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A B S T R A C T

Temporal attributed network embedding aspires to learn a low-dimensional vector representation for each node
in each snapshot of a temporal network, which can be capable of various network analysis tasks such as link
prediction and node classification. In temporal attributed networks, attribute similarities or link structures
of certain nodes may deviate from the regular nodes of the community they belong to, which are called
community outlier nodes. However, many existing embedding methods consider only the link structures
and their attributes of the nodes adhere to the community structure of the network while ignoring outlier
nodes, this can affect the embedding performance of the regular nodes. In this paper, we propose a temporal
attributed network embedding framework with outliers, based on autoencoders, to solve the problem. In
particular, we propose an outlier-aware autoencoder to model the node information, which combines the
current snapshot and previous snapshots to jointly learn embedded vectors of nodes in the current snapshot of a
temporal network. In feature preprocessing, we propose a simplified higher graph convolutional mechanism to
incorporate attribute information into link structure information, which can leverage attribute features into link
structure. Experimental results on node classification and link prediction reveal that our model is competitive
against various baseline models.
1. Introduction

In recent years, network embedding techniques have attracted more
and more researchers’ attention (Amara, Taieb, & Aouicha, 2021).
Such network embedding techniques have been verified to be very
effective in community detection (Bandyopadhyay, Lokesh, & Murty,
2019), node classification (Zou et al., 2021), and link prediction (Jiao
et al., 2022). In the real world, however, many networks have rich
attributes and temporal information, which we call temporal attributed
networks (Liu, Huang, Yu, & Dong, 2021). For instance, users in social
attributed networks may contain interest, gender, and age attributes,
which may evolve over time. Motivated by the success of network
embedding in plain temporal networks for link prediction (Sankar, Wu,
Gou, Zhang, & Yang, 2020), node classification (Zou et al., 2021) tasks,
etc., several researchers utilize similar ideas for temporal attributed net-
works (Liu et al., 2021). Nonetheless, there are still two key challenges
in the node embedding of temporal attributed networks, namely:

1. How to incorporate effectively attribute information into struc-
ture information in temporal attributed networks to solve the
highly sparse of structural features in feature preprocessing?
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2. In a noisy environment, how to address the outlier nodes in tem-
poral attributed networks and learn more robust embeddings?

Real-life networks often come with missing connections between
nodes. Moreover, the rows of an adjacency matrix, representing a
network, can only obtain the observed links as they are. Many previous
network embedding methods (Meng, Liang, Zhang, Mccreadie, & Ounis,
2020; Wei, Hu, Bai, Xia, & Pan, 2019) consider structure information
and attribute information separately, without considering how to incor-
porate attribute information into structural information to address the
first challenge. Social science theories (Miller, Lynn, & James, 2001)
suggest that attribute information can be incorporated into structure
information as complementary content to enhance the performance of
many downstream applications. Especially in sparse networks, attribute
information can be very useful complementary content to learn bet-
ter representation for networks. Hence, it is essential to incorporate
attribute information into structural information to gain insights and
comprehend the complex behaviors of networks.

In temporal attributed networks, many existing network embedding
methods assume that the network’s nodes are well-connected in their
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Fig. 1. Three types of outliers.
respective communities and attributes are consistent with the topolog-
ical structure (Sankar et al., 2020; Wei et al., 2019) overlooking the
second challenge. However, in a real-life network, node structures or
their attributes may deviate from the property of the community to
which they belong. One node in the network has edges connected to
other nodes in different communities or its attributes are more similar
to the attributes of nodes from different communities. We call this
kind of nodes as outlier nodes (Bandyopadhyay, N, Vivek, & Murty,
2020). Recently, some researchers have defined outlier nodes from
different perspectives. For example, Ji et al. (2019) define three types
of outliers from the multiple views, namely attribute outlier, class
outlier, and class-attribute outlier. Huang et al. (2021) define abnormal
nodes and subgraphs from nodes’ structure and attributes for anomaly
detection. Du, Yu, Chu, Jin, and Chen (2022) consider outliers that are
mixed within normal object regions or around dense clusters for outlier
detection. In real life, networks can often be divided into different
communities (Keikha, Rahgozar, & Asadpour, 2018). However, the
above methods do not take into account network community structure,
i.e., defining the outlier nodes by considering nodes’ structure and at-
tributes with respect to the communities. Moreover, these methods are
mainly used for outlier detection or anomaly detection, but rarely used
for temporal attributed network embedding. Fig. 1 exhibits three kinds
of outliers that we involve in temporal attributed networks. We assume
that each subgraph in Fig. 1 is a snapshot of a temporal attributed
network, where the circles represent nodes, while the rectangles repre-
sent the attribute of these nodes. Lines between nodes represent edges
of networks, while lines between two attributes represent that two
attributes are similar. We adopt different colors to describe different
communities. We use the larger black circle and black rectangle to
underline the outlier node and its associated attribute respectively. In
Fig. 1(a), the larger black node has edges connected to other nodes in
different communities, i.e., its structural neighborhood is inconsistent.
Hence, the larger black node is considered as a structural outlier node.
In Fig. 1(b), the attribute of the larger black node is similar to node
attributes of different communities, i.e., its attribute neighborhood is
inconsistent. Hence, the larger black node is considered as an attribute
outlier node. In Fig. 1(c), the larger black node belongs to a community
structurally but it has a different community in the aspect of attribute
similarity. Hence, the larger black node is considered as a combined
outlier node.

An empirical analysis showed that a few manually seeded outlier
nodes in a synthetic static network using the classical embedding
algorithm Node2Vec (Grover & Leskovec, 2016) can largely effect the
embedding of the regular nodes. The experiment uses a synthetic net-
work containing 3 communities and a total of 60 nodes, which performs
Node2Vec (Grover & Leskovec, 2016) on the synthetic network with
embedding dimension size equal to 2. The learning node representa-
tions perform well by separating the communities far apart. Next, the
experiment inserts only 6 outlier nodes (having edges to all the three
communities randomly) in the network, this enables these outlier nodes
to pull the embeddings from different communities together so that the
community cannot be separated and to largely affect the embedding
of the regular nodes in the communities (see Bandyopadhyay et al.
2

(2020) for details). For real-life networks, there always exist outlier
nodes as pointed by Ding, Li, Bhanushali, and Liu (2019). This reveals
the importance of paying attention to outlier nodes when learning node
embeddings, as they may seriously affect the embedding performance
of the regular nodes. However, there is no previous work explicitly con-
sidering the effect of outlier nodes in the temporal attributed network
embedding. Hence, it is necessary to consider outlier nodes to gain
insights and comprehend the complex behaviors of temporal attributed
networks.

To tackle the two identified challenges, we propose a temporal at-
tributed network embedding framework with outliers based on autoen-
coder (TAOA) for temporal attributed network embedding in an unsu-
pervised way. Our major contributions in this work can be summarized
as follows.

• We propose a new model TAOA to learn node embedding in
temporal attributed networks. In particular, the model utilizes an
outlier-aware autoencoder to model the node information, which
combines the current network snapshot and previous snapshots
jointly in order to learn embedded vectors for nodes in the
network.

• We propose a simplified higher graph convolutional mechanism
(SHGC) to preprocess attribute features for each node in each
snapshot of temporal attributed networks. The SHGC incorporates
attribute information into link structure information, which can
leverage attribute information into link structure features.

• Experimental results on node classification and link prediction
reveal that our model is competitive against various baseline
models.

The rest of this paper is organized as follows. We summarize sev-
eral related works in Section 2. Section 3 formulates the problem.
We present our proposed framework for temporal attributed network
embedding in Section 4. Sections 5 and 6 discusses the experimental
results and concludes the paper respectively.

2. Related work

Plain network embedding in static and temporal networks has been
extensively studied (Amara et al., 2021), hence we introduce related
work for attributed network embedding in this section.

2.1. Static attributed network embedding

Because networks contain rich attribute information in real life, it is
essential to study attributed network embedding. MNMF (Wang et al.,
2017) considers the community structure in network embedding. It
assumes that node representations in the same community should be
more similar. NECS (Li, Wang, Zhang, Zhang, & Chang, 2019) utilizes
the high-order proximity and the community structure to learn the
network embedding. Because the above methods are based on matrix
operation, their ability to extract high-dimensional nonlinear features
is limited.
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Recently, some attributed network embedding approaches based on
deep neural network have been developed. For instance, GCN (Kipf &
Welling, 2017) adopts an efficient variant of convolutional neural net-
works to learn node embeddings for attributed networks. ANRL (Zhang
et al., 2018) adopts deep neural network architectures to learn node
embeddings while capturing the high non-linearity features. GAT
(Velickovic et al., 2018) leverages masked self-attentional layers to
assign different importance to different nodes in static attributed net-
works. The model (Meng, Liang, Fang, & Xiao, 2019) properly inter-
operates attribute features of nodes by the neighborhood aggregation
procedure using GCN. CSAN (Meng et al., 2020) proposes a variational
auto-encoder algorithm for attributed network embedding. The ap-
proach HANS proposed by Zhao, Chen, Chen, Zhang, and Tang (2022)
fusions the nodes and hierarchical labels via a attention-based fusion
module and attributes for network embedding. Finally, CoANE (Hsieh
& Li, 2023) uses the convolutional mechanism considering the specific
combination between the network attributes and topological structure
for attributed network embedding. More recently, self-supervised learn-
ing (Lin, Tian, Hou, & Zhao, 2022) has achieved success in graph
learning to solves the problem of label scarcity. NCL (Lin et al., 2022)
combines neighbors of a node with graph structure and semantic
space into contrastive pairs to learn node embeddings. CVAEs (Sun
et al., 2023) present a disentangled conditional variational autoencoder
with a contrastive learning loss function for explainable recommen-
dation. DCRec (Yang et al., 2023) adopts adaptive conformity-aware
augmentation using a debiased contrastive learning to learn node
embeddings. IDCL (Wang et al., 2023) constructs a disentangled graph
contrastive learning framework using intent-wise contrastive learning.
LightGCL (Cai, Huang, Xia, & Ren, 2023) uses singular value decom-
position to generate a more robust recommendation model for graph
contrastive learning.

In the past few years, some static attributed network embedding
methods considering outlier nodes have been proposed, and the main
strategy is similar to distributionally robust learning in dealing with
outliers (Sadeghi, Ma, Li, & Giannakis, 2021). Sadeghi et al. (2021)
utilize distributionally robust semi-supervised learning to handle net-
works with uncertain node attributes and mismatches between training
and testing data distribution exists. DR-DSGD (Issaid, Elgabli, & Ben-
nis, 2022) uses a Kullback–Leibler regularization function to solve a
regularized distributionally robust learning problem. Wang, Pun and
So (2022) propose robust-against-uncertainties in the observed signals
using distributionally robust optimization. However, these methods
also do not consider network communities, i.e., node structures or
their attributes may deviate from the property of the community to
which they belong. Moreover, distributionally robust learning is usu-
ally an optimization model rather than a deep learning model and is
rarely used in network representation learning. Liang, Jacobs, Sun and
Parthasarathy (2018) presents a semi-supervised algorithm to detect
outliers, which preserves topological proximity, attributes affinity, and
label similarity of nodes, and this algorithm can alleviate noise effects
from outliers in a partially labeled attributed network. However, it is
not easy to obtain labeled data for real-life networks. Bandyopadhyay
et al. (2019) develops an unsupervised algorithm to reduce the effect of
outlier nodes. However, the method is based on matrix decomposition
with restricted ability to extract the correlation of high dimensional
features. DONE (Bandyopadhyay et al., 2020) and AdONE (Bandyopad-
hyay et al., 2020) adopt a deep autoencoder architecture to minimize
the effect of outliers, which update parameters using stochastic gradient
descent and adversarial learning in an unsupervised way, respectively.
Nonetheless, there is no previous work explicitly considering the effect
of outlier nodes in the temporal attributed network embedding. More-
over, these methods above are all limited to deal with static attributed
3

networks because of ignoring temporal information.
2.2. Temporal attributed network embedding

Recently, attributed network embedding approaches on temporal
networks have gained a lot of popularity. DANE (Li et al., 2017) utilizes
matrix perturbation theory to embed vectors for tackling the problem
of attributed network embedding in temporal networks. SLIDE (Li,
Cheng, Liang, & Liu, 2018) uses a matrix sketching strategy in temporal
attributed network embeddings. Toffee (Ma, Zhang, Lou, Xiong, &
Ho, 2021) utilizes the tensor–tensor product operator to encode the
cross-time information using tensor decomposition to capture periodic
changes in the evolving networks. RDAM (Yao et al., 2021) presents
a reinforcement learning-based temporal attribute matrix representa-
tion method for network embedding. TPANE (Li & Lai, 2022) utilizes
temporal path adjacency measures to capture the temporal dependency
between edges. DyHNE (Wang, Lu et al., 2022) captures the semantics
and structure of a network using a proposed meta-path-based multi-
order relationship. However, matrix factorization methods may bring
high computational costs because the networks in real life are sparse
and large.

DUWE (Liang, Zhang, Ren and Kanoulas, 2018) proposes a dynamic
user and word embedding model to tracks the semantic representa-
tion of users and words over time. NetWalk (Yu et al., 2018) en-
codes the node of temporal networks to vector by clique embedding.
T-GCN (Zhao et al., 2020) combines with the gated recurrent unit
(GRU) and the graph convolutional network (GCN) to capture spatial–
temporal features for traffic prediction. DySAT (Sankar et al., 2020)
computes node representations through joint self-attention, and Tem-
poralGAT (Fathy & Li, 2020) adopts GAT and temporal convolutional
networks (Bai, Kolter, & Koltun, 2018) to learn temporal network
representation. However, none of these methods can be applied to
attributed network datasets to verify its performance.

LDANE (Wei et al., 2019), a lifelong learning framework, automat-
ically expands the deep neural networks to capture highly nonlinear
features for attributed temporal networks. CDAN (Meng et al., 2020)
learns low-dimensional embeddings to capture affinities between nodes
and attributes. MTSN (Liu et al., 2021) captures the local high-order
structures and temporal evolution using motif-preserving methods for
temporal attributed networks. TVAE (Jiao et al., 2022) adopts a vari-
ational autoencoder to detect the shift of temporal networks. Addi-
tionally, DynGNN (Zhang, Yao, Yao, Huang, & Chen, 2023) embeds
recurrent neural networks into graph neural networks to capture more
fine-grained network evolving. More recently, some temporal network
embedding methods based on self-supervised learning have appeared.
GTEA (Xie et al., 2023) aggregates features of neighborings and the cor-
responding edge embeddings in a self-supervised form for the temporal
graph learning. CLDG (Xu et al., 2023) adopts contrastive learning
process to learn node embeddings on temporal graphs in unsupervised
scenarios. However, all the above methods ignore the outlier nodes
when learning node embeddings for temporal attributed networks.
Therefore, it is necessary to consider outlier nodes to gain insights and
comprehend the complex behaviors of temporal attributed networks.

3. Problem definition

The main notations used in this paper are summarized in Table 1.
We then introduce some definitions and formally define the research
problem.

Definition 1 (Attributed Network). An attributed network is defined as:
𝐺 = ⟨𝑉 ,𝐸,𝐻⟩, where 𝑉 = {𝑣1,… , 𝑣𝑛} represents a set of nodes, 𝑛 is the
number of nodes, 𝐸 ⊑ 𝑉 × 𝑉 represents a set of links (edges) among
he nodes, 𝑒𝑖𝑗 means an edge exists between nodes 𝑣𝑖 and 𝑣𝑗 , 𝐻 ∈ 𝑅𝑛×𝑐
is the attribute matrix of nodes, and 𝑐 is the attribute dimensions.
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Table 1
Notations used in this paper.

Notations Descriptions

𝐺 = ⟨𝑉 ,𝐸,𝐻⟩ Attributed network
𝑉 = {𝑣1 ,… , 𝑣𝑛} Node set consisting of n nodes
𝑒𝑖𝑗 An edge exists between nodes 𝑣𝑖 and 𝑣𝑗
𝐻 ∈ 𝑅𝑛×𝑐 Attribute matrix of nodes
𝑐 Attribute dimensions
𝐸𝑡 Edge set among the nodes in timestamp 𝑡

𝐻𝑡 Attribute matrix of nodes in timestamp 𝑡

{𝐺1 ,… , 𝐺𝑡 ,… , 𝐺𝑇 } A sequence of network snapshots
𝑡 ∈ {1,… , 𝑇 } Timestamps of network snapshots
𝐶 = {𝐶1 ,… , 𝐶𝐾} 𝐾 communities
𝑓 𝑡 ∶ 𝑣𝑖 → 𝑅𝑘 A mapping function
𝑘 Embedding dimensions of node 𝑣𝑖
𝐿𝑡 Symmetrically normalized Laplace matrix
𝐴𝑡 Adjacency matrix
𝐷𝑡 Diagonal degree matrix
𝑃 Powers of 𝐿𝑡
𝛾 Damping factor
𝐶𝑡 = {𝑐𝑡1 ,… , 𝑐𝑡𝑛} Output of 𝑛 nodes of SHGC
𝑧𝑡𝑖 (𝑧𝑡𝑖 ∈ 𝑅𝑘) Embedded vector of node 𝑖

�̇�𝑡𝑖 Outlier node scores for node 𝑖

Definition 2 (Temporal Attributed Network). The network studied in
his paper assumes that the set of nodes is fixed, and the edges between
odes can evolve over time. Therefore, a temporal attributed network
an be represented graphically: 𝐺𝑡 = ⟨𝑉 ,𝐸𝑡,𝐻𝑡⟩, where 𝑉 represents

a set of nodes, 𝐸𝑡 represents a set of links (edges) among the nodes
in timestamp 𝑡, and 𝐻𝑡 represents the attribute matrix of nodes in
timestamp 𝑡. Additionally, a temporal attributed network can generate a
sequence of network snapshots {𝐺1,… , 𝐺𝑡,… , 𝐺𝑇 }, where 𝑡 ∈ {1,… , 𝑇 }
represents the timestamps.

Definition 3 (Community). An attributed network 𝐺 = ⟨𝑉 ,𝐸,𝐻⟩ can
be divided into 𝐾 communities, i.e., 𝐶 = {𝐶1,… , 𝐶𝐾} such that 𝐾 ≪ 𝑛
(𝑛 is the number of nodes) and ∪𝐾

𝑘=1𝐶𝑘 = 𝑉 , and all the communities
𝐶𝑘 (1 ≤ 𝑘 ≤ 𝐾) are non-empty, mutually exclusive subsets of 𝑉 . Each
community 𝐶𝑘 is a collection of the nodes that have commonalities of
the network and is a subgraph of the network.

Definition 4 (Outlier Nodes). For each snapshot 𝐺𝑡 of a temporal
attributed network, we can divide it into 𝐾 communities, i.e., 𝐶 =
{𝐶1,… , 𝐶𝑘,… , 𝐶𝐾}. We assume 𝑣𝑖 is a node in the community 𝐶𝑘.
If 𝑣𝑖 has random edges to nodes from different communities, or the
attributes of 𝑣𝑖 are similar to attributes of nodes from different commu-
nities, or 𝑣𝑖 belongs to a community structurally but it has a different
community in terms of attribute similarity, for all these cases we define
𝑣𝑖 as an outlier node.

Definition 5 (Temporal Attributed Network Embedding). We can split a
temporal attributed network into a sequence of snapshots {𝐺1,… , 𝐺𝑇 }
by timestamp 𝑡. For each snapshot, we aim to learn a mapping function
𝑓 𝑡 ∶ 𝑣𝑖 → 𝑅𝑘, where 𝑣𝑖 ∈ 𝑉 and 𝑘 represents dimensions and 𝑘 ≪ |𝑉 |.
The function 𝑓 𝑡 preserves the node similarity between 𝑣𝑖 and 𝑣𝑗 on the
topological structure, node attributes and evolution patterns of a given
temporal network from timestamp 1 up to 𝑡. Moreover, it also needs to
decrease the effect of outlier nodes.

4. Our model

In this section, we will focus on our new model, a Temporal
ttributed network embedding framework with Outliers, based on deep
utoencoder (TAOA), for temporal attributed network embedding. In

our model, we first introduce a simplified higher graph convolutional
mechanism (SHGC) to preprocess attribute features for each node of
4

a

each snapshot in temporal attributed networks (Section 4.1). We then
introduce an attributed network embedding framework based on a
deep autoencoder to solve the outlier problem for temporal attributed
network embeddings (Section 4.2).

4.1. Feature preprocessing

For a temporal attributed network 𝐺𝑡 = ⟨𝑉 ,𝐸𝑡,𝐻𝑡⟩, the structure
eatures are highly sparse and do not incorporate the attribute infor-
ation. Inspired by the Social science theories (Miller et al., 2001),

ttribute information can be incorporated into link structure as a
omplementary content to enhance the performance of many down-
tream applications. Moreover, as motivated by the work of simple
raph convolution (SGC) (Wu et al., 2019), we propose a simplified
igher graph convolutional mechanism (SHGC) to incorporate attribute
eatures into link structure for each node 𝑣 of each snapshot. Compared
ith GCN (Kipf & Welling, 2017), SGC removes nonlinearities collaps-

ng weight matrices between consecutive layers. Experimental results in
any downstream applications demonstrate that these simplifications
o not negatively impact the accuracy. In each layer of SGC, the hidden
epresentations are averaged among neighbors that are one hop away.
fter passing 𝑘 layers, a node obtains the node feature information

rom the 𝑘−hop nodes in the graph. The mechanism does not hold
he feature information of each layer separately, which may miss some
aluable information. Inspired by SGC, we propose SHGC to hold
aluable information of each layer in a simple way for each snapshot
f a temporal attributed network for dealing the problem. SHGC can
ix feature representations of neighbors at various distances to learn
eighborhood mixing relationships. In particular, it combines 1-hop
o 𝑘-hop neighbors in distinct feature spaces to effectively aggregate
eatures of different hops in the network, namely:

𝑡 =
1

𝑃 + 1

𝑃
∑

𝑖=0
𝛾𝑃−𝑖𝐿𝑃−𝑖

𝑡 𝐻𝑡 0 < 𝛾 < 1 (1)

where 𝐻𝑡 ∈ 𝑅𝑛×𝑐 is the attribute matrix of nodes at timestamp 𝑡, 𝑐
is the attribute dimension, and 𝑛 is the number of network nodes. 𝐿𝑡
is a symmetrically normalized Laplace matrix, which reveals the link
structure of the network at timestamp 𝑡. It can be constructed by the
following formula.

𝐿𝑡 = 𝐷
− 1

2
𝑡 𝐴𝑡𝐷

1
2
𝑡 (2)

where 𝐴𝑡 is an adjacency matrix at timestamp 𝑡. 𝐷𝑡 is a diagonal degree
atrix with 𝐷𝑚𝑚

𝑡 =
∑

𝑛 𝐴
𝑚𝑛
𝑡 , where 𝑚 represents a row and 𝑛 represents

column. The 𝐷𝑚𝑚
𝑡 represents the entry of row 𝑚 and column 𝑚 of

𝑡 and the 𝐴𝑚𝑛
𝑡 represents the entry of row 𝑚 and column 𝑛 of 𝐴𝑡.

𝑃−𝑖
𝑡 denotes the matrix 𝐿𝑡 multiplied by itself 𝑃 − 𝑖 times, and 𝑃 − 𝑖

s the powers of 𝐿𝑡, ranging from 0 to 𝑃 . For example, 𝐿3
𝑡 represents

-hop neighbors in feature spaces in timestamp 𝑡. The 𝛾 is the damping
actor, which holds more information for fewer hops. In this way, it
ixes feature representations of neighbors at various distances. 𝐶𝑡 is

he output representing the final node information, which incorporates
ttribute features information from immediate to further feature spaces
nto link structure and reveals attribute features of networks.

ime complexity analysis: The 𝐿𝑃−𝑖
𝑡 𝐻 can be calculated by right-to-

eft multiplication. More precisely, for example, if we set 𝑃 = 3 and
= 0, 𝐿3

𝑡𝐻 can be calculated by 𝐿𝑡(𝐿𝑡(𝐿𝑡𝐻)). We adopt the sparse
atrix with 𝑚 non-zero entries to store 𝐿𝑡, so the computational time of

he 𝐿𝑃−𝑖
𝑡 𝐻 is 𝑂(𝑃 ×𝑚× 𝑐) for each timestamp 𝑡, where the 𝑐 represents

he attribute dimensions of attribute matrix 𝐻𝑡. The 𝛾 can be treated as
constant, so the time complexity of the SHGC is 𝑂(𝑃 × 𝑚 × 𝑐).
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𝑐

Fig. 2. TAOA architecture.

4.2. Node embedding

To encode the node information, we design the TAOA architecture
(see Fig. 2) for temporal attributed network embedding. We adopt two
parallel autoencoders to encode and decode the current snapshot and
the previous snapshot of the node information for temporal attributed
network embeddings. The information of each node of the current
snapshot and the previous snapshot incorporate attribute features in-
formation into link structure by the SHGC algorithm. For the sake of
interpretability and easy to calculate, we only consider two adjacent
snapshots in our model, and we will consider more snapshots in future
work. Our model consists of an encoder and a decoder, which considers
outlier nodes in the reconstruction process. The embedded vector 𝑧𝑖
(𝑧𝑖 ∈ 𝑅𝑘) for any node 𝑖 is obtained from the hidden layer of the model.

Algorithm 1: Procedure of the our method
Input : 𝐺𝑡 = ⟨𝑉 ,𝐸𝑡,𝐻𝑡⟩: a temporal attributed network ;

𝑇 : number of timestamps ;
𝛾: damping factor;
𝑃 : Powers of 𝐿𝑡;

Output: 𝑧𝑡𝑖: embedding vector of each node 𝑖 in the timestamp
𝑡;

1 Generating a sequence of snapshots {𝐺1,… , 𝐺𝑡,… , 𝐺𝑇 } from
𝐺𝑡 = ⟨𝑉 ,𝐸𝑡,𝐻𝑡⟩;

2 for 𝑡 ∈ {1,… , 𝑇 } do
3 Compute 𝐶𝑡 based on Eq. (1);
4 end
5 Define outlier node scores �̇�𝑡𝑖 based on Eq. (3);
6 Preprocess the outlier node scores: 𝑜𝑡𝑖 = log 1

�̇�𝑡𝑖
;

7 Construct global structure proximity loss function: Eq. (4) and
(5);

8 Construct local structure proximity loss function: Eq. (6) and
(7);

9 Construct temporal proximity loss function: Eq. (8);
10 Construct objective function min 𝐿𝑡

𝑇𝐴𝑂𝐴 based on Eq.(4), (5),
(6), (7) and (8);

11 Update �̇�𝑡𝑖 by Eq. (12) and use stochastic gradient descent
algorithm to obtain embedding 𝑧𝑡𝑖 of each node 𝑖 for the
timestamp 𝑡;

We first introduce outlier node scores of each node 𝑖 for each
snapshot. We denote �̇�𝑡𝑖 as outlier node scores for node 𝑖 (𝑖 ∈ 1…𝑁) in
timestamp 𝑡. To better understand the outlier node scores, we assume:
𝑁
∑

�̇�𝑡𝑖 = 1 𝑜𝑡𝑖 > 0 (3)
5

𝑖=1
For a perfect network (e.g., no inter-community edges in a network,
where attributes are perfectly coherent with the link structure), there
are no outlier nodes. Hence, we initialize that the outlier node score �̇�𝑡𝑖
for each node 𝑖 is constant equal to 1

𝑁 , which is a discrete probability
distribution and represents the probability of the node 𝑖 to be an outlier
node. We preprocess the outlier node scores by formula 𝑜𝑡𝑖 = log 1

�̇�𝑡𝑖
Hence, the larger the outlier node scores �̇�𝑡𝑖 are, the outlier node scores
𝑜𝑡𝑖 are smaller than the other nodes, and so the contribution to loss
function (Eqs. (4), (5), (6), and (7)) from this node would be less. In
this way, it can reduce the impact of outlier nodes on regular node
embedding.

Based on the outlier node scores, we formulate the loss functions for
our model. We first preserve global structure proximity by minimizing
reconstruction loss in current timestamp 𝑡 and previous 𝑡 − 1 for each
snapshot.

𝐿𝑡
𝑔𝑙𝑜𝑏 =

1
𝑁

𝑁
∑

𝑖=1
𝑜𝑡𝑖‖𝑐

𝑡
𝑖 − 𝑐𝑡𝑖‖

2 (4)

𝐿𝑡−1
𝑔𝑙𝑜𝑏 =

1
𝑁

𝑁
∑

𝑖=1
𝑜𝑡−1𝑖 ‖𝑐𝑡−1𝑖 − 𝑐𝑡−1𝑖 ‖

2 (5)

where 𝑐𝑡𝑖 and 𝑐𝑡−1𝑖 are 𝑖th row of the matrix 𝐶𝑡 and 𝐶𝑡−1 in current
timestamp 𝑡 and in previous timestamp 𝑡−1 respectively in Section 4.1.
̂𝑡𝑖 and 𝑐𝑡−1𝑖 are the reconstructed outputs of the autoencoders for node
𝑖 in current timestamp 𝑡 and previous timestamp 𝑡 − 1. We adopt the
Leaky ReLU nonlinearity function with negative input slope 𝛼 = 0.2 for
𝐾 layers encoders and decoders. The 𝑜𝑡𝑖 and 𝑜𝑡−1𝑖 are the outlier scores
of each node 𝑖 in current timestamp 𝑡 and previous 𝑡 − 1. The smaller
the outlier score 𝑜𝑡𝑖 for some outlier node 𝑖 in current timestamp 𝑡, the
contribution to loss from this node would be less.

The next component of the loss function is used to preserve the local
structure proximity, which indicates that nodes with edges connected
should be similar in the embedded space.

𝐿𝑡
𝑙𝑜𝑐 =

1
𝑁

𝑁
∑

𝑖=1
𝑜𝑡𝑖

1
|𝑁(𝑖)|

∑

𝑗∈𝑁(𝑖)
‖𝑧𝑡𝑖 − 𝑧𝑡𝑗‖

2 (6)

𝐿𝑡−1
𝑙𝑜𝑐 = 1

𝑁

𝑁
∑

𝑖=1
𝑜𝑡−1𝑖

1
|𝑁(𝑖)|

∑

𝑗∈𝑁(𝑖)
‖𝑧𝑡−1𝑖 − 𝑧𝑡−1𝑗 ‖

2 (7)

The 𝑧𝑡𝑖 and 𝑧𝑡−1𝑖 are the embeddings of node 𝑖 in current timestamp 𝑡
and previous timestamp 𝑡−1, which can obtain from the hidden layers
of encoders. 𝑁(𝑖) is the neighbors of node 𝑖 in the network.

Since the current snapshot topological structure of temporal at-
tributed networks is derived from the previous snapshot topology struc-
ture, the embedding vector of the current timestamp 𝑡 and previous
timestamp 𝑡 − 1 are highly correlated. Hence we formulate the last
component (combining the embedding vector of the current timestamp
𝑡 and previous timestamp 𝑡 − 1) of the loss function as:

𝐿𝑡
𝑐𝑜𝑚 = 1

𝑁

𝑁
∑

𝑖=1
‖𝑧𝑡𝑖 − 𝑧𝑡−1𝑖 ‖

2 (8)

Next, we combine Eqs. (4)–(8) and jointly minimize the following
objective function using stochastic gradient descent algorithm to obtain
embedding 𝑧𝑡𝑖 of each node 𝑖 for the current timestamp 𝑡:

𝑚𝑖𝑛𝐿𝑡
𝑇𝐴𝑂𝐴 = 𝑎1𝐿

𝑡
𝑔𝑙𝑜𝑏 + 𝑎2𝐿

𝑡−1
𝑔𝑙𝑜𝑏 + 𝑎3𝐿

𝑡
𝑙𝑜𝑐 + 𝑎4𝐿

𝑡−1
𝑙𝑜𝑐 + 𝑎5𝐿

𝑡
𝑐𝑜𝑚 (9)

We adopt the closed-form update rule (Bandyopadhyay et al., 2020)
to update �̇�𝑡𝑖 as follows. We update �̇�𝑡−1𝑖 in a similar way. Since the loss
𝐿𝑡
𝑇𝐴𝑂𝐴 is convex when other variables are fixed, we use an alternating

minimization technique to update each variable. The Lagrangian of
Eq. (9) with respect to the constraint (3) can be written as the following
and we ignore the terms that do not contain �̇�𝑡𝑖.

𝐿 = 𝜆(
𝑁
∑

𝑖=1
�̇�𝑡𝑖 − 1) + 𝑎1(

1
𝑁

𝑁
∑

𝑖=1
𝑜𝑡𝑖‖𝑐

𝑡
𝑖 − 𝑐𝑡𝑖‖

2)+

𝑎3(
1
𝑁

𝑁
∑

𝑜𝑡𝑖
1

|𝑁(𝑖)|
∑

‖𝑧𝑡𝑖 − 𝑧𝑡𝑗‖
2)

(10)
𝑖=1 𝑗∈𝑁(𝑖)
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Table 2
Statistics of the three attributed networks datasets.

Datasets Nodes Edges Attributes Labels Snapshots

RHNs 55,863 858,490 86 – 7
BlogCatalog 5,196 171,743 8,189 6 10
Flickr 7,575 239,738 12,047 9 10

The 𝜆 represents the Lagrangian constant. Equating the partial deriva-
tive of Eq. (10), we can obtain the following formula:

�̇�𝑡𝑖 =
𝑎1‖𝑐𝑡𝑖 − 𝑐𝑡𝑖‖

2 + 𝑎3
1

|𝑁(𝑖)|
∑

𝑗∈𝑁(𝑖) ‖𝑧
𝑡
𝑖 − 𝑧𝑡𝑗‖

2

𝑁𝜆
(11)

Using Formula (3), we can thus obtain:

�̇�𝑡𝑖 =
𝑎1‖𝑐𝑡𝑖 − 𝑐𝑡𝑖‖

2 + 𝑎3
1

|𝑁(𝑖)|
∑

𝑗∈𝑁(𝑖) ‖𝑧
𝑡
𝑖 − 𝑧𝑡𝑗‖

2

∑𝑁
𝑖=1(𝑎1‖𝑐

𝑡
𝑖 − 𝑐𝑡𝑖‖2 + 𝑎3

1
|𝑁(𝑖)|

∑

𝑗∈𝑁(𝑖) ‖𝑧
𝑡
𝑖 − 𝑧𝑡𝑗‖2)

(12)

For clarity, algorithm 1 summarizes the main procedure of the
proposed method.

5. Experiments

In this section, we introduce the selected datasets and baseline
models. We report the experimental results on temporal attributed
networks to demonstrate the performance of our TAOA model.

5.1. Datasets and baseline models

We adopt three attributed networks from diverse fields. We use the
Reddit Hyperlink Networks (abbreviated as: RHNs),1 and two social
attributed network,2 BlogCatalog and Flickr, to demonstrate the effec-
tiveness of the TAOA model. All networks have different features, with
the statistics information shown in Table 2.

• RHNs: The dataset consists of a hyperlink network on Reddit,
where nodes represent subreddits (a subreddit is a community),
an edge between two nodes represents that a post between the
two subreddits, attributes of each node indicate the posts that
create hyperlinks from one subreddit to another, and the net-
work data is collected from Jan 2014 to April 2017. For our
experiments, we split it into 7 snapshots by half a year.

• BlogCatalog: This is a social network dataset from the BlogCat-
alog website, where nodes represent users, edges represent user
interaction, nodes’ attributes indicate a description of a blogger,
and labels indicate the topic categories.

• Flickr: This is also a social network dataset, where nodes indicate
users, edges indicate friendships relationships between users, and
labels indicate an interest group.

The BlogCatalog and Flickr are static attributed network datasets. For
the BlogCatalog and Flickr datasets, we refer to the settings in Meng
et al. (2020) to reconstruct them into two synthetic temporal attributed
networks for evaluating our temporal attributed model. More pre-
cisely, we generate a sequence of static attributed network snapshots
{𝐺1,… , 𝐺𝑇 } from the original network, where 𝐺𝑡 (𝑡 ∈ {1… 𝑇 }) is a
ub-network that sampling from the original network with a fixed size
f edges. For our experiments, we split it into 10 snapshots.

aselines: We select six network embedding baseline models to com-
are our proposed model.

1 http://snap.stanford.edu/data/soc-RedditHyperlinks.html.
2 https://github.com/xhuang31/LANE.
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Table 3
Link prediction results (AUC values).

Datasets Flickr BlogCatalog RHNs

AdONE 0.87 0.82 0.88
NetWalk 0.73 0.80 0.78
T-GCN 0.80 0.65 0.76
TemporalGAT 0.88 0.84 0.86
CLDG 0.86 0.89 0.87
TAOA 0.94 0.93 0.90

• AdONE (Bandyopadhyay et al., 2020): AdONE adopts deep unsu-
pervised autoencoders based on adversarial learning to minimizes
the impact of outliers for static attributed network embedding.
AdONE is not specially designed for temporal attributed net-
works. Since it considers outlier nodes during network embed-
ding, we adopt it as the baseline model. For our datasets, we
utilize the model to embed each snapshot into a low-dimensional
vector. Gated recurrent unit (GRU) is then adopted to predict the
new link for the last network snapshot.

• NetWalk (Yu et al., 2018): NetWalk encodes the node of temporal
networks to vector by clique embedding. This method is mainly
used for anomaly detection, and we use the representation vectors
of nodes to predict new links.

• T-GCN (Zhao et al., 2020): T-GCN combines with GCN to learn
spatial dependence and GRU to learn temporal dependence for
temporal network embeddings.

• TemporalGAT (Fathy & Li, 2020): It utilizes GATs (Velickovic
et al., 2018) and TCNs (Bai et al., 2018) networks to learn
representations for temporal networks.

• DyHNE (Wang,Lu et al., 2022): It capture the semantics and struc-
ture of a network using proposed meta-path-based multiorder
relationship.

• CLDG (Xu et al., 2023): It adopts contrastive learning process
to learn node embeddings on temporal graphs in unsupervised
scenarios.

Parameter settings: We set output dimensions is 64 for all datasets
in our experiment. The parameters of the baseline methods are tuned
optimally. Other settings include: the learning rate of the model was set
as 0.0001; the power 𝑃 was set 2; the damping factor 𝛾 was set as 0.8;
the layers of the TAOA was set 5. For each dataset, we report average
performance over five independent experiments.

5.2. Experimental results

We report our experimental results in this section. We report the
performance of our model on the three temporal attributed datasets
with five temporal network embedding baseline models for link pre-
diction and two attributed datasets with two attributed network em-
bedding baseline models for node classification.

5.2.1. Link prediction
Temporal network Link prediction desires to estimate the probabil-

ity of future connection among nodes, which predict the topological
structure 𝐺𝑇+1 at timestamp 𝑇 + 1 according to the previously topo-
logical structure {𝐺1,… , 𝐺𝑇 }. we utilize the AUC (J. & X., 2005) to
estimate the performance of different baselines. Table 3 compares AUC
values over the datasets on the link prediction task.

From Table 3, we can scan that the TAOA model achieves bet-
ter than all the other baselines in all the three temporal attributed
networks. In particular, we use the simplifying higher graph convo-
lutional mechanism (SHGC) to preprocess attribute features for each
node of each snapshot in temporal attributed networks. The SHGC
incorporate attribute information into link structure information, which
can reveal attribute information in link structure. Our model further

utilizes an outlier aware autoencoder to model the node information,

http://snap.stanford.edu/data/soc-RedditHyperlinks.html
https://github.com/xhuang31/LANE
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Table 4
Results on node classification.

Datasets BlogCatalog Flickr

Micro_F1 Macro_F1 Micro_F1 Macro_F1

Adone 0.68 0.69 0.56 0.61
DyHNE 0.70 0.68 0.54 0.58
TAOA 0.74 0.74 0.57 0.61

Fig. 3. Effect of outliers.

which combines current snapshots and previous snapshots to jointly
learn embedded vectors for the current snapshot and can steadily and
powerfully model time dependencies. The experimental results also
demonstrate that the static attributed network model AdONE is supe-
rior to the temporal attributed network model T-GCN and NetWalk,
which indicates that it is important and necessary to consider outliers
in network embedding. The final result of link prediction demonstrate
that our TAOA model can capture the evolving trend to predict links
for the future.

5.2.2. Node classification
Node classification is a classical task used to estimate the per-

formance of the learned embedding vectors. We use Micro-F1 and
Macro-F1 as metrics that similar to Zhang et al. (2018) to measure the
performance. Due to the fact that the BlogCatalog dataset and Flickr
dataset contain labeled data, we select them to validate our model. As
the DyHNE is the relatively latest node embedding model and AdONE
considers outlier nodes during network embedding, we adopt both as
our baseline model for node classification tasks. For our experiments,
we adopted the embedded vector of the last snapshot for the node
classification task.

Table 4 compares Micro_F1 and Macro_F1 values over the two
datasets. It can be seen from Table 4, our proposed model TAOA
performs the best performance on the node classification task in Flickr
and BlogCatalog datasets. In the Flickr dataset, the Macro_F1 value of
the TAOA is equal to the AdONE, but the Micro_F1 value of the TAOA is
superior to the AdONE. Therefore, the overall performance on the Flickr
dataset of our model is superior to the AdONE. The experimental results
reveal that our proposed model can learn effective node representations
for attributed networks.

5.3. Ablation study

We conducted an ablation study in this section. In particular, we
analyze how outliers and each component of the loss functions affect
the performance of the TAOA model.
7

Fig. 4. Effect of loss.

Fig. 5. TAOA’s performance on the RHNs dataset when increasing 𝑃 .

5.3.1. Effect of outliers
We analyze outliers on the RHNs dataset and the BlogCatalog

dataset for the link prediction task in this section. We do not consider
outliers to prove the performance of the TAOA model defined as
𝑇𝐴𝑂𝐴𝑤𝑖𝑡ℎ𝑜𝑢𝑡. Specifically, we removed outlier scores 𝑜𝑡𝑖 of each node 𝑖
for each snapshot 𝑡 from the TAOA loss function. As shown in Fig. 3, the
experimental results show the average AUC value of TAOA is 1% higher
than 𝑇𝐴𝑂𝐴𝑤𝑖𝑡ℎ𝑜𝑢𝑡 on the RHNs dataset, 3% higher than 𝑇𝐴𝑂𝐴𝑤𝑖𝑡ℎ𝑜𝑢𝑡
on the BlogCatalog dataset. The experimental results repeatedly reveal
that it is important and necessary to consider outliers in network
embedding.

5.3.2. Effect of loss functions
We analyze how each component of the loss functions affects the

performance of the TAOA model. For our experiments, we selected
the BlogCatalog and Flickr datasets for the node classification task.
When we do not consider the global structure proximity components,
we rephrase our TAOA model as 𝑇𝐴𝑂𝐴𝑤𝑖𝑡ℎ𝑜𝑢𝑡−𝑔𝑙𝑜𝑏. Specifically, we
removed the global structure proximity component 𝐿𝑡

𝑔𝑙𝑜𝑏 and 𝐿𝑡−1
𝑔𝑙𝑜𝑏

from the TAOA loss function. We also consider the case when the
local structure proximity components are not explored, and we name
such TAOA model as 𝑇𝐴𝑂𝐴𝑤𝑖𝑡ℎ𝑜𝑢𝑡−𝑙𝑜𝑐 . Specifically, we removed the
local structure proximity component 𝐿𝑡

𝑙𝑜𝑐 and 𝐿𝑡−1
𝑙𝑜𝑐 from the TAOA loss

function. Since our model deals with temporal attributed networks, we
cannot remove the last component 𝐿𝑡

𝑐𝑜𝑚 from the TAOA loss function.
For our experiments, we also adopted the embedded vector of the last
snapshot for the node classification task.

Fig. 4 compares Micro_F1 and Macro_F1 values over the two
datasets. It can be seen from Fig. 4, the model TAOA performs the
best on node classification task in Flickr and BlogCatalog datasets. We
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Fig. 6. TAOA’s performance on the RHNs dataset when increasing 𝛾.

also have observed that the overall performance of 𝑇𝐴𝑂𝐴𝑤𝑖𝑡ℎ𝑜𝑢𝑡−𝑔𝑙𝑜𝑏 is
superior to the 𝑇𝐴𝑂𝐴𝑤𝑖𝑡ℎ𝑜𝑢𝑡−𝑙𝑜𝑐 . The reason may be that the local ap-
proximation relationship of nodes contains more valuable information
about nodes. The experimental results also reveal the effectiveness of
our proposed model for attributed network embedding.

5.4. Parameter sensitivity analysis

In this section, we show parameter sensitivity analysis. In particular,
we evaluate the power of the SHGC 𝑃 and the damping factor 𝛾 can
affect the link prediction performance. Due to the fact that the RHNs
dataset is a real temporal attributed network, we select the dataset to
perform sensitivity analysis for both parameters. Since 𝑃 and 𝛾 jointly
determined the final node information, we analyzed both parameters
together. When analyzing 𝑃 , 𝛾 was set to 0.8, and when analyzing 𝛾, 𝑃
was set to 2.

For the parameter 𝑃 , we demonstrate the effect of changing this
parameter by increasing the power 𝑃 of the SHGC from 1 to 4, increas-
ing it by 1 at each step. In Fig. 5, we can see that the best result was
obtained at 𝑃 = 2. The performance continues to increase as 𝑃 increases
from 1 to 2. Performance decreases slightly as 𝑃 restarts to increase. For
the parameter 𝛾, we demonstrate the effect of changing this parameter
by increasing the damping factor 𝛾 from 0.5 to 0.9, increasing it by 0.1
at each step. In Fig. 6, we can see that the best result was obtained at
𝛾 = 0.8. The performance continues to increase as 𝛾 increases from 0.5
to 0.8. Performance decreases slightly as 𝛾 restarts to increase.

6. Conclusions

We have proposed an effective framework TAOA for temporal at-
tributed network embedding, which utilized an outlier aware autoen-
coder to model the node information. It combined current snapshots
and previous snapshots to jointly learn embedded vectors for the cur-
rent snapshot and can steadily and powerfully model time dependen-
cies. Moreover, we proposed the simplifying higher graph convolu-
tional mechanism (SHGC) to preprocess attribute features for each node
of each snapshot in temporal attributed networks. SHGC incorporated
attribute information into link structure, which can reveal attribute in-
formation in link structure. Experimental results on temporal attributed
network datasets reveal that our model is competitive against various
baseline models. For the sake of interpretability and easy to calculate,
we only consider two adjacent snapshots in our model, and we will
consider more snapshots in future work.

Recently, some researchers have defined outlier nodes from dif-
ferent perspectives, such as multi-view outliers. We will extend our
work these definitions and consider more previous snapshots to learn
jointly the embedding vectors in future work. Moreover, networks
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usually consist of multiple types of edges and nodes. We will also
study network embedding with multi-view outliers for heterogeneous
dynamic networks.
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