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Abstract. In this paper, we develop an inductive approach to strand spaces, by introducing an inductive
definition for bundles. This definition provides us not only a constructive illustration for bundles, but also an
effective and rigorous technique of rule induction to reason about properties of bundles. With this induction
principle, we can prove that our bundle model is sound in the sense that a bundle is a causally well-founded
graph. This approach also gives an alternative to rigorously prove a generalized version of authentication
tests. To illustrate the applicability of our approach, we have performed case studies on verification of secrecy
and authentication properties of the Needham-Schroeder-Lowe and Otway-Rees protocols. Our approach has
been mechanized using Isabelle/HOL.
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1. Introduction

Security protocols are designed to ensure security properties, including authentication, secrecy and key dis-
tribution, even with the presence of a penetrator who can perform malicious actions. A security protocol

Correspondence and offprint requests to: Yongjian Li, The State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, P.O.Box 8717, Beijing, China. e-mail: lyj238@ios.ac.cn
Preliminary versions of this work were presented at the 25th IFIP International Conference on Formal Techniques for Networked
and Distributed System (FORTE 2005) [Li05] and the 7th International Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT 2006) [LP06]. The first author is supported by grants (Nos. 60833001, 60603001,
60721061, 60496321, 60421001, 60973016) from National Natural Science Foundation of China and a grant (No. 2007AA01Z147)
from the National High Technology Development 863 Program of China.



2 Yongjian Li and Jun Pang

contains a list of messages exchanges among two or more agents. These messages are often encrypted us-
ing symmetric or asymmetric encryption. However, the design of these protocols is error-prone. Incorrectly
designed protocols may become ideal entry points for various attacks. Therefore, we cannot only rely on
informal ways of reasoning about their correctness. Following the seminal work of Dolev and Yao [DY83],
a lot of research efforts have been devoted to developing formal approaches to security protocol analysis,
including the BAN logic [BAN90], model checking [Mil95, Low96a, Low96b, Sch97, MMS97, Mea99], Paul-
son’s inductive method [Pau97, Pau98], and the strand space method [JHG98, JHG99]. Among them, the
strand space is one of the most successful and widely used formalisms.

A brief introduction to the strand space method. Within the strand space model, a strand for a
legitimate regular agent represents a sequence of actions that the agent would receive or send as part of a
run as his/her role of the protocol. A strand element is called node. Nodes can be either positive, representing
the transmission of a term, or negative, representing the reception of a term. For the penetrator, the strand
represents atomic deductions. More complex deductions can be formed by connecting several penetrator
strands. Hence, a strand space is simply a set of strands with a trace mapping. Two kinds of causal relation
(arrow), → and ⇒, are introduced to impose a graphic structure on the nodes of the space. The relation
� is defined to be the reflexive and transitive closure of these two arrows, modeling the causal order of
the events in the protocol execution. The formal analysis based on strand spaces can be carried on the
notion of bundles. A bundle is a causally well-founded set of nodes and the two arrows, which sufficiently
formalizes a session of a protocol. In a bundle, it must be ensured that a node is included only if all nodes
that proceed it are already included. For the strand corresponding to an agent in a given protocol run, we
construct all possible bundles containing nodes of the strand. In fact, this set of bundles encodes all possible
interactions of the environment with that agent in the run. Typically, for the protocol to be correct, each such
bundle must contain one strand of each legitimate agent apparently participating this session, all agreeing
on names of agents, nonces, and session keys. Penetrator strands may also be entangled in a bundle, even in
a correct protocol, but they should not prevent legitimate parties from agreeing on the data values, or from
maintaining the secrecy of the value chosen. The key to this approach is the fact that a bundle forms a finite,
well-founded sets under the causal relation �, and each non-empty subset of the bundle has a �-minimal
element.

In [GJ01, GJ02], a powerful idea, authentication tests, is introduced. It is basically a formalization of the
basic challenge-response style primitive which is a building block for many protocols. An agent transmits
a so-called test component, and later receives back another term which is in some transformed form of
the component, then only a regular agent, but not the penetrator, can have transformed it. In favorable
circumstances, it can only be one regular agent, the intended one, who has thereby been authenticated.
The authentication tests themselves are easy to apply, but the proofs justifying them are very complicated.
Special research efforts should be made to make the proofs precise and concise.

Although strand spaces provide us an intuitive and powerful framework to analyze security protocols, it
seems that the mechanics of the proof tend to be quite intricate and not necessarily easy to be formalized.
To the best of our knowledge, the strand space method has not been formalized in a theorem prover yet.
There is still a deep gap between a pen-and-paper strand space theory and a mechanized theory library.
Our work is essential not only to bridge this gap, but also to provide a mechanized proving methodology for
security protocols on the groundwork of strand space theory.

Structure of the paper. The remainder of this paper is organized as follows: Section 2 provides a pre-
liminary introduction for the classic strand space theory. Section 3 summarizes the difficulties in formalizing
strand space theory and briefly introduces our motivations and contributions in this work. Section 4 shows
our formalized strand space theory. Section 5 shows how to formalize and prove protocol properties based
on our mechanized strand space theory, using the Needham-Schroeder-Lowe (NSL) protocol [Low96a] and
the Otway-Rees protocol [OR87] as illustrative examples. We discuss related work in Section 6. Section 7
concludes the paper.

Presentation of the paper. As mentioned before, our work involves both improvements on the strand
space theory itself and the formalization of the theory in a theorem prover in order to provide mechanical
support for security protocol analysis using strand spaces. Because formalization is one of our main objectives
in this paper and our implementation is tailored to Isabelle/HOL, we directly use parts of our Isabelle’s
theories to introduce definitions and lemmas to convey the main idea of the formalization.
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Isabelle/HOL has a polymorphic type system as in ML [Pau96]. Type inference eliminates the need
to specify types in expressions. Lemmas about lists, sets, etc., are polymorphic, and the prover uses the
appropriate types automatically. Besides, a function in Isabelle/HOL syntax is usually defined in a curried
form instead of a tupled form, that is, we often use the notation f x y to stand for f(x, y). The advantage of a
curried function is to allow a partial function application [Pau96]. We use the notation [[A1;A2; ...;An]] =⇒ B
to mean that with assumptions A1, . . . , An, we can derive a conclusion B. Given a relation r, we write r+ for
the transitive closure of r, r∗ for the transitive and reflexive closure of r, and x#xs for the list that extends
xs by adding x to the front of xs, [x1, ..xn] for a list x1#..xn#[], xs@ys for the result list by concatenating
xs with ys, xs!i for the ith element of the list xs (counting from 0 as the first element), set xs for the set of
all the elements in xs, length xs for the length of the list xs, and last xs for the last element of the list xs.
More information on our choices of notations can be found in the appendix.

2. Preliminaries

2.1. Messages

The set of messages is defined using the following BNF notation:

h ::= Agent A | Nonce N | Key K |
MPair h1 h2 | Crypt K h

where A is an element from a set of agents, N from a set of nonces, and K from a set of keys. Here we use
K−1 to denote the inverse key of K. MPair h1 h2 is called a composed message. Crypt K h represents the
encryption of message h with K. We use the free encryption assumption, where Crypt K h = Crypt K ′ h′ if
and only if K = K ′ and h = h′. The set of all messages is denoted by Messages. Terms of the form Agent A,
Nonce N , or Key K are said to be atomic. The set of all atomic messages is denoted by Atoms. A message
h is a text message if h 6= Key K for any K. The set of all atomic text messages is denoted by T.

In an asymmetric-key protocol model, an agent A has a public key pubK A, which is known to all agents,
and a private key priK A. pubK A is the inverse key of priK A ((priK A)−1 = pubK A), and vice versa.
In a symmetric-key model, each agent A has a symmetric key shrK A. The inverse key of shrK A is itself
((shrK A)−1 = shrK A). We also assume that (1) asymmetric keys and symmetry keys are disjoint; (2) the
functions shrK, pubK and priK are injective, e.g., if shrK A = shrK A′ then A = A′. The public key, private
key, and shared key of an agent are long-term becuase the agent holds them forever. In contrast, some keys
are created and used only in a session by some agents, and these keys are short-term. In the following, we
abbreviate Crypt K h as {|h|}K , and MPair h1 . . .MPair hn−1 hn as {|h1, . . . , hn−1, hn|}. Such abbreviations are
supported in Isabelle by syntax translation [NPW02]. In order to reduce the number of {| or |} for readability,
we abbreviate Crypt K (MPair h1 . . .MPair hn−1 hn) as {|h1, . . . , hn−1, hn|}K in this paper.

Parts and synth. Two operators parts and synth are inductively defined on a message set H. Their defi-
nition is taken from [Pau97, Pau98] and tailored for our purposes. Usually, H contains a penetrator’s initial
knowledge and all messages sent by regular agents. The set parts H is obtained from H by repeatedly adding
the components of compound messages and the bodies of encrypted messages. Formally, parts H is the least
set including H and closed under projection and decryption.

g ∈ H

g ∈ parts H

{|g|}K ∈ parts H

g ∈ parts H

{|g, h|} ∈ parts H

g ∈ parts H

{|g, h|} ∈ parts H

h ∈ parts H

The parts operator is used to define the subterm relation < in strand spaces: h1 < h2 ≡ h1 ∈ parts{h2}.
h1 < h2 means that h1 occurs in h2. Here K is not regarded as occurring in {|g|}K unless K is a part of g.

The set synth H models the messages a spy could build up from elements of H by repeatedly adding
agent names, forming compound messages and encrypting with keys contained in H. synth H is defined to be
the least set that includes H, agents, and is closed under pairing and encryption. In later sections, the synth
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operator is used when we describe an invariance of a penetrator strand, which characterizes a penetrator’s
ability to deduce knowledge from a message set.

Agent A ∈ synth H
Key K ∈ H h ∈ synth H

{|h|}K ∈ synth H

g ∈ synth H h ∈ synth H

{|g, h|} ∈ synth H

g ∈ H

g ∈ synth H

For instance, it is easy to verify that Nonce N ∈ parts {{|Nonce N,Agent A|}pubK A}, but Key (pubK A) /∈

parts {{|Nonce N,Agent A|}pubK A}. We can have Nonce N < {|Nonce N,Agent A|}pubK A, and the spy can

generate the term {|Nonce N,Agent A|}pubK A ∈ synth {Nonce N , Key (pubK A)}.

2.2. Strands and Strand Space

The notions in this section are mainly taken from the paper [JHG98, JHG99], with slight extensions for
formalization.

Actions. The set of actions that agents can take during an execution of a protocol include send and receive
actions. We denote send and receive actions by a set of two signs Sign = {+,−}, respectively.

Events. An event is a pair (σ, t), where σ ∈ Sign and t ∈ Messages.

Strands and strand spaces. A protocol defines a sequence of events for each agent’s role. A strand
represents a sequence of an agent’s actions in a particular protocol run, and is an instance of a role. A strand
space is a mapping from a strand set Σ to a trace SP : Σ ⇒ (Sign×Messages) list.

• A node is a pair (s, i), with s ∈ Σ and 0 ≤ i < length (SP s). We use n ∈ strand s to denote that a node
n = (s, i) belongs to the strand s. The set of all nodes is denoted as Domain.

• If n = (s, i) and (SP s)!i = (σ, g), then we define strand n, index n, term n and sign n to be the strand,
index, term and sign of the node n respectively, namely strand n = s, index n = i, term n = g and
sign n = σ. We call a node positive if it has sign +, and negative if it has sign −.

• If n, n′ ∈ Domain, the relation n ⇒ n′ holds between nodes n and n′ if n = (s, i) and n′ = (s, i+1). This
represents event occurring on n followed by that occurring on n′.

• If n, n′ ∈ Domain, the relation n → n′ holds for nodes n and n′ if strand n 6= strand n′, term n = term n′,
sign n = + and sign n′ = −. This represents that n sends a message and n′ receives the message.
Note that we place an additional restriction on the relation → than that in [JHG98, JHG99], we require
strand n 6= strand n′, i.e., n and n′ are in different strands, which means that actions of sending or
receiving a message can only occur between different strands.

• A term g originates from a node n ∈ Domain iff sign n = + and g < term n, and whenever n′ precedes n
on the same strand, g 6< term n′.

• A term g uniquely originates from node n iff g originates on a unique node n. Nonces and other freshly
generated terms are usually uniquely originated.

Bundles. A bundle b = (Nb, Eb) is a finite subgraph of the graph (Domain, (→ ∪ ⇒)), which represents a
protocol execution under some configuration. Nb is the set of nodes, and Eb is the set of the edges incident
with the nodes in Nb, and the following properties hold:

• b is a finite graph;

• If the sign of a node n is −, and n ∈ Nb, then there is a unique positive node n′ such that n′ ∈ Nb,
n′ → n and (n′, n) ∈ Eb;

• If n′ ⇒ n and n ∈ b, then n′ ∈ Nb and (n′, n) ∈ Eb.

• b is acyclic.
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Fig. 1. The Needham-Schroeder-Lowe protocol.

Causal precedence. Let b be a graph, we define m ≺b n for (m,n) ∈ E+

b , and m �b n for (m,n) ∈ E∗

b .
≺b and �b represent causal precedence between nodes in b.

From the definition of a bundle, we can derive that it is a casually well-founded graph [JHG98, JHG99].

Lemma 1. For a bundle b, b is casually well-founded graph, and every non-empty subset of the nodes in
has ≺b-minimal members.

2.3. Protocol Modeling using Strands

A protocol usually contains several roles, such as initiators, responders and servers. The sequence of actions
of each regular agent acting some role in a protocol session is pre-defined by the protocol and represented
as a parameterized strand. Parameters usually include agent names and nonces. Informally, we denote a
parameter strand acting some role by role[parameter list ]. The strands of the legitimate agents are referred
to as regular strands.

A bundle can also contain penetrator strands. We explain them in more details in the next section. We
now use the NSL protocol [Low96a, Low96b] (see Figure 1) as an example to illustrate the modelling strategy
using strands. In this figure, we abbreviate Agent A as A, Nonce Na as Na, and pubK A as PKA.

There are two roles in this protocol: initiator and responder. The strands of the two roles are defined as
the following:

• NSLInit[s,Agent A,Agent B,Nonce Na,Nonce Nb], if the trace of s is
[(+, {|Nonce Na,Agent A|}pubK B), (−, {|Nonce Na,Nonce Nb,Agent B|}pubK A), (+, {|Nonce Nb|}pubK B)].

• NSLResp[s,Agent A,Agent B,Nonce Na,Nonce Nb], if the trace of s is
[(−, {|Nonce Na,Agent A|}pubK B), (+, {|Nonce Na,Nonce Nb,Agent B|}pubK A), (−, {|Nonce Nb|}pubK B)].

2.4. Penetrator

The symbol bad denotes the set of all penetrators. If an agent is not in the set bad, then it is regular. The
strands of the penetrators are referred to as penetrator strands, which we show in the following paragraph.
If a strand is not a penetrator one, it is referred to as a regular strand. A node is regular if it is at a regular
strand.

There is a set of keys known to all penetrators initially, denoted as KP. KP contains the public keys of all
agents, the private keys of all penetrators, and the symmetric keys initially shared between the penetrators
and the server.

In the classic strand space theory, a penetrator can intercept messages and generate messages that are
computable from its initial knowledge and the messages it intercepts. These actions are modeled by a set of
penetrator strands, and they represent atomic deductions. More complex deduction actions can be formed
by connecting several penetrator strands together. In our extension, we assume that penetrators share their
initial knowledge and cooperate each other by composing their strands.
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Definition 1. A penetrator’ trace relative to KP is one of the following:

• M[a] (text message): [(+, a)], where a ∈ T.

• K[K ′] (key): [(+,Key K ′)], where K ′ ∈ KP.

• C[g, h] (concatenation): [(−, g), (−, h), (+, {|g, h|})].

• S[g, h] (separation): [(−, {|g, h|}), (+, g), (+, h)].

• E[h,K] (encryption): [(−,Key K), (−, h), (+, {|h|}K)].

• D[h,K](decryption): [(−,Key K−1), (−, {|h|}K), (+, h)].

• F[g](Flush): [(−, g)].

• T[g](Tee): [(−, g) , (+, g) , (+, g)].

Here, M[a] and K[K ′] do not imply that a penetrator can issue any unguessable term which is not in
his initial knowledge, such as nonces and session keys. Because when we introduce secrecy or authentication
properties about an unguessable term t for all penetrators, we usually assume that t uniquely originates from
a regular strand, and this implicitly eliminates the possibility that any penetrator can originate t.

2.5. Specifying Security Properties

In this paper we mainly focus on the authentication and secrecy properties. We use similar ways for repre-
senting security properties as in [JHG98, JHG99].

Secrecy. A message g is secret for a protocol if in every bundle b of the protocol the penetrator cannot
receive g in cleartext; that is, there is no node n in b such that term n = g. Usually g is a long-term key of
a regular agent, a nonce, or a session key issued by a server. For a key K, if Key K can be kept secret, then
K is safe.

Authentication. Authentication properties are specified as follows: for an agent B (e.g. acting as a respon-

der), for a certain vector of parameters
→

x , if each time B completes a run of the protocol as a responder

using
→

x , supposedly with another agent A, then there is a run of the protocol with A acting as an initiator

using
→

x , supposedly with B. And this is formalized as follows: there is a responder strand Resp[
→

x ] and the

i-th node of the strand is in a bundle b, then there is an initiator strand Init[
→

x ] and some j-th node of the
initiator strand is in b.

2.6. Authentication Tests

Consider an agent in a security protocol, it originates and transmits a message containing a new value a. 1

Later on, this agent receives a back in a different cryptographic context associated with a relevant key K.
The agent can conclude that some other agent possessing K (or K−1) must have received and transformed
the message in which a was emitted. If K (or K−1) is safe, this agent cannot be the penetrator, but a regular
agent instead. A transforming edge is the action of changing the cryptographic form in which such a value a
occurs. The authentication tests give sufficient conditions for transforming edges being the work of regular
agents.

Outgoing tests. A uniquely originating value a may be transmitted only in an encrypted form {|h|}K from
a node n, where K−1 is safe. If it is not received in the same context {|h|}K , then a regular agent must have
been responsible for the first time it appears in a different context. Figure 2 presents Proposition 19 of [GJ01]
in a simplified form. We call the edge n ⇒+ n′ an outgoing test for a in {|h|}K because the encrypted unit
goes out and the edge m ⇒+ m′ is a transforming edge for a.

1 It is usually a nonce or session key.
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Fig. 2. Outgoing authentication tests.

Fig. 3. Incoming authentication tests.

Incoming tests. Let a received within an encrypted form {|h|}K at node n′. If a was not sent in that context
by another node n and K is safe, then a regular agent, which strand m stands for, must have been responsible
when a entered into this context. We refer to the edge n ⇒+ n′ an incoming test because the encrypted unit
comes in, as shown in Figure 3 representing Proposition 20 of [GJ01]. In public key cryptography, K serves
as a signature key.

Unsolicited tests. A third, related but weaker, type of test is the unsolicited test. If a term {|h|}K is
received, and K is safe, then {|h|}K originated on some regular strand. After all, it originated somewhere,
and that cannot have been a penetrator strand if K is safe. Here we know only that the regular node
originating {|h|}K is before the node on which it is received.

3. Motivations and Contributions

Based on the introduction of preliminary knowledge of strand spaces, we analyze the reason why it is so
difficult to formalize strand spaces. In our opinion, the main crux lies in that the theory is proposed mainly
for paper proof-reading without having mechanical support in mind.

Firstly, as the cornerstone in the strand space theory, we believe the definition of bundle should be
refined. In its current form, the notion of bundle is just a sketchy property description of a graph about a
protocol session, that is, a bundle is a causally well-founded finite graph. However, it does not tell us how
this graph is constructed inductively. Such a sketchy definition introduces many meaningless instances for
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Fig. 4. Useless bundles.

protocol analysis. For example, bundles (a) and (b) in Figure 4 make no sense for any realistic protocol
model, as bundle (a) allows an agent to send a message to two different agents at the same time and bundle
(b) shows that an agent can send a message to himself (n1 ⇒ n2 requires that strand n1 = strand n1). We
believe that we need a better definition of bundles to formalize the operational semantics of protocol steps.

Secondly, many definitions and proofs of the strand space method are informal and complicated, and it is
far from being mechanized in a theorem prover. For example, the subterm relation [GJ02] is defined as follows:
“A term t is a subterm of another term t′, written t < t′, if starting with t we can reach t′ by repeatedly
concatenating with arbitrary terms and encrypting with arbitrary keys”. The definition of path [GJ02] is as
follows: “A path p through a bundle C is any finite sequence of nodes and edges n1 7−→ n2 7−→ . . . 7−→ nk.”
Such definitions are too informal to be directly formalized. Later in this paper, we show that adopting rule
induction gives a satisfactory definition for such relation, which is fully supported by the theorem prover
Isabelle/HOL.

Besides, proofs of authentication tests are extremely complicated such that it is hard to follow even in
paper proofs. The authors devoted almost 30 pages to the proofs of authentication tests in [GJ02]. The
authentication tests guarantee the existence of the transforming edges in a bundle, which is done by a
regular agent. However, they cannot directly prove the result for a general bundle. They have to propose
the concepts of bundle equivalence, normal bundles, efficient bundles. The equivalence between two bundles
means that they have the same regular nodes and the same uniquely originating message assumptions. Both
normal and efficient bundles place restrictions on the behaviors of the penetrators. The former eliminates the
redundancies of behaviors of the penetrators, while the latter has restriction on the way in which a penetrator
gets a component from a regular node. Their proof is mainly composed of two parts: firstly they need prove
that there exists an equivalent normal and efficient bundle for any bundle, and secondly that authentication
tests guarantee the existence of the transforming edges hold for any normal efficient bundle. With the above
two results, they prove that authentication tests also guarantee the existence of the transforming edges for
a general bundle, because there is an equivalent normal and efficient bundle for the general bundle and they
have the same behaviors on the regular nodes.

Unfortunately the definitions of normal and efficient bundles are rather complex, it is tedious to specify
the graphical operations to construct an equivalent normal and efficient bundle from a general bundle. The
corresponding proof of the existence of an equivalent normal and efficient bundle for a general bundle is
difficult and tedious. Many of the arguments in this part are informal in [GJ02]. We believe that formalizing
the concepts and proofs on authentication tests is the main obstacle to formalize the strand space theory.
Special effort should be made to simplify and formalize these proofs.

The main contribution of this paper is twofold. The first contribution is to improve the strand space
theory itself. We briefly discuss the novelties of our theory below:

• We introduce an inductive definition for bundles, which gives an accurate and formal definition for the
operational semantics of protocol execution. It not only provides us a constructive illustration for a
bundle, but also introduces an effective and rigorous technique of rule induction to prove properties
of bundles. In the classic strand space theory, we can only rely on the implicit induction principle on
finiteness of a graph.
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• In particular, we use the induction principle on the structures of bundles to formally prove that there
exists a path p in a bundle b from the node n at which a message m originates to a node n′ containing
such a message m. This path clearly formalizes the causal precedence from n to n′. Here b is a general
bundle, not necessarily an efficient or a normal one. Our proof is simpler than the counterpart in the
classic strand space theory because we can rely on the newly introduced induction principle on a bundle.

• We redefine the subterm relation and test suite formally by importing the formalization of message
algebra [Pau98]. Two inductively defined operators on messages parts and synth are taken from Paulson’s
work [Pau98]. The subterm relation is derived from the operator parts in a straightforward way. A test
suite G is on a relevant message f , any message g in G, which has f as a subterm, is a component. A
component can neither be detached nor decrypted. We formalize an invariance of a penetrator’s behaviors
on G via the synth operator: a penetrator receives messages in synth G, and then the penetrator can only
derive a message which is still in synth G. The operator synth properly characterizes a penetrator’s ability
to deduce knowledge from test suite. This result is not available in the classic strand space theory.

• A generalized version of authentication tests is proposed and its proof is given. Our formalization is based
on a test suite G. If a message g originates on a node n in a bundle b such that term n ∈ synth G, and
there exists another node n′ such that term n′ /∈ synth G. We can safely conclude the existence of regular
nodes m and m′ such that n �b m, m′ �b n′, m ⇒+ m′, term n ∈ synth G, term n′ /∈ synth G. That is
to say, the regular edges m ⇒+ m′ is responsible for the transformation from a message in synth G to
another one which is not in synth G. Nodes m and m′ are regular because a penetrator strand cannot do
the transformation based on the aforementioned invariance of a penetrator strand on a test suite. Note
that the result of generalized authentication tests holds for a general bundle, and we need not introduce
the tedious concepts of normal efficient bundles and the equivalence between bundles. We have avoided
the corresponding proof of the existence of an equivalent normal and efficient bundle for the general
bundle. Therefore, our proof for the generalized authentication tests is essentially simplified. Less than
four pages are needed for the proof, and the proof can be mechanized in Isabelle/HOL.

Our second contribution is to formalize the newly extended strand space theory in a theorem prover.

• We formalize our extended strand space theory in Isabelle/HOL [NPW02]. A formal theory strand.thy
is provided as a library, which allows users to do machine-checked proofs on the groundwork of strand
space theory. There are two guiding principles in our formalization. Firstly our induction techniques
should be conveniently implemented by Isabelle/HOL. Isabelle/HOL is appropriate for this task because
of its support for inductively defined sets and its automatic tools. Secondly, our mechanized proofs
correspond to their pen-and-paper counterparts as closely as possible. This means that for a person who
has completed these proofs manually, little extra effort should be required in order to let Isabelle/HOL
check them. Isabelle/HOL offers Isar proof language [Wen99], which is the abbreviation of the phrase
“Intelligible semi-automated reasoning”. Isar is offered as an alternative proof language interface layer
beyond traditional tactical scripts. In Isar proof language, our formal strand space theory is more readable
for human beings.

• The formal theory strand.thy is applicable generally for case studies on real-world protocol analysis. Ef-
fective proof techniques of authentication tests in this library theory can be called to prove security prop-
erties of protocols under study. As case studies, some typical protocols such as the Needham-Schroeder-
Lowe and the Otway-Rees protocols are formalized, and their security goals are formally proved. In a
more recent work, we use our extended strand space theory to formally verify Kerberos V [LP07]. By our
experience on case studies, it is shown that our formalized proof techniques can be effectively applied
in mechanical protocol analysis. Based on our formal library theory, analyzing a new protocol typically
requires about one week’s effort.

4. A Formalized Strand Space Theory in Isabelle

4.1. Messages

We directly import the formalization in [Pau97, Pau98] to formalize messages.



10 Yongjian Li and Jun Pang

types key = nat
datatype agent = Server | Friend nat | Spy
datatype msg = Agent agent | Nonce nat | Key key |

MPair msg msg | Crypt key msg

The parts and synth operators are also directly imported from Paulson’s formalization. We only show the
definition of synth operator. The subterm relation < is derived naturally from parts operator as the following:

consts synth::msg set ⇒ msg set
inductive synth H
intros
Inj [intro]:g ∈ H =⇒ g ∈ synth H
Agent [intro]: Agent A ∈ synth H
MPair [intro]: [[g ∈ synth H; h ∈ synth H]] =⇒ {|g,h|} ∈ synth H
Crypt [intro]: [[g ∈ synth H; Key K ∈ H]] =⇒ {|g|}K ∈ synth H

constdefs parts relation::msg ⇒ msg ⇒ bool (infix < 55)
parts relation t1 t2 ≡ t1 ∈ parts{t2}

In the above formalization, the command (infix < 55) defines the function as an infix operator, and
use the symbol < to represent the operator, while the number 55 determines the precedence of the operator.
Namely, we can use t1 < t2 to denote parts relation t1 t2.

4.2. Strands and Strand Spaces

First we need to define the basic types such as Sign, signed msg, Strand, node, and strand space. We need
to fix a strand set Σ, and a strand space SP for discussion, then we declare them as two constants in our
theory.

datatype Sign = positive (+ 100) | negative(- 100)
types signed msg = Sign × msg
typedecl Strand
types node = Strand × nat
types strand space = Strand ⇒ signed msg list
consts strand set::Strand set (Σ)

SP::strand space

Next we formalize the set of all the nodes Domain, define operators on a node, i.e. strand, index, term,sign,
and define the causal relations → and ⇒.
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constdefs Domain::node set
Domain ≡ {(s,i). s ∈ Σ ∧ i<length (SP s)}

constdefs strand::node ⇒ Strand
strand n ≡ fst n

constdefs index::node ⇒ nat
index n ≡ snd n

constdefs term::node ⇒ msg
term n ≡ snd ((SP (fst n))!(snd n) )

constdefs sign::node ⇒ Sign
sign n ≡ fst ((SP (fst n))!(snd n))

constdefs causal1:: (node × node) set

causal1 ≡

{

(n1, n2). n1 ∈ Domain ∧ n2 ∈ Domain∧
sign n1 = + ∧ sign n2 = −∧
term n1 = term n2 ∧ strand n1 6= strand n2

}

syntax causal1::node ⇒ node ⇒ bool (infix → 100)
translations n1→n2 ≡ (n1, n2) ∈ causal1

constdefs causal2::(node × node) set

causal2 ≡

{

(n1, n2). n1 ∈ Domain ∧ n2 ∈ Domain∧
(strand n1) = (strand n2)∧
Suc (index n1) = index n2

}

syntax causal2::node ⇒ node ⇒ bool (infix ⇒ 50)
translations n1⇒n2 ≡ (n1, n2) ∈ causal2

In the Isabelle definition of → and ⇒, we use the syntax and translations commands, which provides
a simple mechanism for syntactic macros. A typical use of syntax translation is to introduce relational
notation for membership in a set of pairs. For example n1 → n2 is such a macro for abbreviating the
predicate (n1, n2) ∈ causal1. And the symbol ⇒ is used for the causal relation causal2. Note that this
symbol is also used for the function definition. But users need not be worried about the conflict because
Isabelle is able to detect the different meanings of ⇒ in different contexts.

4.3. Bundles

We first prepare some notions before introducing the definition of bundle. An edge is a pair of nodes such
as (n1, n2), and a graph b is pair of a node set and an edge set (ns, es). We use nodes b and edges b to
indicate the nodes and the edges of b, respectively. A bundle is a finite graph, which represents the protocol
execution under some configuration. Rather than following the way of [JHG98, JHG99], we give a new
inductive definition for the set of all the bundles. In this definition, there are five induction rules. Rule Nil
specifies an empty bundle. The other rules specify bundle’s nodes and edges augmented with protocol steps.
The intuitive ideas behind the four induction rules are illustrated by Figure 5. More precisely,

• if b is a bundle, and there is a node n2 with positive sign, which is not a part of b, and it has a ⇒-
predecessor n1 in b, then we need to add n2 into the nodes of b, and add a pair (n1, n2) into the edges of
b, and the resulting graph is also a bundle;

• if b is a bundle, and there is a node n2 with positive sign, which is not a part of b, and it has no ⇒-
predecessor (index n2 = 0), then we need to add n2 into the nodes of b, and the resulting graph is also a
bundle;

• if b is a bundle, and there is a node n2 with negative sign, which is not a part of b, and it has a →-
predecessor n1 and ⇒-predecessor n′

1 in b, and n1 has no →-successor in b, then we need to add n2 into
the nodes of b, and add two pairs (n1, n2) (n

′

1, n2) into the edges of b, and the resulting graph is also a
bundle (condition ∀n3 ∈ nodes b s.t. (n1, n3) /∈ edges b is used to specify that a node can have only one
→-predecessor, and it can eliminate meaningless bundles as shown in Figure 4(a));
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• if b is a bundle, and there is a node n2 with negative sign, which is not a part of b, and it has a →-
predecessor n1, n1 has no →-successor in b, and n2 has no ⇒-predecessor, then we need to add n2 into
the nodes of b, (n1, n2) into the edges of b, and the resulting graph is also a bundle.

types edge = node × node
types graph = node set × edge set
constdefs nodes::graph ⇒ node set

nodes b ≡ fst b
constdefs edges::graph ⇒ edge set

edges b ≡ snd b

consts bundles::graph set
inductive bundles
intros
Nil: (∅, ∅) ∈ bundles
Add Pos1: [[b∈bundles; sign n2=+; n2∈Domain; n2/∈nodes b;

0<index n2; n1 ∈ nodes b; n1 ⇒ n2]]
=⇒ ({n2}∪nodes b, {(n1, n2)}∪edges b)∈ bundles

Add Pos2: [[b ∈ bundles; sign n2=+; n2/∈nodes b; n2∈ Domain; index n2=0]]
=⇒ ({n2}∪nodes b, edges b) ∈ bundles

Add neg1: [[b∈ bundles; sign n2=-; n2/∈nodes b; 0<index n2; n1→n2;
n1∈nodes b; ∀n3.n3∈nodes b−→(n1, n3)/∈edges b; n1’∈nodes b; n1’⇒n2]]
=⇒ ({n2}∪nodes b, {(n1, n2),(n1’, n2)}∪edges b) ∈ bundles

Add neg2: [[b∈ bundles; sign n2=-; n2/∈nodes b; index n2=0; n1→n2;
n1∈nodes b; ∀n3.n3∈nodes b−→(n1, n3)/∈edges b]]
=⇒({n2}∪nodes b, {(n1, n2)}∪edges b) ∈ bundles

Notice that the definition for relation → requires strand n 6= strand n′, and that for ⇒ requires strand n =
strand n′, the condition whether strand n = strand n′ holds can tell us whether (n, n′) represents either a ⇒
relation or a → relation.

Our motivation of introducing such a new definition is twofold. We want to have a more apparent and
detailed way to specify the process of constructing a bundle, rather than just specify it as a causally well-
defined graph. We also want to take advantage of the rule induction principle on bundles. Namely, a property
P holds for every bundle provided that P is preserved under all the rules for constructing bundles. In more
details, first we need to prove P (∅, ∅) to cover empty bundle, then for each other rules, we must prove an
assertion of the form P (b) =⇒ P (nodes b ∪ {n}, edges b ∪ es), where n and es are the new node and edges
added, and (nodes b ∪ {n}, edges b ∪ es) is the resulting augmented bundle by the rule. More formally, such
an inductive principle is formalized as an elimination rule bundles.induct, as shown below:

[[ xa∈bundles;
P (∅,∅);
∧

b n1 n2.[[b∈bundles; P b; sign n2=+; n2∈Domain; n2/∈nodes b;
0<index n2; n1∈nodes b; n1⇒n2]]
=⇒P ({n2}∪nodes b,{(n1,n2)}∪edges b);
∧

b n2.[[b∈bundles; P b; sign n2=+; n2/∈nodes b; n2∈Domain; index n2=0]]
=⇒P ({n2}∪nodes b, edges b);
∧

b n1 n1’ n2.[[b∈bundles; P b; sign n2=-; n2/∈nodes b; n1→n2; 0<index n2;
n1∈nodes b; (∀n3.n3∈nodes b−→(n1,n3)/∈edges b); n1’∈nodes b; n1’⇒n2]]
=⇒ P ({n2}∪nodes b,{(n1,n2),(n1’,n2)}∪edges b);
∧

b n1 n2.[[b∈bundles; P b; sign n2=-; n26∈nodes b; index n2=0; n1→n2;
n1∈nodes b; (∀n3.n3∈nodes b−→(n1,n3)/∈edges b)]]
=⇒P ({n2}∪nodes b,{(n1,n2)}∪edges b)

]] =⇒ P xa
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Fig. 5. Bundles’ inductive specification.

Applying the induction rule bundles.induct yields five subgoals, each of which is for a rule in the
definition of bundles. Note that the first goal P (∅,∅) is straightforward, which can be proved automatically
in Isabelle.

Our bundle model is sound in the sense that we can prove that a bundle is a well-founded graph. Firstly,
a bundle is finite. Here, we use a predicate finite x to denote that x is a finite set.

Lemma 2. [[b ∈ bundles]] =⇒ finite (nodes b) ∧ finite (edges b)

Lemma 3 and Lemma 4 specify that a bundle is up-wards closed under ⇒ and →.

Lemma 3. [[b ∈ bundles; sign n = −;n ∈ nodes b;n′ → n]] =⇒ n′ ∈ nodes b ∧ (n′, n) ∈ edges b

Lemma 4. [[b ∈ bundles;n1 ⇒ n2;n2 ∈ nodes b]] =⇒ n1 ∈ nodes b ∧ (n1, n2) ∈ edges b

For convenience, we define m ≺b n ≡ (m,n) ∈ (edges b)+ and m �b n ≡ (m,n) ∈ (edges b)∗. Lemma 5
shows that a bundle is acyclic.

Lemma 5. [[b ∈ bundles]] =⇒ (m ≺b n) −→ m 6= n

From the above four lemmas on a bundle, it can be easily derived that the causal dependency relation
determined by the bundle’s edges is well-founded. Here, we use wf r to denote that r is a well-founded
relation, which is defined in the Isabelle/HOL library.

Lemma 6. [[b ∈ bundles]] =⇒ wf (edges b)

Given a well-founded relation r, the transitive closure of r is also well-founded.

Lemma 7. [[b ∈ bundles]] =⇒ wf (edges b)+

The next lemma is about the ≺b-minimal elements in some non-empty set. Its proof needs one lemma
in Isabelle library: wf r = (∀M x.x ∈ M −→ (∃z ∈ M.∀y.(y, z) ∈ r −→ y /∈ M)), which says that every
non-empty set b has a r-minimal element if r is well-founded.



14 Yongjian Li and Jun Pang

Lemma 8. [[b ∈ bundles;x ∈ M ;x ∈ nodes b]] =⇒ ∃z ∈ M.∀y.(y ≺b z) −→ y /∈ M

The existence of minimal members in a non-empty node set of a bundle serves as the most important
proof principle in the strand space theory, which clarifies the relation between the strand space theory to
the work by Paulson [Pau98] and the work by Schneider [Sch97]. When we apply this proof principle in later
sections, most of our arguments rely on the ≺b-minimal elements in some set of nodes.

4.4. Freshness Assumption

Freshness assumptions refer to the facts that confidential items such as nonces and session keys uniquely
originate from some node. In order to formalize them, we first need to introduce a predicate originate g n,
which says that n is the first node where g occurs in the strand in which g lies. Second, we can define the
uniquely originate g n predicate saying that there is only one node which originates g.

constdefs originate::msg⇒node⇒bool
originate g n ≡ sign n=+ ∧ g<term n ∧ (∀i.i<index n−→g6<term(strand n,i))

constdefs uniquely originate::msg⇒node⇒bool
uniquely originate g n ≡ originate g n ∧ (∀n’.originate g n’−→n=n’)

If g uniquely originates from node n, and another node n′ 6= n, then (1) if n′ is in the same strand as n,
then the index of n′ is greater than that of n if g also occurs in the term of n′; (2) if n′ and n are in different
strands, then either the sign of the first node containing g is negative in the strand strand n′ or g does not
occur in any node of strand n′. This is captured by Lemma 9.

Lemma 9.

[[uniquely originate g n;n 6= n′]] =⇒
(strand n = strand n′ ∧ (g < term n′ −→ index n < index n′))∨
(strand n 6= strand n′ ∧ ((∃i.sign (strand n′, i) = − ∧ g < term (strand n′, i) ∧ (∀j < i.g 6< term (strand n′, j)))
∨(∀i.g 6< term (strand n′, i))))

For convenience, we define two predicates. One is non originate g s, saying that message g does not
originate from any node in strand s. The other is first node in nonorigi strand g n m, which says that g does
not originate from the strand in which n and m lie, and m is the first node containing g in this strand. These
two predicates are used to formalize the notion of a completely transforming path in the next section.

constdefs non originate::msg⇒sigma⇒bool
non originate t s ≡ ∀n.(strand n=s−→

(¬(t<term n) ∨ sign n=- ∨ (∃i.i<index n ∧ t<term (strand n,i))))
constdefs first node in nonorigi strand::msg⇒node⇒node⇒bool
first node in nonorigi strand g n m ≡ sign m=- ∧ g<term m ∧ strand m=strand n ∧

(∀j<index m.g6<term (strand m,j))

4.5. Path

In this section, we discuss a path in a bundle from a node m at which a message g uniquely originates to a
node n which contains g as a subterm. Such a path shows the existence of the causal precedence from m to n
in the bundle. Furthermore, we show there is a special path p such that for a positive node n′ in p such that
g < term n′, the set of all the nodes m′ such that m′ ⇒+ n′ and g < term m′ are in p, they can be regarded
as a set of nodes which provide complete information to transform term n′ in the strand strand n′, so we
call p a completely transforming path. To define a completely transforming path, we introduce a function
slice arr cons s j len, which returns a consecutive node list [(s, j), . . . , (s, j + len)]. It is defined as follows:
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consts slice arr cons::sigma⇒nat⇒nat⇒node list
primrec
slice arr cons s i (len+1)=(s,i)#(slice arr cons s (i+1) len)
slice arr cons s j 0=[(s,j)]

Now we can inductively define the set of all completely transforming paths which starts from some node
at which g uniquely originates in a bundle b.

consts complete Path::msg⇒graph⇒((node list) set)
inductive complete Path g b
intros
add1: [[non originate g (strand m2); sign m2=+; g<term m2;

first node in nonorigi strand g m2 m; p∈complete Path g b; last p=m]]
=⇒p@(slice arr cons (strand m) (index m) (index m2-index m))∈ complete Path g b

add2: [[uniquely originate g m; strand m2=strand m; g<term m2;
sign m2=+; ]]

=⇒(slice arr cons (strand m) (index m) (index m2-index m))∈ complete Path g b
add3: [[m1→m2; m1∈nodes b; (m1,m2)∈edges b;

p∈complete Path g b; g<term m2; last p=m1]]
=⇒ p@[m2]∈complete Path g b

The above definition uses three induction rules to specify how a completely transforming path is extended
with the causal relation in b. Rule add1 says that if g does not originate from any node in the strand in
which a positive node m2 lies, and g < term m2, m is the first node containing g as a subterm in the strand
in which m2 lies, and p is a completely transforming path in b of which the last element is m, then p can
be appended with a node list slice arr cons (strand m) (index m) (index m2 − index m). The resulting path
is also a completely transforming path in b. Rule add2 says that if g uniquely originates at m, m and m2

are in the same strand, and g < term m2, then slice arr cons (strand m) (index m) (index m2 − index m) is a
completely transforming path in b. Rule add3 specifies that a completely transforming path in b is extended
with an edge m1 → m2 which is an edge of b.

Obviously, if p is a path through a bundle b such that p ∈ complete Path g b, and g uniquely originates
at n, then for any node n′ in p, the causal order n �b n

′ holds.

Lemma 10. [[b ∈ bundles; p ∈ complete Path g b; uniquely originate g n;n′ ∈ set p]] =⇒ n �b n
′

Next lemma is on the complete information provided in such a completely transforming path p. Namely,
if p ∈ complete Path g b, m is a positive node containing g as a subterm, then all the nodes m′ such that
m′ ⇒+ m and g < term m′ lie in p, which are regarded as a set of nodes which provide complete information
to transform term m in the strand in which m lies.

Lemma 11. [[b ∈ bundles; p ∈ complete Path g b;m ∈ set p; sign m = +; g < term m]] =⇒ (∀m′.m′ ⇒+

m ∧ g < term m′ −→ m′ ∈ set p)

If p is a path through a bundle b1 such that p ∈ complete Path g b1, and b1 is a subgraph of b2, then p is
still a completely transforming path through b2.

Lemma 12. [[p ∈ complete Path g b1; nodes b1 ⊆ nodes b2; edges b1 ⊆ edges b2]] =⇒ p ∈ complete Path g b2

If g uniquely originates from n, n′ is a node in bundle b, and g is a subterm of term n′, then there exists
a path p ∈ complete Path g b through b from n to n′.

Lemma 13.

[[b ∈ bundles]] =⇒ uniquely originate g n −→
∀n′.n′ ∈ nodes b ∧ g < term n′ −→ (∃p.p ∈ (complete Path g b) ∧ last p = n′)

The proof itself is not easy to illustrate clearly due to rather complex proof contexts involved, and only
a sketch of the proof is shown. In the next section, extracts of the mechanical proof version are given.
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Proof. We apply induction to generate cases for each rule. Note that we have a set of induction hypotheses
when we prove for each case except the base case Nil. We need to construct a path that satisfies our purpose.
For notational convenience, we define predicate abbreviations for subgoals in some proof contexts as follows:

• P g b n n′ ≡ n′ ∈ nodes b ∧ g < term n′ −→ (∃p.p ∈ (complete Path g b) ∧ last p = n′);

• Cons g b n ≡ uniquely originate g n −→ (∀n′.P g b n n′).

1. Base case Nil: Let b′ = (∅, ∅). The assertion Cons g b′ n holds vacuously.

2. Case Add pos1: Fix a bundle b and nodes n1, n2, such that sign n2 = +, n2 /∈ nodes b, 0 < index n2,
n1 ∈ nodes b, n1 ⇒ n2. Assume Cons g b n and let b′ = ({n2} ∪ nodes b, {(n1, n2)} ∪ edges b), we need to
show Cons g b′ n. To prove this, we assume uniquely originate g n, fix a node n′, and assume n′ ∈ b′ and
g < term n′, then we need to show that ∃p.p ∈ complete Path g b′ ∧ last p = n′.

• If n2 = n′, then there are two cases: (1) n = n′, then let p = slice arr cons (strand n) (index n) 0 = [n′],
by rule add2, we have p ∈ complete Path g b′. Obviously, last p = n′; (2) n 6= n′, then by Lemma 9,
there are also two sub-cases.

(a) strand n = strand n′ and index n < index n′. Let p = slice arr cons (strand n) (index n) (index n′ −
index n), i.e., p = [(strand n, index n), . . . , (strand n, index n′)]. By rule add2, we have p ∈
complete Path g b′. Obviously, last p = n′.

(b) strand n 6= strand n′ and g < term n′. There exists an index i such that sign (strand n′, i) =
− and g < term (strand n′, i) and ∀i0 < i.g 6< term (strand n′, i0). By definition, we have
first node in nonorigi strand g n′ (strand n′, i). By g < term n′ and sign n′ = +, we have i < index n′,
which means i ≤ index n′ − 1 = index n1. By n1 ∈ nodes b, we know that (strand n′, i) ∈ nodes b.
By induction hypothesis, we have Cons g b n, with assumption uniquely originate g n, then there
exists a path p0 such that p0 ∈ complete Path g b and last p0 = (strand n′, i). By Lemma 12, we
have p0 ∈ complete Path g b′. Let p = p0@slice arr cons (strand n′) (i + 1) (index n′ − i − 1). By
rule add1, we can prove that p ∈ complete Path g b′. Obviously, last p = n′.

• If n2 6= n′, then n2 ∈ nodes b. By induction hypothesis, we have Cons g b n, with assumption
uniquely originate g n, then there exists a path p0 such that p0 ∈ complete Path g b and last p0 = n′.
Let p = p0. By Lemma 12, we have p ∈ complete Path g b′.

3. Case Add pos2: The case is simpler. Similar to the argument in case Add pos1, we shall fix a bundle b and
nodes n2, such that sign n2 = +, n2 /∈ nodes b, index n2 = 0, and assume Cons g b n, and let b′ = ({n2}∪
nodes b, edges b), we need to show Cons g b′ n. To prove this, we assume uniquely originate g n, fix a node
n′, and assume n′ ∈ b′ and g < term n′, then we need to show the following ∃p.p ∈ (complete Path g b′)∧
last p = n′. There are also two cases:

• If n2 = n′, then from facts sign n2 = +, g < term n′ and index n2 = 0, we have originate g n′. With
the fact uniquely originate g n, it can only be n = n′, then let p = slice arr cons (strand n) (index n) 0.
The rest argument in this case is similar to (a) in case Add pos1.

• If n2 6= n′, the argument in this case is similar to the counterpart in case Add pos1.

4. Case Add neg1: Fix a bundle b and nodes n1, n2, such that sign n2 = −, n2 /∈ nodes b, 0 < index n2,
n1 ∈ nodes b, n1 → n2, ∀n3.n3 ∈ nodes b −→ {(n1, n3)} /∈ edges b, n′

1 ∈ nodes b, n′

1 ⇒ n2. Assume
Cons g b n, and let b′ = ({n2} ∪ nodes b, {(n1, n2), (n

′

1, n2)} ∪ edges b, we need to show Cons g b′ n. To
prove this, we assume uniquely originate g n, and fix a node n′ such that n′ ∈ b′ and g < term n′. Then
we need to show ∃p.p ∈ (complete Path g b′) ∧ last p = n′.

• If n2 = n′, then by n1 → n2, we have sign n1 = +, and term n1 = term n2. Hence, g < term n1.
By n1 ∈ nodes b, and induction hypothesis Cons g b n, with assumption uniquely originate g n, then
there exists a path p0 such that p0 ∈ (complete Path g b) and last p0 = n1. By Lemma 12, we have
p0 ∈ complete Path g b′. Let p = p0@[n′]. By rule add3, we have p ∈ complete Path g b′. Obviously,
last p = n′.

• If n2 6= n′, then n2 ∈ nodes b, this case is similar to the second sub-case of the case Add pos1.

5. Case Add neg2: Almost the same as case Add neg1.



Formal Aspects of Computing: LATEX2ε Submissions 17

The existence of a completely transforming path is the most important result in our extended strand
space model. Its proof relies on the induction principle on the structures of bundles, which differentiates our
proof method from the classic strand space theory. The key lies in that we construct a path that satisfies
our purpose by analyzing the structure of the bundle and the induction hypothesis. This result holds for a
general bundle. We need not to introduce the so-called well-behaved bundles (such as normal bundles) and
other special kinds of paths (such as rising and falling paths).

4.6. Extracts from the Proof of Lemma 13

To gain an impression of a mechanical proof, let us look at parts of the proof of Lemma 13. The full proof in
Isabelle is too large to include, thus we only concentrate on some key points of the proof steps to illustrate
mechanical proof commands and proof assistance provided by Isabelle/Isar. In particular, we show how Isar
can help us to do structured proof, which makes the mechanized proof resemble the paper-and-pen one as
much as possible.

A theorem proving process can be seen as a sequence of interactions between a user and a theorem prover.
The user inputs proof commands, and the prover interprets and executes the commands, and responds with
a proof state to show the fixed variables, premises, and goals to be solved. A proof is started by giving a
goal to Isabelle, and finished until all goals are solved. At first, a goal is written by a lemma command. For
Lemma 13, we write commands as shown below.

lemma path exist:
assumes A: "b ∈ bundles"
shows C: "unique originate a n−→ (∀n’.n’∈nodes b ∧

a< term n’ −→ (∃p. p∈complete Path a b ∧ last p=n’))

The command assumes A1 and . . . and An shows B is an alias for the lemma notation [[A1;A2; . . . ;An]] =⇒ B.
In order to apply rule induction, we use the command ”using A proof induct”, then Isabelle automat-

ically applies the induction rule bundles.induct in Section 4.3 as an elimination rule. The first premise
in bundles.induct will be eliminated. Note that the property P ′ under investigation in this lemma is
λb.unique originate a n −→ (∀ n′.n′ ∈ nodes b∧ a < term n′ −→ (∃p.p ∈ complete Path a b∧ last p = n′)). Is-
abelle will match P ′ with the schema variable P in the rule bundles.induct. Five subgoals corresponding to
induction rules of bundles are yielded automatically by Isabelle. We only show the second goal corresponding
to the case Add pos1.

2.
∧

b n1 n2.
[[ b∈ bundles; unique originate a n −→ (∀n’. n’∈nodes b ∧ a<term n’−→
(∃p.p∈complete Path a b∧ last p=n’));
sign n2=+; n2∈Domain; n2/∈ nodes b; 0<index n2; n1∈nodes b; n1⇒n2

]] =⇒
unique originate a n −→
∀n’.n’∈nodes ({n2}∪ nodes b, {(n1, n2)}∪edges b) ∧a<term n’
−→(∃p.p∈complete Path a ({n2}∪nodes b, {(n1, n2)}∪edges b)∧last p = n’))

Notice that the second premise is the induction hypothesis ”P ′ b”, and the conclusion to be shown is
”P ′ ({n2} ∪ nodes b, {(n1, n2)} ∪ edges b)”. From this, we can clearly see that Isabelle can help us do the
following work in an induction proof: selecting proper induction rule to execute, generating subgoals for base
case and induction steps. Sometimes the subgoals are not so trivial, and it is error-prone for human to write
them manually. Isabelle/Isar can automatically finish these tasks without any mistake. After the subgoals
are created, our proof structure is naturally decomposed into five parts: one is for the base case Nil, the
other four are for the induction cases: Add Pos1, Add Pos2, Add Neg1, Add Neg2.

For the subgoal Add pos1, we use the following commands.
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fix b n1 n2
assume a1:"b∈ bundles" and a2:"sign n2= +" and a3:"n2∈ Domain" and

a4:"unique originate a n −→ (∀n’.n’∈nodes b ∧ a<term n’−→
(∃p.p∈complete Path a b∧last p=n’))" and
a5:"n2/∈nodes b" and a6:"0<index n2" and
a7:"n1∈nodes b" and a8:"n1⇒n2"

let ?b’="({n2}∪nodes b, {(n1, n2)}∪edges b)"
show "unique originate a n −→ (∀n’.n’∈nodes ?b’ ∧ a<term n’

−→(∃p.p∈complete Path a ?b’ ∧ last p=n’))"
proof(rule impI, rule allI, rule impI, erule conjE)

fix n’
assume b1:"unique originate a n" and b2:"n’∈nodes ?b’" and b3:"a< term n’"
show "∃p.p∈complete Path a ?b’∧last p=n’"

Commands fix and assume are used to add fixed variables and new assumptions into the current proof
context, and show claims a new local goal and exports it to the corresponding proof context after the proof
of the goal is finished. After Isabelle executes them, the resulting proof state is shown as follows:

proof (state):step 14
fixed variables: b, a, n, b=b, n1=n1, n2 =n2, n’=n’
prems

unique originate a n −→ (∀n’.n’∈nodes b ∧ a<term n’−→
(∃p.p∈complete Path a b ∧ last p=n’))
sign n2=+
n2∈Domain
n2/∈nodes b
0<index n2
n1∈nodes b
n1⇒n2
unique originate a n
n’∈nodes ({n2}∪nodes b,{(n1, n2)}∪edges b)
a<term n’

goal (show, 1 subgoal):
1. ∃p.p∈complete Path a ({n2}∪nodes b, {(n1, n2)}∪edges b)∧last p=n’

As shown in the proof for case Add Pos1 in Section 4.5, we do case analysis on node n’, from the premise
b2:"n’∈nodes ?b’", we have two sub-cases: (1) n’∈nodes b, (2) n’=n2. From both cases, we shall prove
the current goal. An overview of our proof is shown as follows:
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proof -
(*Two cases P1 and P2 are exhaustively distinguished*)
from b2 have "n’∈nodes b ∨ n’=n2"

by (unfold nodes def,auto)
(*each proof in one moreover block proves the current goal with each case Pi *)
moreover
{assume c1:"n’∈nodes b"
...... (*detail proof commands for the case when n’∈nodes b*)
then have ?thesis by blast
}
moreover
{assume c1:"n’=n2"
......(*detail proof commands for the case when n’=n2*)
then have ?thesis by blast
}
ultimately show ?thesis by blast

qed

Here, we use Isar commands for calculation reasoning such as moreover and ultimately to do the proof
of all case analysis. From the above extracts of the proof session of the lemma, we can see that Isar proof
has a similar structure as the textual one for the case Add pos1 introduced in Section 4.5. Therefore, the
transformation from a paper-and-pen proof shown in Section 4.5 to the mechanized version in this section is
rather straightforward if the Isar proof language is mastered. This is the reason why Isar proof language is
so popular and emerges as the main proof language of Isabelle. The assistance of Isabelle prover lies in that
it can repeatedly execute proof commands issued by people and generate new proof states until all the goals
are solved. Note that some proof states are quite complex, for instance, there are five goals after we apply
the induction command. Except the goal for the Nil rule, the other goals are not trivial. Isabelle can help us
create the new proof state clearly and automatically. These work is too tedious and error-prone for human.
Thus people can be liberated to focus on the main proof points which need the most human intelligence:
rule induction and case analysis.

The proof script in Isar for this lemma comprises 429 lines, which is longer than those in Isabelle tactic-
based proof. Its execution needs 489 steps and finishes in 2 seconds. The script for the case Nil is an auto
command, which is a standard automatic tactic. The scripts for the rule cases Add pos1 and Add neg1 are
the main parts of all the scripts. The script for the cases Add pos2 is simpler, and the script for the case
Add neg2 is almost the same as the case Add neg1.

In the rest of the paper, for the aim of readability, we do not present the mechanical proofs in Isabelle
for lemmas directly, but their proof structures are the same as in their mechanical counterparts.

4.7. Penetrators

First we declare a constant bad to denote the set of all the penetrators. Next we define the constant KP,
the set of all the keys which is initially known to all the penetrators. KP contains the public keys of all
the agents, the private keys of all the penetrators, and the symmetric keys each of which is initially shared
among a penetrator and the server.

consts bad::agent set
constdefs KP::key set

KP ≡ {k.∃A.(k=pubK A) ∨ (A∈bad ∧ (k=priK A ∨ k=shrK A))}

Then we need to define penetrator strands according to their trace specification. For example, we define
a strand as a T[g] strand or K[K] as follows:
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constdefs Is Tee strand::sigma⇒ bool
Is Tee strand s ≡ ∃g.(SP s)=[(-,g),(+,g),(+,g)]

constdefs Is K strand::sigma⇒bool
Is K strand s ≡ ∃K.K∈KP ∧ (SP s)=[(+,Key K)])

We use Is Penetrator strand s to define that a strand s is a penetrator’s strand if and only if its trace is
one of the forms defined in Definition 1. A strand is defined to be a regular strand if it is not a penetrator
strand, formally Is Regular strand s ≡ ¬Is Penetrator strand s.

constdefs Is Penetrator strand::sigma⇒ bool
Is Penetrator strand s ≡

Is Tee strand s ∨ Is Flush strand s ∨
Is T strand s ∨ Is K strand s ∨
Is Cat strand s ∨ Is Sep strand s ∨
Is E strand s ∨ Is D strand s

Rather than following the way in [GJ01], we introduce our notion of a component. First we need to define
a regular key in a bundle.

constdefs regularK::key⇒graph⇒bool
regularK K b ≡ ∀n∈ nodes b.(term n=Key K) −→ Is regular strand (strand n)

The intuition is that K being regular in b means that K cannot be penetrated in a bundle under
consideration. In most cases, we only consider security properties for a protocol in a given bundle, so it is
natural for us to just consider whether a key can potentially be penetrated in this bundle. For the private
keys or the symmetric keys of regular agents, they will never be compromised if they are not sent as a part
of a message. That is, they are regular in any bundle. (In the term of [JHG98], they are safe keys.)

In the next definition, component t b means that t is a basic unit that cannot be analyzed in b by
penetrators. Namely, neither t can be detached, nor t can be decrypted in b.

constdefs component::msg⇒graph⇒bool
component t b ≡ (∀g h.t6= {|g,h|})∧(∀K h.(t={|h|}K) −→ (regularK (invKey K) b))

Now we introduce the concept of a test suite.

constdefs suite::msg set⇒msg⇒graph⇒bool
suite G g b ≡ (∀t∈G.(g<t−→component t b)) ∧ (∀t.(g6<t−→t∈ G))

In the context of this paper, we usually assume that f is an unguessable atomic message such as a
nonce or a session key when we mention suite G g b, which is uniquely originated from a regular strand and
encrypted in a message. The first conjunctive requires that each message containing g cannot be analyzed
by the penetrator. The second conjunctive requires that any message which does not contain g is in G. Let
G0 = {t|g < t ∧ t ∈ G}. In later discussion, we usually assume that G0 is the set of messages containing g
which some regular agents can send. If G is a test suite for g in b, then the set synth G is a closure which
penetrators can synthesize in the bundle b from G. Namely, if the messages received in a penetrator strand
are in synth G, then the messages sent in the strand must still be in synth G. Before we prove the closure
property, we need to present two useful lemmas.

Lemma 14. [[suite G f b; {|g, h|} ∈ synth G]] =⇒ g ∈ synth G ∧ h ∈ synth G

Lemma 14 shows that if a concatenated message {|g, h|} is in synth G, where G is a test suite for some
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Fig. 6. Penetrator’s knowledge closure property.

message f in b, then it must be the case where both g ∈ synth G and h ∈ synth G. The antecedent suite G f b
eliminates the possibility of the case when g /∈ synth G and h /∈ synth G, but {|g, h|} ∈ G.

From {|h|}K ∈ synth G, we can conclude that either {|h|}K is synthesized by h and K, or {|h|}K is in G. In
the former case, h should also be synthesized by G as well.

Lemma 15. {|h|}K ∈ synth G =⇒ h ∈ synth G ∨ {|h|}K ∈ G.

Let g be a message, m′ be a positive penetrator node in a bundle b, and g < term m′, and m′ is not
the first node in the strand strand m′. Namely, there is some node m such that m ⇒+ m′. Suppose G is a
test suite for g in the bundle b, if any message that the penetrator can receive in the strand is in synth G,
then the penetrator can only send a term which is still in synth G. Figure 6 illustrates such behaviors of
penetrators on knowledge, where (a) shows the cases for C[g, h], E [h,K], and D [h,K]; (b) shows the cases
for S[g, h] and T[g].

Lemma 16.

[[b ∈ bundles;m′ ∈ nodes b; Is Penetrator strand (strand m′); sign m′ = +; suite G f b;
∃m.m ⇒+ m′; ∀m0.(m0 ⇒+ m′ ∧ sign m0 = − −→ term m0 ∈ synth G)]]
=⇒ term m′ ∈ synth G

Proof. For convenience, the assumption ∀m0.(m0 ⇒+ m′ −→ term m0 ∈ synth M) is referred as (1).
By case analysis on the form of penetrator strand, and the assumptions sign m′ = + and ∃m.m ⇒+ m′,

m′ can only be in a strand C[g, h], S[g, h], E[h,K], D[h,K], T[g]. The proof for case T[g] is straightforward.
Here, we analyze the other cases.

Case 1: strand m′ is C[g, h], then index m′ = 2, term (strand m′, 0) = g, term (strand m′, 1) = h, and
term m′ = {|g, h|} for some g, h, and sign (strand m′, 0) = −, and sign (strand m′, 1) = −.

From the assumption (1), we have term (strand m′, 0) ∈ synth M and term (strand m′, 1) ∈ synth M , then
g ∈ synthM and h ∈ synthM . By the definition of synth operator, {|g, h|} ∈ synthM , then termm′ ∈ synthM .

Case 2: strandm′ is S[g, h], then indexm′ = 1, or indexm′ = 2, term (strandm′, 0) = {|g, h|}, term (strandm′,
1) = g, and term (strand m′, 2) = h for some g, h.

From the assumption (1), we have term (strand m′, 0) ∈ synth M , {|g, h|} ∈ synth M . By Lemma 14, we
have g ∈ synth M and h ∈ synth M . Hence, term m′ ∈ synth M .

Case 3: strand m′ is E[h,K], then index m′ = 2, term (strand m′, 0) = Key K, term (strand m′, 1) = h,
and term m′ = {|h|}K for some K, h, and sign (strand m′, 0) = −, and sign (strand m′, 1) = −.

From the assumption (1), term (strand m′, 0) ∈ synth M and term (strand m′, 1) ∈ synth M , then Key K ∈
synth M and h ∈ synth M . By the definition of synth, we have {|h|}K ∈ synth M , then term m′ ∈ synth M .
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Fig. 7. Generalized authentication test.

Case 4: strand m′ is D[h,K], then index m′ = 2, term (strand m′, 0) = Key K−1, term (strand m′, 1) =
{|h|}K , and term m′ = h for some K, h, and sign (strand m′ , 0) = −, and sign (strand m′, 1) = −.

From the assumption (1), we have term (strand m′, 0) ∈ synth M and term (strand m′, 1) ∈ synth M .
Therefore, Key K−1 ∈ synth M and {|h|}K ∈ synth M . By Lemma 15, we have either (i) term m′ = h ∈
synth M or (ii) {|h|}K ∈ M . From (i), the lemma can be proved at once. For the case (ii), there are also two
sub-cases, either (ii-1) f 6< {|h|}K or (ii-2) f < {|h|}K . From (ii-1), we have f 6< {|h|}K . Since M is a test suite
for f in b, h ∈ M , then h ∈ synth M . Hence, term m′ ∈ synthM . From (ii-2), by M is a test suite for f in b, we
have component {|h|}K b, then we have ∀n ∈ nodes b.term n = Key (K−1) −→ Is Regular strand(strand n). By
this and (strand m′, 0) ∈ nodes b and term (strand m′, 0) = Key K−1. Therefore, Is Regular strand (strand m′).
But this contradicts with that m′ is in a penetrator strand.

On the other hand, the receiving nodes of a strand get messages which are all in synth G, but a new
message, which is not in synth G, is sent in the strand, then the strand must be regular because a penetrator
strand cannot create such a term. The result can be simply inferred from Lemma 16.

Lemma 17.

[[b ∈ bundles;m′ ∈ nodes b; sign m′ = +; suite G f b; ∃m.m ⇒+ m′; term m′ 6∈ synth G;
∀m0.(m0 ⇒+ m′ ∧ sign m0 = − −→ term m0 ∈ synth G)]]
=⇒ Is Regular strand (strand m′)

Lemma 16 characterizes the knowledge closure properties of a penetrator’s operations on messages. It
says that if a penetrator receives messages in synth G, where G is a test suite for some message g. Then
the augmented knowledge of the penetrator is still in synth G after the receiving actions. Namely, synth G
is the closure of knowledge which the penetrator can deduce from the test suite G. On the other hand, if
a message, which is not in the closure synth G, can be deduced at a node of strand, then the strand must
be regular. Therefore, Lemma 17 is a key technique for us to check whether a strand is regular. We find
this result useful in proving that a strand is regular in the next section on generalized authentication tests.
Note that the two lemmas relate the algebraic operator synth in trace theory [Pau98] with penetrator’s
strand ability to deduce knowledge, which differs our work from the classic strand space theory. Such closure
properties are not available in the classic strand space theory as message algebra operators such as synth are
not introduced. Here b is also a general bundle, not necessarily an efficient or a normal one. This result helps
us to eliminate the need to introduce the tedious concepts of normal efficient bundles, and the equivalence
between bundles, and avoid the corresponding proof of the existence of an equivalent normal and efficient
bundle for the general bundle.

4.8. Generalized Authentication Tests

In this section we first present our notion of generalized authentication tests.The meaning of our assertion
is illustrated in Figure 7. Suppose that b is a bundle, g is a message, G is a test suite for g in b, g uniquely
originates on n, and term n ∈ synth G. If g < term n′, and term n′ is not in synth G, then we can safely
conclude the existence of regular nodes m and m′ such that n �b m, m′ �b n

′, m ⇒+ m′, term n ∈ synth G,
term n′ /∈ synth G. That is to say, the regular edges m ⇒+ m′ is responsible for the transformation from a
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message in synth G to another one which is not in synth G. Nodes m and m′ are regular because a penetrator
strand cannot do such a transformation based on the aforementioned invariance of a penetrator strand on
a test suite in Section 4.7. By Lemma 16, a penetrator can only emit a message which is still in synth G if
the term of any receiving node in the strand is in synth G, but term n′ /∈ synth G. Therefore, there must be
a regular strand performing such a transformation for the first time. Note that g is a general message, not
necessarily an atomic message.

Lemma 18 (Generalized authentication tests).

[[b ∈ bundles; uniquely originate g n; suite G g b; term n ∈ synth G;
n′ ∈ nodes b; g < term n′; term n′ /∈ synth G)]]

=⇒ ∃m m′.







n �b m ∧m′ �b n
′ ∧m ⇒+ m′ ∧ sign m′ = +∧

(strand m′ 6= strand n → sign m = −) ∧ g < term m∧
term m ∈ synth G ∧ g < term m′ ∧ term m′ /∈ synth G∧
Is Regular strand (strand m′)







Proof. Let us define M = {x | x �b n
′ ∧ g < term x ∧ term x /∈ synth G}.

Obviously n′ ∈ M , then by Lemma 8, we have (1) there is a node m′ such that m′ ∈ M , g < term m′,
m′ �b n′, and for all y ∈ nodes b, if y ≺b m′, then y /∈ M . From n′ ∈ nodes b and m′ �b n′, we have
m′ ∈ nodes b.

First we show sign m′ = +. We prove it by contradiction. If sign m′ = −, then by Lemma 3, there is
a node m′′ such that m′′ → m′, m′′ �b m′, term m′ = term m′′. Hence, m′′ ∈ M . This contradicts the
minimality of m′.

From m′ ∈ M , then we have term m′ /∈ synth G, with term n ∈ synth G, we know (2) m′ 6= n.
Furthermore, for any m′′ such that m′′ ⇒+ m′, either (3.1) g < term m′′ or (3.2) g 6< term m′′. For the

case (3.1), from m′ ∈ nodes b and m′′ ⇒+ m′, we have m′′ ≺b m′. Then by (1) and g < term m′′, we have
term m′′ ∈ synth G. For the case (3.2), it is obvious that term m′′ ∈ synth G by the definition of suite G g b.
So it can be concluded that (3) ∀m0.(m0 ⇒+ m′ −→ term m0 ∈ synth G).

From (2) and g < term m′, by Lemma 9, either (4.1) strand m′ = strand n and index n < index m′ or (4.2)
strand n 6= strand m′ and there exists an index i such that sign (strand n′, i) = − and g < term (strand n′, i),
and for all i0, if i0 < i, then g 6< term (strand n′, i0). For the case (4.1), let m be n. For the case (4.2), let
m be (strand n′, i), which is the first node containing g in strand m′. In both cases, there exists a node m
that satisfies m ⇒+ m′ and g < term m. By this and (3) together with term m′ /∈ synth G, by Lemma 17,
we have Is Regular strand(strand m′).

From m′ ∈ nodes b and m ⇒+ m′, we have m ≺b m
′ and m ∈ nodes b. By this and g < term m, then by

Lemma 13, there exists a path p from n to m through b. By Lemma 10, we have n �b m. Therefore, such
m, m′ satisfy the requirements in the conclusion part of the lemma.

Here, we call node pair (n, n′) a generalized authentication test for g because we can get an authentication
guarantee that there must be some regular strand. Combining with trace analysis of the protocol under study,
we can verify that the regular strand is of the intended agent, who has thereby been authenticated. Usually
nodes n and n′ are in the same regular strand, where n sends a term in synth G and later n′ receives back
another term that is not in synth G.

An outgoing authentication tests is a special case of our generalized authentication tests. For the outgoing
test shown in Figure 2, we can let G = {{|h|}K}∪{t|a 6< t}. Note that a is a session key or nonce, and a < h.
We have term n ∈ synth G, and term n′ /∈ synth G if K−1 cannot be penetrated.

4.9. Unsolicited Authentication Tests

The notion of unsolicited tests is introduced in [GJ01], which is frequently used to prove that a key server
authenticates its clients. An unsolicited authentication test is a kind of regularity about an encrypted term
{|h|}K , where K is a long-term regular key. Once {|h|}K occurs as a subterm of a node n in a bundle b, it
can be ensured that there is a positive regular node m originating {|h|}K as a subterm (i.e. m has {|h|}K as
a subterm, and it also holds that {|h|}K 6< term m′ for any node m′ ≺b m). Intuitively, the reason why m
must be regular lies in that K cannot be penetrated in the bundle b. So the penetrator cannot create {|h|}K
by encrypting h with K.
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Lemma 19 (Unsolicited authentication tests).

[[b ∈ bundles;n ∈ nodes b; {|h|}K < term n; regularK K b]]

=⇒ ∃m.

(

m �b n ∧ sign m = + ∧ {|h|}K < term m ∧
Is Regular strand (strand m) ∧
(∀y.y ≺b m −→ {|h|}K 6< term y)

)

Proof. Let M = {x | x �b n ∧ {|h|}K < term x}.
Obviously, n ∈ M . By the well-foundedness of a bundle, there exists a node m such that m is minimal

in M , which means {|h|}K < term m, and for all node m′ ∈ nodes b, if m′ ≺b m then m′ /∈ M and
{|h|}K 6< term m′.

First, we prove that the sign of m is positive. If sign m = −, then by upward-closed property of a bundle
there must be another node m′′ ∈ nodes b such that sign m′′ = + and m′′ → m′. This contradicts with the
minimality of m.

Second, we prove that m is regular by deriving contradictions if m is in a penetrator strand. Here we only
analyze the cases when m is in either C[g, g′] (concatenation strand) or E[g,K] (encryption strand). Other
cases are either straightforward or can be analyzed in a similar way.

• m is in i ∈ C [g, g′]. By the form of the strand C [g, g′] and the fact that m is a positive node, we have
m = (i, 2), term m′ = {|g, g′|}, term (i, 0) = g, and term (i, 1) = g′ for some g, g′. By the upwards-closed
property of a bundle, we have that nodes (i, 0) and (i, 1) must be in b. By {|h|}K < {|g, g′|}, we have
either {|h|}K < g or {|h|}K < g′. So either node (i, 0) ∈ M , or node (i, 1) ∈ M . Both contradict with the
minimality of m.

• m is in i ∈ Eg,K′ . By the form of the strand E[g,K] and the fact that m is a positive node, we have
m = (i, 2), term m = {|g|}K′ , term (i, 0) = K ′, and term (i, 1) = g for some g, K ′. So {|h|}K < {|g|}K′ .
Hence, it is straightforward that either (1) {|h|}K < g or (2) h = g and K = K ′. For (1), we have
{|h|}K < term (i, 1). It is easy to derive a contradiction by the same argument as in the first case. For
(2), by the assumption that K must be regular in b, i must be regular, and this contradicts with the fact
that i is a penetrator strand.

The above proof totally depends on the well-founded induction principle on bundles, and we have for-
malized the proof of this lemma in [Li08]. In fact, Lemma 19 also provides a useful proof method to reason
about authentication properties based on secrecy properties. Note that the premise that n is an unsolicited
test for {|h|}K requires that K is regular w.r.t. n ∈ nodes b, which is an assumption on the secrecy of K. And
the conclusion is an authentication guarantee of the existence of a regular node m. Besides, compared with
the original version of unsolicited test [GJ01], our result has two extensions that m �b n and m is minimal
(i.e., {|h|}K 6< term m′ for any node m′ such that m′ �b m). We find that the extended version of unsolicited
authentication test is quite useful in many cases. We discuss this in the case study on Otway-Rees protocol.

Interestingly enough, we can derive a generalized version of incoming authentication tests if we combine
unsolicited tests with the assumptions that some term g uniquely originates. In details, if a term g uniquely
originates at some node n, g < {|h|}K , and {|h|}K does not occur in n, but {|h|}K occurs in another node
n′, then there exists a transforming edge m ⇒+ m′ in a regular strand such that {|h|}K < term m′ and
{|h|}K 6< term m.

Lemma 20 (Incoming authentication tests).

[[b ∈ bundles;n′ ∈ nodes b; uniquely originate g n; {|h|}K < term n′; g < h;
{|h|}K 6< term n; regularK K b]] =⇒

∃m m′.







n �b m ∧m′ �b n
′ ∧m ⇒+ m′ ∧ sign m′ = + ∧

(strand m′ 6= strand n → sign m = −) ∧
{|h|}K < term m′ ∧ {|h|}K 6< term m ∧
Is Regular strand (strand m)







The proof is rather straightforward. Firstly, by Lemma 19, we can infer that there exists a positive regular
node m′ which satisfies m′ �b n

′ and {|h|}K < term m′. Furthermore, for all y, if y ≺b m, then {|h|}K 6< term y.
Secondly, there are two cases: either strand m′ = strand n or strand m′ 6= strand n. In the first case, let m = n,
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we can easily derive the conclusion. In the second case, by Lemma 9, there exists a negative node m which
is in the same strand as m′ and m is the first node containing g as a subterm.

If n and n′ are in the same regular strand, then we can formalize the version of incoming authentication
tests as defined in [GJ01].

All the definitions, lemmas, and proofs in this section are implemented in a formal theory strand.thy,
which provides a mechanized library for protocol analysis. This theory comprises 4636 lines. Its execution
needs only 40 seconds.

5. Applications

5.1. General Modeling and Proof Strategy for Protocol Analysis

To analyze a protocol with our mechanical strand space method, we need to import the strand.thy theory.
Besides, we need to specify the form of all regular strands of the protocol, and to define the strand space to
be the union of regular strands of the protocol or penetrators.

In this paper we mainly focus on authentication and secrecy properties. As mentioned in Section 2.5, a
value g is secret for a protocol if in every bundle b of the protocol the penetrator cannot receive g in cleartext;
that is, there is no node n in b such that term n = g. Usually g is a long-term key of a regular agent, a
nonce, or a session key issued by a server. To prove the secrecy property of a long term key K, which is
not a part of any message, e.g., the private key priK A of any regular agent A in NSL protocol, we use the
well-foundedness of property of a bundle, and we prove it by contradiction. Normally, we construct a set

M = {n|n ∈ nodes b ∧ Key K < term n},

and need to show M = ∅. If M is non-empty, then by the existence of a ≺b minimal element of any non-
empty set of bundle nodes (Lemma 8), there is a ≺b minimal element in S. By case analysis on the penetrator
strands and regular strands, we can derive a contradiction. From this, we can derive that there is no node n
such that K < term n. On the other side, if we want to prove the secrecy of an atom a such as a nonce or a
session key, which is a part of a message, e.g., the nonce Na originated from an initiator strand in the NSL
protocol, we can directly use the authentication tests. Because such value a is usually uniquely originated
and encrypted by an unpenetrated key K in a context such as {|v|}K by a regular strand, where a < v. We
can prove this by contradiction. Let

G = {t|∃t v K.t = {|v|}K ∧ a < v ∧ regularK K b} ∪ {t|a 6< t},

if there is a node n such that term n = a, then obviously term n /∈ synth G. By authentication test, there is a
regular strand in which there are two nodes m and m′ such that a < term m, term m ∈ synth G, a < term m′

and term m′ /∈ synth G. However by the specifications on regular strands, we can prove that such a strand
does not exist. Therefore a contradiction is obtained.

Authentication test and unsolicited test are two main techniques to prove authentication guarantees. The
details of applying the two techniques are discussed in case studies on the NSL and Otway-Rees protocols.
Here we only emphasize key steps in applying this technique. First we usually need to prove the secrecy of
some key K when we apply the above two proof techniques. Recall that in an authentication test we require
any encrypted term containing g in a test suite G should be encrypted by some key whose inverse key is not
penetrated in the bundle b, and in an unsolicited test we also require that the key K cannot be leaked in the
bundle b which is used to encrypt some subterm {|h|}K . Second we need to figure out a proper message set
G which is a test suite for a relevant atom a. Then we check the antecedents of generalized authentication
tests are satisfied in a routine way. At last, combining the analysis of traces of regular strands and some side
assumptions, we can ensure that only the intended regular strand exists.

5.2. Example 1: the Needham-Schroeder-Lowe Protocol

For the NSL protocol, we define its initiator and responder strands. For instance, we define an initiator and
a responder strands of NSL protocol as follows:
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constdefs NSLInit::sigma⇒agent⇒agent⇒nat⇒nat⇒bool
NSLInit s A B Na Nb ≡

(SP s)=

[

(+, Crypt pubK B {|Nonce Na, Agent A|}),
(−, Crypt pubK A {|Nonce Na, Nonce Nb, Agent B|}),
(+, Crypt pubK B {|Nonce Nb|})

]

constdefs NSLResp::sigma⇒agent⇒ agent ⇒nat⇒nat⇒bool
NSLResp s A B Na Nb ≡

(SP s)=

[

(−, Crypt (pubK B) {|Nonce Na, Agent A|}),
(+, Crypt (pubK A) {|Nonce Na, Nonce Nb, Agent B|}),
(−, Crypt (pubK B) (Nonce Nb))

]

Next we define the strand space of NSL protocol to be the union of NSL initiator or NSL responder or
penetrator strands.

defs NSL def:Σ ≡

{

s.

(

∃A B Na Nb. NSLInit s A B Na Nb ∨
∃A B Na Nb. NSLResp s A B Na Nb ∨
Is Penetrator strand s

)}

In the following discussion, we show how to prove some security properties of the NSL protocol. First we
need to prove the secrecy property on any regular key.

Given a bundle in the NSL strand spaces, for any node in the bundle, the term of this node cannot be a
key which is not in KP because neither a penetrator can emit a key K such that K /∈ KP nor any regular
agent can send a message containing such a key.

Lemma 21. [[b ∈ bundles;n ∈ nodes b;K /∈ KP]] =⇒ Key K 6< term n

Proof. Let M = {x | x ∈ nodes b ∧ Key K < term x}.
We show that M is empty by contradiction. If there is a node n ∈ M , then by the well-foundedness of a

bundle, there exists a node m such that m is minimal in M . Namely, m ∈ nodes b, Key K < term m, and
for all m′ ∈ nodes b, if m′ ≺b m then m′ /∈ M .

We prove that the sign of m is positive. If sign m = −, then by upward-closed property of a bundle there
must be another node m′′ in the bundle b such that sign m′′ = + and m′′ → m. This contradicts with the
minimality of m. Then m is either in a regular strand or in a penetrator strand.

• m is in a regular strand. Then by the definition of NSL strands, there are two cases. Here we only analyze
the case when m is in a responder strand s such that NSLresp[s,A,B,Na,Nb] for some A,B,Na,Nb. The
other case can be analyzed in a similar way. By inspection on the trace form of a responder strand, we have
m′ = (s, 1), but term (s, 1) = {|Nonce Na,Nonce Nb,Agent B|}pubK A. Obviously Key K 6< term (s, 1).
We have a contradiction.

• m is in a penetrator strand s′. Here we only analyze the cases when s′ is either K[K ′] (key strand) or
C[g, h] (concatenation). Other cases are either straightforward or can be analyzed in a similar way.

- s′ is K[K ′]. We have m = (s′, 0) and K = K ′ ∈ KP. This contradicts with K /∈ KP.

- s′ is C[g, h]. We havem = (s′, 2) and k < {|g, h|}. By the definition of <, we have Key K < g, or Key K < h.
If Key K < g, then Key K < term (s′, 0). This contradicts with the minimality of m. The case when
Key K < h can be analyzed similarly.

From the above lemma and the definition of KP, we can easily derive that each private key of a reg-
ular agent cannot be penetrated by any nodes in the bundle. This lemma is used later when we apply
authentication results to prove the initiator’s and responder’s authentication guarantees.

Lemma 22. [[b ∈ bundles;A /∈ bad]] =⇒ regularK (priK A) b
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If some nonce Na uniquely originates on an initiator strand s, the nonce can uniquely identify the strand,
so if another initiator strand s′ satisfies is initiator s′ A B Na Nb, then s must be s′.

Lemma 23. [[uniquely originate (Nonce Na) (s, 0);NSLInit s A0 B0 Na Nb0;NSLInit s′ A B Na Nb]] =⇒
s = s′ ∧A0 = A ∧Nb0 = Nb ∧B0 = B

Now we prove the initiator’s and responder’s authentication guarantee. Here we only give the proof of
the former, which is more difficult than that of the latter. The difficulty lies in that we need not only to
prove a responder strand NSLResp[A,B,Na,N ] exists for some nonce N , but also to ensure that N = Nb.
Our main technique is the result of authentication test, and the key step of applying authentication test is
to figure out a proper G (in Lemma 18) to serve our aim.

Lemma 24 (Initiator’s guarantee).

[[b ∈ bundles;NSLInit s A B Na Nb; uniquely originate (Nonce Na) (s, 0);
(s, 2) ∈ nodes b;A /∈ bad;B /∈ bad;Na 6= Nb]] =⇒
∃r.NSLResp r A B Na Nb ∧ (r, 1) ∈ nodes b

Proof. From (s, 2) ∈ nodes b, we have (s, 1) ∈ nodes b. Let a = Nonce Na, n = (s, 0), n′ = (s, 1), then
term n′ = {|Nonce Na,Nonce Nb,Agent B|}pubK A, and we define

G0 = {t.∃r N.((r, 1) ∈ nodes b ∧ NSLResp r A B Na N ∧ t = term (r, 1))},

G = G0 ∪ {{|Nonce Na,Agent A|}pubK B} ∪ {t | a 6< t}.

Obviously if t ∈ G0, then t = {|Nonce Na,Nonce N,Agent B|}pubK A for some N .

From A /∈ bad and B /∈ bad, by Lemma 21, we have that neither priK A nor priK B can be penetrated in
b. So G is a test suite for Nonce Na in b. Then by Lemma 14 and Lemma 15, we have two auxiliary results.

(1) [[t = {|Nonce Na′,Nonce Nb′,Agent B′|}pubK A′ ; t ∈ synth G;Nonce Na < t]] =⇒ t ∈ G0

(2) [[t = {|Nonce Na′,Agent A′|}pubK B′ ; t ∈ synth G;Nonce Na < t]] =⇒ B′ = B ∧Na′ = Na ∧A′ = A

We show that {|Nonce Na,Nonce Nb,Agent B|}pubK A ∈ synth G. We prove it by contradiction. Suppose

{|Nonce Na,Nonce Nb,Agent B|}pubK A /∈ synth G. It is rather routine to show that all assumptions of

Lemma 18 can be satisfied, so (a) there are two regular nodes m′

1 and m1 such that n �b m1, m
′

1 �b n′,
m1 ⇒+ m′

1, a < term m1, term m1 ∈ synth G, a < term m′

1, term m′

1 /∈ synth G, Is Regular strand strand m′

1,
sign m1 = − and sign m′

1 = +.
The proof of sign m1 = − is simple, we only need to prove strand m1 6= s. We prove it by contradiction.

Suppose strand m1 = s, from sign m′

1 = +, we have m′

1 is either (s, 0) or (s, 2). From NSLInit s A B Na Nb,
we have term (s, 0) = {|Nonce Na,Agent A|}pubK B , and term (s, 2) = {|Nonce Nb|}pubK B . From Na 6= Nb and

the definition of G, we have that {|Nonce Na,Agent A|}pubK B ∈ synth G and {|Nonce Nb|}pubK B ∈ synth G.

Then term m′

1 ∈ synth G. But this contradicts with term m′

1 /∈ synth G. Therefore, s 6= strand m′

1. Then by
Lemma 18, we have sign m1 = −.

By (a) and the NSL specification, m′

1 is in either an initiator or a responder strand. If the former case
holds, then by the definition of a NSL initiator, m1 is the second node in the strand strand m′

1, because the
only negative node in the strand is the second one. So term m1 = {|Nonce Na′,Nonce Nb′,Agent B′|}pubK A′

for some A′, B′, Na′, and Nb′. From the facts term m1 ∈ synth G and a < term m1, by (1) we have
term m1 ∈ G0, A

′ = A, B′ = B, Na′ = Na, so NSLInit (strand m′) A B Na Nb′, with the assumption
NSLInit s A B Na Nb. By Lemma 23, we have Nb′ = Nb, (strand m′) = s. Then by m1 ⇒+ m′

1, we
can derive that m′

1 is the last node of the strand s, so it must be term m′

1 = {|Nonce Nb|}pubK B . By

Nonce Na < term m′

1, Na = Nb. This contradicts the assumption Na 6= Nb.
If the latter case holds, then strand m1 is a responder strand, by NSL specification about a respon-

der, m′

1 is the second node in the strand strand m′

1 because the only positive node in an NSL responder
strand is the second one. By m1 ⇒+ m′

1, m1 is the first node in the responder strand. Hence, term m1 =
{|Nonce Na′,Agent A′|}pubK B′ for some A′, B′, and Na′. From the facts term m1 ∈ synth G and a < term m1,

and by (2), B′ = B, Na′ = Na, A′ = A. So term m′

1 = {|Nonce Na,Nonce N,Agent B|}pubK A′ for

some N . Obviously, m′

1 ∈ node b, by the definition of G0, we can conclude that term m′

1 ∈ G0. Hence,
term m′

1 ∈ synth G. This contradicts the fact term m′

1 /∈ synth G.



28 Yongjian Li and Jun Pang

Therefore, we have {|Nonce Na,Nonce Nb,Agent B|}pubK A ∈ synth G. From this, by (1), we have

{|Nonce Na,Nonce Nb,Agent B|}pubK A ∈ G0, and by the definition of G0, it is easy to show the conclusion
of the lemma holds.

Next lemma is on the secrecy of the nonce Nb which is originated by a responder.

Lemma 25 (Nb’s secrecy).

[[b ∈ bundles;NSLResp r A B Na b; uniquely originate (Nonce Nb) (r, 1)
(r, 2) ∈ nodes b;A /∈ bad;B /∈ bad;Na 6= Nb]] =⇒
∀n ∈ nodes b.term n 6= Nb

Proof. We define G = {{|Nonce Na,Nonce Nb,Agent B|}pubK A, {|Nonce Nb|}pubK B} ∪ {t | Nonce Nb 6< t}

and n = (r, 1).
By the specification of NSLResp, we know that term (r, 1) = {|Nonce Na,Nonce Nb,Agent B|}pubK A and

term (r, 1) ∈ synth G. Similar to the proof in Lemma 24, by Lemma 14 and Lemma 15, we have two auxiliary
results.

(1) [[t = {|Nonce Na′,Nonce Nb′,Agent B′|}pubK A′ ; t ∈ synth G;Nonce Nb < t]] =⇒ Na′ = Na ∧ Nb′ =

Nb ∧B′ = B ∧A′ = A

(2) [[t ∈ synth G;Nonce Nb < t]] =⇒ {|Nonce Na,Nonce Nb,Agent B|}pubK A < t ∨ {|Nonce Nb|}pubK B < t

We show that (a) for any node n ∈ nodes b, then term n ∈ synth G. We prove it by contradiction. Suppose
there is a node n′ such that term n′ /∈ synth G. It is rather routine to show that all assumptions of Lemma 18
can be satisfied, so (b) there are two regular nodes m′

1 and m1 such that n �b m1, m
′

1 �b n′, m1 ⇒+ m′

1,
a < term m1, term m1 ∈ synth G, a < term m′

1, term m′

1 /∈ synth G, Is Regular strand (strand m′

1) and
sign m′

1 = +.
Here we prove that m′

1 is not in the strand r. We prove it by contradiction. Suppose m′

1 is in r, then
m′

1 can only be the second node (r, 1) because the only positive node is (r, 1). But by the specification of
NSLResp, we have term (r, 1) = {|Nonce Na,Nonce Nb,Agent B|}pubK A. Then term (r, 1) ∈ synth G. This

contradicts with term m′

1 /∈ synth G. Hence, r 6= strand m′

1. By this and Lemma 18, we have sign m1 = −.
By (b) and NSL specification, m′

1 is either an initiator strand or a responder strand. If the former case
holds, then by the definition of a NSL initiator, the only one negative node in a NSL initiator strand is the
second one, so term m1 = {|Nonce Na′,Nonce Nb′,Agent B′|}pubK A′ and term m′

1 = {|Nonce Nb′|}pubK B′

for some A′, B′, Na′, and Nb′. From term m1 ∈ synth G and Nonce Nb < term m1, and by (1), we have
Na′ = Na, Nb′ = Nb, B′ = B and A′ = A. By the fact Nonce Nb < term m′

1, we have Nb′ = Nb. So
term m′

1 = {|Nonce Nb|}pubK B ∈ synth G. This contradicts with term m′

1 /∈ synth G.

If the latter case holds, then strandm1 is a responder strand, by NSL specification of a responder,m′

1 is the
second node in the strand strand m′

1 because the only positive node in a NSL responder strand is the second
one. Bym1 ⇒+ m′

1,m1 is the first node in the responder strand. Then termm1 = {|NonceNa′,AgentA′|}pubK B′

for some A′, B′, and Na′. From the fact Nonce Nb < term m1, we have Na′ = Nb. From term m1 ∈ synth G,
and by (2), we have that (c) {|Nonce Na,Nonce Nb,Agent B|}pubK A < term m1 or {|Nonce Nb|}pubKB

<

term m1. But from term m1 = {|Nonce Na′,Agent A′|}pubK B′ and (c), we can derive a contradiction.

From (a) and the definition of G and synth, we can prove that for any node n ∈ nodes b, term n 6=
Nonce Nb.

Analyzing NSL protocol took us only 3 days. The proof scripts comprises 1954 lines, and executes in 20
seconds.

5.3. Example 2: the Otway-Rees Protocol

The Otway Rees protocol [OR87] (see Figure 8) assumes a shared-key environment. In Figure 8, we abbreviate
Agent A as A, Nonce Na as Na, and shrK A as KA. The aim of the protocol is to use long-term symmetric
keys shared with the server and its clients to distribute a new session key for a conversation between two
clients. There are three roles in the protocol: initiator, responder and server. The strands of the agents acting
as responder and server are defined as follows:



Formal Aspects of Computing: LATEX2ε Submissions 29

Fig. 8. Message exchanging in the Otway-Rees Protocol.

constdefs ORResp::sigma⇒agent⇒ agent⇒nat⇒msg⇒key⇒ msg⇒msg⇒bool
ORResp A B Nb N K H H’ ≡ N∈T ∧ (N6=Nonce Nb) ∧(¬Nonce Nb<H) ∧

(SP s)=







(−, {|N, Agent A, Agent B, H|}),
(+, {|N, Agent A, Agent B, H, Crypt (shrK B) {|Nonce Nb, N, Agent A, Agent B|}|}),
(−, {|N, H′, Crypt (shrK B){|Nonce Nb, Key K|}|}),
(+, {|N, H′|})







constdefs ORServ::sigma⇒agent⇒ agent⇒nat⇒nat⇒msg⇒ key⇒bool
ORServ s A B Na Nb N K ≡ (∀A.K6=shrK A) ∧ N∈T ∧

(SP s)=







(−, {|N, Agent A, Agent B,
Crypt (shrK A) {|Nonce Na, N, Agent A, Agent B|},
Crypt (shrK B) {|Nonce Nb, N, Agent A, Agent B|} |}),

(+, {|N, Crypt (shrK A) {|Nonce Na, Key K|},Crypt (shrK B) {|Nonce Nb, Key K|}|})







Note that N is an atomic message such as a nonce to identify a session of the protocol. Namely, N is of type
msg.

Next we define the strand space of Otway-Rees protocol to be the union of Otway-Rees initiator or
Otway-Rees responder or Otway-Rees server or penetrator strands.

defs OR def:Σ ≡











s.







∃A B Na N K. ORInit s A B Na N K ∨
∃A B Nb N K H H′. ORResp s A B Nb N K H H′ ∨
∃A B Na Nb N K′. ORServ s A B Na Nb N K ∨
Is Penetrator strand s

















Unsolicited authentication test was applied to prove a server’s guarantee in the Otway-Rees protocol
in [OR87]. But their proofs in [GJ02] for an initiator’s and a responder’s authentication guarantee depend
on the result of outgoing authentication tests and a side assumption that no proper encrypted subterms are
contained in the forwarding componentH, which is corresponding to {|N,NonceNa,Agent A,AgentB|}shrK A
in the first and second messages of a responder (see Figure 8). However, this side assumption is not realistic
since a responder cannot enforce such a constraint. In the intended case, H is a term encrypted by the
initiator’s long-term key, which is unintelligible to the responder. To remedy this deficiency, the authors
devoted one section (Section 5.1.3, [GJ02]) in their paper to show that this constraint does not hide any
attacks. In particular, if the penetrator can succeed without this restriction, then they can also succeed if
this constrain is enforced. Their proof is rather complicated. First, they need to introduce another notion
of nearly equivalence between a constrained Otway-Rees bundle and an unconstrained Otway-Rees bundle.
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Second, they need an intermediate result showing that a nearly equivalent constrained Otway-Rees bundle
can be constructed from a unconstrained Otway-Rees bundle.

Now we only make use of results of unsolicited authentication tests and give simpler proofs for authenti-
cation goals of the Otway-Rees protocol. The proofs differ from the proofs in [GJ02] in several ways.

• We use unsolicited authentication tests to prove regularity of nodes in Otway-Rees protocol, namely that
once {|h|}K occurs as a subterm of a node n in a bundle b, and if the key K cannot be penetrated in this
bundle, then there is a regular node m originating {|h|}K . Moreover, we frequently use the additionally
strengthened assertion that m is the node originating {|h|}K as a subterm, and {|h|}K 6< term m′ for any
node m′ �b m. This strengthened property turns out to be very useful in our analysis.

• Combining freshness property of a nonce in Otway-Rees protocol with unsolicited authentication test, we
give an alternative proof for the initiator’s and responder’s authentication guarantees. In particular, we
do not need the aforementioned side assumption and outgoing authentication tests in [GJ02]. Our main
result lies in that we extend the result of a server’s guarantees, in turn which can be used to prove the
guarantees of an initiator and a responder.

In order to prove the main results of authentication guarantees, we need some auxiliary results first.
For any node n ∈ nodes b, term n cannot be a long-term symmetric key of a regular agent, because such a
key is not sent as a part of a message in the Otway-Rees protocol. The first requirement of the definition
ORServ[s,A,B,Na,Nb,N,K], which eliminates the possibility that a penetrable key occurs in the second
node of s.

Lemma 26. [[b ∈ bundles;n ∈ nodes b;A /∈ bad]] =⇒ Key (shrK A) 6< term n

Following this lemma, it is easy to prove that a long-term symmetric key of a regular agent cannot be
penetrated in the bundle.

Lemma 27. [[b ∈ bundles;A /∈ bad]] =⇒ regularK (shrK A) b

As in [GJ01], we assume a nonce originates uniquely in some strand space. If a nonce Na originates
uniquely, and ORInit i A B Na N K, then the nonce can uniquely identify this strand i, which means if
another initiator strand i′ satisfies ORInit i′ A′ B′ Na N ′ K ′, then i = i′. This is captured by the following
lemma.

Lemma 28.

[[uniquely originate (Nonce Na) (i, 0);ORInit i A B Na N K;ORInit i′ A′ B′ Na N ′ K ′]]
=⇒ i = i′ ∧A = A′ ∧B = B′ ∧N = N ′ ∧K = K ′

Now we come to prove the server’s authentication guarantees. Our main technique is Lemma 19 in
Section 4.9. The main differences between our proofs and the original proof of Guttman et al. lie in the
guarantees of the existence of a server strand s such that ORServ s A B Na Nb N K. They only analyzed
the case when A 6= B, while we consider more general cases without the restriction A 6= B. We show that if
there is a server s such that ORServ s A B Na Nb N K in b and A is regular, then there is a regular initiator
i such that ORInit i A B Na N K ′ for some K ′, or a regular responder r such that ORResp r A B Na N H H ′

for some H, H ′ with A = B.

Lemma 29 (Server’s guarantee 1).

[[b ∈ bundles;A /∈ bad;ORServ s A B Na Nb N K; (s, 0) ∈ nodes b]]

=⇒

(

(∃i K ′.ORInit i A B Na N K ′ ∧ (i, 0) ∈ nodes b) ∨
(∃r K ′ H H ′.ORResp r A B Na N K ′ H H ′ ∧A = B ∧ (r, 1) ∈ nodes b)

)

Proof. Suppose we have n = (s, 0), and term of (s, 0) is of the following form :{|N,AgentA,AgentB, {|NonceNa,
N,Agent A,Agent B|}shrK A, {|Nonce Nb,N,Agent A,Agent B|}shrK B |}.

By Lemma 27 and that A /∈ bad, shrK A is regular. So n is a unsolicited test for {|Nonce Na,N,Agent A,
AgentB|}shrK A. Therefore, by Lemma 19 there is a positive regular nodem such that {|NonceNa,N,Agent A,
Agent B|}shrK A < term m, and {|Nonce Na,N,Agent A,Agent B|}shrK A 6< term m′ for all m′ such that
m′ ≺b m.

By the trace form of regular strands, we have either (1) m is in an initiator strand i such that (for some
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A′, B′, Na′, N ′,K ′) ORInit i A′ B′ Na′ N ′ K ′, or (2) m is in a responder strand r such that (for some
A′, B′, Nb′, N ′,K ′, H,H ′) ORResp r A′ B′ Nb′ N ′ K ′ H H ′ .

If (1) holds, then by inspection on the trace form of an initiator strand, we have m = (i, 0), and
{|Nonce Na′, N ′,Agent A′,Agent B′|}shrK A′ = {|Nonce Na,N,Agent A,Agent B|}shrK A, then Na′ = Na,
N ′ = N , A′ = A and B′ = B.

If (2) holds, then by inspection on the trace form of a responder strand, we have either m = (r, 1) or
m = (r, 3). m = (r, 3) is not possible. Otherwise, {|Nonce Na,N,Agent A,Agent B|}shrK A < H ′. However,
H ′ also occurs in (r, 2). We have m = (r, 1), then either (i) {|Nonce Na,N,Agent A,Agent B|}shrK A < H
or (ii) {|Nonce Nb′, N ′,Agent A′,Agent B′|}shrK B′ = {|Nonce Na,N,Agent A,Agent B|}shrK A. (i) is not
possible, since H also occurs in (r, 0). So (ii) must hold, then we have Nb′ = Na, N ′ = N , A′ = A, B′ = B
and shrK B′ = shrK A. By the injectivity of shrK, we have B′ = A. Then A = B.

Note that if we strengthen the assumptions of Lemma 29 with A 6= B, then the second case of the
conclusion of Lemma 30 can be excluded.

Lemma 30 (Server’s guarantee to an initiator).

[[b ∈ bundles; A /∈ bad;ORServ s A B Na Nb N K; (s, 0) ∈ nodes b;A 6= B]]
=⇒ (∃i K ′.ORInit i A B Na N K ′ ∧ (i, 0) ∈ nodes b)

Similar to Lemma 29, we also prove another server’s guarantee using {|NonceNb,N,Agent A,AgentB|}shrK B
as an unsolicited test. By the assumption that a server s such that ORServ s A B Na Nb N K exists in a bun-
dle b and the fact that shrK B is regular, there is a regular responder r such that ORResp r A B Nb N K H H ′

for K, H, H ′, or a regular initiator i such that ORInit i A B Nb N K ′ for some K ′ with A = B.

Lemma 31 (Server’s guarantee 2).

[[b ∈ bundles;B /∈ bad;ORServ s A B Na Nb N K; (s, 0) ∈ nodes b]]

=⇒

(

(∃r K H H ′.OResp r A B Nb N K H H ′ ∧ (r 1) ∈ nodes b) ∨
(∃i K. ORInit i A B Nb N K ∧A = B ∧ (i, 0) ∈ nodes b)

)

If we require A 6= B, we can also exclude the second part of the conclusion in Lemma 31.

Lemma 32 (Server’s guarantee to a responder).

[[b ∈ bundles; B /∈ bad;ORServ s A B Na Nb N K; (s, 0) ∈ nodes b;A 6= B]]
=⇒ (∃r K H H ′.OResp r A B Nb N K H H ′ ∧ (r 1) ∈ nodes b)

In order to prove the authentication guarantee of an initiator i such that ORInit i A B Na N K with
A 6= B, we can use {|Nonce Na,Key K|}shrK A as an unsolicited test to prove the existence of a server s such
that ORServ s A′ B′ Na′ Nb N ′ K ′ for some A′, B′, Na′, Nb,N ′,K ′. Then with the above results of the
guarantee of s, and the unique-origination of Na, we can ensure that Na′ = Na, K ′ = K, A′ = A, N ′ = N
and B′ = B.

Lemma 33 (Initiator’s guarantee).

[[b ∈ bundles;A /∈ bad;A 6= B;ORInit i A B Na N K; (i, 1) ∈ nodes b; uniquely originate (Nonce Na) (i, 0)]]
=⇒ ∃s Nb.ORServ s A B Na Nb N K ∧ (s, 1) ∈ nodes b

Proof. Suppose n = (i, 1), term of (i, 1) is {|N, {|Nonce Na,Key K|}shrK A|}. A /∈ bad, by Lemma 27 shrK A
is regular. Hence, {|Nonce Na,Key K|}shrK A is an unsolicited test. By Lemma 19, there is a positive regular
node m such that {|Nonce Na,Key K|}shrK A < term m, and {|Nonce Na,Key K|}shrK A 6< term m′ for all
m′ such that m′ ≺b m.

By the trace form of regular strands, m cannot be in an initiator’s strand because no positive node has a
subterm of the form {|Nonce Na,Key K|}shrK A in an initiator strand. If m is in a responder’s strand, since
a subterm of the form {|Nonce Na,Key K|}shrK A can only occur in the second or the forth nodes, we have
{|Nonce Na,Key K|}shrK A < H or {|Nonce Na,Key K|}shrK A < H ′. However, neither H nor H ′ occurs as
new in the strand. (H appears as a subterm of node (r, 0), and H ′ appears as a subterm of node (r, 2)). So
m is only in a server strand s such that ORServ s A′ B′ Na′ Nb′ N ′ K ′ for some A ,B′, Na′, Nb′, N ′,K ′.
By inspection on the trace form of a server strand, m can only be the second node in this strand, so
either (1) {|Nonce Na,Key K|}shrK A < {|Nonce Na′,Key K ′|}shrK A or (2) {|Nonce Na,Key K|}shrK A <

{|Nonce Nb′,Key K ′|}shrK B′ .
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If (1) holds, then Na′ = Na, K ′ = K, A′ = A. We have ORServ s A B′ Na Nb′ N ′ K. By Lemma 29,
there exists either an initiator strand i′ such that ORInit i′ A B′ Na N ′ K ′′ for some K ′′ and (i′, 0) ∈ b,
or a responder strand r such that ORResp r A B′ Na N ′ K ′′ H H ′ for some K ′′, H and H ′ with A = B′,
and (r, 1) ∈ b. We first prove the second case cannot hold. Suppose that there exists a responder strand r
such that ORResp r A B′ Na N ′ K ′′ H H ′, then by the trace forms of a responder strand and an initiator
strand, both (i, 0) and (r, 2) will be nodes originating Na, and this leads to a contradiction. So it can only
be the case when there exists an initiator strand i′ such that ORInit i′ A B′ Na N ′ K ′′. Then by the facts
ORInit i A B Na N K and ORInit i′ A B′ Na N ′ K ′′, and by Lemma 28, we have B′ = B, N ′ = N . Hence,
ORserv s A B Na Nb′ N K and (s, 1) ∈ b.

If (2) holds, then Nb′ = Na, K ′ = K, B′ = A. We have ORserv s A′ A Na′ Na N ′ K. By Lemma 31,
there exists either a responder strand r such that ORResp r A′ A Na N ′ K ′′ H H ′ for some K ′′, H and H ′

and (r, 1) ∈ b, or i′ ∈ ORInit i′ A′ A Na N ′ with A′ = A, and (i′, 0) ∈ b. If the first case holds, then by the
definition of a responder’s trace and an initiator’s trace, both (i, 0) and (r, 1) can be the node originating
Na. This leads to a contradiction. If the second case holds, then by the facts ORInit i A B Na N K and
ORInit i′ A A Na N ′ K ′′, then by Lemma 28, we have B = A. This contradicts with the assumption A 6= B.

Similarly, we can prove a responder’s authentication guarantee.

Lemma 34 (Responder’s guarantee).

[[b ∈ bundles; B /∈ bad; A 6= B;ORResp r A B Nb N K H H ′;
(r, 2) ∈ nodes b; uniquely originate (Nonce Nb) (r, 1)]]
=⇒ ∃s Na.ORServ s A B Na Nb N K ∧ (s, 1) ∈ nodes b

To sum up, we mainly use unsolicited tests and the freshness property of nonces to derive the above proofs
of authentication guarantees. Here, we emphasize that we use Lemma 19 by asserting the existence of a regular
node m which originates {|h|}K . So for any n such that n ≺b m, {|h|}K is not a subterm of m. We frequently
use this in the above proofs to ensure that a node can only be in an intended regular node. For example, we
use this result to prove that the node which originates {|Nonce Na,N,Agent A,Agent B|}shrK A can only be
the second node if it is in a responder strand (Lemma 29). Besides, Lemmas 30, 32, 33, and 34 prove that
the Otway Rees protocol actually achieves the authentication goals when we require that an initiator A and
a responder B cannot be the same agent in one session. We observe that the protocol does not establish that
the same key is delivered to both A and B, only that if either A or B reaches the end of its strand, then
the other has submitted the expected matching original request {|Nonce Nb,N,Agent A,Agent B|}shrK B or
{|Nonce Na,N,Agent A,Agent B|}shrK A. These are security properties as explored in [JHG99, GJ01].

Analyzing the Otway Rees protocol took us about one week’s effort. This time is longer because for this
protocol we need more time to figure out a new proof strategy during our proof procedure. The proof script
comprises 3421 lines and executes in 30 seconds.

6. Related Work

Besides the inherence and extension from the classical work on strand space [JHG98, JHG99], our work is
also related to the work by Perrig and Song [Son99, PS00]. They explore automatic verification techniques
based on the strand space model. Athena [Son99], which is an automatic tool for security protocol analysis,
has incorporated the authentication tests [GJ01]. Several efficient methods have been developed in order to
increase the performance of Athena. In work [PS00, Gut02] authentication tests are employed for automatic
security protocol design. In our work, instead of supporting automatic generation of security protocols, we
emphasize the soundness of the strand space theory itself, and have developed an extension of authentica-
tion tests and formalized the theory in Isabelle/HOL [NPW02], which can be seen as another mechanical
framework for proving the correctness of authentication protocols.

Jacobs and Hasuo [JH09] use the theorem prover PVS [ORS92] for reasoning about security protocols,
where they use strand spaces as semantics for a BAN-like logic. This method does not employ the key
techniques of the strand space theory, such as well-foundedness of bundles and authentication tests.

More recent work has been devoted to extensions of the classical strand space theory and applications
of the theory to some real-world security protocols. For instance, the strand space theory is extended with
a new sub-term relation to specify syntax of messages with MAC (Message Authentication Code) payload
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for security protocols [WZL05], and the bounds on the penetrator’s behaviors are expanded accordingly.
Sharp and Hansen combine strand space theory with interval logics to develop a timed strand space theory
for analyzing real-time properties of security protocols in [SH07]. Kamil and Lowe adopt the strand space
theory to specify and model the secure channel in layered protocols, where an application layer protocol
is layered on top of a secure transport protocol in [KL10]. An IEEE-standard protocol used in local area
wireless network, 802.11i, is modeled and verified using the strand space framework in [FMG06].

Our work is also closely related to Paulson’s work [Pau98]. We have directly imported their theory on
messages, and used their inductive method. Two inductively defined operators on messages parts and synth
are borrowed to formally introduce the subterm relation and test suite. Besides, Isabelle/HOL’s built-in
support for inductive set and rule induction makes it convenient to apply induction proof method. However,
our work differs from theirs in the following aspects. (a) We model the semantics of a protocol by strands,
and mainly use the well-founded principle of a bundle and authentication tests to prove properties; while
they model the semantics of a protocol by an inductively defined set of traces and mainly use the induction
principle to directly prove properties. (b) The inductive approach is borrowed to give a more tractable
definition for a general bundle, which is independent of a protocol case; while the inductive approach is used
to define a special protocol case in [Pau98], and different protocols have different inductive definitions. (c)
Authentication tests, which are our main proof techniques for security protocols, are general results and
can be applied in the verification of many protocol cases. However, no such general principles are available
because each protocol has its own inductive definition in [Pau98], and therefore induction proofs for the
similar security properties of two protocols differ from each other because the two protocols have different
induction definitions

This paper is also related to our previously published results [Li05, LP06]. In this paper, we have developed
a new result on characterization of a penetrator’s ability to deduce knowledge from a message set, i.e., the
so-called test suite. This result is crucial to prove our version of generalized authentication tests which is not
included in [Li05, LP06] The formalization of generalized authentication tests is revised to a much simpler
form.2 We consider the simplification of the proof of the authentication tests an improvement upon the
classical strand space theory. Moreover, the advantages of proof techniques of Isablelle/Isar are illustrated in
the current paper, which are adopted to have mechanical support for the strand space theory. In particular,
we show how the induction method and calculation reasoning are applied in Isar.

7. Conclusion

The key contribution of our work is to introduce an inductive approach to the strand space theory. Essentially,
the inductive approach allows us to define a protocol session set by induction rules and reason about this set
by the corresponding induction principles. Usually, the induction rules can specify the semantics in protocol
execution steps. Each element of the set is a finite object, but the set might have unbounded size. Although
a bundle has one finite node set and one finite edge set, the size of the set of all the bundles is unbounded.
The inductive approach is the most effective to reason about properties of each element in such a set.

• Firstly, the inductive approach is an effective technology to improve the strand space theory. The induc-
tively defined operators parts and synth are borrowed from Paulson’s work [Pau98] to characterize the
semantics of actions on messages in strand spaces. In particular, the synth operator is used to charac-
terize penetrator’s ability to deduce knowledge from a message set. The inductive definition of bundles
formalizes the operational semantics of protocol steps, and the induction principles on bundles helps us
a lot to formally prove that there is a path in a bundle from the node at which a message originates to
a node where the message occurs.
Combining the aforementioned two results of characterization of penetrator’s ability and the existence
of a path from a messages’s originating node to a node where the message occurs, we give a generalized
version of authentication test and a simpler proof.

• Secondly, the inductive approach is a strong tool to mechanize all the theory in a theorem prover which
makes strand space theory more practical. Our proposal is easy to be mechanized in any theorem prover
provided that it has support for inductively defined sets and the corresponding automatic reasoning

2 Hence, its proof in the current paper is a lot different from [LP06]. Previously, our proof relies on the well-foundedness of a
bundle and is rather complex.



34 Yongjian Li and Jun Pang

tools. Mechanizing all the theory in a theorem prover not only models protocols rigorously and specifies
protocol goals without any ambiguity, but also guarantees a formal proof. Therefore, it helps us to achieve
the highest possible assurance for formal reasoning of security protocols. We believe that our work is the
first that thoroughly formalizes the strand space theory.

In the future, we want to extend our research in two directions. (1) We want to add more features
into our approach to tackle modern security protocols. Currently, we have focused on timestamp, Diffie-
Hellman operations, and protocol composition. (2) We want to automate (or semi-automate) our approach.
By inspection on our case studies, we find that proof procedures of applying authentication tests are rather
routine and modular. We need to figure out a proper test nonce, a test edge, and a proper term set G (in
Lemma 18) to ensure that an agent uses this test to send a term in synth G, but receives it in a transformed
form which is not contained in synth G. After that we need to prove that a regular agent is due to this
transformation. Moreover, combining the analysis of traces of regular strands and other side assumptions,
it can be ensured that only the intended one can do so. The real creative part of such a proof lies in how
to figure out G, which depends on the human insights for the protocol under consideration, and the other
parts are routine. It is interesting to implement such a general proof strategy as a tactic in Isabelle/HOL.

Acknowledgements. We would like to thank the three anonymous referees who read carefully the first
submission version of this paper and gave a lot of valuable comments, which help us to greatly improve the
quality of our paper both in content and presentation. Christian Urban also tells us a lot how to present
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Appendix

In the appendix, we briefly present some Isabelle concepts, notations and commands, and our notation
conventions for variables in our work. Readers will find these useful if they want to check our Isabelle proof
script with our paper.

Isabelle’s meta-logic is the intuitionistic fragment of Church’s theory of simple types, which can be used
to formalize an object-logic which we need [NPW02]. Normally, we use rich infrastructure of the object-logics
such as HOL to formalize some theory, which has been provided by Isabelle system. Important connectives
of the meta-logic are as follows: implication (=⇒) is for separating premises and conclusion of theorems;
equality (≡) definitions; universal quantifier (

∧

) parameters in goals. In our work, we use the object-logic
HOL to formalize the strand space theory. Therefore, we briefly show how to use HOL to formalize a theory.

Theories. Working with Isabelle means creating theories. A theory is a file with a named collection of types,
functions, and theorems, proofs. The general format of a theory T is as follows:

theory T = B1 +B2 + . . .+Bn;
declarations for types , definitions , lemmas , and proofs
end

where B1, B2, . . . , Bn are are the names of existing theories that T is based on. For our case, we only need
import HOL library Main to write the theory strand.thy.

Types. There are basic types such as bool, the type of truth values; nat, the type of natural numbers. Func-
tion types are denoted by ⇒, and product types by ×. Types can also be constructed by type constructors
such as list and set. For instance, nat list declares the type of lists whose members are natural numbers.

Terms. Forms of terms used in this paper are rather simple. It is simply a constant or variable identifier, or
a function application such as f t, where f is a function of type τ1 ⇒ τ2, and t is a term of type τ1. Formulae
are terms of type bool. bool has two basic constants True and False and the usual logical connectives (in
decreasing order of priority): ¬, ∧, ∨, −→, ∀, and ∃, all of which (except the unary ¬) associate to the right.
Note that the logical connectives introduced here are used in the object-logic HOL.
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Introducing new types. There are three kinds of commands for introducing new types. typedecl name
introduces new “opaque” type name without definition; types name = τ introduces an abbreviation name
for type τ . datatype command can introduce a recursive data type. A general datatype definition is of the
form

datatype (α1, . . . , αn) = C1 τ11 . . . τ1k1
| . . . | Cm τm1 . . . τmkm

where αi are distinct type variables (the parameters), Ci are distinct constructor names and τij are types.
Note that n can be 0, i.e., there is no type parameters in datatype declaration.

Definition commands. consts command declares a function’s name and type. defs gives the definition
of a declared function. constdefs combines the effect of consts and defs. Combining a consts and inductive
commands, we can give an inductive definition for a set. An inductively defined set S is typically of the
following form:

consts S :: τset inductive S intros
rule1 : [[a11 ∈ S; . . . ; a1k1

∈ S;A11, . . . , A1i1 ]] =⇒ a1 ∈ S
...
rulen : [[an1 ∈ S; . . . ; ankn

∈ S;An1, . . . , Anin ]] =⇒ an ∈ S

Lemmas. In Isabelle’s traditional style, we use the notation lemma name : [[A1;A2; . . . ;An]] =⇒ B to
donote that with assumptions A1, . . . , An, we can derive a conclusion B. In Isar’s style, a lemma is written
as lemma name : assumes a1 : “A1” and . . . and an : “An” shows B.

Proof scripts and proof states. In Isabelle’s traditional tactics-based style, a proof script comprises a
sequences of application of tactics: apply tac1, . . . , apply tacn done. The script will be executed by Isabelle sys-
tem until all subgoals are solved. A typical proof in Isar style has a more human-readable structure as follows:

proof
assume asm0 and . . . and asmm

have formula1
proof ....(*proof script for formula1*) qed

...
have formulan

proof ....(*proof script for formulan*) qed
have formulan+1

proof ....(*proof script for formulan+1*) qed
qed

where asm0, . . . , asmm are assumptions, formula1 , . . . , formulan are intermediate results. From assumptions
and intermediate results, we can show the final goal formulan+1 .

Techniques such as case distinction, induction, calculational reasoning in Isar language can make our
proof more structured, which are immensely more readable and maintainable than apply-scripts. But the
price we pay is that the length of proof in Isar is usually much longer than that of the counterpart in Isabelle
tactical style. Therefore, we adopt a mixed style in our formalized proofs: we use commands in Isar style
to decompose a large goal into subgoals to keep our proof with a clear structure; when a subgoal is simple
enough, we directly use apply-scripts to prove the subgoal, thus we can keep the length of our proof script
relatively short. After processing a proof command, Isabelle will display a proof state:
∧

x1, . . . , xp. [[A1;A2; . . . ;An]] =⇒ B

where x1, . . . , xp are local constants, A1, . . . , An are local assumptions, and B is the actual (sub)goal in this
proof state. Note that

∧

is the universal quantifier in the meta-logic, not the conjunction operator (∧) in
the object logic HOL.

Notation conventions. Throughout this paper, we use the conventions for meta-variables as follows:
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b, c range over bundles
m,n, x, y range over nodes

i, j range over natural numbers for indexes of nodes
f , g, h, t range over messages

a ranges over atomic messages of nonces and session keys
p ranges over paths

A, B range over agent names
K, Ka, Kb range over keys
N , Na, Nb range over nonces

G, H range over essage sets
s, s′ range over strands
M ranges over node sets

Form of lemma for induction. We have shown the formal notation of bundles.induct in Section 4.3.
This rule is applied as an elimination rule. Isabelle unifies the first premise xa ∈ bundles in bundles.induct
with an assumption of a lemma, then eliminates the assumption, and new five subgoals (Nil–Add neg2) will
appear. Therefore, in order to allow the induction to go through, we must conform the lemma to a form
which can be matched for this induction principle. That is to say, we usually write the form of a lemma as

[[b ∈ bundles]] =⇒ P b

if we want to show a property P holds for each bundle. After proving a lemma by induction, sometimes
we need to turn the lemma to a new form, which is presented as a new lemma for further application. For
instance, for Lemma 3, we firstly need to prove a lemma [[b ∈ bundles]] =⇒ sign n = − −→ n ∈ nodes b −→
n′ → n −→ n′ ∈ nodes b ∧ (n′, n) ∈ edges b by induction. Then we use this lemma to prove Lemma 3, which
is suitable for further application. Similarly, after proving Lemma 13, we can use it to prove a new lemma:
[[b ∈ bundles;uniquely originate g n;n′ ∈ nodes b; g < term n′]] =⇒ (∃p.p ∈ (complete Path g b)∧ (last p) = n′),
which is used in the proof of Lemma 4.8.


