposed to compute a set
of regular-expression-like formatted paths satisfying φRφ′. We can
thus compute all regular-expression-like formatted paths Π (and Π′)
starting from s and satisfying (and violating) ψ and consistent with
mixed strategy πA.

Soundness. Given a POMAS M, a probability threshold p, and a
task specified in ψ to be completed:

s0 |=M D./p〈A〉[Oi[ψ]] iff P([[〈A〉[Oi[ψ]]]]) ./ p.

5

Algorithm 1: Computing the probability of ψ-observable
consistent traces under πA from i’s view - D(〈A〉Oi[ψ]).

Data:M, s, i, A, ψ
Result: The probability D(〈A〉Oi[ψ])
switch ψ do

case Xφ:
Sat(ψ)← ∪{s α−→ s′ | Post(s) = s′ ∧ s′ ∈ Sat(φ)},
Sat(¬ψ)← ∪{s α−→ s′ | Post(s) = s′ ∧ s′ ∈ Sat(¬φ)};

case φUφ′: Sat(ψ)← compU(M, s, φ, φ′),
Sat(¬ψ)← compR(M, s,¬φ,¬φ′);

case φRφ′: Sat(ψ)← compR(M, s, φ, φ′),
Sat(¬ψ)← compU(M, s,¬φ,¬φ′);

end
pΛ← {pλ | pλ.tr ← λ ∧ pλ.pr ← Prob(λ) ∧ λ = tr(ρ) for ρ ∈
PathsG(s, πA) ∧ ρ ∈ Sat(ψ)};
pΛ′ ← {pλ | pλ.tr ← λ ∧ pλ.pr ← Prob(λ) ∧ λ = tr(ρ) for ρ ∈
PathsG(s, πA) ∧ ρ ∈ Sat(¬ψ)};
pΛ′′ = {};
for each pλ ∈ pΛ do

for each pλ′ ∈ pΛ′ do
if obsi(pλ.tr) ⊆ obsi(pλ

′.tr) then
pΛ′′ ← pΛ′′ ∪ {pλ}; break;

end
end

end
pΛO ← pΛ \ pΛ′′; /* observable traces */
d =

∑
λ∈pΛO

λ.pr;
return d.

The satisfaction relation of D./p〈A〉[Oi [ψ]] and the computation of
the probability of ψ-observable consistent traces under mixed strat-
egy πA of coalition A from observer i’s view is described in Algo-
rithm 1. The algorithm will terminate since Sat(ψ) are processed and
computed as a set of regular-expression-like formatted traces satis-
fying ψ (such as Algorithm 2 presented in the technical appendix).
Probability of such a trace is calculated by multiplication of the prob-
ability of each transition label for non-cycle part, and multiplication
of p/(1− p) for a cycle with probability p.
Complexity. The worst case of checking satisfaction of the observ-
ability formula, specified in Algorithm 1, is EXPSPACE in general.
The formula of observability is essentially in the form of ∀∀, the al-
gorithm traverses all consistent traces under mixed strategy πA satis-
fying ψ and all traces of those violating ψ, and conducts observation
equivalence comparison. So the worst case complexity here follows
the complexity of the hyper property model checking problem with
two quantifier (∀) alternations, and thus EXPSPACE. We hypothesise
the time complexity of checking satisfaction of oPATLformula is ex-
ponential to the size of the POMAS, and doubly exponential in the
size of the formula itself, similar to model checking HyperLTL [16].
If all pairs of traces are evaluated in parallel, the evaluation of each
individual pair corresponds to the evaluation of an LTL formula over
a single trace, which can be done in polylogarithmic time on a paral-
lel computer with a polynomial number of processors [9].

Example 4. The proposed work has been implemented on top of
PRISM, which allows to specify properties which evaluate to a value
using, e.g., D=?〈A〉[Oi[ψ]]. The result of Example 3 can be auto-
matically produced below, which meets our calculation by hand.
Result: 0.25.{

0.08333333333333333:vX1vX2vX3cl0->X2cl0,
0.16666666666666666:vX1vX2vY3cl0->X2cl0

} (value in the initial state)

5 Implementation and Examples
A prototype tool for specifying and verifying the observability prob-
lem in MASs has been built on the top of the PRISM model

Algorithm 2: Computing Sat(φUφ′): compU(M, s, φ, φ′)
Data:M, s, φ, φ′

Result: Regular-expression-like formatted paths satisfying φUφ′
Π← {}; i← 0 ;
for each ti ∈ Sat(φ′) do

Ti ← {ti}; Πi ← {π | π(0) = ti};
while
{sj ∈ Sat(φ) \ (Ti ∪ Sat(φ′)) | Post(sj) ∩ Ti 6= ∅} 6= ∅ do

let
sj ∈ {sj ∈ Sat(φ)\(Ti∪Sat(φ′)) | Post(sj)∩Ti 6= ∅};

if sj ∈ Post(sj) ∩ Ti then
/* There is a self-loop: wrap it with a star and

concatenate paths starting from a state in
Post(sj) ∩ Ti */

for each π′ ∈ Πi s.t. π′(0) ∈ Post(sj) ∩ Ti do
Πi ← Πi ∪ {(sj

α−→ sj)
∗ + π′[1...]};

end
end
for each: q1 ∈ Post(sj) ∩ Ti, q2 ∈
Post(q1) ∩ Ti, . . . , qn ∈ Post(qn−1) ∩ Ti s.t.
Post(qn) ∩ Ti = ∅ do

if Pre(sj) 6∈ {q1, q2, . . . qn} then
for each π′ ∈ Πi s.t. π′(0) ∈ Post(sj) ∩ Ti do

Πi ← Πi ∪ {sj
α−→ q1 + π′[1...]};

end
end
else if Pre(sj) = qn ∧ sj ∈ Post(qn) then

/* There is a cycle, wrap it with a star and
concatenate paths starting from a state in
Post(sj) ∩ Ti */

for each π′ ∈ Πi s.t. π′(0) ∈ Post(sj) ∩ Ti do
Πi ← Πi ∪ {(sj

α1−−→ q1
α2−−→ . . .

αn−−→
Pre(sj)

αn+1−−−−→ sj)
∗ + π′[1...]};

end
end

end
Ti ← Ti ∪ {sj};

end
Π← Π ∪Πi ;
i← i+ 1;

end
return Π.

checker [22]. Models are described in an extension of the PRISM
modelling language with observations and transition labels, the new
model type is denoted as “pomas”. Properties are described in an ex-
tension of the PRISM’s property specification language with the ob-
servability operator. The tool and examples are available from [30].

Example: a simple supply chain. Nowadays supply chain is a core
part of businesses concerned with transporting products between dif-
ferent parties such as customers, retailers, coordinators, delivery ser-
vices, and suppliers. Agents of those parties communicate with each
other for buying and selling items. Suppliers compete with each oth-
ers to obtain more jobs and profit, they might partially observe the
procedure of the supply chain and try to induce commercial infor-
mation. Customer might partially observe the pipeline of the supply
chain, and try to learn information about the origin of the products.
Such a scenario can be naturally modelled as a POMAS, and we are
interested in studying the quantified observability by agents, which
may cause information flow and affect future decision-making.

To illustrate our framework and its implementation, we consider a
basic commercial supply chain shown in Fig. 1 as an example. As-
sume there are a number of agents in the system: 1) customer: buying
products (denoted by ordc) from the retailer; 2) retailer: requesting
to order products (denoted by ordr) from suppliers through the co-
ordinator; 3) coord: the coordinator, processing requests/orders from
the retailer, sending requests to and receiving response from sup-

6

sup1

coord

sup2

retailer customer

res1

res2

1/2.req1

1/2.req2

decision

ordr

delivery

ordc

Figure 1: A simple supply chain.

pliers, making decisions such as which supplier provides products,
returning decision to the retailers; 4) supi: the ith supplier, receiving
requests from/responding availability to the coordinator. The agents
and their observability are given as follows: action ordc is hidden
to supi and is observed as Ordc from the rest of the agents’ view;
action ordr is hidden to customer and is observed as Ordr from
the rest of the agents’ view; action reqi, denoting coord sending
requests to supi, is hidden to customer & retailer, is observed as Req
to supi, and is observed as Reqi to coord; action resi, denoting
supi responding to coord, is hidden to customer & retailer, is ob-
served as Res to supi, and is observed as Resi to coord; action
decisioni, denoting coord deciding supi to provide the products,
is hidden to customer & retailer, is observed as Dec to supi, and is
observed as Deci to coord; action delivery is observed Dlv to
all of the agents.

Let A denote the set of agents defined above. We could ask ques-
tions such as “what is the degree of the observability by sup1 if the
product is successfully delivered to the customer but the supplier is
not sup1?”, specified as P =? 〈A〉 [Osup1 [F (dec! = 1 & dlv =
1)]], where dec is the variable defined in the module to specify the
decision made by the coordinator: dec=i denotes supplier i will
provide the requested products, dlv is the variable defined in the
module to specify the status of product delivery: dlv=1 denotes the
product has been successfully delivered to the customer. The result
generated by the tool is presented as follows:
Result: 0.5.{

0.25:ordcordrreq1res1decision2delivery->OrdrReqResDecDlv,
0.25:ordcordrreq2res2decision2delivery->OrdrReqResDecDlv

} (value in the initial state)

This meets our intuition, since the listed two traces satisfying
F(dec! = 1&dlv = 1) are not covered by traces violating the
property, are thus observable to sup1. If we ask question “what is the
degree of the observability by customer if the product is successfully
delivered to him but the supplier is not sup1?”, which can be speci-
fied as P =? 〈A〉 [Ocustomer [F (dec! = 1 & dlv = 1)]]. The result
generated by the tool would be:
Result: 0.0.{
} (value in the initial state)

Example: A peer-to-peer (P2P) file sharing network. This case
study considers a variant of a Gnutella-like P2P network for file
sharing, allowing users to communicate and access files without the
need for a server. The individual users in this network are referred to
as peers. Gnutella protocol defines a decentralised approach making
use of distributed systems, where the peers are called nodes, and
the connection between peers is called an edge between the nodes,
thus resulting in a graph-like structure. A peer wishing to download
a file would send a query request Qry packet to all its neighbouring
nodes under a probability distribution. If those nodes don’t have the
required file, they pass on the query to their neighbours and so on.
When the peer with the requested file is found, the query flooding
stops and it sends back a query hit packet Hit following the reverse
path. If there are multiple query hits, the client selects one of these
peers. The client thus builds a connection with the peer offering
the resource and download the resource. Fig. 2 shows an example
process of downloading a file using the Gnutella-like P2P network.

A1

A2 A3

A4 A5

A6 A7

1
2
.Qry12 1

2
.Qry13

Conn171
2
.Qry24 1

2
.Qry25

Hit21

1
2
.Qry56 1

2
.Qry57

Hit52 2
3
.Dwnld71

Hit75

1
3
.Rej7

Figure 2: Downloading a file using Gnutella P2P network.

Let A = {Ai | i ∈ {1, 2, 3, 4, 5, 6, 7}} denote a set of nodes
(agents) in the network, Qryij denote node Ai sends a query request
to node Aj , Hitji denotes node Aj sends a query hit message to
Ai, Connij denotes node Ai builds a connection with node Aj ,
Dwnldji denotes nodeAi downloads the file from nodeAj . Suppose
A1 is the agent node looking for a resource, A7 is the agent node
willing to offer the requested resource. A malicious node, say A4,
tries to learn some information of the situation of the downloading
procedure of A1. We could ask a question “what is the degree of
the observability of A4 on the procedure of A1 finally download-
ing the requested file?”, which could be formalised in formula:
P =? [〈A〉 O4 F “A1 downloads the requested file”]. Assume the
observation function of A4 is defined as: Qry12->Q1, Qry13->,

Qry24->Q2, Qry25->, Qry56->, Qry57->, Hit21->, Hit52->,

Hit75->, Conn17->Con1, Dwnld71->Dwn, Rej71->Fail

The result generated regarding to the pre-defined observation func-
tion is presented as follows:
Result: 0.083.{
0.083:Qry12Qry25Qry57Hit75Hit52Hit21Conn17Dwnld71->Q1Con1Dwn
} (value in the initial state)

6 Conclusions and Future Work
We have constructed a formal framework for quantitatively speci-
fying and verifying observability properties in MASs. Observability
analysis can be used to capture information transparency and thus in-
formation leakage in MASs for information flow security concerns.
A direct application of this work is privacy loss and information
leakage for security analysis in MASs. The focus of this paper is
on developing the theory and framework which provides a founda-
tion for future work to assist operators in managing information-
leakage risks while optimising performance effectiveness in collab-
orative multi-agent systems. Although the current implementation is
a prototype for testing research ideas and demonstrating the verifica-
tion framework’s feasibility through small case studies, future plans
include transitioning to a publicly available software tool.

In future, we intend to integrate our observability operator into
Strategic Logic [13] and evaluate its suitability for various scenar-
ios in information security analysis. We will also develop novel ap-
proaches to generate policies that capture the trade-off between task
completion and gathering/restricting information learned via max-
imising/minimising agents’ observability. Game-theoretic methods
can be integrated into the framework to automatically identify an
equilibrium between information transparency guarantees and per-
formance objectives based on the quantified results produced by this
work. Such an equilibrium can be used to indicate an optimal deci-
sion for operators to coordinate behaviours in multiple domains con-
cerning combined effectiveness and information transparency. There
is a wide range of applications where such abilities are necessary to
balance the integrated capabilities and security risks.

7

References

[1] N. Alechina, B. Logan, H. N. Nguyen, F. Raimondi, and L. Mostarda,
‘Symbolic model-checking for resource-bounded ATL’, in Proc. Inter-
national Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 1809–1810. ACM Press, (2015).

[2] M. S. Alvim, M. E. Andrés, and C. Palamidessi, ‘Quantitative informa-
tion flow in interactive systems’, Journal of Computer Security, 20(1),
3–50, (2012).

[3] M. Backes, ‘Quantifying probabilistic information flow in computa-
tional reactive systems’, in Proc. European Symposium on Research in
Computer Security (ESORICS), volume 3679 of Lecture Notes in Com-
puter Science, pp. 336–354. Springer-Verlag, (2005).

[4] C. Baie and J.-P. Katoen, Principles of Model Checking, The MIT Press,
2008.

[5] P. Balbiani, O. Gasquet, and F. Schwarzentruber, ‘Agents that look at
one another’, Logic Journal of the IGPL, 21(3), 438–467, (2013).

[6] F. Belardinelli, A. Lomuscio, A. Murano, and S. Rubin, ‘Verification of
multi-agent systems with imperfect information andpublic actions’, in
Proc. International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pp. 1268–1276. ACM Press, (2017).

[7] F. Belardinelli, A. Lomuscio, A. Murano, and S. Rubin, ‘Verification of
multi-agent systems with public actions against strategy logic’, Artifi-
cial Intelligence, 285, 103302, (2020).

[8] F. Biondi, A. Legay, B. F. Nielsen, P. Malacaria, and A. Wasowski, ‘In-
formation leakage of non-terminating processes’, in Proc. IARCS An-
nual Conference on Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS), volume 29 of LIPIcs, pp. 517–529.
Schloss Dagstuhl, (2014).

[9] B. Bonakdarpour and B. Finkbeiner, ‘The complexity of monitoring
hyperproperties’, CoRR, abs/2101.07847, (2021).

[10] M. Boreale, D. Clark, and D. Gorla, ‘A semiring-based trace semantics
for processes with applications to information leakage analysis’, Math-
ematical Structures in Computer Science, 25(2), 259–291, (2015).

[11] J. W. Bryans, M. Koutny, and C. Mu, ‘Towards quantitative analysis of
opacity’, in Proc. International Symposium Trustworthy Global Com-
puting (TGC), volume 8191 of Lecture Notes in Computer Science, pp.
145–163. Springer-Verlag, (2012).

[12] T. Charrier, A. Herzig, E. Lorini, F. Maffre, and F. Schwarzentru-
ber, ‘Building epistemic logic from observations and public announce-
ments’, in Proc. International Conference on Principles of Knowledge
Representation and Reasoning (KR), pp. 268–277. AAAI Press, (2016).

[13] K. Chatterjee, T. A. Henzinger, and N. Piterman, ‘Strategy logic’, in
Proc. International Conference on Concurrency Theory (CONCUR),
pp. 59–73. Springer-Verlag, (2007).

[14] T. Chen and J. Lu, ‘Probabilistic alternating-time temporal logic and
model checking algorithm’, in Proc. International Conference on Fuzzy
Systems and Knowledge Discovery (FSKD), pp. 35–39. IEEE CS,
(2007).

[15] T. Chothia, Y. Kawamoto, C. Novakovic, and D. Parker, ‘Probabilistic
point-to-point information leakage’, in Proc. IEEE Computer Security
Foundations Symposium (CSF), pp. 193–205. IEEE CS, (2013).

[16] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe,
and C. Sánchez, ‘Temporal logics for hyperproperties’, in Proc. In-
ternational Conference on Principles of Security and Trust (POST),
volume 8414 of Lecture Notes in Computer Science, pp. 265–284.
Springer-Verlag, (2014).

[17] M. C. Cooper, A. Herzig, F. Maffre, F. Maris, and P. Régnier, ‘A simple
account of multi-agent epistemic planning’, in Proc. European Confer-
ence on Artificial Intelligence (ECAI), volume 285 of Frontiers in Arti-
ficial Intelligence and Applications, pp. 193–201. IOS Press, (2016).

[18] L. Gasparini, T. J. Norman, and M. J. Kollingbaum, ‘Observation-based
multi-agent planning with communication’, in Proc. European Confer-
ence on Artificial Intelligence (ECAI), volume 285 of Frontiers in Arti-
ficial Intelligence and Applications, pp. 444–452. IOS Press, (2016).

[19] W. Van Der Hoek, N. Troquard, and M. Wooldridge, ‘Knowledge and
control’, in Proc. International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp. 719–726. IFAAMAS, (2011).

[20] X. Huang, K. Su, and C. Zhang, ‘Probabilistic alternating-time tempo-
ral logic of incomplete information and synchronous perfect recall’, in
Proc. AAAI Conference on Artificial Intelligence (AAAI). AAAI Press,
(2012).

[21] M. H. R. Khouzani and P. Malacaria, ‘Leakage-minimal design: Uni-
versality, limitations, and applications’, in Proc. IEEE Computer Secu-

rity Foundations Symposium (CSF), pp. 305–317. IEEE CS, (2017).
[22] M. Kwiatkowska, G. Norman, and D. Parker, ‘PRISM 4.0: Verification

of probabilistic real-time systems’, in Proc. International Conference
on Computer Aided Verification (CAV), volume 6806 of Lecture Notes
in Computer Science, pp. 585–591. Springer-Verlag, (2011).

[23] M. Kwiatkowska, G. Norman, D. Parker, and G. Santos, ‘Equilibria-
based probabilistic model checking for concurrent stochastic games’,
in Proc. International Symposium on Formal Methods (FM), volume
11800 of Lecture Notes in Computer Science, pp. 298–315. Springer-
Verlag, (2019).

[24] A. Lomuscio, H. Qu, and F. Raimondi, ‘MCMAS: an open-source
model checker for the verification of multi-agent systems’, Interna-
tional Journal on Software Tools for Technology Transfer, 19(1), 9–30,
(2017).

[25] P. Malacaria, M. H. R. Khouzani, C. S. Pasareanu, Q. Phan, and K. S.
Luckow, ‘Symbolic side-channel analysis for probabilistic programs’,
in Proc. IEEE Computer Security Foundations Symposium (CSF), pp.
313–327. IEEE CS, (2018).

[26] M. J. Mataric, Interaction and intelligent behavior, Ph.D. dissertation,
Massachusetts Institute of Technology, Cambridge, MA, USA, 1994.

[27] L. Mazaré, ‘Using unification for opacity properties’, in Proc. Work-
shop on Issues in the Theory of Security (WITS), pp. 165–176, (2004).

[28] C. Mu, ‘A language-based approach to analysing flow security prop-
erties in virtualised computing systems’, in Proc. International Sym-
posium on Theoretical Aspects of Software Engineering (TASE), pp.
185–192. IEEE CS, (2020).

[29] C. Mu and D. Clark, ‘Verifying opacity properties in security systems’,
IEEE Trans. Dependable Secur. Comput., 20(2), 1450–1460, (2023).

[30] C. Mu and J. Pang. Prototype tool and case studies. https://github.com/
cmu777/obs-mas.git, 2022.

[31] J. Zand, J. Parker-Holder, and S. J. Roberts, ‘On-the-fly strategy adapta-
tion for ad-hoc agent coordination’, in Proc. International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1771–
1773. IFAAMAS, (2022).

8

https://github.com/cmu777/obs-mas.git
https://github.com/cmu777/obs-mas.git

	Introduction
	Partially Observable Multiagent Systems
	Probabilistic (concurrent) game structure
	Observations
	Partially observable MASs
	Strategies for agents in POMASs

	Observability Specification
	Observability and opacity
	The logic oPATL

	Verification of Observability Properties
	Implementation and Examples
	Conclusions and Future Work

