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Abstract. Anonymity is the property of maintaining secret the iden-
tity of users performing a certain action. Anonymity protocols often use
random mechanisms which can be described probabilistically. In this pa-
per, we propose a probabilistic process calculus to describe protocols for
ensuring anonymity, and we use the notion of relative entropy from infor-
mation theory to measure the degree of anonymity these protocols can
guarantee. Furthermore, we prove that the operators in the probabilis-
tic process calculus are non-expansive, with respect to this measuring
method. We illustrate our approach by using the example of the Dining
Cryptographers Problem.

1 Introduction

With the growth and commercialisation of the Internet, users become more
and more concerned about their anonymity and privacy in the digital world.
Anonymity is the property of keeping secret the identity of the user who has per-
formed a certain action. The need for anonymity may arise in a wide range of sit-
uations, from votings and donations to postings on electronic forums. Anonymity
protocols often use random mechanisms. Typical examples are the Dining Cryp-
tographers [5], Crowds [22], Onion Routing [27], SG-MIX [16], and many others.

Quantifying the degree of anonymity a protocol can guarantee is a line of
active research. Various notions, like anonymity set and information theoretic
metric, have been investigated in the literature [5, 22, 2, 25, 9, 6]. (See detailed
discussions in Section 5.) In particular, [25, 9] used the notion of entropy from
information theory as a measure for anonymity. It takes into account the proba-
bility distribution of the users performing certain actions, where the probabilities
are assigned by an attacker after observing the system. However, it does not take
into account the attacker’s knowledge about the users before running a protocol.



In this paper we propose to use relative entropy as a general extension of the
aforementioned approaches. Our method quantifies the amount of probabilistic
information revealed by the protocol, i.e. how much information an attacker can
obtain after observing the outcomes of the protocol, together with the informa-
tion he has before the protocol running. For a protocol that contains both non-
deterministic and probabilistic behaviours, we extend this measuring method to
deal with two sets of probability distributions by using Hausdorff distance (see
Definition 4).

Nowadays, the need for applying formal methods to security protocols has
been widely recognised. To our knowledge, there have been several attempts to
develop a formal framework for specifying and reasoning about anonymity prop-
erties. Schneider and Sidiropoulos [23] studied anonymity in CSP [14], but they
only considered non-deterministic behaviour. Bhargava and Palamidessi [3] pro-
posed a notion of probabilistic anonymity with careful distinction between non-
deterministic and probabilistic behaviours and used a probabilistic π-calculus
as a specification language. This work was extended by Deng, Palamidessi and
Pang in [6], where a weak notion of probabilistic anonymity was defined to cap-
ture the amount of probabilistic information that may be revealed by a protocol.
Other researchers define their notions of anonymity in terms of epistemic logic
[13, 12] and “function views” [15].

In this paper, we follow the approach based on process calculi. Specifically, we
propose a probabilistic extension of CCS [19], in the style of [1], to describe pro-
tocols for ensuring anonymity. It allows us to specify both non-deterministic
and probabilistic behaviours. The operational semantics of a process is de-
fined in terms of a probabilistic automaton [24]. Our formal characterisation
of anonymity is then based on permutations over the traces of a probabilistic
automaton. Inspired by [7, 8], we prove that except for the parallel composition
all operators in our probabilistic CCS are non-expansive, with respect to the
measuring method using relative entropy, which allows us to estimate the degree
of anonymity of a complex system from its components, rather than analyse the
system as a whole. We illustrate our ideas by using the example of the Dining
Cryptographers Problem (DCP), in which a number of cryptographers cooperate
to ensure that the occurrence of a certain action is visible, while the user who
has performed it remains anonymous.

We summarise our main contributions of this work as follows:

– We propose to use relative entropy for measuring the degree of anonymity a
protocol can guarantee. It is an extension of the results in [25, 9].

– We define a probabilistic CCS for specifying protocols, and prove the non-
expansiveness of some operators.

– We show how to use our framework to reason about the degree of anonymity
of protocols by the example of the Dining Cryptographers Problem.

Plan of the paper In next section we recall some basic notations which are
used throughout the paper. In Section 3, we use relative entropy to measure
anonymity, and we present the non-expansiveness proof for the operators in a



probabilistic CCS. In Section 4, we apply our framework to the Dining Cryp-
tographers Problem. In Section 5, we compare our approach with some related
work. Finally, we conclude the paper by discussing our future work in Section 6.
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2 Preliminaries

In this section, we present some basic definitions from probability theory, the
notion of probabilistic automata, and a probabilistic CCS.

2.1 Probability measure

Let Ω be a set. A σ-field over Ω is a collection F of subsets of Ω containing ∅
and closed under complements and countable unions. A probability measure on
a σ-field F is a function η : F → [0, 1] such that η(Ω) = 1 and, for each family
{Zi}i∈N of pairwise disjoint elements of F , η(

⋃

i∈N
Zi) =

∑

i∈N
η(Zi). A discrete

probability measure over Ω is a probability measure whose σ-field is the powerset
of Ω. A discrete probability distribution is a function η : Ω → [0, 1] such that
∑

s∈Ω η(s) = 1. The support of η is defined to be the set supp(η) = {s ∈ Ω |
η(s) 6= 0}. We denote by D(Ω) the set of probability distributions over Ω.

2.2 Probabilistic automata

We give a brief review of the formalism probabilistic automata [24].

Definition 1. A probabilistic automaton is a tuple M = (S, s0, E, H,→) where

– S is a set of states,
– s0 is the start state,
– E is a set of external actions,

– H is a set of internal (hidden) actions,

– → ⊆ S × (E ∪ H) ×D(S) is a transition relation.

We often write s
a
→ η for (s, a, η) ∈ →. Informally, a probabilistic automaton

is like an ordinary automaton except that a labelled transition leads to a prob-
ability distribution over a set of states instead of a single state. We will use
probabilistic automata to give operational semantics for the probabilistic CCS
that will be introduced in next section.

A path π of M is a (finite or infinite) sequence of the form s0a1η1s1a2η2s2...
such that

1. each si (resp. ai, ηi) denotes a state (resp. action, distribution over states);
2. s0 is the initial state;



3. if π is finite, then it ends with a state;

4. si
ai+1

→ ηi+1 and si+1 ∈ supp(ηi+1), for each non-final i.

The set of all paths of M is denoted Path(M), while the set of finite paths is
denoted Path∗(M). The last state of a finite path π is written last(π). A path
π is maximal if either it is infinite or it is a finite path without any outgoing
transitions from last(π).

A scheduler σ of M is a partial function of type Path∗(M) → (E∪H)×D(S)
such that (i) for each path π that is not maximal σ(π) is defined, (ii) σ(π) = (a, η)

implies last(π)
a
→ η. A scheduler σ of M induces a discrete probability measure

on the σ-field generated by cones of paths as follows. If π is a finite path, then
the cone generated by π is the set of paths Cπ = {π′ ∈ Path(M) | π � π′},
where � denotes the prefix ordering on sequences. The measure ǫ of a cone Cπ

is defined by

ǫ(Cπ) =







1 if π = s0

ǫ(Cπ′) · η(s′) if π = π′aηs′ and σ(π′) = (a, η)
0 otherwise.

The measure ǫ is called a probabilistic execution of M .
The trace of a path π of an automaton M , written tr(π), is the sequence

obtained by restricting π to the set of external actions of M . A trace is maximal

if it is so obtained from a maximal path. The cone of a finite trace γ is defined by
Cγ = {γ′ ∈ Eω | γ � γ′}. Given a probabilistic execution ǫ, the trace distribution

of ǫ, td(ǫ), is the measure on the σ-field generated by cones of traces defined by

td(ǫ)(Cγ) =
∑

tr(π)=γ

ǫ(Cπ).

If there are only countably many maximal traces in a probabilistic automaton
(which is the case in many applications including all examples in this paper),
a trace distribution corresponds to a discrete probability distribution on the
maximal traces of a fully probabilistic automaton resulted from resolving all
non-determinism of the probabilistic automaton. We denote the set of trace dis-
tributions of probabilistic executions of a probabilistic automaton M by tds(M).

2.3 Probabilistic CCS

In this section we give a probabilistic extension of Milner’s CCS [19] which is
based on the calculus of [1] that allows for non-deterministic and probabilistic
choice. We assume a countable set of variables, Var = {X, Y, ...}, and a countable
set of atomic actions, A = {a, b, ...}. Given a special action τ not in A, we let
u, v, ... range over the set of actions, Act = A∪A∪{τ}. The class of expressions
E is defined by the following syntax:

E ::= 0 |
∑

i∈I

upi
.Ei | E1 ⊞ E2 | E1 | E2 | E \ A | f [E] | X | µXE



where A ⊆ A, f : Act → Act is a renaming function, I is a nonempty countable
indexing set and {pi}i∈I a family of probabilities such that

∑

i∈I pi = 1. For
finite indexing set I = {i1, ..., in} we also write upi1

.Epi1
+ ...+upin

.Epin
instead

of
∑

i∈I upi
.Ei. The construction E1 ⊞ E2 stands for non-deterministic choice,

which is denoted by + in CCS. We use | to denote the usual parallel composition.
The restriction and renaming operators are as in CCS: E \ A behaves like E
as long as E does not perform an action a ∈ A; f [E] behaves like E where
each action a ∈ Act is replaced by f(a). We let variables range over process
expressions. The notation µX stands for a recursion which binds the variable X .
We use fv(E) for the set of free variables (i.e., not bound by any µX) in E. As
usual we identify expressions which differ only by a change of bound variables.

We use P, Q, ... to range over Pr, the set of expressions without free vari-
ables, called processes. The operational semantics of a process P is defined as
a probabilistic automaton whose states are the processes reachable from P and
the transition relation is defined by the rules in Figure 1, where P

u
→ η de-

scribes a transition that, by performing an action u, leaves from P and leads to
a distribution η over Pr.

The presence of both probabilistic and non-deterministic choice in the prob-
abilistic CCS allows us to specify systems that have both probabilistic and non-
deterministic behaviour. Given a process P , we denote by pa(P ) the probabilistic
automaton that represents the operational semantics of P via the rules in Fig-
ure 1. If there is no occurrence of non-deterministic choice in P , the automaton
pa(P ) is fully probabilistic. In this case tds(pa(P )) is a singleton set of trace
distribution.

1.
P

i∈I
upi

.Pi
u
→ η where η(P ) =

P

{pi | i ∈ I, Pi = P}

2. P1 ⊞ P2

u
→ η if P1

u
→ η or P2

u
→ η

3. P1 | P2

u
→ η if one the following four conditions is satisfied:

(a) P1

u
→ η1 and η(P ) =



η1(P
′
1) if P = P ′

1 | P2

0 otherwise

(b) P2

u
→ η2 and η(P ) =



η2(P
′
2) if P = P1 | P ′

2

0 otherwise

(c) u = τ and there exists a ∈ A with P1

a
→ η1 and P2

ā
→ η2 such that

η(P ) =



η1(P
′
1) · η2(P

′
2) if P = P ′

1 | P ′
2

0 otherwise

(d) the symmetric case of (c)

4. P \ A
u
→ η if u 6∈ A ∪ A, P

u
→ η1, and η(P ) =



η1(P
′) if P = P ′ \ A

0 otherwise

5. f [P ]
u
→ η if P

v
→ η1, f(v) = u and η(P ) =



η1(P
′) if P = f [P ′]

0 otherwise

6. µXE
u
→ η if E{µXE/X}

u
→ η

Fig. 1. Operational semantics for Probabilistic CCS



3 Measuring anonymity

3.1 Relative entropy

We make a convention 0 log ∞ = 0.

Definition 2 (Relative entropy [17]). Let θ, θ′ be two discrete probability

distributions on a set S. The relative entropy of θ w.r.t. θ′ is defined by

D(θ, θ′) =
∑

s∈S

θ(s) · log
θ(s)

θ′(s)
.

In the sequel, whenever we write D(θ, θ′), it is implicitly assumed that the do-
mains of θ and θ′ are the same, i.e., dom(θ) = dom(θ′).

In general, we have D(θ, θ′) 6= D(θ′, θ), so relative entropy is not a true
metric. But it satisfies many important mathematical properties, e.g. it is always
nonnegative, and equals zero only if θ = θ′. It plays an important role in quantum
information theory, as well as statistical mechanics.

We now present a few properties of relative entropy.

Proposition 3. Relative entropy D has the following properties:

1. (Nonnegativity) D(η, η′) ≥ 0, with D(η, η′) = 0 if and only if η = η′;

2. (Possibility of extension) D(η1, η2) = D(η′

1, η
′

2) where dom(η′

1) = dom(η) ∪
{s} and η′

1(s) = 0, similarly for η′

2 w.r.t. η2;

3. (Additivity) D(η1×η2, η
′

1×η′

2) = D(η1, η
′

1)+D(η2, η
′

2), where (η1×η2)(s1, s2)
is defined as η1(s1) · η2(s2);

4. (Joint convexity) For 0 ≤ r ≤ 1, we have

D(rη1 + (1 − r)η2, rη
′

1 + (1 − r)η′

2) ≤ rD(η1, η
′

1) + (1 − r)D(η2, η
′

2).

5. (Strong additivity) Let dom(η1) = dom(η′

1) = S∪{s}, dom(η2) = dom(η′

2) =
S ∪ {s1, s2} with η1(s) = η2(s1) + η2(s2) and η′

1(s) = η′

2(s1) + η′

2(s2). Then

it holds that D(η1, η
′

1) ≤ D(η2, η
′

2).

Proof. Similar properties for Tsallis relative entropy have been proved in [11];
their proofs can be adapted for relative entropy. ⊓⊔

We extend D to sets of distributions by using Hausdorff distance.

Definition 4. Given two sets of discrete probability distributions Θ = {θi}i∈I

and Θ′ = {ρj}j∈J , the relative entropy of Θ w.r.t. Θ′ is defined by

D(Θ, Θ′) = supi∈I infj∈JD(θi, ρj)

where inf ∅ = ∞ and sup ∅ = 0.



3.2 Anonymity systems

The concept of anonymity is relative to a certain set of anonymous actions,
which we denote by A. Note that the actions in A normally depend on the
identity of users, and thus are not visible to the observer. However, for the
purpose of defining and verifying anonymity we model the elements of A as
visible outcomes of the system. We write FA for the set of all renaming functions
that are permutations on A and identity elsewhere.

The idea of measuring anonymity is to consider a fully probabilistic automa-
ton (resp. a probabilistic automaton) M as a trace distribution (resp. a set of
trace distributions) tds(M), and then apply the distance defined in Definition 2
(resp. Definition 4). The interpretation of a probabilistic automaton as a set of
trace distributions is given in Section 2.2. Usually we find it convenient to de-
scribe a system as a process in the probabilistic CCS. To measure the distance
between two processes, we just view a process P as its corresponding automa-
ton pa(P ) and simply write D(P, Q) for the distance between the set of trace
distributions represented by tds(pa(P )) and that represented by tds(pa(Q)).

Definition 5 (α-anonymity5). Given α ∈ [0, 1], a process P is α-anonymous
on a set of actions A if

∀f ∈ FA : D(P, f [P ]) ≤ α

In the particular case α = 0, we say P is strongly anonymous or P provides

strong anonymity.

In [23] Schneider and Sidiropoulos consider a process as a set of traces, thus
P is strongly anonymous if f [P ], the process after the permutation of anonymous
actions, represents the same set of traces as that of P . The non-determinism plays
a crucial role in their formalism. A system is anonymous if the set of the possible
outcomes is saturated with respect to the intended anonymous users, i.e. if one
such user can cause a certain observable trace in one possible computation, then
there must be alternative computations in which each other anonymous user can
give rise to the same observable trace (modulo the identity of the anonymous
users). In our case, P is strongly anonymous if P and f [P ] represent the same
set of trace distributions. Thus, we extend their definition to the probabilistic
setting in a natural way. We define DA(P ) as max{D(P, f [P ]) | f ∈ FA}. Thus,
P is α-anonymous if and only if DA(P ) ≤ α.

Proposition 6 (Non-expansiveness). All the operators of the probabilistic

CCS except for parallel composition are non-expansive.

1. DA(
∑

i∈I upi
.Pi) ≤

∑

i∈I piDA(Pi) if u 6∈ A;

2. DA(P1 ⊞ P2) ≤ max{DA(P1), DA(P2)};

5 The notion of α-anonymity already appeared in [6] to describe weak probabilistic
anonymity, but the measuring method used here is different and no explicit notion
of schedulers is considered.



3. DA(P \ B) ≤ DA(P ) if A ∩ B = ∅;
4. DA(f [P ]) ≤ DA(P ) if f(a) = a for all a ∈ A;

5. DA(µXE) = DA(E{µXE/X}).

Proof. We sketch the proof for each clause.

1. Given any f ∈ FA, we show that for each η ∈ tds(pa(
∑

i∈I upi
.Pi)) there ex-

ists some η′ ∈ tds(pa(
∑

i∈I upi
.f [Pi])) such that D(η, η′) ≤

∑

i∈I piDA(Pi).
Note that η is determined by a scheduler σ. Restricting σ to pa(Pi), for each
i ∈ I, we have a scheduler σi that resolves all non-deterministic choices in
Pi, resulting in a trace distribution ηi ∈ tds(pa(Pi)). It is easy to see that

η(Cu) = 1 and η(Cuγ) =
∑

i∈I pi · ηi(Cγ)

for any trace γ. Observe that, as a graph, pa(
∑

i∈I upi
.f [Pi]) is isomor-

phic to pa(
∑

i∈I upi
.Pi). Hence there is a scheduler σ′ of

∑

i∈I upi
.f [Pi]

that resolves all non-deterministic choices in the same way as σ does for
∑

i∈I upi
.Pi. It follows that each scheduler σi also has a counterpart σ′

i that
is a scheduler of f [Pi], for each i ∈ I. Each σ′

i determines a trace distribution
η′

i ∈ tds(pa(f [Pi])) satisfying

η′(Cu) = 1 and η′(Cuγ) =
∑

i∈I pi · η′

i(Cγ).

for some η′ ∈ tds(pa(
∑

i∈I upi
.f [Pi])). Therefore, it holds that

D(η, η′) = D(
∑

i∈I

piηi,
∑

i∈I

piη
′

i) ≤
∑

i∈I

piD(ηi, η
′

i) ≤
∑

i∈I

piDA(Pi).

The first inequality above is justified by the joint convexity property of
relative entropy given in Proposition 3.

2. Given any f ∈ FA, we let Θ = tds(pa(P1 ⊞ P2)) and Θ′ = tds(pa(f [P1] ⊞

f [P2])). Each η ∈ Θ is determined by a scheduler σ. We consider the inter-
esting case in which σ chooses an outgoing transition from Pi, for i = 1, 2.
It follows from the isomorphism between pa(P1 ⊞ P2) and pa(f [P1] ⊞ f [P2])
that σ has a counterpart σ′ which chooses an outgoing transition from f [Pi],
and which determines a trace distribution η′ ∈ Θ′ satisfying

D(η, η′) ≤ DA(Pi) ≤ max{DA(P1), DA(P2)}.

3. Note that pa(P \B) is the same as pa(P ) except that all transitions labelled
with actions in B are blocked. If η1 ∈ tds(pa(P \ B)), there is some η2 ∈
tds(pa(P )) such that all probabilities assigned by η2 to maximal traces of
the form γaγ′ with a ∈ B are now assigned by η1 to γ. Similar relation holds
between the peer trace distribution η′

1 ∈ tds(pa(f [P ]\B)) of η1 and the peer
trace distribution η′

2 ∈ tds(pa(f [P ])) of η2, for any f ∈ FA. By the strong
additivity property given in Proposition 3, we derive that

D(η1, η
′

1) ≤ D(η2, η
′

2) ≤ DA(P ).



4. If f is an injective renaming function, i.e., a 6= b implies f(a) 6= f(b), then it
is immediate that DA(f [P ]) = DA(P ). Otherwise, two different actions may
be renamed into the same one. As a result, two different maximal traces in P
may become the same in f [P ]. We can then appeal to the strong additivity
property of relative entropy to infer that DA(f [P ]) ≤ DA(P ).

5. The result follows from the fact that µXE and E{µXE/X} have the same
transition graph. ⊓⊔

The above proposition shows a nice property of our approach using relative
entropy to measure anonymity. The non-expansiveness of the operators in the
probabilistic CCS allows us to estimate the degree of anonymity of a complex
system from its components, rather than analyse the system as a whole.

Remark 7. Unfortunately, the parallel composition operator is expansive. For
example, let A = {b, c}, P = a 1

3
.b + a 2

3
.c and Q = ā 1

3
.b + ā 2

3
.c. We have

DA(P ) = DA(Q) =
1

3
log

1
3
2
3

+
2

3
log

2
3
1
3

=
1

3
.

However, (P | Q) \ a = τ 1
9
.(b | b) + τ 2

9
.(b | c) + τ 2

9
.(c | b) + τ 4

9
.(c | c) and

DA((P | Q) \ a) =
1

9
log

1
9
4
9

+
2

9
log

2
9
2
9

+
2

9
log

2
9
2
9

+
4

9
log

4
9
1
9

=
2

3
.

It follows from Proposition 6 that DA(P | Q) ≥ DA((P | Q) \ a) = 2
3 .

3.3 Small examples

We present some toy examples to show the basic ideas of our approach.

Example 8. Consider a communication system that provides anonymous email
with 2 potential senders, a mix network and a recipient. The attacker wants to
find out which sender sent an email to the recipient. By means of traffic analysis,
the attacker obtains a communication system described by the process P .

P = τp.sender (0).email .receive.0 + τ1−p.sender(1).email .receive.0

The senders require anonymity, i.e., anonymity is required for the set A =
{sender(0), sender(1)}. In this case, FA is a singleton set {f} with f [P ] tak-
ing the form:

f [P ] = τ1−p.sender (0).email .receive.0 + τp.sender (1).email .receive.0

It is easy to see that DA(P ) = p log p
1−p

+ (1 − p) log 1−p
p

. If p = 1
2 , the

attacker cannot distinguish the two senders, and indeed the system provides
strong anonymity. If p → 0 or p → 1, we have DA(P ) = +∞, which means that
the system does not ensure any anonymity of the senders.



Example 9. Now suppose the actual system in Example 8 has a built-in non-
determinism and behaves in a way described by the process Q.

Q = (τ 1
3
.sender(0).email .receive.0 + τ 2

3
sender (1).email .receive.0) ⊞

(τ 2
3
.sender(0).email .receive.0 + τ 1

3
.sender (1).email .receive.0)

We observe that f [Q] = Q for f ∈ FA, thus DA(Q) = 0 and the system provides
strong anonymity.

4 The Dining Cryptographers

The general Dining Cryptographers Problem [5] is described as follows: A num-
ber of cryptographers sitting around a table are having dinner. The representa-
tive of their organisation (master) may or may not pay the bill of the dinner.
If he does not, then he will select exactly one cryptographer and order him to
pay the bill. The master will tell secretly each cryptographer whether he has to
pay or not. The cryptographers would like to reveal whether the bill is paid by
the master or by one of them, but without knowing who among them, if any, is
paying. In this paper we consider a DCP with three cryptographers connected
by a ring. It is not difficult to extend it to the general case.

A possible solution to this problem, as described in [5], is to associate a
coin to every two neighbouring cryptographers. The result of each coin-tossing
is only visible to the adjacent cryptographers. Each cryptographer examines the
two adjacent coins: If he is not paying, he announces “agree” if the results are
the same, and “disagree” otherwise. If he is paying, he says the opposite. If the
number of “disagree” is even, then the master is paying. Otherwise, one of the
cryptographers is paying.

4.1 Fully probabilistic users

We consider the case in which the master probabilistically select one cryptog-
rapher to pay. We formalise the DCP as a process in the probabilistic CCS, as
illustrated in Figure 2 6, where Π is the parallel composition. We use ⊕ (resp. ⊖)
to represent the sum (resp. the subtraction) modulo 3. Messages p and n are the
instructions sent by the master, requiring each cryptographer to pay or not to
pay, respectively. The set of anonymous actions is A = {pay(i) | i = 0, 1, 2}. The
restriction operator \ over the action sequences −→c and −→m enforces these actions
into internal communications. The traces of DCP are in the form of pay(i)xyz
with i ∈ {0, 1, 2} and x, y, z ∈ {a, d} (a for “agree” and d for “disagree”).
FA contains two elements, one renames pay(i) according to the permutation
f1 = {0 7→ 1, 1 7→ 2, 2 7→ 0} and the other f2 = {0 7→ 2, 1 7→ 0, 2 7→ 1}.

We assume that all the coins are uniform. With a probabilistic master,
tds(pa(DCP)) contains only one trace distribution. Each maximal trace of DCP
can only contain one of the following sequences: ddd, aad, ada, and daa.

6 For the sake of brevity, we formalise the DCP in a value-passing version of the
probabilistic CCS, which can be encoded into the probabilistic CCS in the standard
way [19]; incorporating the “if-then-else” construct is also straightforward.



Master =
P

2

i=0
τpi

. mi(p). mi⊕1(n). mi⊕2(n). 0

Coini = τph
. Head i + τpt

. Tail i
Head i = ci,i(head). ci⊖1,i(head). 0

Tail i = ci,i(tail). ci⊖1,i(tail). 0

Crypt i = mi(x). ci,i(y). ci,i⊕1(z).
if x = p then pay i.

if y = z then outi(disagree) else outi(agree)
else if y = z then outi(agree) else outi(disagree)

DCP = (Master | (Π2

i=0Crypt i | Π2

i=0Coini) \ −→c ) \ −→m

Fig. 2. Specification of the DCP in the probabilistic CCS

Fair coins With fair coins, if the master assigns the initial probabilities p0 = 1
3 ,

p1 = 1
3 and p2 = 1

3 , i.e., each cryptographer has an equal chance to pay, then it is
easy to see that f1[DCP ] = DCP and f2[DCP ] = DCP. Therefore, DA(DCP) = 0
and the DCP provides strong anonymity.

If the master assigns the initial probabilities p0 = 1
2 , p1 = 1

3 and p2 = 1
6 . The

probabilities of traces with ddd, aad, ada, and daa are all 1
4 . By the definition

of D, we can check that

D(DCP , f1[DCP ]) = 0.431 and D(DCP , f2[DCP ]) = 0.362

Hence, the degree of anonymity of such DCP is 0.431.

crypt0 pays (i = 0) crypt1 pays (i = 1) crypt2 pays (i = 2)

p(pay(i)ddd) 0.120 0.080 0.040

p(pay(i)aad) 0.120 0.080 0.047

p(pay(i)ada) 0.120 0.093 0.040

p(pay(i)daa) 0.140 0.080 0.040

Table 1. A trace distribution (with biased coins: ph = 2

5
).

Biased coins We assume the coins are biased, e.g. ph = 2
5 . We also consider the

case that p0 = 1
2 , p1 = 1

3 and p2 = 1
6 . Then the probabilities of traces can be

calculated as in Table 1. We have

D(DCP , f1[DCP ]) = 0.209 and D(DCP , f2[DCP ]) = 0.878

Hence, the degree of anonymity of such DCP is 0.878, which is greater than
0.431. Therefore, the biased coins leak more information to the attacker than
fair coins. If ph → 1.0, then D(DCP , f1[DCP]) = D(DCP , f2[DCP ]) = +∞.
Hence, the degree of anonymity of such DCP is +∞, in such case the DCP does
not provide any anonymity.



crypt0 pays (i = 0) crypt1 pays (i = 1) crypt2 pays (i = 2)

p(pay(i)ddd) 0.24 0.24 0.24

p(pay(i)aad) 0.24 0.24 0.28

p(pay(i)ada) 0.24 0.28 0.24

p(pay(i)daa) 0.28 0.24 0.24

Table 2. Three trace distributions (with biased coins: ph = 2

5
).

4.2 Non-deterministic users

We now consider the case in which the master non-deterministically choose a
cryptographer to pay, i.e., the master is of the form

Master = m0(p). m1(n). m2(n). 0 ⊞ m0(n). m1(p). m2(n). 0 ⊞

m0(n). m1(n). m2(p). 0

Fair coins With fair coins, it is easy to see that f1[DCP] = DCP and f2[DCP] =
DCP , i.e., tds(pa(f1[DCP ])) and tds(pa(f2[DCP ])) represent the same set of
trace distributions as tds(pa(DCP)). Therefore, DA(DCP) = 0 and the DCP
provides strong anonymity.

Biased coins We assume the coins are biased, e.g. ph = 2
5 . Then tds(pa(DCP))

contains the three trace distributions shown in the last three columns of Table 2.
It can then be checked that

D(DCP , f1[DCP]) = D(DCP , f2[DCP ]) = 0.009

Hence, the degree of anonymity of such DCP is 0.009

Remark 10. The master of a DCP models the a priori knowledge of the attacker.
In the particular case that the master is purely non-deterministic, the attacker
has no a priori knowledge of the users. The attacker simply assumes that there is
a uniform probability distribution among the users, we then get an ideal situation
of anonymity similar to that considered in [9].

5 Related Work

In his seminal paper, Chaum [5] used the size of an anonymity set to indicate
the degree of anonymity provided by a DC network. An anonymity set is defined
as the set of participants who could have sent a particular message as observed
by the attacker. Berthold et al. [2] defined the degree of anonymity as ln(N),
where N is the number of users of the protocols. Both [5] and [2] only deal with
non-deterministic cases, and do not consider the probabilistic information of the
users the attacker can gain by observing the system.



Reiter and Rubin [22] defined the degree of anonymity as 1−p, where p is the
probability assigned to a particular user by the attacker. Halpern and O’Neill
have proposed in [13] several notions of probabilistic anonymity. Their basic
notion is formulated as a requirement on the knowledge of the attacker about
the probability of the user. They have given both strong and weak version of
this notion, proposing a formal interpretation of the three levels of the hierarchy
proposed in [22]. Deng, Palamidessi and Pang [6] proposed a weak notion of
probabilistic anonymity as an extension of [3] to measure the leaked information,
which can be used by an attacker to infer the likeliness that the action has
been performed by a certain user. Thus, the degree of anonymity is formalised
as an factor by which the probability the attacker attributes to a user as the
performer of the anonymous action has increased, after observing the system.
All these methods focus on the probability of the users. Thus, they do not give
any information on how distinguishable the user is within the anonymity set.

Serjantov and Danezis [25] and Claudia et al. [9] independently proposed an
information theoretic metric based on the idea of measuring probability distri-
butions. They used entropy to define the quality of anonymity and to compare
different anonymity systems. Compared to [9], [25] does not normalise the de-
gree in order to get a value relative to the anonymity level of the ideal system
for the same number of users. Both [25] and [9] take into account the probabil-
ities of the users performing certain actions which are assigned by an attacker
after observing the system. However, they do not take into account the a priori

information that the attacker might have. The attacker simply assumes a uni-
form distribution among the users before observation. Our method uses relative
entropy, and it quantifies the amount of probabilistic information revealed by
the protocol, i.e. how much information an attacker can achieve after observing
the outcomes of the protocol, together with the information he has before the
protocol running. Furthermore, we extend the measuring method to two sets of
probability distributions using Hausdorff distance for protocols containing both
non-deterministic and probabilistic behaviours.

Moskowitz et al. [20] proposed to use a related notion of mutual information
to measure the capacity of covert channels. They have applied it to the analysis
of a wide range of Mix-networks [21]. Recently, Chatzikokolakis, Palamidessi
and Panangaden [4] developed a framework in which anonymity protocols can
be interpreted as noisy channels. They also used it to express various notions of
anonymity. Our work is still different from them in the sense that we use relative
entropy instead of mutual information, and we focus on the non-expansiveness of
the operators of the probabilistic CCS, which potentially allows for compositional
analysis.

6 Conclusion and Future Work

In this paper, we have proposed to use relative entropy as a distance of two dis-
crete probability distributions to measure anonymity for protocols which can be
interpreted as a fully probabilistic automaton. This definition has been extended



for two sets of probability distributions to also capture the non-deterministic as-
pect of these protocols. We have proved that based on this measuring method,
most of the operators in the probabilistic CCS are non-expansive. We have
demonstrated our approach by using the example of the Dining Cryptographers
Problem.

Model checking anonymity protocols in the logic of knowledge was consid-
ered in [28]. It would also be interesting to investigate the problem in a prob-
abilistic setting. The probabilistic model checker PRISM [18] was used to find
novel attacks on Crowds [26], and to analyse cascase networks [10]. We intend
to integrate our method with PRISM to build an automatic tool to assist the
calculation of the degree of anonymity as defined in the paper. We also plan to
apply our approach to more complex and real protocols to justify its usefulness.
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