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Abstract

We define a cones and foci proof method, which rephrases the ques-

tion whether two system specifications are branching bisimilar in terms

of proof obligations on relations between data objects. Compared to the

original cones and foci method from Groote and Springintveld, our method

is more generally applicable, and does not require a preprocessing step to

eliminate τ -loops. We prove soundness of our approach and present a set

of rules to prove the reachability of focus points. Our method has been

formalized and proved correct using PVS. Thus we have established a

framework for mechanical protocol verification. We apply this framework

to the Concurrent Alternating Bit Protocol.

Keywords: protocol verification, branching bisimulation, process alge-

bra, PVS

1 Introduction

Protocol verification with the help of a theorem prover is often rather ad hoc,
in the sense that one has to develop the entire proof structure from scratch.
Inventing such a structure takes a lot of effort, and makes that in general such
a proof cannot be readily adapted to other protocols. Groote and Springintveld
[25] proposed a general proof framework for protocol verification, which they
named the cones and foci method. In this paper we introduce some significant
improvements for this framework. Furthermore, we have cast the framework in
the interactive theorem prover PVS [34].

We present our work in the setting of µCRL [23] (see also [24]), which
combines the process algebra ACP [3] with equational abstract data types
[30]. Processes are intertwined with data: Actions and recursion variables are
parametrized by data types; an if-then-else construct allows data objects to
influence the course of a process; and alternative quantification sums over pos-
sibly infinite data domains. A special action τ [5] represents hidden internal
activity. A labeled transition system is associated to each µCRL specification.
Two µCRL specifications are considered equivalent if the initial states of their
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labeled transition systems are branching bisimilar [18]. Verification of system
correctness boils down to checking whether the implementation of a system
(with all internal activity hidden) is branching bisimilar to the specification of
the desired external behavior of the system.

For finite labeled transition systems, checking whether two states are branch-
ing bisimilar can be performed efficiently [26]. The µCRL tool set [8] supports
the generation of labeled transition systems, together with reduction modulo
branching bisimulation equivalence, and allows model checking of temporal logic
formulas [11] via a back-end to the CADP tool set [13]. This approach to verify
system correctness has three important drawbacks. First, the labeled transition
systems of the µCRL specifications involved must be generated; often the la-
beled transition system of the implementation of a system cannot be generated,
as it is too large, or even infinite. Second, this generation usually requires a spe-
cific choice for one network or data domain; in other words, only the correctness
of an instantiation of the system is proved. Third, support from and rigorous
formalization by theorem provers and proof checkers is not readily available.

Linear process equations [6] constitute a restricted class of µCRL specifica-
tions in a so-called linear format. Algorithms have been developed to transform
µCRL specifications into this linear format [21, 27, 38]. In a linear process equa-
tion, the states of the associated labeled transition system are data objects.

The cones and foci method from [25] rephrases the question whether two
linear process equations are branching bisimilar in terms of proof obligations on
relations between data objects. These proof obligations can be derived by means
of algebraic calculations, in general with the help of invariants (i.e., properties
of the reachable states) that are proved separately. This method was used in
the verification of a considerable number of real-life protocols (e.g., [17, 22, 37]),
often with the support of a theorem prover or proof checker.
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The main idea of the cones and foci method is that quite often in the imple-
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mentation of a system, τ -transitions progress inertly towards a state in which
no τ can be executed; such a state is declared to be a focus point. The cone of
a focus point consists of the states that can reach this focus point by a string
of τ -transitions. In the absence of infinite sequences of τ -transitions, each state
belongs to some cone. This core idea is depicted below. Note that the external
actions at the edge of the depicted cone can also be executed in the ultimate
focus point F ; this is essential for soundness of the cones and foci method, as
otherwise τ -transitions in the cone would not be inert.

The starting point of the cones and foci method are two linear process equa-
tions, expressing the implementation and the desired external behavior of a sys-
tem. A state mapping φ relates each state of the implementation to a state of the
desired external behavior. Groote and Springintveld [25] formulated matching

criteria, consisting of relations between data objects, which ensure that states
s and φ(s) are branching bisimilar.

If an implementation, with all internal activity hidden, gives rise to infinite
sequences of τ -actions, then Groote and Springintveld [25] distinguish between
progressing and non-progressing τ ’s, where the latter are treated in the same way
as external actions. They require that there is no infinite sequence of progressing
τ ’s, and define focus points as the states that cannot perform progressing τ ’s.
A pre-abstraction function divides occurrences of τ in the implementation into
progressing and non-progressing ones; in many cases it is far from trivial to
define the proper pre-abstraction. Finally, a special fair abstraction rule [2] can
be used to try and eliminate the remaining (non-progressing) τ ’s.

In this paper, we propose an adaptation of the cones and foci method, in
which the cumbersome treatment of infinite sequences of τ -transitions is no
longer necessary. This improvement of the cones and foci method was conceived
during the verification of a sliding window protocol [14], where the adaptation
simplified matters considerably. As before, the method deals with linear process
equations, requires the definition of a state mapping, and generates the same
matching criteria. However, we allow the user to freely assign which states are
focus points (instead of prescribing that they are the states in which no pro-
gressing τ -actions can be performed), as long as each state is in the cone of some
focus point. We do allow infinite sequences of τ -transitions. No distinction be-
tween progressing and non-progressing τ ’s is needed, and τ -loops are eliminated
without having to resort explicitly to a fair abstraction rule. We prove that our
method is sound modulo branching bisimulation equivalence.

Compared to the original cones and foci method [25], our method is more
generally applicable. As expected, some extra price may have to be paid for
this generalization. Groote and Springintveld must prove strong termination of
progressing τ -transitions. They use a standard approach to prove strong termi-
nation: provide a well-founded ordering on states such that for each progressing
τ -transition s

τ
→ s′ one has s > s′. Here we must prove that each state can

reach a focus point by a series of τ -transitions. This means that in principle
we have a weaker proof obligation, but for a larger class of τ -transitions. We
develop a set of rules to prove the reachability of focus points. These rules have
been formalized and proved in PVS.
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We formalize the cones and foci method in PVS. The intent is to provide a
common framework for mechanical verification of protocols using our approach.
PVS theories are developed to represent basic notions like labeled transition
systems, branching bisimulation, linear process equations, and then the cones
and foci method itself. The proof of soundness for the method has been mechan-
ically checked by PVS within this framework. Once we had the linear process
equations, the state mapping and the focus condition encoded in PVS, the PVS
theorem prover and its type-checking condition system were then used to gener-
ate and verify all correctness conditions to ensure that the implementation and
the external behavior of a system are branching bisimilar.

We apply our mechanical proof framework to the Concurrent Alternating
Bit Protocol [29], which served as the main example in [25]. Our aims are to
compare our method with the one from [25], and to illustrate our mechanical
proof framework and our approach to the reachability analysis of focus points.
While the old cones and foci method required a typical cumbersome treatment of
τ -loops, here we can take these τ -loops in our stride. Thanks to the mechanical
proof framework we detected a bug in one of the invariants of our original manual
proof. The reachability analysis of focus points is quite crisp.

This paper is organized as follows. In Section 2, we present the preliminaries
of our cones and foci method. In Section 3, we present the main theorem and
prove that our method is sound modulo branching bisimulation equivalence. A
proof theory for reachability of focus points is also presented. In Section 4, the
cones and foci method is formalized in PVS, and a mechanical proof framework
is set up. In Section 5, we illustrate the method by verifying the Concurrent
Alternating Bit Protocol. Part of the verification within the mechanical proof
framework in PVS is presented in Section 5.4.

An earlier version of this paper (lacking the formalization in PVS and the
methodology for reachability analysis) appeared as [15].

Related Work In compiler correctness, advances have been made to validate
programs at a symbolic level with respect to an underlying simulation notion
(e.g., [10, 19, 33]). The methodology surrounding cones and foci incorporates
well-known and useful concepts such as the precondition/effect notation [28,
31], invariants and simulations. Linear process equations resemble the UNITY
format [9] and recursive applicative program schemes [12]; state mappings are
comparable to refinement mappings [32, 35] and simulation [16]. Van der Zwaag
[39] gave an adaptation of the cones and foci method from [25] to a timed setting,
modulo timed branching bisimulation equivalence.

2 Preliminaries

2.1 µCRL

µCRL [23] is a language for specifying distributed systems and protocols in an
algebraic style. It is based on process algebra extended with equational abstract

4



data types. In a µCRL specification, one part specifies the data types, while a
second part specifies the process behavior. We do not describe the treatment
of data types in µCRL in detail. For our purpose it is sufficient that processes
can be parametrized with data. We assume the data sort of booleans Bool with
constant T and F, and the usual connectives ∧, ∨, ¬ and ⇒. For a boolean b,
we abbreviate b = T to b and b = F to ¬b.

The specification of a process is constructed from actions, recursion variables
and process algebraic operators. Actions and recursion variables carry zero or
more data parameters. There are two predefined processes in µCRL: δ represents
deadlock, and τ a hidden action. These two processes never carry data param-
eters. p·q denotes sequential composition and p + q non-deterministic choice,
summation

∑
d:D p(d) provides the possibly infinite choice over a data type D,

and the conditional construct p� b� q with b a data term of sort Bool behaves
as p if b and as q if ¬b. Parallel composition p ‖ q interleaves the actions of p
and q; moreover, actions from p and q may also synchronize to a communication
action, when this is explicitly allowed by a predefined communication function.
Two actions can only synchronize if their data parameters are semantically the
same, which means that communication can be used to represent data transfer
from one system component to another. Encapsulation ∂H(p), which renames
all occurrences in p of action names from the set H into δ, can be used to force
actions into communication. Finally, hiding τI(p) renames all occurrences in p
of actions from the set I into τ . The syntax and semantics of µCRL are given
in [23].

2.2 Labeled transition systems

Labeled transition systems (LTSs) capture the operational behavior of concur-

rent systems. An LTS consists of transitions s
a
→ s′, denoting that the state

s can evolve into the state s′ by the execution of action a. To each µCRL
specification belongs an LTS, defined by the structural operational semantics
for µCRL in [23].

Definition 2.1 (Labeled transition system) A labeled transition system is
a tuple (S,Lab,→, s0), where S is a set of states, Lab a set of transition labels,
→⊆ S × Lab × S a transition relation, and s0 the initial state. A transition

(s, `, s′) is denoted by s
`
→ s′.

Here, S consists of µCRL specifications, and Lab consists of actions from
Act ∪ {τ} parametrized by data. We define branching bisimilarity [18] between
states in LTSs. Branching bisimulation is an equivalence relation [4].

Definition 2.2 (Branching bisimulation) Assume an LTS. A branching

bisimulation relation B is a symmetric binary relation on states such that if sBt

and s
`
→ s′, then

- either ` = τ and s′ B t;
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- or there is a sequence of (zero or more) τ -transitions t
τ
→ · · ·

τ
→ t0 such

that sBt0 and t0
`
→ t′ with s′Bt′.

Two states s and t are branching bisimilar, denoted by s ↔b t, if there is a
branching bisimulation relation B such that sB t.

The µCRL tool set [8] supports the generation of labeled transition systems
of µCRL specifications, together with reduction modulo branching bisimulation
equivalence and model checking of temporal logic formulas [36, 7, 20]. This
approach has been used to analyze a wide range of protocols and distributed
systems.

In this paper we focus on analyzing protocols and distributed systems on
the level of their symbolic specifications.

2.3 Linear process equations

A linear process equation (LPE) is a µCRL specification consisting of actions,
summations, sequential compositions and conditional constructs. In particular,
an LPE does not contain any parallel operators, encapsulations or hidings. In
essence an LPE is a vector of data parameters together with a list of condition,
action and effect triples, describing when an action may happen and what is its
effect on the vector of data parameters. Each µCRL specification that does not
include successful termination can be transformed into an LPE [38].1

Definition 2.3 (Linear process equation) A linear process equation is a
µCRL specification of the form

X(d:D) =
∑

a∈Act∪{τ}

∑

e:Ea

a(fa(d, e))·X(ga(d, e)) � ha(d, e) � δ

where fa : D × Ea → D, ga : D × Ea → D and ha : D × Ea → Bool for each
a ∈ Act ∪ {τ}.

The LPE in Definition 2.3 has exactly one LTS as its solution (modulo strong
bisimulation).2 In this LTS, the states are data elements d:D (where D may be a
Cartesian product of n data types, meaning that d is a tuple (d1, ..., dn)) and the
transition labels are actions parametrized with data. The LPE expresses that
state d can perform a(fa(d, e)) to end up in state ga(d, e), under the condition
that ha(d, e) is true. The data type Ea gives LPEs a more general form, as not
only the data parameter d:D but also the data parameter e:Ea can influence
the parameter of action a, the condition ha and the resulting state ga.

1To cover µCRL specifications with successful termination, LPEs should include a sum-
mand

∑
a∈Act∪{τ}

∑
e:Ea

a(fa(d, e)) � ha(d, e) � δ. The cones and foci method extends to

this setting without any complication. However, this extension would complicate the match-
ing criteria in Definition 3.3. For the sake of presentation, successful termination is not taken
into account in this paper.

2LPEs exclude “unguarded” recursive specifications such as X = X, which have multiple
solutions.
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Definition 2.4 (Invariant) A mapping I : D → Bool is an invariant for an
LPE, written as in Definition 2.3, if for all a ∈ Act ∪ {τ}, d:D and e:E,

I(d) ∧ ha(d, e) ⇒ I(ga(d, e)).

Intuitively, an invariant approximates the set of reachable states of an LPE.
That is, if I(d), and if one can evolve from state d to state d′ in zero or more
transitions, then I(d′). Namely, if I holds in state d and it is possible to execute
a(fa(d, e)) in this state (meaning that ha(d, e)), then it is ensured that I holds
in the resulting state ga(d, e). Invariants tend to play a crucial role in algebraic
verifications of system correctness that involve data.

3 Cones and foci

In this section, we present our version of the cones and foci method from [25].
Suppose that we have an LPE X(d:D) specifying the implementation of a sys-
tem, and an LPE Y (d′:D′) (without occurrences of τ) specifying the desired
input/output behavior of this system. We want to prove that the implementa-
tion exhibits the desired input/output behavior.

We assume the presence of an invariant I : D → Bool for X. In the cones
and foci method, a state mapping φ : D → D′ relates each state of the imple-
mentation X to a state of the desired external behavior Y . Furthermore, some
states in D are designated to be focus points. In contrast with the approach of
[25], we allow to freely designate focus points, as long as each state d:D of X
with I(d) can reach a focus point by a sequence of τ -transitions. If a number
of matching criteria for d:D are fulfilled, consisting of relations between data
objects, and if I(d), then the states d and φ(d) are guaranteed to be branching
bisimilar. These matching criteria require that (A) all τ -transitions at d are
inert, (B) each external transition of d can be mimicked by φ(d), and (C) if d
is a focus point, then vice versa each transition of φ(d) can be mimicked by d.

In Section 3.1, we present the general theorem underlying our method. Then
we introduce proof rules for the reachability of focus points in Section 3.2.

3.1 The general theorem

Let the LPE X be of the form

X(d:D) =
∑

a∈Act∪{τ}

∑

e:Ea

a(fa(d, e))·X(ga(d, e)) � ha(d, e) � δ.

Furthermore, let the LPE Y be of the form

Y (d′:D′) =
∑

a∈Act

∑

e:Ea

a(f ′a(d′, e))·Y (g′a(d′, e)) � h′a(d′, e) � δ.

Note that Y is not allowed to have τ -steps. We start with defining the predicate
FC, designating the focus points of X in D. Next we define the state mapping
together with its matching criteria.
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Definition 3.1 (Focus point) A focus condition is a mapping FC : D →
Bool . If FC (d), then d is called a focus point.

Definition 3.2 (State mapping) A state mapping is of the form φ : D → D′.

Definition 3.3 (Matching criteria) A state mapping φ : D → D′ satisfies
the matching criteria for d:D if for all a ∈ Act :

I ∀e:Ea (hτ (d, e) ⇒ φ(d) = φ(gτ (d, e)));

II ∀e:Ea (ha(d, e) ⇒ h′a(φ(d), e));

III FC (d) ⇒ ∀e:Ea (h′a(φ(d), e) ⇒ ha(d, e));

IV ∀e:Ea (ha(d, e) ⇒ fa(d, e) = f ′a(φ(d), e));

V ∀e:Ea (ha(d, e) ⇒ φ(ga(d, e)) = g′a(φ(d), e)).

Matching criterion I requires that the τ -transitions at d are inert, meaning that
d and gτ (d, e) are branching bisimilar. Criteria II, IV and V express that each
external transition of d can be simulated by φ(d). Finally, criterion III expresses
that if d is a focus point, then each external transition of φ(d) can be simulated
by d.

Theorem 3.4 Assume LPEs X(d:D) and Y (d′:D′) written as before Definition
3.1. Let I : D → Bool be an invariant for X. Suppose that for all d:D with
I(d),

1. φ : D → D′ satisfies the matching criteria for d, and

2. there is a d̂:D such that FC (d̂) and d
τ
→ · · ·

τ
→ d̂ in the LTS for X.

Then for all d:D with I(d),

X(d) ↔b Y (φ(d)).

Proof. We assume without loss of generality that D and D′ are disjoint. Define
B ⊆ D ∪ D′ × D ∪ D′ as the smallest relation such that whenever I(d) for a
d:D then dBφ(d) and φ(d)Bd. Clearly, B is symmetric. We show that B is a
branching bisimulation relation.

Let sBt and s
`
→ s′. First consider that case where φ(s) = t. By definition

of B we have I(s).

1. If ` = τ , then hτ (s, e) and s′ = gτ (s, e) for some e:E. By matching
criterion I, φ(gτ (s, e)) = t. Moreover, I(s) and hτ (s, e) together imply
I(gτ (s, e)). Hence, gτ (s, e)Bt.

2. If ` 6= τ , then ha(s, e), s′ = ga(s, e) and ` = a(fa(s, e)) for some a ∈

Act and e:E. By matching criteria II and IV, h′a(t, e) and fa(s, e) =

f ′a(t, e). Hence, t
a(fa(s,e))

→ g′a(t, e). Moreover, I(s) and ha(s, e) together
imply I(ga(s, e)), and matching criterion V yields φ(ga(s, e)) = g′a(t, e),
so ga(s, e)Bg′a(t, e).
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Next consider the case where s = φ(t). Since s
`
→ s′, for some a ∈ Act and e:E,

h′a(s, e), s′ = g′a(s, e) and ` = a(f ′
a(s, e)). By definition of B we have I(t). By

assumption 2 of the Theorem, there is a t̂:D with FC (t̂) such that t
τ
→ ...

τ
→ t̂ in

the LTS for X. Invariant I, so also the matching criteria, hold for all states on
this τ -path. Repeatedly applying matching criterion I we get φ(t̂) = φ(t) = s. So
matching criterion III together with h′a(s, e) yields ha(t̂, e). Then by matching

criterion IV, fa(t̂, e) = f ′a(s, e), so t
τ
→ ...

τ
→ t̂

a(f ′

a
(s,e))
→ ga(t̂, e). Moreover,

I(t̂) and ha(t̂, e) together imply I(ga(t̂, e)), and matching criterion V yields
φ(ga(t̂, e)) = g′a(s, e), so sBt̂ and g′a(s, e)Bga(t̂, e).

Concluding, B is a branching bisimulation relation. �

We note that Groote and Springintveld [25] proved for their version of the cones
and foci method that it can be derived from the axioms of µCRL, which implies
that their method is sound modulo branching bisimulation equivalence. We
leave it as future work to try and derive our cones and foci method from the
axioms of µCRL.

3.2 Proof rules for reachability

The cones and foci method requires as input a state mapping and a focus con-
dition. It generates two kinds of proof obligations: matching criteria, and a
reachability criterion. The latter states that from all reachable states, a state
satisfying the focus condition must be reachable. Note that it suffices to prove
that from any state satisfying a given set of invariants, a state satisfying the
focus conditions is reachable. In this section we develop proof rules, in order to
establish this condition. First we introduce some notation.

Definition 3.5 (τ-Reachability) Given an LTS (S,Lab,→, s0) and φ, ψ ⊆ S.
ψ is τ -reachable from φ, written as φ � ψ, if and only if for all x ∈ φ their exists
a y ∈ ψ such that x

τ
→ · · ·

τ
→ y.

The above mentioned reachability criterion can now be expressed as Inv �

FC, where Inv denotes a set invariants, and FC denotes the focus condition.
Here and in the sequel, we use predicates with variables from the state vector
to denote sets of states.

Definition 3.6 (Reachability in one τ-step) Let an LPE X(d:D) written
as before (see Definition 3.1). The set of states PreX(ψ), that can reach the set
of states ψ in one τ -step, is defined as:

PreX(ψ)(d) = ∃e:E.hτ (d, e) ∧ ψ(gτ (d, e))

Lemma 3.7 (Proof rules for reachability) We give a list of rules for prov-
ing � with respect to an LPE X as follows:

• (precondition) PreL(φ) � φ
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• (implication) If φ⇒ ψ then φ � ψ.

• (transitivity) If φ � ψ and ψ � χ then φ � χ.

• (disjunction) If φ � χ and ψ � χ, then {φ ∨ ψ} � χ.

• (invariant) If φ � ψ and I is an invariant, then {φ ∧ I} � {ψ ∧ I}.

• (induction) If for all n > 0, {φ ∧ (t = n)} � {φ ∧ (t < n)}, then φ �

{φ ∧ (t = 0)}, where t is any term containing state variables from D.

Proof. These rules can be easily proved. In the precondition rule we obtain a
one step reduction from the semantics of LPEs. The implication rule is obtained
by an empty reduction sequence; for transitivity we can concatenate the reduc-
tion sequences. The disjunction rule can be proved by case distinction. For the
invariant rule, assume that φ(d) and I(d) hold. By the assumption φ � ψ, we

obtain a sequence d
τ
→ · · ·

τ
→ d′, such that ψ(d′). Because I is an invariant, we

have I(d′) (by induction on the length of that reduction). So indeed {ψ∧I}(d′).
Finally, for the induction rule we first prove with well-founded induction over
n and using the transitivity rule that ∀n.{φ ∧ (t = n)} � {φ ∧ (t = 0)}. Then
observe that φ⇒ {φ∧ (t = t)}, and use the implication and transitivity rule to
conclude that φ � {φ ∧ (t = 0)}. �

The proof rules for reachability were proved correct in PVS, and they were used
in the verification of the reachability criterion for the CABP in PVS, which we
will present in Section 5.4.

4 A mechanical proof framework

In this section, our method is formalized in the language of the interactive
theorem prover PVS [34]. This formalism enables computer aided protocol
verification using the cones and foci method. PVS is chosen for the following
main reasons. First, the specification language of PVS is based on simply typed
higher-order logics. PVS provides a rich set of types and the ability to define
subtypes and dependent types. Second, PVS constitutes a powerful, extensible
system for verifying obligations. It has a tool set consisting of a type checker,
an interactive theorem prover, and a model checker. Third, PVS includes high
level proof strategies and decision procedures that take care of many of the low
level details associated with computer aided theorem proving. In addition, PVS
has useful proof management facilities, such as a graphical display of the proof
tree, and proof stepping and editing.

The type system of PVS contains basic types such as boolean, natural, in-

teger, real, etc. and type constructors such as set, tuple, record, and func-

tion. Tuple, record, and type constructors are extensively used in the following
sections to formalize the cones and foci method. Tuple types have the form
[T1,...,Tn], where the Ti are type expressions. A record is a finite list of
fields of the form R:TYPE=[# E1:T1, ...,En:Tn #], where the Ei are record
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accessor functions. Associated with every tuple type or record is a set of pro-
jection functions: ‘1,‘2,..., (or proj 1,proj 2,...). A function construc-
tor has the form F:TYPE=[T1,...,Tn->R], where F is a function with domain
T1×T2×...×Tn and range R.

A PVS specification can be structured through a hierarchy of theories. Each
theory consists of a signature for the type names, constants introduced in the
theory, axioms, definitions, and theorems associated with the signature. A PVS
theory can be parametric in certain specified types and values, which are placed
between [ ] after the theory name. A theory can build on other theories. To
import a theory, PVS uses the notation IMPORTING followed by the theory name.
For example, we can give part of the theory of abstract reduction systems [1] in
PVS as follows:

ARS[A:TYPE]: THEORY BEGIN

x,y,z:VAR A n:VAR nat R:VAR pred[[A,A]]

iterate(R,n)(x,y):RECURSIVE bool=

IF n=0 THEN x=y

ELSE EXISTS z: iterate(R,n-1)(x,z) AND R(z,y)

ENDIF MEASURE n

star(R)(x,y):bool= EXISTS n: iterate(R,n)(x,y)

...

END ARS

Theory ARS contains the basic notations, like transitive closure of a relation,
and theorems for abstract reduction systems. The rest of this section gives the
main part of the PVS formalism of our approach. We will explain PVS notation
throughout this section, when necessary.

4.1 LTSs and branching bisimulation

In this section, we formalize the preliminaries from Section 2 in PVS. An LTS
(see Definition 2.1) is parameterized by a set of states D, a set of actions Act

and a special action tau. The type LTS is then defined as a record containing
an initial state, and a ternary step relation. The relation step 01 extends step
with the reflexive closure of the tau-steps. We also abbreviate the reflexive
transitive closure of tau-steps tau star. Finally, the set reachable of states
reachable from the initial state can be easily characterized using an inductive
definition.

LTS[D,Act:TYPE,tau:Act]: THEORY BEGIN

IMPORTING ARS[D]

LTS: TYPE = [# init:D, step:[D,Act,D->bool] #]

x,y:VAR D a:VAR Act lts:VAR LTS

step(lts,a)(x,y):bool= lts‘step(x,a,y)

step 01(lts)(x,a,y):bool = lts‘step(x,a,y) OR (a=tau AND x=y)

tau star(lts)(x,y):bool = star(step(lts,tau))(x,y)

reachable(lts)(x): INDUCTIVE bool =

x=lts‘init OR EXISTS y,a: reachable(lts)(y) AND lts‘step(y,a,x)

END LTS
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To define a branching bisimulation relation (see Definition 2.2 ) between
two labeled transition systems in PVS, we first introduce a formalization of a
branching simulation relation in PVS. A relation is a branching bisimulation if
and only if both itself and its inverse are a branching simulation relation.

BRANCHING SIMULATION [D,E,Act:TYPE,tau:Act]: THEORY BEGIN

IMPORTING LTS[D,Act,tau], LTS[E,Act,tau]

x1,y1,z1:VAR D x2,y2,z2:VAR E

lts1:VAR LTS[D,Act,tau] lts2:VAR LTS[E,Act,tau]

a:VAR Act R:VAR [D,E->bool]

brsim(lts1,lts2)(R):bool=

FORALL x1,a,z1,x2: lts1‘step(x1,a,z1) AND R(x1,x2) IMPLIES

EXISTS y2,z2: tau star(lts2)(x2,y2) AND step 01(lts2)(y2,a,z2)

AND R(x1,y2) AND R(z1,z2)

END BRANCHING SIMULATION

BRANCHING BISIMULATION [D,E,Act:TYPE,tau:Act]: THEORY BEGIN

IMPORTING BRANCHING SIMULATION[D,E,Act,tau],

BRANCHING SIMULATION[E,D,Act,tau]

x1:VAR D x2:VAR E

lts1:VAR LTS[D,Act,tau] lts2:VAR LTS[E,Act,tau]

a:VAR Act R:VAR [D,E->bool]

brbisim(lts1,lts2)(R):bool=

brsim(lts1,lts2)(R) AND brsim(lts2,lts1)(converse(R))

brbisimilar(lts1,lts2)(x1,x2):bool=

EXISTS R : brbisim(lts1,lts2)(R) AND R(x1,x2)

brbisimilar(lts1,lts2):bool= brbisimilar(lts1,lts2)(lts1‘init,lts2‘init)

END BRANCHING BISIMULATION

In our actual PVS theory of branching bisimulation, we also defined a semi-
branching bisimulation relation [18]. In [4], this notion was used to show that
branching bisimilarity is an equivalence. Basten showed that the relation compo-
sition of two branching bisimulation relations is not necessarily again a branch-
ing bisimulation relation, while the relation composition of two semi-branching
bisimulation relations is again a semi-branching bisimulation relation. It is
easy to see that semi-branching bisimilarity is reflexive and symmetric. Hence,
semi-branching bisimilarity is an equivalence relation. Basten also proved that
semi-branching bisimilarity and branching bisimilarity coincide, that means two
states in an LTS are related by a branching bisimulation relation if and only
if they are related by a semi-branching bisimulation relation. Thus, he proved
that branching bisimilarity is an equivalence relation. We have checked these
facts in PVS.

4.2 Representing LPEs and invariants

We now show how an LPE (see Definition 2.3) can be represented in PVS.
The formal definitions will slightly deviate from the mathematical presentation
before. A first decision was to represent µCRL abstract data types directly
by PVS types. This enables one to reuse the PVS library for definitions and
theorems of “standard” data types, and to focus on the behavioral part.

A second distinction will be that we assumed so far that LPEs are clustered.
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This means that each action name occurs in at most one summand, so that the
set of summands can be indexed by the set of action names Act. This is no real
limitation, because any LPE can be transformed into clustered form, basically
by replacing + by

∑
over finite types. Clustered LPEs enable a notationally

smoother presentation of the theory. However, when working with concrete
LPEs this restriction is not convenient, so we avoid it in the PVS framework:
an arbitrarily sized index set {0, . . . , n − 1} will be used, represented by the
PVS type below(n). A third deviation is that we will assume from now on that
every summand has the same set E of local variables (instead of Ea before).
Again this is no limitation, because void summations can always be added (i.e.:
p =

∑
e:E p, when e doesn’t occur in p). This restriction is needed to avoid the

use of polymorphism, which doesn’t exist in PVS. A fourth deviation is that we
do not distinguish action names from action data parameters. We simply work
with one type Act of expressions for actions. Note that this is a real extension.
Namely, in our PVS formalization, each LPE summand is a function from D×E

(with D the set of states) to Act×Bool×D, so one summand may now generate
steps with various action names, possibly visible as well as invisible.

So an LPE is parameterized by a set of actions (Act), a global parameter
(State) and a local variable (Local), and by the size of its index set (n) and
the special action τ (tau). Note that the guard, action and next-state of a
summand depend on the global parameter d:State and on the local variable
e:Local. This dependency is represented in the definition SUMMAND by a PVS
function type. An LPE consists of an initial state and a list of summands indexed
by below(n). Finally, the function lpe2lts provides the LTS semantics of an
LPE, Step(L,a) provides the corresponding binary relation on states, and the
set of Reachable states is lifted from LTS to LPE level.

LPE[Act,State,Local:TYPE,n:nat,tau:Act]: THEORY BEGIN

IMPORTING LTS[State,Act,tau]

SUMMAND:TYPE= [State,Local-> [#act:Act,guard:bool,next:State#] ]

LPE:TYPE= [#init:State,sums:[below(n)->SUMMAND]#]

L:VAR LPE i:VAR below(n) d,d1,d2:VAR State

a:VAR Act e:VAR Local s:VAR SUMMAND

step(s)(d1,a,d2):bool=

EXISTS e: s(d1,e)‘guard AND a=s(d1,e)‘act AND d2=s(d1,e)‘next

lpe2lts(L):LTS= (#init:= init(L),

step:= LAMBDA d1,a,d2: EXISTS i: step(L‘sums(i))(d1,a,d2) #)

Step(L,a)(d1,d2):bool = step(lpe2lts(L),a)(d1,d2)

Reachable(L)(d):bool = reachable(lpe2lts(L))(d)

END LPE

We define an invariant (see Definition 2.4) of an LPE in PVS by a theory
INVARIANT as follows, where p is a predicate over states. p is an invariant of
an LPE if and only if it holds initially and it is preserved by the execution of
every summand. Note that we only require preservation for reachable states.
This allows that previously proved invariants can be used in proving that p is
invariant, which occurs frequently in practice. The abstract notion of reacha-
bility can itself be proved to be the strongest invariant (reachable inv1 and
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reachable inv2).

INVARIANT[Act,State,Local:TYPE,n:nat,tau:Act]: THEORY BEGIN

IMPORTING LPE[Act,State,Local,n,tau]

L:VAR LPE p:VAR [State->bool]

d:VAR State a:VAR Act e:VAR Local i:VAR below(n)

preserves(L,i)(p):bool=

FORALL d,e: Reachable(L)(d) AND p(d) AND L‘sums(i)(d,e)‘guard

IMPLIES p(L‘sums(i)(d,e)‘next)

invariant(L)(p):bool = p(L‘init) AND FORALL i: preserves(L,i)(p)

reachable inv1: LEMMA invariant(L)(Reachable(L))

reachable inv2: LEMMA invariant(L)(p) IMPLIES subset?(Reachable(L),p)

END INVARIANT

4.3 Formalizing the cones and foci method

In this section, we give the PVS development of the cones and foci method.
Compared to the mathematical definitions in Section 3 we make two adapta-
tions. First, we use the abstract reachability predicate instead of invariants; by
the previous lemmas we can always switch back to invariants. Second, we have
to reformulate the matching criteria in the setting of our slightly extended notion
of LPEs, allowing arbitrary index sets, and more action names per summand.

We start with two LPEs, for the implementation and the desired external
behavior of a system, X:LPE[Act,D,L,m,tau] and Y:LPE[Act,E,L,n,tau] re-
spectively. Both LPE X and LPE Y have the same set of actions and the same
set of local variables. However, the type of global parameters (D and E, respec-
tively) and the number of summands (m and n, respectively) may be different.
Note that here we do not exclude the presence of tau in the LPE Y. For the
correctness proof this restriction is not needed, and by lifting this restriction we
avoid the use of subtypes in PVS. However it does not really extend the method,
because the matching criteria enforce that all tau-steps in Y are tau-loops.

The next ingredients are the state mapping function h:[D->E] and a fo-
cus condition fc:pred[D]. But, as summands are no longer indexed by action
names, we also need a mapping of the summands k:[below(m)->below(n)].
The idea is that summand i : below(m) of LPE X is mapped to summand
k(i) : below(n) of LPE Y . Having these ingredients, we can subsequently define
the matching criteria (MC) and the reachability criterion (RC). The individual
matching criteria (MC1–MC5) are displayed separately.
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CONESFOCI METHOD [D,E,L,Act:TYPE,tau:Act,m,n:nat]: THEORY BEGIN

IMPORTING BRANCHING BISIMULATION [D,E,Act,tau],

LPE[Act,D,L,m,tau], LPE [Act,E,L,n,tau]

X:VAR LPE[Act,D,L,m,tau] Y:VAR LPE[Act,E,L,n,tau]

h:VAR [D->E] fc:VAR pred[D] k:VAR [below(m)->below(n)]

d,d1:VAR D

...

MC(X,Y,k,h,fc)(d):bool=

MC1(X,h)(d) AND MC2(X,Y,k,h)(d) AND MC3(X,Y,k,h,fc)(d)

AND MC4(X,Y,k,h)(d) AND MC5(X,Y,k,h)(d)

RC(X,fc)(d):bool=

EXISTS d1 : fc(d1) AND tau star(lpe2lts(X))(d,d1)

CONESFOCI: THEOREM

h(X‘init)=Y‘init AND (FORALL d: Reachable(X)(d)

IMPLIES MC(X,Y,k,h,fc)(d) AND RC(X,fc)(d))

IMPLIES brbisimilar(lpe2lts(X),lpe2lts(Y))

END CONESFOCI METHOD

x:VAR L i:VAR [below(m)] j:VAR [below(n)]

MC1(X,h)(d):bool= FORALL i : FORALL x:

X‘sums(i)(d,x)‘act=tau AND X‘sums(i)(d,x)‘guard

IMPLIES h(d)=h(X‘sums(i)(d,x)‘next)

MC2(X,Y,k,h)(d):bool= FORALL i : FORALL x:

NOT X‘sums(i)(d,x)‘act=tau AND X‘sums(i)(d,x)‘guard

IMPLIES Y‘sums(k(i))(h(d),x)‘guard

MC3(X,Y,k,h,fc)(d):bool= FORALL j : FORALL x:

fc(d) AND Y‘sums(j)(h(d),x)‘guard

IMPLIES EXISTS i :

k(i)=j AND X‘sums(i)(d,x)‘guard AND NOT X‘sums(i)(d,x)‘act=tau

MC4(X,Y,k,h)(d):bool= FORALL i : FORALL x:

NOT X‘sums(i)(d,x)‘act=tau AND X‘sums(i)(d,x)‘guard

IMPLIES X‘sums(i)(d,x)‘act = Y‘sums(k(i))(h(d),x)‘act

MC5(X,Y,k,h)(d):bool= FORALL i : FORALL x:

NOT X‘sums(i)(d,x)‘act=tau AND X‘sums(i)(d,x)‘guard

IMPLIES h(X‘sums(i)(d,x)‘next) = Y‘sums(k(i))(h(d),x)‘next

The theorem CONESFOCI was proved in PVS along the lines of Section 3.

4.4 The symbolic reachability criterion

The last part of the formalization of the framework in PVS is on the proof rules
for the reachability criterion. We start on the level of abstract reduction systems
(ARS[S]), which talks about binary relations, formalized in PVS as pred[S,S].
First, we have to lift conjunction (AND) and disjunction (OR) to predicates on
S (overloading is allowed in PVS). We use Reach to denote �. Next, several
proof rules can be expressed and proved in PVS. Here we only show the rules for
disjunction and induction; the latter depends on a measure function f:[S->nat]

(this rule is not used in the verification of Concurrent Alternating Bit Protocol
later, but it was essential in the verification of the Sliding Window Protocol [14]).
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REACH CONDITION [S:TYPE]: THEORY BEGIN

IMPORTING ARS[S]

X,Y,Z:VAR pred[S] x,y:VAR S R:VAR pred[[S,S]]

AND(X,Y)(x):bool = X(x) AND Y(x) ;

OR(X,Y)(x) :bool = X(x) OR Y(x) ;

Reach(R)(X,Y):bool= FORALL x : X(x)

IMPLIES EXISTS y : Y(y) AND star(R)(x,y)

reach disjunction: LEMMA % Disjunction rule

Reach(R)(X,Z) AND Reach(R)(Y,Z) IMPLIES Reach(R)(X OR Y,Z)

f:VAR [S->nat] n:VAR nat

reach induction: LEMMA % Induction rule

(FORALL n:n>0 IMPLIES

Reach(R)( X AND LAMBDA x: f(x)=n, X AND LAMBDA x: f(x)<n))

IMPLIES Reach(R)( X , X AND LAMBDA x: f(x)=0 )

END REACH CONDITION

Finally, the precondition and invariant rules depend on the LPE under
scrutiny, so we define them in a separate theory:

PRECONDITION [Act,State,Local:TYPE,n:nat,tau:Act]: THEORY BEGIN

IMPORTING INVARIANT[Act,State,Local,n,tau], REACH CONDITION[State]

L:VAR LPE X,Y:VAR pred[State] i:VAR below(n)

d:VAR State e:VAR Local I:VAR [State->bool]

precondition(L,X)(d):bool=

EXISTS i: EXISTS e: L‘sums(i)(d,e)‘act=tau

AND L‘sums(i)(d,e)‘guard AND X(L‘sums(i)(d,e)‘next)

reach precondition: LEMMA % Precondition rule

Reach(Step(L,tau))(precondition(L,X),X)

reach invariant: LEMMA % Invariant rule

Reach(Step(L,tau))(X,Y) AND invariant(L)(I)

IMPLIES Reach(Step(L,tau))(X AND I, Y AND I)

END PRECONDITION

To connect the proof rules on the Reach predicate with the reachability
condition of the previous section, we proved the following theorem in PVS:

reachability[D,E,L,Act:TYPE, tau:Act, m,n:nat]: THEORY BEGIN

IMPORTING CONESFOCI METHOD[D,E,L,Act,tau,m,n],

PRECONDITION[Act,D,L,m,tau]

I,fc: VAR [D->bool] X: VAR LPE[Act,D,L,m,tau] d: VAR D

REACH CRIT: LEMMA invariant(L)(I) AND Reach(Step(L,tau))(I,fc) IMPLIES

(FORALL d: Reachable(L)(d) IMPLIES RC(L,fc)(d))

END reachability

This finishes the formalization of the cones and foci method in PVS. We
view this as an important step. First of all, this part is protocol independent,
so it can be reused in different protocol verifications. Second, it provides a rigor-
ous formalization of the meta-theory. For a concrete protocol specification and
implementation, and given invariants, mapping functions and focus condition,
all proof obligations can be generated automatically and proved with relatively
little effort. The theorem CONESFOCI in Section 4.3 states that this is suffi-
cient to prove that the implementation is correct w.r.t. the specification modulo
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branching bisimulation. No additional axioms are used besides the standard
PVS library. The complete dump files of the PVS formalization of the cones
and foci method can be found at http://www.cwi.nl/~vdpol/conesfoci/.

5 Application to the CABP

Groote and Springintveld [25] proved correctness of the Concurrent Alternating
Bit Protocol (CABP) [29] as an application of their cones and foci method. Here
we redo their correctness proof using our version of the cones and foci method,
where in contrast to [25] we can take τ -loops in our stride. We also illustrate
our mechanical proof framework and our approach to the reachability analysis
of focus points by this case study.

5.1 Informal description

In the CABP, data elements d1, d2, . . . are communicated from a data transmit-
ter S to a data receiver R via a lossy channel, so that a message can be corrupted
or lost. Therefore, acknowledgments are sent from R to S via a lossy channel.
In the CABP, sending and receiving of acknowledgments is decoupled from R
and S, in the form of separate components AS and AR, respectively, where AS
autonomously sends acknowledgments to AR.

S attaches a bit 0 to data elements d2k−1 and a bit 1 to data elements
d2k, and AS sends back the attached bit to acknowledge reception. S keeps on
sending a pair (di, b) until AR receives the bit b and succeeds in sending the
message ac to S; then S starts sending the next pair (di+1, 1 − b). Alternation
of the attached bit enables R to determine whether a received datum is really
new, and alternation of the acknowledging bit enables AR to determine which
datum is being acknowledged.

The CABP contains unbounded internal behavior, which occurs when a
channel eternally corrupts or loses the same datum or acknowledgment. The
fair abstraction paradigm [2], which underlies branching bisimulation, says that
such infinite sequences of faulty behavior do not exist in reality, because the
chance of a channel failing infinitely often is zero. Groote and Springintveld [25]
defined a pre-abstraction function to hide all τ ’s except those that are executed
in focus points, and used Koomen’s fair abstraction rule [2] to eliminate the
remaining τ -loops. In our adaptation of the cones and foci method, neither
pre-abstraction nor Koomen’s fair abstraction rule are needed.

The structure of the CABP is shown in Figure 1. The CABP system is built
from six components.

S is a data transmitter, which reads a datum from port 1 and transmits such
a datum repeatedly via channel K, until an acknowledgment ac regarding
this datum is received from AR.

K is a lossy data transmission channel, which transfers data from S to R.
Either it delivers the datum correctly, or it can make two sorts of mistakes:
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Figure 1: The structure of the CABP

lose the datum or change it into a checksum error ce.

R is a data receiver, which receives data from K, sends freshly received data
into port 2, and sends an acknowledgment to AS via port 5.

AS is an acknowledgment transmitter, which receives an acknowledgment from
R and repeatedly transmits it via L to AR.

L is a lossy acknowledgment transmission channel, which transfers acknowl-
edgments from AS to AR. Either it delivers the acknowledgment correctly,
or it can make two sorts of mistakes: lose the acknowledgment or change
it into an acknowledgment error ae.

AR is an acknowledgment receiver, which receives acknowledgments from L
and passes them on to S.

The components can perform read rn(...) and send sn(...) actions to trans-
port data through port n. A read and a send action over the same port n can
synchronize into a communication action cn(...).

5.2 µCRL specification

We give descriptions of the data types and each component’s specification in
µCRL, which were originally presented in [25]. For convenience of notation, in
each summand of the µCRL specifications below, we only present the parameters
whose values are changed.

We use the sort Nat of natural numbers, and the sort Bit with elements b0
and b1 with an inversion function inv : Bit → Bit to model the alternating bit.
The sortD contains the data elements to be transferred. The sort Frame consists
of pairs 〈d, b〉 with d:D and b:Bit. Frame also contains two error messages, ce for
checksum error and ae for acknowledgment error. eq : S × S → Bool coincides
with the equality relation between elements of the sort S.

The data transmitter S reads a datum at port 1 and repeatedly transmits
the datum with a bit bs attached at port 3 until it receives an acknowledgment
ac through port 8; after that, the bit-to-be-attached is inverted. The parameter
is is used to model the state of the data transmitter.
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Definition 5.1 (Data transmitter)

S(ds:D, bs:Bit, is:Nat)
=

∑
d:D r1(d)·S(d/ds, 2/is) � eq(is, 1) � δ

+ (s3(〈ds, bs〉)·S() + r8(ac)·S(inv(bs)/bs, 1/is)) � eq(is, 2) � δ

The data transmission channel K reads a datum at port 3. It can do one of
three things: it can deliver the datum correctly via port 4, lose the datum, or
corrupt the datum by changing it into ce. The non-deterministic choice between
the three options is modeled by the action j. bk is the attached alternating bit
for K. And its state is modeled by the parameter ik.

Definition 5.2 (Data transmission channel)

K(dk:D, bk:Bit, ik:Nat)
=

∑
d:D

∑
b:Bit r3(〈d, b〉)·K(d/dk, b/bk, 2/ik) � eq(ik, 1) � δ

+ (j·K(1/ik) + j·K(3/ik) + j·K(4/ik)) � eq(ik, 2) � δ
+ s4(〈dk, bk〉)·K(1/ik) � eq(ik, 3) � δ
+ s4(ce)·K(1/ik) � eq(ik, 4) � δ

The data receiver R reads a datum at port 4. If the datum is not a checksum ce
and if the bit attached is the expected bit, it sends the received datum into port
2, sends an acknowledgment ac via port 5, and inverts the bit-to-be-expected
is inverted. If the datum is ce or the bit attached is not the expected one, the
datum is simply ignored. The parameter ir is used to model the state of the
data receiver.

Definition 5.3 (Data receiver)

R(dr:D, br:Bit, ir:Nat)
=

∑
d:D r4(〈d, br〉)·R(d/dr, 2/ir) � eq(ir, 1) � δ

+ (r4(ce) +
∑

d:D r4(〈d, inv(br)〉))·R() � eq(ir, 1) � δ
+ s2(dr)·R(3/ir) � eq(ir, 2) � δ
+ s5(ac)·R(inv(br)/br, 1/ir) � eq(ir, 3) � δ

The acknowledgment transmitter AS repeats sending its acknowledgment bit b′r
via port 6, until it receives an acknowledgment ac from port 5, after which the
acknowledgment bit is inverted.

Definition 5.4 (Acknowledgment transmitter)

AS(b′r:Bit) = r5(ac)·AS(inv(b′r)) + s6(b
′
r)·AS()

The acknowledgment transmission channel L reads an acknowledgment bit from
port 6. It non-deterministically does one of three things: deliver it correctly via
port 7, lose the acknowledgment, or corrupt the acknowledgment by changing
it to ae. The non-deterministic choice between the three options is modeled by
the action j. bl is the attached alternating bit for L. And its state is modeled
by the parameter il.
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Definition 5.5 (Acknowledgment transmission channel)

L(bl:Bit, il:Nat)
=

∑
b:Bit r6(b)·L(b/bl, 2/il) � eq(il, 1) � δ

+ (j·L(1/il) + j·L(3/il) + j·L(4/il)) � eq(il, 2) � δ
+ s7(bl)·L(1/il) � eq(il, 3) � δ
+ s7(ae)·L(1/il) � eq(il, 4) � δ

The acknowledgment receiver AR reads an acknowledgment bit from port 7. If
the bit is the expected one, it sends an acknowledgment ac to the data trans-
mitter S via port 8, after which the bit-to-be-expected is inverted. Acknowledg-
ments errors ae or unexpected bits are ignored.

Definition 5.6 (Acknowledgment receiver)

AR(b′s:Bit, i
′
s:Nat)

= r7(b
′
s)·AR(2/i′s) � eq(i′s, 1) � δ

+ (r7(ae) + r7(inv(b
′
s)))·AR() � eq(i′s, 1) � δ

+ s8(ac)·AR(inv(b′s)/b
′
s, 1/i

′
s) � eq(i′s, 2) � δ

The µCRL specification of the CABP is obtained by putting the six compo-
nents in parallel and encapsulating the internal actions at ports {3, 4, 5, 6, 7, 8}.
Synchronization between the components is modeled by communication actions
at connecting ports.

Definition 5.7 LetH denote {s3, r3, s4, r4, s5, r5, s6, r6, s7, r7, s8, r8}, and I de-
note {c3, c4, c5, c6, c7, c8, j}.

CABP(d:D)
= τI(∂H(S(d, b0, 1) ‖ AR(b0, 1) ‖ K(d, b1, 1) ‖ L(b1, 1) ‖ R(d, b0, 1) ‖ AS(b1)))

Next the CABP is expanded to an LPE Sys. Note that the parameters
b′s (of AR) and b′r (of AS) are missing. The reason for this is that during
the linearization the communications at ports 6 and 7 enforce eq(b′s, bl) and
eq(b′r, bl).

Lemma 5.8 For all d:D we have

CABP(d) = Sys(d, b0, 1, 1, d, b0, 1, d, b1, 1, b1, 1)
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where

Sys(ds:D, bs:Bit , is:Nat , i′s:Nat , dr:D, br:Bit , ir:Nat ,
dk:D, bk:Bit , ik:Nat , bl:Bit , il:Nat)

=
∑

d:D r1(d)·Sys(d/ds, 2/is) � eq(is, 1) � δ (1)
+ τ ·Sys(ds/dk, bs/bk, 2/ik) � eq(is, 2) ∧ eq(ik, 1) � δ (2)
+ (τ ·Sys(1/ik) + τ ·Sys(3/ik) + τ ·Sys(4/ik)) � eq(ik, 2) � δ (3)
+ τ ·Sys(dk/dr, 2/ir, 1/ik) � eq(ir, 1) ∧ eq(br, bk) ∧ eq(ik, 3) � δ (4)
+ τ ·Sys(1/ik) � eq(ir, 1) ∧ eq(br, inv(bk)) ∧ eq(ik, 3) � δ (5)
+ τ ·Sys(1/ik) � eq(ir, 1) ∧ eq(ik, 4) � δ (6)
+ s2(dr)·Sys(3/ir) � eq(ir, 2) � δ (7)
+ τ ·Sys(inv(br)/br, 1/ir) � eq(ir, 3) � δ (8)
+ τ ·Sys(inv(br)/bl, 2/il) � eq(il, 1) � δ (9)
+ (τ ·Sys(1/il) + τ ·Sys(3/il) + τ ·Sys(4/il)) � eq(il, 2) � δ (10)
+ τ ·Sys(1/il, 2/i

′
s) � eq(i′s, 1) ∧ eq(bl, bs) ∧ eq(il, 3) � δ (11)

+ τ ·Sys(1/il) � eq(i′s, 1) ∧ eq(bl, inv(bs)) ∧ eq(il, 3) � δ (12)
+ τ ·Sys(1/il) � eq(i′s, 1) ∧ eq(il, 4) � δ (13)
+ τ ·Sys(inv(bs)/bs, 1/is, 1/i

′
s) � eq(is, 2) ∧ eq(i

′
s, 2) � δ (14)

Proof. See [25]. �

The specification of the external behavior of the CABP is a one-datum buffer,
which repeatedly reads a datum at port 1, and sends out this same datum at
port 2.

Definition 5.9 The LPE of the external behavior of the CABP is

B(d:D, b:Bool) =
∑

d′:D r1(d
′)·B(d′,F) � b� δ + s2(d)·B(d,T) � ¬b� δ.

5.3 Verification using cones and foci

We apply our version of the cones and foci method to verify the CABP. Let Ξ
abbreviate D×Bit ×Nat ×Nat ×D×Bit ×Nat ×D×Bit ×Nat ×Bit ×Nat .
Furthermore, let ξ:Ξ denote (ds, bs, is, i

′
s, dr, br, ir, dk, bk, ik, bl, il). We list six

invariants for the CABP, which are taken from [25].

Definition 5.10

I1(ξ) ≡ eq(is, 1) ∨ eq(is, 2)
I2(ξ) ≡ eq(i′s, 1) ∨ eq(i

′
s, 2)

I3(ξ) ≡ eq(ik, 1) ∨ eq(ik, 2) ∨ eq(ik, 3) ∨ eq(ik, 4)
I4(ξ) ≡ eq(ir, 1) ∨ eq(ir, 2) ∨ eq(ir, 3)
I5(ξ) ≡ eq(il, 1) ∨ eq(il, 2) ∨ eq(il, 3) ∨ eq(il, 4)
I6(ξ) ≡ (eq(is, 1) ⇒ eq(bs, inv(bk)) ∧ eq(bs, br) ∧ eq(ds, dk)

∧ eq(ds, dr) ∧ eq(i
′
s, 1) ∧ eq(ir, 1))

∧ (eq(bs, bk) ⇒ eq(ds, dk))
∧ (eq(ir, 2) ∨ eq(ir, 3) ⇒ eq(ds, dr) ∧ eq(bs, br) ∧ eq(bs, bk))
∧ (eq(bs, inv(br)) ⇒ eq(ds, dr) ∧ eq(bs, bk))
∧ (eq(bs, bl) ⇒ eq(bs, inv(br)))
∧ (eq(i′s, 2) ⇒ eq(bs, bl)).
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I1 ∼ I5 describe the range of the data parameters is, i
′
s, ik, ir, and il, re-

spectively. I6 expresses that each component in Figure 1 either has received
information about the datum being transmitted which it must forward, or did
not yet receive this information.

Lemma 5.11 I1, I2, I3, I4, I5 and I6 are invariants of Sys.

Proof. We need to show that the invariants are preserved by each of the
summands (1) − (14) in the specification of Sys. Invariants I1 − I5 are trivial
to prove. To prove I6, we divide I6 into its six parts:

I61(ξ) ≡ (eq(is, 1) ⇒ eq(bs, inv(bk)) ∧ eq(bs, br) ∧ eq(ds, dk)
∧ eq(ds, dr) ∧ eq(i

′
s, 1) ∧ eq(ir, 1))

I62(ξ) ≡ eq(bs, bk) ⇒ eq(ds, dk)
I63(ξ) ≡ eq(ir, 2) ∨ eq(ir, 3) ⇒ eq(ds, dr) ∧ eq(bs, br) ∧ eq(bs, bk)
I64(ξ) ≡ eq(bs, inv(br)) ⇒ eq(ds, dr) ∧ eq(bs, bk)
I65(ξ) ≡ eq(bs, bl) ⇒ eq(bs, inv(br))
I66(ξ) ≡ eq(i′s, 2) ⇒ eq(bs, bl).

We consider only seven summands in the specification of Sys; the other
summands trivially preserve I6. For the sake of presentation, we represent
eq(b1, inv(b2)) as ¬eq(b1, b2), where b1 and b2 range over the sort Bit.

1. Summand (1): I6 ∧ eq(is, 1) ⇒ I6(d/ds, 2/is).

I61(d/ds, 2/is) is straightforward. By eq(is, 1) and I61, we have ¬eq(bs, bk),
eq(ir, 1), and eq(bs, br). By ¬eq(bs, bk), I62(d/ds, 2/is). By eq(ir, 1),
I63(d/ds, 2/is). eq(bs, br) implies I64(d/ds, 2/is). I65, I66(d/ds, 2/is) are
trivial.

2. Summand (2): I6 ∧ eq(is, 2) ∧ eq(ik, 1) ⇒ I6(ds/dk, bs/bk, 2/ik).

eq(is, 2) implies I61(ds/dk, bs/bk, 2/ik). I62(ds/dk, bs/bk, 2/ik) is straight-
forward. I63(ds/dk, bs/bk, 2/ik) and I64(ds/dk, bs/bk, 2/ik) follows imme-
diately from I63 and I64, respectively. I65, I66(ds/dk, bs/bk, 2/ik) are
trivial.

3. Summand (4): I6 ∧eq(ir, 1)∧eq(br, bk)∧eq(ik, 3) ⇒ I6(dk/dr, 2/ir, 1/ik).

Assuming eq(is, 1), by I61, it follows that ¬eq(bs, bk) and eq(bs, br). Hence,
¬eq(br, bk). This contradicts the condition eq(br, bk). So I61(dk/dr, 2/ir, 1/ik).
I64 implies eq(bs, br)∨eq(bs, bk), which together with the condition eq(br, bk)
yields eq(bs, br)∧eq(bs, bk). So I62 implies eq(ds, dk). Hence, I63(dk/dr, 2/ir, 1/ik).
By eq(bs, br), I64(dk/dr, 2/ir, 1/ik). I62, I65, I66(dk/dr, 2/ir, 1/ik) are
trivial.

4. Summand (8): I6 ∧ eq(ir, 3) ⇒ I6(inv(br)/br, 1/ir).

Assuming eq(is, 1), by I61, we have eq(ir, 1), which contradicts the con-
dition eq(ir, 3). So I61(inv(br)/br, 1/ir). I63(inv(br)/br, 1/ir) is straight-
forward. By eq(ir, 3) and I63, we have eq(ds, dr) and eq(bs, bk). Hence,
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I64(inv(br)/br, 1/ir). By eq(ir, 3) and I63, we have eq(bs, br), so I65 im-
plies ¬eq(bs, bl). Hence, I65(inv(br)/br, 1/ir). I62, I66(inv(br)/br, 1/ir)
are trivial.

5. Summand (9): I6 ∧ eq(il, 1) ⇒ I6(inv(br)/bl, 2/il),

I65(inv(br)/bl, 2/il) is straightforward. If eq(i′s, 2), by I66 we have eq(bs, bl),
so by I65 we have ¬eq(bl, br). Hence, I66(inv(br)/bl, 2/il). I61 ∼ I64(inv(br)/bl, 2/il)
are trivial.

6. Summand (11): I6 ∧ eq(i
′
s, 1) ∧ eq(bl, bs) ∧ eq(il, 3) ⇒ I6(1/il, 2/i

′
s).

By eq(bl, bs) and I65, we have ¬eq(bs, br). So by I61, ¬eq(is, 1). Hence,
I61(1/il, 2/i

′
s). eq(bl, bs) implies I66(1/il, 2/i

′
s). I62 ∼ I65(1/il, 2/i

′
s) are

trivial.

7. Summand (14): I6 ∧ eq(is, 2) ∧ eq(i
′
s, 2) ⇒ I6(inv(bs)/bs, 1/is, 1/i

′
s).

To prove I61(inv(bs)/bs, 1/is, 1/i
′
s), we need to show eq(bs, bk)∧¬eq(br, bs)∧

eq(ds, dk)∧eq(ds, dr)∧eq(ir, 1). As eq(i′s, 2), by I66 we have eq(bs, bl), so by
I65, we have ¬eq(bs, br). By I64, it follows that eq(ds, dr) ∧ eq(bs, bk). As
eq(bs, bk), by I62, eq(ds, dk). By I63 and I4, ¬eq(bs, br) implies eq(ir, 1).
Hence, I61(inv(bs)/bs, 1/is, 1/i

′
s). I62 ∼ I66(inv(bs)/bs, 1/is, 1/i

′
s) are

trivial.

�

We define the focus condition (see Definition 3.1) for Sys as the disjunction
of the conditions of summands in the LPE in Definition 5.8 that deal with
an external action; these summands are (1) and (7). (Note that this differs
from the prescribed focus condition in [25], which would be the negation of the
disjunction of conditions of the summands that deal with a τ .)

Definition 5.12 The focus condition for Sys is

FC (ξ) = eq(is, 1) ∨ eq(ir, 2).

We proceed to prove that each state satisfying the invariants I1 − I6 can
reach a focus point (see Definition 3.1) by a sequence of τ -transitions.

Lemma 5.13 (Reachability of focus points) For each ξ:Ξ with
∧6

n=1 In(ξ),

there is a ξ̂:Ξ such that FC (ξ̂) and ξ
τ
→ · · ·

τ
→ ξ̂ in Sys.

Proof. The case FC (ξ) is trivial. Let ¬FC (ξ); in view of I1 and I4, this implies
eq(is, 2)∧ (eq(ir, 1)∨ eq(ir, 3)). In case eq(is, 2)∧ eq(ir, 3), by summand (8) we
can reach a state with eq(is, 2)∧eq(ir, 1). From a state with eq(is, 2)∧eq(ir, 1),
by I3 and summands (2), (3) and (6), we can reach a state where eq(is, 2) ∧
eq(ir, 1) ∧ eq(ik, 3). We distinguish two cases.

1. eq(br, bk).

By summand (4) we can reach a focus point.
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2. eq(br, inv(bk)).

If i′s = 2, then by summand (14) we can reach a focus point. So by I2

we can assume that i′s = 1. By summands (5), (2) and (3), we can reach
a state where eq(is, 2) ∧ eq(i

′
s, 1) ∧ eq(ir, 1) ∧ eq(ik, 3) ∧ eq(br, inv(bk)) ∧

eq(bk, bs). By I5 and summands (10), (9) and (13) we can reach a state
where eq(is, 2)∧eq(i

′
s, 1)∧eq(ir, 1)∧eq(ik, 3)∧eq(br, inv(bk))∧eq(bk, bs)∧

eq(il, 3). If eq(bl, bs), then by summands (11) and (14) we can reach a focus
point. Otherwise, eq(bl, inv(bs)). Since eq(bk, bs) and eq(br, inv(bk)), we
have eq(bl, br). By summand (12), we can reach a state where eq(is, 2) ∧
eq(i′s, 1) ∧ eq(ir, 1) ∧ eq(ik, 3) ∧ eq(br, inv(bk)) ∧ eq(bk, bs) ∧ eq(il, 1)∧
eq(bl, inv(bs)) ∧ eq(bl, br). Then by summand (9) we can reach a state
where eq(bl, bs), since bl is replaced by inv(br). Then by summands (10),
(11) and (14), we can reach a focus point.

Our completely formal proof in PVS has many more steps. The main steps of
the proof using the rules in Definition 3.7 can be found in Section 5.4.

�

We define the state mapping φ : Ξ → D × Bool (see Definition 3.2) by

φ(ξ) = 〈ds, eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br)〉.

Intuitively, φ maps those states to T in which R is awaiting a datum that
still has to be received by S. This is the case if either S is awaiting a datum
(eq(is, 1)), or R has sent out a datum that was not yet acknowledged to S
(eq(ir, 3) ∨ ¬eq(bs, br)). Note that φ is independent of i′s, dr, dk, bk, ik, bl, il; we
write φ(ds, bs, is, br, ir).

Theorem 5.14 For all d:D and b0, b1:Bit ,

Sys(d, b0, 1, 1, d, b0, 1, d, b1, 1, b1, 1) ↔b B(d,T).

Proof. It is easy to check that ∧6
n=1In(d, b0, 1, 1, d, b0, 1, d, b1, 1, b1, 1).

We obtain the following matching criteria (see Definition 3.3). For class
I, we only need to check the summands (4), (8) and (14), as the other nine
summands that involve an initial action leave the values of the parameters in
φ(ds, bs, is, br, ir) unchanged.

1. eq(ir, 1)∧eq(br, bk)∧eq(ik, 3) ⇒ φ(ds, bs, is, br, ir) = φ(ds, bs, is, br, 2/ir)

2. eq(ir, 3) ⇒ φ(ds, bs, is, br, ir) = φ(ds, bs, is, inv(br)/br, 1/ir)

3. eq(is, 2) ∧ eq(i
′
s, 2) ⇒ φ(ds, bs, is, br, ir) = φ(ds, inv(bs)/bs, 1/is, br, ir)

The matching criteria for the other four classes are produced by summands (1)
and (7). For class II we get:

1. eq(is, 1) ⇒ eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br)
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2. eq(ir, 2) ⇒ ¬(eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br))

For class III we get:

1. (eq(is, 1) ∨ eq(ir, 2)) ∧ (eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br)) ⇒ eq(is, 1)

2. (eq(is, 1) ∨ eq(ir, 2)) ∧ ¬(eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br)) ⇒ eq(ir, 2)

For class IV we get:

1. ∀d:D (eq(is, 1) ⇒ d = d)

2. eq(ir, 2) ⇒ dr = ds

Finally, for class V we get:

1. ∀d:D (eq(is, 1) ⇒ φ(d/ds, bs, 2/is, br, ir) = 〈d,F〉)

2. eq(ir, 2) ⇒ φ(ds, bs, is, br, 3/ir) = 〈ds,T〉

We proceed to prove the matching criteria.

I.1 Let eq(ir, 1). Then

φ(ds, bs, is, br, ir) = 〈ds, eq(is, 1) ∨ eq(1, 3) ∨ ¬eq(bs, br)〉
= 〈ds, eq(is, 1) ∨ eq(2, 3) ∨ ¬eq(bs, br)〉
= φ(ds, bs, is, br, 2/ir).

I.2 Let eq(ir, 3). Then by I6, eq(bs, br). Hence,

φ(ds, bs, is, br, ir) = 〈ds, eq(is, 1) ∨ eq(3, 3) ∨ ¬eq(bs, br)〉
= 〈ds,T〉
= 〈ds, eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, inv(br))〉
= φ(ds, bs, is, inv(br)/br, 1/ir).

I.3 Let eq(i′s, 2). I6, eq(bs, bl) together with I6 yield eq(bs, inv(br)). Hence,

φ(ds, bs, is, br, ir) = 〈ds, eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br)〉
= 〈ds,T〉
= 〈ds, eq(1, 1) ∨ eq(ir, 3) ∨ ¬eq(inv(bs), br)〉
= φ(ds, inv(bs)/bs, 1/is, br, ir).

II.1 Trivial.

II.2 Let eq(ir, 2). Then clearly ¬eq(ir, 3), and by I6, eq(bs, br). Furthermore,
according to I6, eq(is, 1) ⇒ eq(ir, 1), so eq(ir, 2) also implies ¬eq(is, 1).

III.1 If ¬eq(ir, 2), then eq(is, 1)∨ eq(ir, 2) implies eq(is, 1). If eq(ir, 2), then by
I6, eq(bs, br), so that eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br) implies eq(is, 1).

III.2 If ¬eq(is, 1), then eq(is, 1) ∨ eq(ir, 2) implies eq(ir, 2). If eq(is, 1), then
¬(eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br)) is false, so that it implies eq(ir, 2).
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IV.1 Trivial.

IV.2 Let eq(ir, 2). Then by I6, eq(dr, ds).

V.1 Let eq(is, 1). Then by I6, eq(ir, 1) and eq(bs, br). So for any d:D,

φ(d/ds, bs, 2/is, br, ir) = 〈d, eq(2, 1) ∨ eq(1, 3) ∨ ¬eq(bs, br)〉
= 〈d,F〉.

V.2
φ(ds, bs, is, br, 3/ir) = 〈ds, eq(is, 1) ∨ eq(3, 3) ∨ ¬eq(bs, br)〉

= 〈ds,T〉.

Note that φ(d, b0, 1, b0, 1) = 〈d,T〉. So by Theorem 3.4 and Lemma 5.13,

Sys(d, b0, 1, 1, d, b0, 1, d, b1, 1, b1, 1) ↔b B(d,T).

�

5.4 Illustration of the proof framework

Let us illustrate the mechanical proof framework set up in Section 4 on the
verification of the CABP as it was described in Section 5.3. The purpose of this
section is to show how the mechanical framework can be instantiated with a
concrete protocol. A second goal is to illustrate in more detail how we can use
the proof rules (see Lemma 3.7) for reachability, to formally prove in PVS that
focus points are always reachable.

To apply the generic theory, we use the PVS mechanism of theory instantia-
tion. For instance, the theory LPE was parameterized by sets of actions, states,
etc. This theory will be imported, using the set of actions, states etc. from the
linearized version of CABP, which we have to define first. To this end we start
a new theory, parameterized by an arbitrary type of data elements (D, with
special element d0 : D).

Defining the LPEs. The starting point will be the linearized version of
the CABP, represented by Sys in Lemma 5.8. The type cabp state is de-
fined as a record of all state parameters. Note that we use the predefined
PVS-types nat and bool (bool is also used to represent sort Bit). The type
cabp act is defined as an abstract data type. The syntax below introduces
constructors (r1,s2:[D->cabp act] and tau:cabp act), recognizer predicates
(r1?,s2?,tau?:[cabp act->bool]), and destructors (d:[(r1?)->D] and d:[(r2?)->D]).
Subsequently we import the theory LPE with the corresponding parameters.
The LPE for the implementation of the CABP contains 18 summands (note
that summands (3) and (10) in Lemma 5.8 each represent three summands).
Note that the only local parameter in this LPE that is bound by

∑
has type D.
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CABP[D:TYPE+,d0:D]: THEORY BEGIN

cabp state:TYPE= [#ds:D,bs:bool,is:nat,i1s:nat,dr:D,br:bool,

ir:nat,dk:D,bk:bool,ik:nat,bl:bool,il:nat#]

cabp act:DATATYPE BEGIN

r1(d:D):r1?

s2(d:D):s2?

tau:tau?

END cabp act

IMPORTING LPE[cabp act,cabp state,D,18,tau]

The next step is to define the implementation of the CABP as an LPE
in PVS. It consists of an initial vector, and a list of summands, indexed by
LAMBDA i. The LAMBDA (S,d) indicates the dependency of each summand on
the state and the local variables. Note that given state S, S‘x denotes the value
of parameter x in S. The notation S WITH [x := v] denotes the same state as
S except the value of field x which is set to v. We only display the summands
corresponding to summand (1) and (14) of Sys.

i:VAR below(18) S:VAR cabp state d:VAR D

cabp: LPE= (#

init:= (#ds:=d0,bs:=FALSE,is:=1,i1s:=1,dr:=d0,

br:=FALSE,ir:=1,dk:=d0,bk:=TRUE,ik:=1,bl:=TRUE,il:=1#),

sums:=LAMBDA i: LAMBDA (S,d): COND

i=0->(#act:=r1(d),guard:=S‘is=1,next:=S WITH [ds:=d,is:=2]#),

...

i=17->(#act:=tau,guard:=S‘is=2 AND S‘i1s=2,

next:=S WITH [bs:=NOT S‘bs,is:=1,i1s:=1]#)

ENDCOND#)

In a similar way, the desired external behavior of the CABP is presented as
a one-datum buffer. The representation of the LPE B from Definition 5.9 in
PVS is:

buf state:TYPE=[#d:D,b:bool#]

B:VAR buf state d1:VAR D j:VAR below(2)

IMPORTING LPE[cabp act,buf state,D,2,tau]

buffer: LPE =

(#init:=(#d:=d0,b:=TRUE#),

sums:=LAMBDA j: LAMBDA (B,d1): COND

j=0->(#act:=r1(d1),guard:=B‘b,next:=(#d:=d1,b:=FALSE#)#),

j=1->(#act:=s2(B‘d),guard:=NOT B‘b,next:=B WITH [b:=TRUE]#)

ENDCOND#)

Invariants, state mapping, focus points. The next step is to define the
ingredients for the cones and foci method. We need to define invariants, a state
mapping and focus points. In PVS these are all functions that take state vectors
as input. We only show a snapshot:
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IMPORTING invariant[cabp act,cabp state,D,18]

I1(S):bool = S‘is=1 OR S‘is=2

...

I64(S):bool = (S‘bs = NOT S‘br) IMPLIES S‘ds=S‘dr AND S‘bs=S‘bk

I6(S):bool=I61(S) AND ... AND I66(S)

IMPORTING CONESFOCI METHOD[cabp state,buf state,D,cabp act,tau,18,2]

FC(S):bool= S‘is=1 OR S‘ir=2

h(S):buf state=(#d:=S‘ds,b:=S‘is=1 OR S‘ir=3 OR NOT S‘bs=S‘br#)

cabp inv: LEMMA invariant(cabp)(I1 AND I2 AND I3 AND I4 AND I5 AND I6)

matching: LEMMA Reachable(cabp)(S) IMPLIES MC(cabp,buffer,k,h,FC)(S)

The proof of the reachability criterion will be discussed in the next para-
graph. The correctness of the invariants and the matching criteria were proved
already (see Section 5). These proofs could be formalized in PVS in a straight-
forward fashion. The proof script follows a fixed pattern: first we unfold the
definitions of LPE and invariants or matching criteria. Then we use rewriting
to generate a finite conjunction from the quantification FORALL i:below(n).
Subsequently (using the PVS tactic THEN*), we apply the powerful PVS tactic
(GRIND) to the subgoals. Sometimes a few subgoals remain, which are then
proved manually.

Reachability of focus points. We formally prove Lemma 5.13, which states
that each reachable state of the CABP can reach a focus point by a sequence
of τ -transitions using the rules in Lemma 3.7. This corresponds to the theorem
CABP RC in the PVS part below. Using the general theorems CONESFOCI and
REACH CRIT, we can conclude from the specific theorems cabp inv, matching
and CABP RC that CABP is indeed CORRECT w.r.t. the one-datum buffer specifi-
cation.

IMPORTING PRECONDITION[cabp act,cabp state,D,18]

...

CABP RC:LEMMA Reach(step(cabp,tau))(I1 AND I2 AND I3 AND I4 AND I5,FC)

CABP CORRECT: THEOREM brbisimilar(lpe2lts(cabp),lpe2lts(buffer))

END CABP

We now explain the structure of the proof of CABP RC. This proof is based on
the proof rules for reachability, introduced in Sections 3.2 and 4.4. It requires
some manual work, viz. the identification of the intermediate predicates, and
characterizing the reachable set of states after a number of steps. Each step
corresponds to a separate lemma in PVS. The atomic steps are proved by the
precondition-rule (semi-automatically). An example of such a lemma in PVS is:

Q2(S):bool = S‘ir=1 AND S‘is=2 AND S‘ik=2 AND S‘i1s=1 AND S‘bk = S‘bs

Q3(S):bool = S‘ir=1 AND S‘is=2 AND S‘ik=3 AND S‘i1s=1 AND S‘bk = S‘bs

Q2 to Q3: LEMMA Reach(Tau)(Q2,Q3)

These basic steps are combined by using mainly the transitivity rule and the
disjunction-rule. We now provide the complete list of the intermediate pred-
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icates, together with the used proof rules. We do not display the use of im-
plication and invariant rules, but of course the PVS proofs contain all details.
The fragment before corresponds to the third step of item (5) below, where
summand (3) is used to increase ik.

1. {ir = 1 ∧ is = 2 ∧ ik = 4} � {ir = 1 ∧ is = 2 ∧ ik = 1} �

{ir = 1 ∧ is = 2 ∧ ik = 2} � {ir = 1 ∧ is = 2 ∧ ik = 3}
Using the precondition rule, on summands (6), (2) and (3), respectively.

2. {I3 ∧ ir = 1 ∧ is = 2} � {ir = 1 ∧ is = 2 ∧ ik = 3}
Using the disjunction rule with ik = 1 ∨ ik = 2 ∨ ik = 3 ∨ ik = 4, and the
transitivity rule on the results of step 1.

3. {ir = 1 ∧ is = 2 ∧ ik = 3 ∧ br = bk} � FC
Using the precondition rule on summand (4).

4. {ir = 1 ∧ is = 2 ∧ ik = 3 ∧ i′s = 2} � FC
Using the precondition rule on summand (14).

5. {ir = 1 ∧ is = 2 ∧ ik = 3 ∧ i′s = 1 ∧ br 6= bk} �

{ir = 1 ∧ is = 2 ∧ ik = 1 ∧ i′s = 1} �

{ir = 1 ∧ is = 2 ∧ ik = 2 ∧ i′s = 1 ∧ bk = bs} �

{ir = 1 ∧ is = 2 ∧ ik = 3 ∧ i′s = 1 ∧ bk = bs} =: Q
Using the precondition rule on summands (5), (2) and (3).

6. {Q ∧ il = 2} � {Q ∧ il = 1};
{Q ∧ il = 4} � {Q ∧ il = 1};
{Q ∧ il = 3 ∧ bl 6= bs} � {Q ∧ il = 1} � {Q ∧ il = 2 ∧ bl 6= br} �

{Q ∧ il = 3 ∧ bl 6= br}
Using the precondition rule on summands (10), (13), (12), (9) and (10),
respectively.

7. {Q ∧ (il ∈ {1, 2, 4} ∨ (il = 3 ∧ bl 6= bs))} � {Q ∧ il = 3 ∧ bl 6= br}.
Using the disjunction rule and the transitivity rule on the results of step
6.

8. {Q ∧ il = 3 ∧ bl = bs} � {ir = 1 ∧ is = 2 ∧ ik = 3 ∧ i′s = 2} � FC .
Using the precondition rule on summand (11), and then the transitivity
rule with step 4.

9. {Q ∧ I5} � FC .
By I5, il ∈ {1, 2, 3, 4}. So we can distinguish the cases il ∈ {1, 2, 4},
il = 3 ∧ bl 6= bs and il = 3 ∧ bl = bs. In all but the last case, we arrive
at a situation where bk = bs ∧ bl 6= br (by step 7). Note that this implies
bk = br ∨ bl = bs. So we can use case distinction again, and reach the
focus condition via step 3 or step 8.

10. {ir = 1 ∧ is = 2 ∧ ik = 3 ∧ I2 ∧ I5} � FC .
From I2 and the disjunction rule we can distinguish the cases br = bk,
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i′s = 2 and i′s = 1 ∧ br 6= bk. We solve them by the results of step 3, step
4, and transitivity of 5 and 9, respectively.

11. {ir = 3 ∧ is = 2} � {ir = 1 ∧ is = 2}.
Using the precondition rule on summand (8).

12. I1 ∧ I2 ∧ I3 ∧ I4 ∧ I5 � FC .
Using the invariants I1 and I4, we can distinguish the following cases:

• is = 1 or is = 2 ∧ ir = 2 (both reach FC in zero steps);

• is = 2 ∧ ir = 3 (leads to the next case by step 11);

• is = 2 ∧ ir = 1. This leads to is = 2 ∧ ir = 1 ∧ ik = 3 by step 2 and
then to FC by step 10.

This finishes the complete mechanical verification of the CABP in PVS using
the cones and foci method. The dump files of the verification of the CABP in
PVS can be found at http://www.cwi.nl/~vdpol/conesfoci/cabp/.

6 Concluding Remarks

In this paper, we have developed a mechanical framework for protocol verifica-
tion, based on the cones and foci method. We summarize our main contribution
as follows:

• We generalized the original cones and foci method [25]. Compared to the
original one, our method is more generally applicable, in the sense that
it can deal with τ -loops without requiring a cumbersome treatment to
eliminate them.

• We presented a set of rules to support the reachability analysis of focus
points. They have been proved to be quite powerful in two case studies.

• We formalized the complete cones and foci method in PVS.

The feasibility of this mechanical framework has been illustrated by the
verification of the CABP. We are confident that the framework forms a solid
basis for mechanical protocol verification. For instance, the same framework
has been applied to the verification of a sliding window protocol in µCRL [14],
which we consider a true milestone in verification efforts using process algebra.

The foci and cones method provides a systematic approach to protocol ver-
ification. It allows for fully rigorous correctness proofs in a general setting with
possibly infinite state spaces (i.e. with arbitrary data, arbitrary window size,
etc.). The method requires intelligent manual steps, such as the invention of
invariants, a state mapping, and the focus criterion. However, the method is
such that after these creative parts a number of verification conditions can be
generated and proved (semi-)automatically. So the strength of the mechanical
framework is that one can focus on the creative steps, and check the tedious
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parts by a theorem prover. Yet, a complete machine-checked proof is obtained,
because the meta-theory has also been proof-checked in a generic manner. We
experienced that many proofs and proof scripts can be reused after small changes
in the protocol, or after a change in the invariants. Actually, in some cases the
PVS theorem prover assisted in finding the correct invariants.
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