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Abstract. We present a new version of the software, Cabean, integrat-
ing six source-target control methods and three target control methods
for the reprogramming of asynchronous Boolean networks. The source-
target control methods compute the minimal one-step and sequential
control strategies that can guide the dynamics of a Boolean network from
a source attractor to the desired target attractor with instantaneous,
temporary, or permanent perturbations. The target control methods fur-
ther identify efficacious interventions that can drive the network from any
initial state to the desired target attractor with these three types of per-
turbations. These control methods have been applied to various real-life
biological networks to demonstrate their efficacy and efficiency.
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1 Introduction

Cell reprogramming harnesses the power of somatic cells to treat diseases fea-
tured by a deficiency of certain cells or diseased cells [12,44,11]. It reprograms
abundant somatic cells to deficient or damaged cells, in order to restore functions
of diseased organs in the human body. Therefore, cell reprogramming sheds light
on the development of tissue engineering and regenerative medicine.

One of the significant hurdles for the application of cell reprogramming lies
in the identification of efficacious intervention targets, whose perturbations can
engender desired changes. Experimental approaches select promising combina-
tions of targets, perturb them and monitor if the perturbation triggers desired
changes. Such “trial and error” approaches can be costly and require long-time
commitment, which render them inefficient [9]. Advances in sequencing tech-
niques and the availability of wealthy data on gene expression profiles promote
the shift from experimental approaches to the computational predictions based
on mathematical modelling of biological systems. Mathematical models allow us
to discover different combinations of targets by providing a broad view of the
whole biological system. In this way, we can systematically make predictions
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and speed up the development of cell reprogramming, as such predictions are
much faster and cheaper than experimental approaches. Moreover, it has great
promise to discover novel intervention targets for cell reprogramming.

Several modelling frameworks have been developed for modelling biological
systems, and Boolean networks are chosen as the representative of biological net-
works, thanks to its simplicity and qualitative nature with the ability of dealing
with large-scale networks. Boolean networks, first introduced by Kauffman [14],
are a well-established modelling framework for gene regulatory networks and
their associated signalling pathways. In Boolean networks, molecular species,
such as genes and transcription factors, are described as Boolean variables. Each
Boolean variable is associated with a Boolean function, which determines the
evolution of the variable. Boolean functions characterise activation or inhibi-
tion regulations between the molecular species (i.e., nodes in the networks). The
states of a Boolean network are binary strings, where every bit of the string
represents the state of a molecular species – ‘0’ for inactive (or absent) and ‘1’
for active (or present). The dynamics of a Boolean network is assumed to evolve
in discrete time steps, moving from one state to the next, under one of the
updating schemes, such as the synchronous or asynchronous updating scheme.
Under the synchronous scheme, all the variables update their values simultane-
ously at each time step, while under the asynchronous scheme, only one variable
is randomly selected to update its value at each time step. The asynchronous
updating scheme is considered more realistic than the synchronous one, since
it captures the phenomenon that biological processes occur at different classes
of time scales [49]. Therefore, we focus on asynchronous Boolean networks. The
steady-state behaviour of a Boolean network is described as attractors, to one of
which the system eventually settles down. Attractors are hypothesised to char-
acterise cellular phenotypes [13].

In the context of Boolean networks, cell reprogramming amounts to driving
the network dynamics from a source state to a desired attractor of the network.
The realisation of the transition needs to respect certain constraints to ensure
the feasibility of the identified perturbations. The original version of the software
Cabean [36] supports six methods [32,33,40,24,38] for the source-target control
of Boolean networks — to identify one-step or sequential control strategies that
guide the network dynamics from a source attractor to a target attractors with
instantaneous, temporary or permanent perturbations. The source-target control
methods implemented in Cabean guarantee the minimality of the identified
control strategies in terms of the number of required perturbations, even though
this makes the control problem sometimes computationally difficult [22,23],

In this paper, we present an extension and a new version of Cabean with
three new appealing methods for target control of Boolean networks — to identify
a set of nodes, whose perturbations drive the network from any initial state to the
desired target attractor. The motivation of target control is that cells typically
exist as a mixture of different cell types. There is a surge to identify effective
perturbations that can reprogram any cells to the desired cell type. Another new
functionality of Cabean 2.0 is that it allows users of the software tool to encode
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a phenotype based on the expressions of a subset of nodes (the marker nodes).
The phenotype serves as the desired target, which is considered more realistic in
biological experiments than specifying a target attractor. Cabean 2.0 is able to
identify the target control strategies towards the desired phenotype, which may
correspond to one or more attractors of a given Boolean network.

Structure of the paper. After the introduction, methods for controlling com-
plex networks and Boolean networks, and related software tools are summarised
in Section 2. Section 3 contains preliminary notions of asynchronous Boolean
networks. Section 4 continues to present the control methods implemented in
the tool Cabean, with a focus on the newly extended functionalities. Evalua-
tion of the three new methods for the target control of Boolean networks on a
number of real-life biological networks is presented in Section 5. In Section 6,
implementation details of Cabean are given and an example is also given to
illustrate the usage of the new functionalities of the software tool. Section 7
concludes the paper with future developments of the tool.

2 Related Work

Control methods for complex networks. Several important methods have
been developed for the control of complex networks [19,27,7,4,10,6,42,47]. How-
ever, these methods do not directly apply to Boolean networks. Methods based
on the semi-tensor product (STP) have been proposed to solve different control
problems for Boolean control networks (BCNs) under the synchronous updat-
ing scheme [17,52,21,50,43,3,45,48]. For synchronous Boolean networks, Kim et
al. [15] developed a method to compute a small fraction of nodes, called “control
kernels”, whose modulation can govern the dynamics of the network; and Moradi
el al. [28] developed an algorithm guided by forward dynamic programming to
solve the control problem. Lin et al. [18] proposed a Max-SAT based automatic
test pattern generate to identify faulty genes that cause undesired behaviours
of GRNs and to identify the best drug selection for cancer treatment. Their al-
gorithm considers synchronous Boolean networks under a stuck-at fault model.
Murrugarra el al. [30] proposed a method for identifying intervention targets
based on algebraic techniques for synchronous Boolean networks. None of the
above-mentioned methods is applicable to asynchronous Boolean networks.

Control methods for asynchronous Boolean networks. Recently, Mandon
et al. [22,23] proposed several methods to encode all possible control strategies
into the transition system for the control of asynchronous Boolean networks.
The size of the resulting perturbed transition graph grows exponentially in the
number of perturbations, which renders these methods inefficient. The algo-
rithm Kali [34] predicts perturbations to reduce the reachability of undesired
attractors that are linked to pathological phenotypes for both synchronous and
asynchronous Boolean networks. However, Kali can only estimate the attractors
and their basins of a Boolean network in an approximate way. Therefore, the
predictions of Kali might not be fully accurate. Fontanals et al. [8] proposed a
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method based on trap space to deal with the temporary target control of asyn-
chronous Boolean networks. This method requires the preservation of the target
attractors during control, which could be eased since the control will eventually
be released to retrieve the original transition system where the desired attrac-
tor is in. The stable motifs-based control method (SMC) [46] predicts a set of
transient perturbations that can guide the dynamics from any initial states to
the desired target attractor. Based on the functional information of the network,
SMC has a substantial improvement in computing the number of perturbations,
but it does not guarantee to find the minimal number of perturbations. Details
on comparing SMC with the target control methods implemented in Cabean 2.0
can be found in [37,39]. In general, the target control methods Cabean 2.0 are
more efficient and can produce more and effective control strategies than SMC.

Software tools. A number of software tools have been developed for the anal-
ysis of logical models of Biological networks. ActONetLib [1] implements a
method based on abductive reasoning to identify a minimal set of causal topo-
logical actions that cause expected changes at stable states for BCNs. The caspo
toolbox [41], CANA [5] and PyBoolNet [16] are all Python packages. In particu-
lar, the caspo toolbox [41] provides a work-flow to study logical networks families
of three-valued semantics under the synchronous updating scheme. CANA [5] fo-
cuses on quantifying redundancy and control of synchronous Boolean networks,
PyBoolNet [16] integrates methods for manipulating Boolean networks, such
as generation, visualisation, and attractor detection. BoolNet [31] is a powerful
R package, which provides functions for reconstruction, generalisation, and at-
tractor identification for synchronous, asynchronous, and probabilistic Boolean
networks. Although BoolNet and PyBoolNet can handle asynchronous Boolean
networks, neither of them supports the identification of intervention targets for
modulating the dynamics.

3 Preliminaries

A Boolean network is a tuple BN = (X,F ), where X = {x1, x2, . . . , xn}, such
that xi ∈ X is a Boolean variable and F = {f1, f2, . . . , fn} is a set of Boolean
functions over X. A state s of BN is an element in {0, 1}n. Let S = {0, 1}n denote
the set of all states of BN. For two states s, s′ ∈ S, the Hamming distance between
s and s′ will be denoted as hd(s, s′) and arg(hd(s, s′)) ⊆ {1, 2, . . . , n} will denote
the set of indices in which s and s′ differ. These two notions can be lifted to a
set of states. For two subsets S′, S′′ ⊆ S, the Hamming distance between S′ and
S′′ is defined as the minimum of the Hamming distances between all the states
in S′ and all the states in S′′. We let arg(hd(S′, S′′)) denote the set of subsets
of {1, 2, . . . , n} such that I ∈ arg(hd(S′, S′′)) if and only if I is a set of indices
of the variables that realise this Hamming distance.

We assume that a Boolean network BN = (X,F ) evolves in discrete time
steps. It starts from an initial state and its state changes in every time step
based on the Boolean functions F and the updating schemes. Different updating
schemes lead to different dynamics of the network [26,51]. Suppose s0 ∈ S is an
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Fig. 1: (a) The transition system for Example 1; (b) the transition system under
control C2 = {x2 = 1, x3 = 0} for Example 2; and (c) the transition system
under control C6 = {x3 = 0} for Example 3.

initial state of BN. We use ℘(S) to denote the power set of S. The asynchronous
evolution of BN is a function ξBN : N → ℘(S) such that ξBN(0) = {s0} and for
every j ≥ 0, if s ∈ ξBN(j) then s′ ∈ ξBN(j + 1) is a possible next state of s
iff either hd(s, s′) = 1 and there exists i such that s′[i] = fi(s) = 1 − s[i], or
hd(s, s′) = 0 and there exists i such that s′[i] = fi(s) = s[i]. It is worth noting
that the asynchronous dynamics is non-deterministic. At each time step, only
one node is randomly selected to update its value based on its Boolean function.
A different choice may lead to a different next state s′ ∈ ξ(j+ 1). The transition
system of a Boolean network BN, denoted as TS , is a tuple (S,→BN), where the
vertices are the set of states S and for any two states s and s′ there is a directed
edge from s to s′, denoted s→ s′, iff s′ is a possible next state of s according to
the asynchronous evolution function ξ of BN.

A path ρ from a state s to a state s′ is a (possibly empty) sequence of
transitions from s to s′ in TS . Thus, ρ = s0 → s1 → . . .→ sk, where s0 = s and
sk = s′. A path from a state s to a subset S′ of S is a path from s to any state
s′ ∈ S′. For a state s ∈ S, reachTS (s) denotes the set of states s′ such that there
is a path from s to s′ in TS and can be defined as the fixed point of the successor
operation which is often denoted as post∗TS . An attractor A of TS is a minimal
non-empty subset of states of S such that for every s ∈ A, reachTS (s) = A.

Attractors are hypothesised to characterise steady-state behaviours of the
network. Any state, which is not in an attractor, is a transient state. An attractor
A of TS is said to be reachable from a state s if reach(s) ∩A 6= ∅. The network
starting from any initial state s0 ∈ S will eventually end up in one of the
attractors of TS and remain there forever unless perturbed externally. Thus,
it is easy to observe that any attractor of TS is a bottom strongly connected
component of TS . Each attractor has a weak basin and a strong basin. The
weak basin of an attractor A with respect to TS is defined as basWTS (A) =
{s ∈ S | reachTS (s) ∩ A 6= ∅}, which equals the fixed point of the predecessor
operation on A and is often denoted as pre∗TS (A). The strong basin of A with
respect to TS is defined as basSTS (S′) = {s ∈ S | ∀ρ = s0 → s1 → . . . ∈
P∞(s),∃j ≥ 0, sj ∈ S′}.
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Intuitively, the weak basin of A includes all the states from which there exists
a path to A. It is possible that there also exist paths from a state in the weak
basin of A to some other attractor A′ 6= A of TS . However, the notion of the
strong basin of an attractor does not allow this. Any path from a state in the
strong basin of A will eventually reach A and cannot reach any other distinct
attractor A′ 6= A of TS .

Example 1. To illustrate the notions of Boolean networks, let us consider a
Boolean network BN = (X,F ), where X = {x1, x2, x3}, F = {f1, f2, f3}, and
f1 = x2, f2 = x1 and f3 = x2∧x3. Its transition system under the asynchronous
updating is given in Fig. 1(a) with self-loops omitted. This network consists of
three attractors A1, A2 and A3, plotted as grey nodes. For attractor A1, its
strong basin consists of two states (000) and (001). The weak basin of A1 in-
cludes six states, {000, 001, 101, 011, 100, 010} and from any of these states, there
exists at least one path to A1.

4 Functionalities

We describe the main functionalities of the software tool Cabean, implementing
six source-target control methods and three target control methods for the re-
programming of asynchronous Boolean networks. First, we define what types of
control, in terms of node perturbations, can be applied to Boolean networks. We
then proceed with briefly describing the main ideas of the implemented control
methods.

Control in Boolean networks. Let BN be a given Boolean network, S be
the set of states of BN and A be the set of attractors of BN. A control strategy
(control for short) C is a tuple C = (0,1), where 0,1 ⊆ {1, 2, . . . , n} and 0 and
1 are mutually disjoint (possibly empty) sets of indices of nodes of a Boolean
network BN. The application of a control C inhibits the nodes in 0, i.e., the
values of these nodes are set (perturbed) to be 0, and overexpresses the nodes
in 1, i.e., the values of these nodes are set (perturbed) to be 1. Formally, given a
state s ∈ S, the application of a control C to a state s, denoted C(s), is defined
as the state s′ ∈ S such that s′[i] = 0 for i ∈ 0 and s′[i] = 1 for i ∈ 1. State s′ is
called the intermediate state w.r.t. C.

The control can be applied to the network for different periods of time: (a)
instantaneous control — the control is applied instantaneously (only one time
step); (b) temporary control — the control is applied for a finite number of time
steps and then released; and (c) permanent control — the control is applied for
all the following time steps, i.e., the parameters are changed for all the following
steps. Next, we formulate the problems of source-target control and target control
of Boolean networks.

Source-target control. Given a source attractor As and a target attractor At

of TS , to drive the network from As to At is called source-target control.
A source-target control C is called one-step source-target control if C drives

the network from As to At in one step as shown in Fig. 2a. When the control
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Fig. 2: Schematic illustration for source-target control and target control of
Boolean networks: (a) one-step source-target control; (b) sequential source-target
control; and (c) target control.

C is the instantaneous, temporary or permanent control, we call it respectively
one-step instantaneous, temporary or permanent control (OI, OT, or OP). To
minimise experimental costs, it is often important to find the minimal solution,
denoted as CAs→At

min , which solves the source-target control of driving the network
from As to At. The minimal OI control [32,33] perturbs the network from s in
As to a state s′ in the strong basin of At, denoted basSTS (At), where s and s′

are a pair of states that realise the minimal Hamming distance between As and
basSTS (At).

The minimal OT (temporary) and OP (permanent) controls [40] have ex-
tended effects on the network dynamics. The minimal OT control explores the
weak basin of At, bas

W
TS (At) from the one that has the shortest Hamming dis-

tance to As. It searches for a state s′, such that after applying the corresponding
control CAs→s′ for a sufficient period of time, BN will surely reach a state s′′

in basSTS (At). Once BN is in s′′, CAs→s′ can be released. To apply CAs→s′ will
not harm the inevitable reachability of At since there only exist paths to At

from s′′. The minimal OP control looks for a state s′ in basWTS (At), such that
the application of the control CAs→s′ preserves At and s′ can only reach At and
cannot reach any other attractors.

Besides the one-step source-target control, to identify a sequence of perturba-
tions to drive the network from As to At in a stepwise manner is called sequential
control. As shown in Fig. 2b, it is more practical to concentrate on the sequential
control through other attractors, called attractor-based sequential control: to find
a sequence of attractors of TS , i.e. Φ = 〈A1, A2, . . . , Am〉, where A1 = As, Am =
At, Ai 6= Aj for any i, j ∈ [1,m] and 2 ≤ m ≤ |A|, such that after the application

of a sequence of minimal one-step controls 〈CA1→A2

min ,CA2→A3

min , . . . ,C
Am−1→Am

min 〉,
the network always eventually reaches Am, i.e. At. Similarly, when the control

C
Ai→Aj

min , Ai, Aj ∈ Φ is the instantaneous, temporary or permanent control, we
call it attractor-based sequential instantaneous, temporary or permanent control
(ASI, AST or ASP), respectively. The ASI, AST and ASP control methods [24,38]
are based on the three one-step control methods [32,33,40]. Given a source attrac-
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tor As, a target attractor At and a threshold k of perturbations, the sequential
control methods find an intermediate attractor A, such that CA→At

min needs no
more than k − 1 perturbations. Then, the control paths are extended by taking
A as a new target attractor and find a new intermediate attractor A′ such that
CA′→A
min + CA→At

min ≤ k. This procedure is repeated until all the sequential control
paths with at most k perturbations are found.

The first version of Cabean (version 1.0) has implemented the above six
methods for the minimal one-step and attractor-based source-target control of
Boolean networks (see Table 1). To avoid duplication, we refer to [36] for instruc-
tions and to [33,40,24,38] for case studies and evaluations of the source-target
control methods.

Target control. As illustrated in Fig. 2c, when the source is not given, to
identify a subset of nodes, the perturbations of which can stir the dynamics of a
Boolean network from any state s ∈ S to the target attractor At, is called target
control of Boolean networks.

The application of a control C can be lifted to a subset of states S′ ⊆ S. Given
a control C = (0,1), C(S′) = S′′, where S′′ = {s′′ ∈ S|s′′ = C(s′), s′ ∈ S′}.
Set S′′ includes all the intermediate states with respect to the control C and
the subset of states S′. In the case of target control, since we assume a given
Boolean network can be in any initial state, we simply focus on applying a
control, i.e., a number of node perturbations, on S. When perturbations are
applied instantaneously, temporarily or permanently, we call them instantaneous
target control (ITC), temporary target control (TTC) or permanent target control
(PTC) [37,39], respectively.

The three target control methods, ITC, TTC and PTC, are based on the
computation of the strong basin and the weak basin of the target attractor At

and the notion of schema. A schema is a subset S′ of S, such that there exists
a triple M = (0,1,D), where 0 ∪ 1 ∪ D = {1, 2, . . . , n}, 0,1 and D are mutually
disjoint (possibly empty) sets of indices of nodes of BN. The projection of S′

onto the set 0 is a |0|-bit string of zeros and the projection of S′ onto the set 1
is a |1|-bit string of ones. Let D denote the remaining set of nodes (i.e., don’t-
care-set), X \ (0 ∪ 1). The projection of S′ to D consists of all combinations of
binary strings of |D| bits. Since the total number of nodes n = |0|+ |1|+ |D| is
fixed, a larger schema implies more elements in D and fewer elements in 0 ∪ 1.

Similar to the instantaneous source-target control (OI), in order to ensure
the inevitable reachability of a target attractor At, the ITC method drives the
network BN from any initial state to the strong basin of At, bas

S
TS (At). ITC di-

vides basSTS (At) into a set of schemata and each schema leads to an ITC strategy.
Thanks to the sustained effects of temporary and permanent perturbations, TTC
and PTC can drive BN to the weak basin of At, bas

W
TS (At). In a similar way, they

partition basWTS (At) into a set of schemata, which results in a set of potential
control strategies. Every subset of the candidate control sets is optimised and
verified based on the constraints for temporary and permanent control [37].

Intuitively, in order to guarantee the inevitable reachability of At, by the
time we release the control, we need to verify (1) whether the network has
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Source-target Control
Target ControlMinimal Attractor-based

One-step Control Sequential Control
(OI, OT, OP) (ASI, AST, ASP) (ITC, TTC, PTC)

Instantaneous X (version 1.0) X (version 1.0) X (version 2.0)

Temporary X (version 1.0) X (version 1.0) X (version 2.0)

Permanent X (version 1.0) X (version 1.0) X (version 2.0)

Table 1: Control methods integrated in Cabean.

to reach a state s in the strong basin of At, i.e. basSTS (At), from which there
only exist paths to At. Furthermore, we need to ensure (2) that any possible
intermediate state s′ ∈ C(S) is in the strong basin of the remaining strong
basin (i.e., basSTS (At) ∩ C(S)) in the transition system under control, so that
the network will always evolve to the remaining strong basin. Once the network
actually reaches the remaining strong basin (i.e., basSTS (At)∩C(S)), the control
can then be released and the network will evolve spontaneously towards the
target attractor At.

3

Next, we elaborate the three target control methods with the network BN
given in Example 1.

Example 2. For attractor A2 of BN given in Example 1, its strong basin contains
only one state (110), which is a schema. Thus, the ITC for A2 is C1 = {x1 =
1, x2 = 1, x3 = 0}. The application of C1 drives BN from any state directly to
A2. The weak basin of A2, basWTS (A2) = {010, 110, 100, 101}, can be divided into
two schemata {100, 101} and {010, 110}, represented as ‘∗10’ and ‘10∗’. The two
schemata give rise to two candidate control sets: C2 = {x2 = 1, x3 = 0} and
C3 = {x1 = 1, x2 = 0}. After the step of verifying these two sets, control C2 is
both a TTC and a PTC for A2, but C3 is neither a TTC nor a PTC for A2. The
application of C2 reshapes the transition system (under the control of C2) to a
new one as shown in Fig. 1(b) and BN is driven from any initial state to a state
in the transition system in Fig. 1(b), from which the network will eventually
stabilise to A2. Similarly, we know that C4 = {x1 = 0, x2 = 0} is an ITC for A1

and C5 = {x1 = 0} is both a TTC and a PTC for A1.

Cabean 2.0 now integrates the three target control methods, and detailed
description of the methods are referred to [37,39].

Cell phenotype as control target. Another new and interesting feature of
Cabean 2.0 is that it supports the target control of a desired phenotype. In
practice, it is rarely feasible to have complete observability of a biological net-
work. Partial observability empowers us to distinguish a phenotype based on the
expressions of the marker nodes contained in the network.

3 We refer to [40] for the precise formulation of the verification conditions and the
correctness proof.
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Network
# # # singleton # cyclic

nodes edges attractors attractors

yeast 10 28 12 1
ERBB 20 52 3 0
HSPC-MSC 26 81 2 2
tumour 32 158 9 0
hematopoiesis 33 88 5 0
PC12 33 62 7 0
bladder 35 116 3 1
PSC-bFA 36 237 4 0
co-infection 52 136 30 0
MAPK 53 105 12 0
CREB 64 159 8 0
HGF 66 103 10 0
bortezomib 67 135 5 0
T-diff 68 175 12 0
HIV1 136 327 8 0
CD4+ 188 380 6 0
pathway 321 381 3 1

Table 2: An overview of the biological networks.

In general, one phenotype may correspond to one or more attractors in the
Boolean network, being a model of the underlying biological network. To meet
these practical needs, Cabean 2.0 implements the new functionality to compute
both the source-target and the target control of a desired phenotype (i.e., for all
the methods in Table 1). It encodes the phenotype according to the input specifi-
cation file, groups the attractors associated with the phenotype as a new target,
and computes the control strategies for this new target. Cabean 2.0 merges the
attractors of the same phenotype first and then perform the computation for the
merged attractor. In this way, it potentially can discover smaller and even new
control strategies than solving the control problem by enumerate the attractors
contained in the phenotype. One example is given as follows.

Example 3. For BN in Example 1, let us consider the phenotype P , where x3 has
a value of 0. P corresponds to two attractors, A1 and A2. That is, P = {000, 110}.
Cabean explores the strong basin and the weak basin of P to search for solutions
of ITC, TTC and PTC. For instance, C6 = {x3 = 0} is neither a TTC for A1 nor
a TTC for A2. But the temporary inhibition of x3, C6 transforms the transition
system to Fig. 1(c) and it will surely guide BN to P .

5 Evaluation

In this section, we present an overview of the evaluation of the target control
methods (ITC, TTC and PTC) on a number of real-life biological networks to
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Network
The minimal number of perturbations

ITC TTC PTC

yeast 10 5 5
ERBB 10 2 2
HSPC-MSC 2 2 2
hematopoiesis 5 3 3
PC12 12 3 3
bladder 14 2 2
PSC-bFA 11 1 2
co-infection 19 5 5
MAPK 24 4 4
CREB 3 3 3
HGF 22 4 4
bortezomib 3 1 1
T-diff 20 4 4
HIV1 3 3 3
CD4+ 7 3 3
pathway 2 2 2

Table 3: The minimal number of perturbations computed by the control methods
ITC, TTC, and PTC for the biological networks.

demonstrate their efficacy and efficiency.4 In Table 2, we present information on
the number of nodes, the number of edges and the number of singleton and cyclic
attractors for each of these networks. Further details on the networks are referred
to the original works where the Boolean networks were originally presented (see
the corresponding references of the networks in [39]) .

Efficacy. Table 3 gives the minimal number of perturbations computed by the
target control methods (ITC, TTC and PTC) for one of the attractors of the
networks. It is clear to see that ITC always requires more perturbations than
the other two methods due to its instantaneous effect of the perturbations. In
Table 3, ITC often needs to perturb around 10 to 20 nodes, whereas TTC and
PTC can achieve the inevitable reachability of target attractors with at most 5
perturbations. Since it is difficult to realise the instantaneous perturbation of a
number of nodes simultaneously, this makes ITC less practical and less attrac-
tive for real-life applications. Thus, TTC and PTC, which employ temporary or
permanent perturbations, are more preferable than ITC.

Efficiency. Table 4 summarises the computational time for computing the target
control strategies for all the attractors of the networks. All the experiments are
performed on a high-performance computing (HPC) platform, which contains
CPUs of Intel Xeon Gold 6132 @2.6 GHz.

From Table 4, we clearly observe that ITC is the most efficient one, but it
requires more perturbations (see the above discussion and Table 3). The effi-

4 We refer to [33,40,24,38] for case studies and evaluations of the source-target control
methods implemented in Cabean 1.0.
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Network
Computational time (seconds)

ITC TTC PTC

yeast 0.028 0.987 0.933
ERBB 0.055 0.117 0.163
HSPC-MSC 0.097 0.101 0.109
hematopoiesis 0.374 139.859 72.793
PC12 0.149 17.653 22.189
bladder 0.302 2.426 7.997
psc-bFA 36.77 3,732.780 9,296.740
co-infection 6,294.290 ∗ ∗
MAPK 4.608 22.218 45.504
CREB 7.962 8.277 8.693
HGF 19.925 1,437.290 201.363
bortezomib 15.605 ∗ ∗
T-diff 21.581 29,738.500 ∗
HIV1 302.8 323.666 379.127
CD4+ 549.878 1,982.450 21,358.400
pathway 445.251 4,435.590 10,038.600

Table 4: Computational time of the control methods ITC, TTC, and PTC for the
biological networks. The symbol ’*’ means that the corresponding method failed
to finish its computation for the network within 12 hours.

ciency of these target control methods are influenced by many factors, including
the network size, the network density, the number of attractors and the number
of required node perturbations. For instance, for the co-infection network and
the model of bortezomib responses, TTC and PTC were able to identify target
control efficiently for some of the attractors, but failed for the other attractors
of these two networks. One reason is that the target control of those attractors
require many perturbations, thus it takes a considerable amount of time to ver-
ify all the subsets of the schemata (see Section 4). This can be improved if it is
sufficient to provide only some of the solutions instead of all the solutions.

In summary, we conclude that the target control methods (ITC, TTC and
PTC) scale well for Boolean networks of a few hundreds of nodes and they are
able to identify a rich set of solutions with a small number of node perturbations.

6 Implementation

Cabean 2.0 implements the six source-target control methods and the three
target control methods (see Table 1) in C and C++, based on the CUDD pack-
age [35], the model checker MCMAS [20], and the tool ASSA-PBN [26]. There
are two main factors resulting in a high efficiency of Cabean 2.0. First, both
the transition system and transition relations of Boolean networks are encoded
as binary decision diagrams (BDDs). BDDs are introduced by Bryant [2] to rep-
resent Boolean functions, and they have an advantage of memory efficiency to
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alleviate the state space explosion. Realisation of the control methods imple-
mented in Cabean 2.0 depends on the efficiency of BDD operations. Second,
the methods are based on the efficient decomposition-based strong basin com-
putation [32,33], which adapts the divide and conquer strategy and thus scales
well for large Boolean networks.

In the following, we use the Boolean network BN given in Example 1 to
demonstrate the new features of Cabean 2.0, including the three target control
methods and the encoding of a phenotype. For a detailed and complete user
guide of Cabean, we refer to the the website of the software tool.5

Model files. Cabean 2.0 supports two formats for the model file, including the
BoolNet and ISPL (Interpreted Systems Programming Language) format of the
software MCMAS [20]. Further details on the syntax of the two formats can be
found at the website of the tool. Other formats, such as SBML-qual, Petri net,
GINsim, can be converted to the BoolNet format using the BioLQM toolkits.6

Target control of an attractor. Cabean 2.0 integrates the decomposition-
based attractor detection method [25] to compute attractors of a Boolean net-
work. Prior to the computation of target control strategies, Cabean 2.0 com-
putes all the exact attractors of the given network and prints them in lexico-
graphic order. Users can then specify the index of an attractor as the desired
attractor for the target control of the network.

The target control is computed using the following command line:

./cabean -compositional 2 -control <Control method> -tin <index of the target
attractor> <model file>

The option ‘-compositional 2’ indicates that the decomposition-based meth-
ods [25,33] are used for attractor detection and the strong basin computation;
the option ‘-control <Control method>’ selects one of the target methods, ITC,
TTC or PTC; and the option ‘-tin <index of the target attractor>’ sets the index
of the target attractor.

Suppose we want to compute TTC for A1 and A2 for BN in Example 1. The
outputs of Cabean 2.0 are given below. The results show that the network will
stabilise in A1 with the temporary inhibition of A1 and it will settle down to A2

from any initial state with the temporary control of {x2=1 x3=0}. These results
are consistent with Example 2.

***********************************************

TARGET ATTRACTOR #1

***********************************************

Control set 1: x1=0

***********************************************

TARGET ATTRACTOR #2

***********************************************

Control set 1: x2=1 x3=0

5 https://satoss.uni.lu/software/CABEAN/
6 BioLQM is available at http://colomoto.org/biolqm/.

https://satoss.uni.lu/software/CABEAN/
http://colomoto.org/biolqm/
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Target control of a phenotype. The target control of a phenotype can be
computed using the following command line:

./cabean -compositional 2 -control <Control method> -tmarker <specification file>
<model file>

Instead of setting the index of a target attractor, we need to specify a pheno-
type with an input file. For example, the phenotype P in Example 3 is specified
as the following:

nodes, value

x3, 0

The computed TTC of P is given below. The line ‘TARGET ATTRACTOR #1,
#2’ indicates that attractors A1 and A2 agree with the phenotype P . The re-
sults show that temporary inhibition of x1, x2 or x3 guarantees the inevitable
reachability of P . In Example 3, we have explained the case of C6 = {x3 = 0}.

**********************************************

TARGET ATTRACTOR #1 #2

***********************************************

Control set 1: x1=0

Control set 2: x2=0

Control set 3: x3=0

7 Conclusion

Motivated by the important and appealing application of cell reprogramming in
biology, recent years have seen a rapid development of a number of computa-
tional methods for the control of gene regulatory networks modelled as Boolean
networks. In this paper, we have presented a new release of Cabean (version
2.0) that integrates three new target control methods for asynchronous Boolean
networks. These methods identify a set of nodes, whose instantaneous, tempo-
rary or permanent perturbations can drive a Boolean network from any initial
state to a desired attractor or a phenotype.

Cabean 2.0 has assembled a variety of control methods (see Table 1) that
manipulate the dynamics of a Boolean network in different ways. All these meth-
ods focus on identifying which nodes in the Boolean network to be perturbed
in order to drive the network’s dynamics into a desired attractor. A node per-
turbation corresponds to the removal or blocking of a particular gene in a gene
regulatory network. However, in complex diseases it is more common that several
subtle changes affect interactions between genes [29]. This suggests perturbations
at the edge level, i.e., targeting selected interactions between genes. Currently,
new methods are under development for the control of Boolean networks with
edgetic perturbations, which will be eventually integrated into Cabean as well.



Cabean 2.0: Controlling asynchronous Boolean networks 15

In future, we also plan to provide a graphical user interface (GUI) for the con-
venience of users.
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