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Abstract The population protocol model has emerged as

an elegant computation paradigm for describing mobile

ad hoc networks, consisting of a number of mobile nodes

that interact with each other to carry out a computation.

The interactions of nodes are subject to a fairness con-

straint. One essential property of population protocols is

that all nodes must eventually converge to the correct out-

put value (or configuration). In this paper, we aim to

automatically verify self-stabilizing population protocols

for leader election and token circulation in the Spin model

checker. We report our verification results and discuss the

issue of modeling strong fairness constraints in Spin.

Keywords distributed algorithms, model checking,

population protocols, verification

1 Introduction

The field of distributed algorithms has enjoyed a rapid

growth in the last two decades, due to the world-wide

development and usage of mobile ad hoc networks. A

great number of algorithms have been invented to solve

hard problems in mobile ad hoc networks. However, these

algorithms are only accessible to the distributed algo-

rithms community, since their specifications and correct-

ness arguments are often given at an informal level. This is

insufficient to convince researchers outside the field of the

validity of the arguments. If one wants to verify the cor-

rectness of some proofs, he has to prove substantial parts

or entire sub-results, for which only informal arguments

were given. This has been observed and illustrated in a

recent paper [1] on formal reasoning about the correctness

of a distributed consensus algorithm [2].

The last two decades have also seen an impressive

amount of new techniques developed in the area of formal

verification or model checking in particular.Model check-

ing first builds a finite state space of a formal model of a

system, and then verifies if a property, written in some

temporal logic, about the system holds or not through

an explicit state space search. Due to the finiteness of

the state space, the search always terminates. Hence,

model checking is largely automatic. It can produce an

answer in a few minutes or even seconds for many models.

A counterexample can be generated when the checked

property fails to hold, which details why the formal model

doesn’t satisfy the property. Model checkers usually face a

combinatorial blow up of the state-space, known as the

state explosion problem. Techniques such as symbolic

representation, symmetry reduction, and predicate

abstraction, have been developed to deal with the state

explosion problem and enhance the scalability of model

checking. However, these techniques have not yet made

impact on distributed algorithms, mainly because there

have not yet been enough examples of non-trivial practical

applications.

Clearly, both two fields, distributed algorithms vs. for-

mal verification, can benefit from each other. On the one

hand, formal verification can offer techniques to well-

understand distributed algorithms. On the other hand,

distributed algorithms can offer challenging examples to

formal verification.

In this paper, we aim to automatically verify self-

stabilizing population protocols for leader election and

token circulation in the Spin model checker [3]. The popu-

lation protocol model [4] has emerged as a new elegant

computation paradigm for describing mobile ad hoc net-

works, consisting of a number of mobile nodes that inter-

act with each other to carry out a computation. Each node

has only a few states. One essential property of such pro-

tocols is that all nodes must eventually converge to the

correct output value (or configuration), which is a typical
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liveness property (something good will eventually happen)

in terms of formal verification. To guarantee that such

kind of property can be achieved, the interactions of

nodes in population protocols are subject to a fairness

constraint. The fairness condition is imposed on the

adversary to ensure that the protocol makes progress. In

population protocols, the required fairness condition will

make the system behave nicely eventually, although it can

behave arbitrarily for an arbitrarily long period [4]. That

is why for population protocols correctness arguments are

always rephrased as a property to be satisfied eventually.

In formal verification, fairness is typically used to rule out

some unrealistic runs due to non-determinism, i.e., it

mainly concerns with a fair resolution of non-determinism

in the models. So unsurprisingly, fairness has been a

research topic to both communities, see e.g. Refs. [5–9].

In next section we review the basic population pro-

tocol model and the fairness conditions which are

required for population protocols. The general frame-

work for modeling population protocols in Spin is

given in Section 3. In Section 4 and Section 5, we dis-

cuss experiment results on automatic verification of

self-stabilizing leader election for complete graphs [10]

and token circulation for directed rings [11], respect-

ively. For leader election in complete graphs, we show

that the algorithm also works under a weaker fairness

condition. For token circulation in directed rings, the

algorithm is model checked in a two-phase manner. We

first show that under a particular activation order of

nodes, satisfying the global fairness condition (see its

definition in Section 2), some pre-defined safe config-

urations will be eventually reached. Then we show that

from these safe configurations eventually token circula-

tion is stabilized. In Section 6, we demonstrate that

global fairness generally assumed for population proto-

cols is necessary. We present counterexamples that we

have observed in Spin to show that self-stabilizing

token circulation and self-stabilizing leader election in

directed rings cannot be achieved with local fairness

(see its definition in Section 2). Finally, we discuss the

difficulty of modeling global fairness in Spin and con-

clude the paper by pointing out some possible future

work in Section 7.

Our contribution can be summarized as follows:

N We present a general framework for modeling popu-

lation protocols in Spin;

N We successfully model check the self-stabilizing leader

election in complete graphs under such a weaker fair-

ness condition and the self-stabilizing token circulation

in directed rings without explicitly encoding global

fairness;

N We use Spin to automatically generate counterexam-

ples to show why local fairness is insufficient for token

circulation and leader election in directed rings.

2 The population protocol model

We briefly introduce the population protocol model in

this section, andmore details are available in Refs. [10,11].

2.1 Model and definitions

In our framework, the underlying network can be

described by a directed graph G5 (V, E) without multi-

edges and self-loops. Each vertex represents a simple finite-

state sensing device, and each edge (u, v) means that u as an

initiator could possibly interact with v as a responder.

A protocol is specified as a tuple P Q, C, X , Y , O, dð Þ
which contains

N a finite set Q of states,

N a set C of configurations,

N a finite set X of input symbols,

N a finite set Y of output symbols,

N an output function O : QRY, and

N a transition function d : (Q6Y)6 (Q6Y)R 2Q6Q.

If (p9, q9) [ d((p, x), (q, y)), then we write ((p, x), (q,

y))R (p9, q9) and call it a transition. When d always maps

to a set that only contains a single pair of states, then we

call the protocol and the transition function deterministic.

A configuration C is a mapping C: VRQ assigning to

each node its internal state, and an input assignment a:
VRX specifies the input for each node. Let C and C9 be

configurations, a be an input assignment, and u, v be

different nodes. If there is a pair

C0 uð Þ, C0 vð Þð Þ [ d C uð Þ, a uð Þð Þ, C vð Þ, a vð Þð Þð Þ,

we say that C goes to C9 via edge e5 (u,v) by transition

C uð Þ, a uð Þð Þ, C vð Þ, a vð Þð Þð Þ? C0 uð Þ, C0 vð Þð Þ,
abbreviated to (C,a) DA

e
C’. A pair of a transition r and

an edge e constitutes an action s5 (r, e). If C goes to C9
via some edge, then C can go to C9 in one step, written as

(C, a)RC9.

An execution is an infinite sequence of configurations

and assignments

C0, a0ð Þ, C1, a1ð Þ, . . . , Ci, aið Þ, . . . ,
such that C0 [ C and for each i, (Ci, ai)RCi+1.

2.2 Fairness conditions

In the following, we first summarize the fairness condi-

tions for population protocols. Let

E~ C0, a0ð Þ, C1, a1ð Þ, . . . , Ci, aið Þ, . . .
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be an execution. Two different fairness conditions [10] are

defined below:

Definition 2.1 (Global fairness) For every C, a, and C9
such that (C, a)RC9, if (Ci, ai)5 (C, a) for infinitely many

i, then (Ci, ai)5 (C, a) and Ci+15C9 for infinitely many i.

(Hence, the step (C, a)RC9 is taken infinitely many times

in E.)

Definition 2.2 (Local fairness) For every action s, if s is

enabled in (Ci, ai) for infinitely many i, then

Ci,aið Þ DAs Ciz1 for infinitely many i. (Hence, the action

s is taken infinitely many times in E.)

It should be noticed that global fairness is strictly stron-

ger than local fairness [10]. In population protocol model,

steps specify how the whole protocol transforms from one

configuration to another configuration, and actions spe-

cify the interactions between two nodes and only depend

on the local states of the two interacting nodes. Global

fairness requires that each step that can be taken infinitely

often is actually taken infinitely often, while local fairness

asserts that each action which is enabled infinitely often is

actually taken infinitely often. Since one action can be

enabled in different configurations, the global fairness

condition insists that an action should be taken infinitely

often in all such configurations, whereas the local fairness

condition only requires that it occurs infinitely often in

one of such configurations.

Let us illustrate the two different fairness conditions via

an example. As shown in Fig. 1, the system contains two

configurations C and C9, where action s1 is enabled in

both configurations. An infinite execution containing

the following loop

C,að Þ DAs1 C,að Þ DAs2 C’,a’ð Þ DAs4 C’,a’ð Þ DAs3 C,að Þ

does not satisfy global fairness condition, since s1 is

enabled in configuration C9 infinitely many times, but it

is never performed in C9. However, the execution satisfies

local fairness. On the other hand, an infinite execution

containing the following loop meets both global and local

fairness.

C,að Þ DAs1 C,að Þ DAs2 C’,a’ð Þ DAs1

C’,a’ð Þ DAs4 C’,a’ð Þ DAs3 C,að Þ

In Ref. [10], two extra weak notions of fairness condi-

tions are presented. The weak forms of fairness do not

insist that particular steps occur infinitely often in E but

only that the configurations that would result from those

steps occur infinitely often. The relationship between

these four kinds of fairness conditions are discussed thor-

oughly in Ref. [10].

As discussed before, in the area of formal verification,

fairness is typically needed to prove liveness properties. It

is concerned with a fair resolution of non-determinism,

i.e., fairness conditions are used to rule out some unreal-

istic runs due to non-determinism. Usually, in formal veri-

fication a strong fairness condition states that if an

activity is infinitely often enabled then it has to be exe-

cuted infinitely often. This can be mapped into the popu-

lation protocol model as global fairness and local fairness

above, depending that the activity is either one step or one

action. There is another notion of weak fairness in veri-

fication, stating that if an activity is continuously often

enabled (no temporary disabling) then it has to be exe-

cuted infinitely often. This notion of weak fairness is

strictly weaker than those fairness conditions mentioned

in Ref. [10].

Definition 2.3 (Weak fairness) For every action s, if there

exists i and for all j. i, s is always enabled at (Cj, aj) in E,

then there exist C, a, C9 such that C, að Þ DAs C’ occurs
infinitely often.

This form of fairness is supported in Spin (see Section 3

for more details). Consider the example in Fig. 1 again, an

infinite execution containing the following loop

C,að Þ DAs1 C,að Þ DAs2 C’,a’ð Þ DAs3 C,að Þ

satisfies only weak fairness, as s3 is enabled infinitely

many times, but it is never performed. Moreover, an infi-

nite execution containing the following loop does not

meet any fairness condition mentioned in this paper.

C,að Þ DAs2 C’,a’ð Þ DAs3 C,að Þ
In particular, it is not weak fair since s1 is continuously

often enabled, but it is never executed within the loop.

Note that we cannot have a similar fairness condition

for population protocols in which an action becomes

enabled forever with respect to one concrete configura-

tion, since the configuration of the system will be updated

by other actions.

3 Automatic verification in Spin

The Spin model checker is a popular tool set for verifica-

tion of concurrent systems [3,12]. A modeling language

Promela (Process Meta Language) is used to specify aFig. 1 Example of global and local fairness
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concurrent system consisting of some processes that are

the basic dynamic system components. Given a model

described in Promela, Spin can either run random simula-

tions to check the validation of functional behavior, or

generate efficient C programs to verify the correctness

with respect to some constraint conditions. Its verifier

can find non-progress cycles, or verify general properties

which are expressed by linear temporal logic (LTL) for-

mulas. The verifier also provides an option for weak fair-

ness among processes, that is, if a process is eventually

permanently enabled in the run, then the process is exe-

cuted infinitely often in the run. The reader is referred to

Ref. [13] for more details.

In the population protocol model, one protocol consists

of N nodes, numbered from 0 to N2 1. The protocol is

usually described by a set of interaction rules (see e.g.

Fig. 2). On the left hand side of each rule, the state and

the input of the initiator and the responder should be

matched by the rules. On the right hand side, the rule

specifies the state of the initiator and the responder after

the transition has been taken.

Since the population protocols always depend on

some kinds of fairness condition, such as global fairness

and local fairness, we attempt to use the weak fairness
condition (at process level) in Spin to model a fairness

condition in population protocols. However, the fair-

ness condition in population protocol model is related

to actions/steps but not to nodes (processes). Thus, if we

use a single process in Promela to model a single node of

the population protocol model, then the weak fairness

condition only guarantees that if a node is from some

moment onward always enabled to interact with other
nodes, then it will interact infinitely often. This

obviously does not make any sense when verifying

population protocols. Our strategy is to use a single

process to represent an action which is related to an

initiator, a responder and a transition rule. The process

declaration for an action in Promela is described in the

following way:

proctype Rulen int i; int rð Þ
The parameters i and r are identities of an initiator and

a responder. The process name Rulen corresponds to

one concrete Rule n in the protocol. The state of each

node is stored in some global variables. The process
will check the global configuration to decide the execut-

ability of its own. For example, Rule1(1,2) represents

an action between node 1 as an initiator and node 2 as

a responder according to Rule 1. The entire system
consists of all possible actions of every pair of nodes

which can interact with each other.

run Rule1 0,1ð Þ;
run Rule1 1,0ð Þ;
run Rule1 1,2ð Þ;
. . .

run Rule2 2,0ð Þ;
. . .

The different communication patterns are determined by

different network topologies, such as complete graphs and
directed rings.

After modeling each possible action (between two

nodes) as one process, if we use the weak fairness con-

dition in the Spin model checker, we immediately obtain

a condition strictly weaker than local fairness in the popu-

lation protocol model. The condition is exactly weak fair-

ness as discussed in Section 2. Otherwise we have to use a

large LTL formula and auxiliary variables to characterize

the strong (global and local) fairness conditions which will
increase the complexity of the model (see more discussion

in Section 7). Weak fairness only assumes that if an action

is permanently enabled from some point, then it will be

taken infinitely many times. Most self-stabilizing popu-

lation protocols require either global or local fairness.

However, we have found that some of them also work

properly under this weaker fairness condition implemen-

ted in the Spin model checker. In the following sections,
protocols will be verified under this condition.

Once a model has been built, we could define a bunch of
propositions which refer to different protocol configurations.

Finally, LTL formulas over these propositions can be used to

specify some desired behaviors of the protocol. The LTL

formulas will be translated into never claims in Prolema

automatically, and verified by the Spin model checker.

4 Self-stabilizing leader election in complete
graphs

A distributed system or a population protocol is said

to be self-stabilizing [14] if it satisfies the following two

properties:

N convergence: starting from an arbitrary configuration,

the system is guaranteed to reach a correct configuration;

N closure: once the system reaches a correct configura-

tion, it cannot become incorrect any more.

In this section, we show that self-stabilizing leader

election in complete graphs can be achieved under the

Fig. 2 Algorithm for self-stabilizing leader election in com-
plete graphs
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weak fairness with the help of an eventually correct

leader detector. The algorithm was originally given in

Ref. [10]. Every node has one bit memory which repre-

sents two states, being a leader (L) or not (2). The

leader detector gives each node an input true (T) or false

(F) to indicate that whether there is a leader in the net-

work. The detector may give wrong answers sometimes,

but it will eventually return a correct answer perma-

nently. A non-leader becomes a leader, when the leader

detector signals the absence of a leader, and the respon-

der is not a leader. When two leaders interact, the

responder becomes a non-leader. Otherwise, no state

change occurs.

The algorithm is described by the three interaction rules

in Fig. 2. On the left hand side, the state and input of an

initiator and a responder should be matched. The symbol

‘‘*’’ denotes that the input can always be matched. On the

right hand side, the state of the two nodes would be

updated by the rule.

In Ref. [10], it has already been shown that the algorithm

implements self-stabilizing leader election in complete

graphs under both global and local fairness, provided the

existence of an eventual leader detector. Here, we have new

verification result to show that the algorithm is correct even

under the weak fairness condition.

4.1 Modeling leader election in Spin

The model for leader election in complete graphs follows

the general paradigm of population protocol in Section 3,

only with some additional definition issues.

The states of the whole system are represented by an

array of bits leader[N], in which N is the number of nodes

in the network. When leader[i] equals to 1, it indicates that

node i claims to be a leader. Since we are modeling self-

stabilizing protocols, we have to ensure that the protocol

is correct starting from any arbitrary initial configuration.

We employ atomic sequences and case selection in

Promela to assign all possible values for every state vari-

able in a single step.

atomicf
if

:: atomic true {wleader 0½ �~0f g
:: atomic true {wleader 0½ �~1f g

fi;

. . .

g
Thus, at the beginning of the protocol, every state variable

could be assigned with all possible values. The verifier will

check all these cases to ensure the self-stabilizing property

of the system.

Besides, we have to model the eventually correct leader

detector in the protocol. The detector is defined by two

parts. First, there is a random process which randomly

generates answers (encoded in the variable detector) when

the detector is in ‘‘incorrect’’ state (detectorcorrect55 0):

proctype RandomDetectorðÞf
do

:: detectorcorrect~~0ð Þ {w detector~false;

:: detectorcorrect~~0ð Þ {w detector~true;

od

g
Then, we define another process that can switch the

detector’s state from ‘‘incorrect’’ to ‘‘correct’’ in a non-

deterministic way (detectorcorrect5 1). The progress

label ensures that the transition will finally occur.

proctype DetectorCorrectðÞf
do

:: detectorcorrect~~0ð Þ {w

progress : detectorcorrect~1;

od

g
Once detectorcorrect becomes true, the value of detector

will depend on whether the sum of leader[i] (0( i,N) is

greater than 0.

Having defined the model, the LTL formula which spe-

cifies the desirable system behavior is relatively small.

Under the weak fairness, the LTL formula for leader elec-

tion in complete graph is simply as follows:

ST½ �oneLeader
This LTL formula says that along every path which sat-

isfies the weak fairness condition a unique leader will

eventually be elected. (Informally, S T reads as ‘‘even-

tually’’, and [ ] as ‘‘always’’.) Here, oneLeader is the pro-

position stating that the sum of all leader[i] equals one. See

Ref. [15] for the detailed model.

4.2 Verification results

It has been shown in Ref. [10] that the algorithm is valid

under local fairness, and the fact that global fairness

implies the local fairness condition yields that the algo-

rithm is also valid under the global fairness condition.

However, weak fairness is weaker than both of them.

Thus it is interesting to see if the algorithm is still correct

under such this weaker fairness condition. Surprisingly,

the algorithm indeed implements self-stabilizing leader
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election in complete graphs. We have verified the model

with size up to six. The detailed results are given in

Table 1.

4.3 Correctness under weak fairness

In this section, we show that the self-stabilizing leader

election algorithm is correct for any number of nodes

(N> 2), under the weak fairness condition. Our proof

follows the scheme in Ref. [10]. We call a configuration

of the protocol safe, if there is at least one node that has

become leader.

Lemma 4.1 Let E be an execution of the algorithm starting

from an arbitrary configuration. Then E contains a safe

configuration.

Theorem 4.1 Given an eventually correct leader detector.

Let E be a weak fair execution of the algorithm starting

from an arbitrary configuration. Then eventually one

unique leader will be elected.

The proof of Lemma 4.1 is the same as in Ref. [10]. In

the following, we give the proof of Theorem 4.1, which is

also similar to the one in Ref. [10].

Proof By Lemma 4.1, the algorithm can reach a safe

configuration. By the rules of the algorithm, the number

of leaders decreases by one only when two leaders interact

via Rule 1. So there is always at least one leader in sub-

sequent configurations. By the eventually correct leader

detector, eventually all nodes will receive T, after which no

more new leaders can be generated. Now we prove that

the number of leaders eventually decreases using the weak

fairness. We only consider the case when there is more

than one leader in the configuration. Assume node i and

node j are leaders. Since the graph is complete, the inter-

action between i and j is enabled via Rule 1. By subsequent

steps in E,

N either they cannot change the state of either i or j, then

the interaction between i and j keeps enabled. By weak

fairness, finally the interaction will take place, and the

number of leaders decreases;

N or they can change the state of either i or j, then this

must be done via Rule 1, since that is the only way to

change the state of one node once the leader detector is

correct. The interaction between i and j is disabled, and

the number of leaders is decreased by one.

5 Token circulation in directed rings

The token circulation protocol in directed rings is pro-

posed in Ref. [11]. The desired behavior of this protocol

can be described as follows:

N there is only one node who holds the token.

N a node does not obtain again until every other node has

obtained a token once.

N each node can have the token infinitely often.

The protocol is simple since we do not consider the case

that some nodes are not willing to release the token. It is

assumed that every node passes the token to next one right
after it has got it. Furthermore, the protocol also requires

the existence of a common leader. Informally, there is a

static node with the leader mark L, and all other nodes

have the non-leader mark N in every configuration. The

state of each node is represented by a pair in {2, +}6 {0,

1}. +means that the node is holding a token and2means

the opposite. The second part of a state of a node is called

the label. The algorithm is given by the rules in Fig. 3.

The * here still denotes an always-matched symbol. On

the left hand side, the symbol bmatches either 0 or 1 and �b
is its complement. It should be noticed that different

occurrences of b in a same rule refer to the same value.

The input for each node informs them who is leader,

which is unique in the network.

When two nodes interact, if the responder is the leader,

it sets its label to the complement of the initiator’s label;

otherwise the responder copies the label from the initiator.

If an interaction triggers a label change, a token is passed

from the initiator to the responder. If a token is not pre-

sent at the initiator, a new token is generated.

It has been proved in Ref. [16] that this algorithm imple-

ments a self-stabilizing token circulation in rings under

global fairness, provided that there is a unique leader.

5.1 Modeling token circulation in Spin

The model for token circulation protocol is similar to the

one in Section 4, only with some minor adaptations. The

states of the whole system are represented by three arrays

of bits leader[N], token[N] and label[N], where N is the

number of nodes in the network. Without loss of general-

ity, we can assume that node 0 is always the leader.

Therefore, we could simply set each node a fixed input

(leader[i]) for leader election without considering compli-

cated details of a dynamic leader election process, which

we have analyzed in Section 4.

Table 1 Leader election algorithm under weak fairness

State size Transition size Time Results

LE-3 558 92974 0.45 s valid

LE-4 1661 629905 5.29 s valid

LE-5 4856 3335330 41.71 s valid

LE-6 13629 14810700 264.07 s valid

Fig. 3 Algorithm for token circulation in directed rings
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We still use each single process in Promela to model

a single action between each possible initiator and

responder. However, now the network topologies are

directed rings instead of complete graphs. So each node

can only be the responder of its predecessor in a ring.

Thus, the system with four nodes is represented as

belows:

run Rule1 0,1ð Þ;
run Rule1 1,2ð Þ;
run Rule1 2,3ð Þ;
run Rule1 3,0ð Þ;
run Rule2 0,1ð Þ;
run Rule2 1,2ð Þ;
run Rule2 2,3ð Þ;
run Rule2 3,0ð Þ;

The verification goal is represented by a conjunction of

three LTL formulas, each for a goal of the protocol. For

the first goal that there is only one token in the network,

we use the LTL formula

ST½ �oneToken

where oneToken is the proposition stating the sum of all

token[i] (0( i,N) equals one.

For the second goal that a node does not obtain again

until every other node has obtained a token once, it is

obviously equivalent to the one that when a node is hold-

ing a token, nobody could obtain the token until its suc-

cessor has obtained it once. For example, if the network

has four nodes, then the assertion for node 2 can be spe-

cified by the LTL formula

ST½ � token 2½ � {w !token 0½ � token 1½ � U token 3½ �ð Þð Þ:

For the last goal that every node obtains the token

infinitely often, we use a formula in the following form:

½ �STtoken 0½ � . . . left½ �STtoken N{1½ �

We have done some experiments for the model under

weak fairness, and the results are mostly negative. The

protocol is correct only when the size of the network is

three. When it comes to a size greater than three, the Spin

verifier complained about some failure traces which

satisfy the weak fairness condition (cf. Section 1).

Therefore, weak fairness cannot guarantee the correctness

of the protocol.

Since the token circulation in rings does not work prop-

erly under the weak fairness condition, we need to verify it

under global fairness. However, with the limitation of

Spin model checker (see more discussion in Section 7), it

seems infeasible to explicitly model global fairness. Here

we use an alternative method to verify the protocol. The

algorithm is model checked in a two-phase manner. We

first show that under a particular activation order chosen

by a scheduler (under the global fairness condition) safe
configurations are eventually reached. Then we show

from these safe configurations the token circulation is

eventually stabilized (under the weak fairness condition).

The idea follows the correctness proof of the protocol

given in Ref. [16].

The safe configurations refer to those configurations in

which all nodes have a same label. With a scheduler sat-

isfying global fairness, the order of activation for nodes

complies with the following sequence:

0,1ð Þ, 1,2ð Þ, . . . , N{2,N{1ð Þ

If there is no possible interaction between nodes i and

i + 1 while the scheduler selects the activation (i, i + 1), then
the scheduler just turns to the next pair of nodes (i + 1,
i + 2).

In the corresponding model in Spin, we employ a

special variable turn to record the current activation

pair. When turn5 i, it indicates that there should be
an action between node i and i + 1. Every transition

process will check whether it is its turn to do the trans-

ition. If it is the case, the process will possibly be able

to do the transition according to the states of corres-

ponding nodes. After the transition having been done,

the turn flag variable will be increased by one. Those

transitions which are not selected by the scheduler will

block themselves. A special watch-dog process is
needed to handle the case when no transition is

enabled.

:: timeout {w

if

:: turn~ N{2ð Þ {wturn~turnz1;

fi;

The watchdog process uses a timeout to detect the

block state of the entire system, and then increases turn

by one. When turn reaches N2 1, all processes (includ-

ing the watchdog process) would be suspended, indi-

cating the system has gone through this special

activation order. Thus, by using this model, we can
carry out the first part of the verification, checking

whether a safe configuration is reachable from any ini-

tial configuration.

For the second part of the verification, we only need
to show that each of the three protocol goals is satisfied

from the same-label initial configurations. Thus we
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only generate two possible initial configurations non-

deterministically at the beginning of the system run.

The modification is straightforward. See Ref. [15] for

the detailed model.

5.2 Verification results

For the first phase, we can see from Table 2 that it is

indeed the case that some safe configuration is reachable

under the particular activation order.

As to the second phase, the verification shows that

weak fairness is enough to ensure the correctness of the

protocol after reaching a safe configuration. The results

are shown in Table 3. Note that global fairness is needed

for the overall verification task.

6 Counterexamples for local fairness

Counterexamples are of utmost importance in model

checking. Model checking can normally produce an

answer in a few minutes or even seconds for many models.

A counterexample will be generated when the checked

property fails to hold, which details why the formal model

does not satisfy the property. In this section, we give coun-

terexamples as evidences that self-stabilizing token cir-

culation and leader election in directed rings require

global fairness; local fairness cannot guarantee their cor-

rectness. For liveness properties, typically they contain

loops in executions.

6.1 Token circulation in directed rings

In Section 5 we have shown that the algorithm is correct

under weak fairness for three nodes. Hence, the algorithm

is also correct under local fairness for a network of three

nodes. In order to get counterexamples under local fair-

ness, we need a network consisting of at least four nodes

(and without using the particular activation order in

Section 5).

We need to first present eight configurations which are

involved in the counterexample, denoted byC1,C2, …,C8:

C1~

Node0 : z 1

Node1 : z 0

Node2 : { 1

Node3 : z 1

0
BBBBB@

1
CCCCCA
C2~

Node0 : z 1

Node1 : { 0

Node2 : z 0

Node3 : z 1

0
BBBBB@

1
CCCCCA

C3~

Node0 : { 1

Node1 : z 1

Node2 : z 0

Node3 : z 1

0
BBBBB@

1
CCCCCA
C4~

Node0 : z 0

Node1 : z 1

Node2 : z 0

Node3 : { 1

0
BBBBB@

1
CCCCCA

C5~

Node0 : z 0

Node1 : z 1

Node2 : { 0

Node3 : z 0

0
BBBBB@

1
CCCCCA
C6~

Node0 : z 0

Node1 : { 1

Node2 : z 1

Node3 : z 0

0
BBBBB@

1
CCCCCA

C7~

Node0 : { 0

Node1 : z 0

Node2 : z 1

Node3 : z 0

0
BBBBB@

1
CCCCCA
C8~

Node0 : z 1

Node1 : z 0

Node2 : z 1

Node3 : { 0

0
BBBBB@

1
CCCCCA

According to the interaction rules of the protocol, the

actions enabled in each configuration are:

C1 : Rule1 3,0ð Þ, Rule2 0,1ð Þ, Rule2 1,2ð Þ
C2 : Rule1 3,0ð Þ, Rule2 0,1ð Þ, Rule2 2,3ð Þ
C3 : Rule1 3,0ð Þ, Rule2 1,2ð Þ, Rule2 2,3ð Þ
C4 : Rule2 0,1ð Þ, Rule2 1,2ð Þ, Rule2 2,3ð Þ
C5 : Rule1 3,0ð Þ, Rule2 0,1ð Þ, Rule2 1,2ð Þ
C6 : Rule1 3,0ð Þ, Rule2 0,1ð Þ, Rule2 2,3ð Þ
C7 : Rule1 3,0ð Þ, Rule2 1,2ð Þ, Rule2 2,3ð Þ
C8 : Rule2 0,1ð Þ, Rule2 1,2ð Þ, Rule2 2,3ð Þ

The counterexample contains the following loop start-

ing from initial configuration C1, going through C2 to C8,

and then moving back to C1.

C1 DA
Rule2 1,2ð Þ

C2 DA
Rule2 0,1ð Þ

C3 DA
Rule1 3,0ð Þ

C4 DA
Rule2 2,3ð Þ

C5 DA
Rule2 1,2ð Þ

C6 DA
Rule2 0,1ð Þ

C7 DA
Rule1 3,0ð Þ

C8 DA
Rule2 2,3ð Þ

C1

We can observe that actions enabled in these configura-

tions are Rule1(3,0), Rule2(0,1), Rule2(1,2) and Rule2(2,3).

Since each configuration occurs infinitely many times in the

trace, these four actions are also enabled infinitely often.

Clearly, the given trace satisfies local fairness because these

actions are actually taken infinitely often. (It does not sat-

isfy global fairness.) However, there are more than one

Table 2 Verification results of token circulation algorithm (I)

State size Transition size Time Results

TC-4 203 1114 0.01 s valid

TC-5 475 3466 0.01 s valid

TC-6 1083 11434 0.02 s valid

Table 3 Verification results of token circulation algorithm (II)

State size Transition size Time Results

TC-4 1525 10121 0.02 s valid

TC-5 7063 36831 0.13 s valid

TC-6 19287 111535 0.42 s valid
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token in the infinite execution persistently, which does not

meet the requirement that eventually there is only one token

in the ring. Note that in the trace we ignore the inputs for

each node, since we fix the node 0 as the unique leader. This

information is stored in the array leader[i].

6.2 Leader election in rings

We have modeled the algorithm for self-stabilizing leader

election in rings from [10], which is more complicated than

the one for complete graphs. An eventually correct leader

detector is also needed. In this algorithm, each node has

three types of memory slots for tokens: a bullet slot (B), a

leader mark slot (L), and a shield slot (S). (2) represents an

empty slot, and a full slot is denoted by its token. The order

of slots in each node is (bullet, leader, and shield). The

leader detector gives each node an input true (T) or false

(F) to indicate that whether there is a leader in the network.

The algorithm is described by the following rules.

When two nodes interact and the initiator’s input is false

(F), a leader and a shield are created. At the same time, a

bullet is fired (Rule 1). This is the only way for leaders and

shields to be created. When the initiator’s input is true (T),

the following rules apply: Shields move forward around the

ring (Rules 2 and 3), and bullets move backward (Rule 5).

Bullets are absorbed by any shield they encounter (Rules 2

and 3) but kill any leaders along the way (Rule 5). If a

bullet moves into a node already containing a bullet, the

two bullets merge into one. Similarly, when two shields

meet, they merge into one. A leader fires a bullet whenever

it is the initiator of an interaction (Rules 3 and 4).

It has been shown that leader election in rings does not

work under the local fairness condition [10]. We used a

model similar to the one in Section 4 and verified it in

Spin. We have found several counterexamples which indi-

cate that the algorithm does not work properly under

local fairness. Here we present two of them.

6.2.1 Counterexample 1

First, we present three configurations for a network with

three nodes, denoted by C1, C2 and C3:

C1~

Node0 : B L {

Node1 : { { S

Node2 : { L S

0
BB@

1
CCA

C2~

Node0 : { L S

Node1 : { { S

Node2 : B L {

0
BB@

1
CCA

C3~

Node0 : { L S

Node1 : { { {

Node2 : { L S

0
BB@

1
CCA

According to Fig. 4, the actions enabled in each config-

uration are:

C1 : Rule2 1,2ð Þ, Rule3 2,0ð Þ, Rule4 0,1ð Þ
C2 : Rule2 1,2ð Þ, Rule3 0,1ð Þ, Rule4 2,0ð Þ
C3 : Rule3 0,1ð Þ, Rule3 2,0ð Þ

The counterexample contains a loop starting from ini-

tial configuration C1, looping from C1 to C3, and then

going back to C1.

C1 DA
Rule4 0,1ð Þ

C1 DA
Rule3 2,0ð Þ

C2 DA
Rule4 2,0ð Þ

C2 DA
Rule2 1,2ð Þ

C3 DA
Rule3 0,1ð Þ

C1

Since each configuration occurs infinitely many times in

the trace, those five actions are also enabled infinitely

often. Clearly, the given trace satisfies local fairness

because these actions are actually taken infinitely often.

However, there are two leaders in the infinite execution

persistently. (In the trace, we ignore the inputs T for each

node.)

6.2.2 Counterexample 2

Consider the following three configurations denoted by

C1, C2 and C3:

C1~

Node0 : B L {

Node1 : { L S

Node2 : B L {

0
BB@

1
CCA

C2~

Node0 : B L {

Node1 : B L {

Node2 : { L S

0
BB@

1
CCA

C3~

Node0 : { L S

Node1 : B L {

Node2 : B L {

0
BB@

1
CCA

According to Fig. 4, the actions enabled in each config-

uration are as follows:

Fig. 4 Algorithm for self-stabilizing leader election in rings
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C1 : Rule3 1,2ð Þ, Rule4 0,1ð Þ, Rule5 2,0ð Þ
C2 : Rule3 2,0ð Þ, Rule4 1,2ð Þ, Rule5 0,1ð Þ
C3 : Rule3 0,1ð Þ, Rule4 2,0ð Þ, Rule5 1,2ð Þ

The counterexample contains a loop starting from ini-

tial configuration C1, looping from C1 to C3, and then

going back to C1.

C1 DA
Rule4 0,1ð Þ

C1 DA
Rule3 1,2ð Þ

C2 DA
Rule4 1,2ð Þ

C2 DA
Rule3 2,0ð Þ

C3 DA
Rule4 2,0ð Þ

C3 DA
Rule3 0,1ð Þ

C1

Note that this execution does not satisfy local fairness,

since Rule5(2,0), Rule5(0,1) and Rule5(1,2) are enabled

infinitely many times, but are never taken. However, it

satisfies the weak fairness provided by Spin.

7 Concluding remarks

In this paper, we have reported our preliminary results on

automatic verification of population protocols in Spin.

We defined a weak form of fairness condition for popu-

lation protocols, which is weaker than both global and

local fairness as originally required for the population

protocol model in Ref. [10]. Weak fairness can be sup-

ported by Spin. We have successfully model checked the

self-stabilizing leader election in complete graphs under

such a weaker fairness condition. Although global fair-

ness is indeed necessary for the correctness of self-

stabilizing token circulation in directed rings, we have

managed to model check the algorithm in Spin by a

two-phase approach without explicitly encoding global

fairness. This approach follows the proof in Ref. [16].

More interestingly, counterexamples to show why local

fairness is insufficient for token circulation and leader

election in directed rings have been automatically gener-

ated in Spin. This has improved our understanding of the

population protocols.

Direct encoding global fairness in Spin will require aux-

iliary variables in the model to characterize fairness situa-

tions, which will increase the complexity of the model.

Furthermore, it will result in very large LTL formulas.

Usually, a strong fairness condition in LTL has the fol-

lowing form:

½ �STenabled A~w½ �STA

in which A stands for an activity in the model and enabled

is the proposition specifying the condition when A can be

enabled. Global fairness for population protocols requires

that each step that can be taken infinitely often is actually

taken infinitely often. Since one step can be enabled in

many different configurations, this will require the

enabled proposition to encode all such configurations

when the stepA can be enabled.Moreover, there are many

more different steps in a population protocol. All these

will end into a very large LTL formula. Spin cannot deal

with large LTL formulas. The size of the formulas will

also increase exponentially, when the number of nodes

in the network increases. In Spin, the model checker trans-

forms the negation of a given LTL formula into a Büchi

automaton, then it builds the product of the automaton

and the model to check emptiness of the product. The size

of the Büchi automaton is exponential to the size of the

LTL formula. Therefore, even we can model global fair-

ness, this approach does not scale up for verifying popu-

lation protocols.

Our study in this paper gives rise to two interesting open

questions: (1) Possibly we can find a fairness condition

which is weaker than global fairness but still strong

enough to guarantee the correctness of population proto-

cols. For such a fairness condition, hopefully the available

model checkers can deal with efficiently. (2) For popu-

lation protocols, we do not encounter the usual state

explosion problem as in many other model checking exer-

cises, since a node only has few states in the population

protocol model. We in fact need efficient model checking

algorithms to deal with large LTL formulas. The work

reported in Ref. [17] is closely related, but it still cannot

be applied to population protocols as we have checked in

the paper. Our experience [18] of verification of self-

stabilizing distributed algorithms in PVS suggests the pos-

sibility of using a theorem prover to check population

protocols under global fairness, which is currently under

our investigation. It is also possible to use probabilistic

model checkers for the verification of population proto-

cols, since if we associate probabilities with all enabled

interactions in a protocol configuration, then an exe-

cution will be global fair with probability 1.0.
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