
Is Timed Branching Bisimilarity

an Equivalence Indeed?

Wan Fokkink1,3, Jun Pang2, and Anton Wijs3

1 Vrije Universiteit Amsterdam, Department of Theoretical Computer Science,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands, wanf@cs.vu.nl

2 INRIA Futurs and LIX, École Polytechnique,
Rue de Saclay, 91128 Palaiseau Cedex, France, pangjun@lix.polytechnique.fr

3 CWI, Department of Software Engineering,
PO Box 94079, 1090 GB Amsterdam, The Netherlands, wijs@cwi.nl

Abstract. We show that timed branching bisimilarity as defined by
van der Zwaag [14] and Baeten & Middelburg [2] is not an equivalence
relation, in case of a dense time domain. We propose an adaptation
based on van der Zwaag’s definition, and prove that the resulting timed
branching bisimilarity is an equivalence indeed. Furthermore, we prove
that in case of a discrete time domain, van der Zwaag’s definition and
our adaptation coincide.

1 Introduction

Branching bisimilarity [6, 7] is a widely used concurrency semantics for process
algebras that include the silent step τ . Two processes are branching bisimilar if
they can be related by some branching bisimulation relation. See [5] for a clear
account on the strong points of branching bisimilarity.

Over the years, process algebras such as CCS, CSP and ACP have been
extended with a notion of time. As a result, the concurrency semantics underlying
these process algebras have been adapted to cope with the presence of time.
Klusener [11–13] was the first to extend the notion of a branching bisimulation
relation to a setting with time. The main complication is that while a process
can let time pass without performing an action, such idling may mean that
certain behavioural options in the future are being discarded. Klusener pioneered
how this aspect of timed processes can be taken into account in a branching
bisimulation context. Based on his work, van der Zwaag [14, 15] and Baeten &
Middelburg [2] proposed new notions of a timed branching bisimulation relation.

A key property for a semantics is that it is an equivalence. In general, for
concurrency semantics in the presence of τ , reflexivity and symmetry are easy to
see, but transitivity is much more difficult. In particular, the transitivity proof
for branching bisimilarity in [6] turned out to be flawed, because the transitive
closure of two branching bisimulation relations need not be a branching bisimu-
lation relation. Basten [3] pointed out this flaw, and proposed a new transitivity

proof for branching bisimilarity, based on the notion of a semi-branching bisim-
ulation relation. Such relations are preserved under transitive closure, and the
notions of branching bisimilarity and semi-branching bisimilarity coincide.
In a setting with time, proving equivalence of a concurrency semantics be-

comes even more complicated, compared to the untimed case. Still, equivalence
properties for timed semantics are often claimed, but hardly ever proved. In [13–
15, 2], equivalence properties are claimed without an explicit proof, although in
all cases it is stated that such proofs do exist.
In the current paper, we study in how far for the notion of timed branching

bisimilarity of van der Zwaag constitutes an equivalence relation. We give a
counter-example to show that in case of a dense time domain, his notion is
not transitive. We proceed to present a stronger version of van der Zwaag’s
definition (stronger in the sense that it relates fewer processes), and prove that
this adapted notion does constitute an equivalence relation, even when the time
domain is dense. Our proof follows the approach of Basten. Next, we show that
in case of a discrete time domain, van der Zwaag’s notion of timed branching
bisimilarity and our new notion coincide. So in particular, in case of a discrete
time domain, van der Zwaag’s notion does constitute an equivalence relation.
In the appendix we show that our counter-example for transitivity also ap-

plies to the notion of timed branching bisimilarity by Baeten & Middelburg in
case of a dense time domain; see [2, Section 6.4.1]. So that notion does not
constitute an equivalence relation as well.
This paper is organized as follows. Section 2 contains the preliminaries. Sec-

tion 3 features a counter-example to show that the notion of timed branching
bisimilarity by van der Zwaag is not an equivalence relation in case of a dense
time domain. A new definition of timed branching bisimulation is proposed in
Section 4, and we prove that our notion of timed branching bisimilarity is an
equivalence indeed. In Section 5 we prove that in case of a discrete time domain,
our definition and van der Zwaag’s definition of timed branching bisimilarity
coincide. Section 6 gives suggestions for future work. In the appendix, we show
that our counter-example for transitivity also applies to the notion of timed
branching bisimilarity by Baeten & Middelburg [2].

2 Timed labelled transition systems

Let Act be a nonempty set of visible actions, and τ a special action to represent
internal events, with τ 6∈ Act . We use Act τ to denote Act ∪ {τ}.
The time domain Time is a totally ordered set with a least element 0. We say

that Time is discrete if for each pair u, v ∈ Time there are only finitely many
w ∈ Time such that u < w < v.

Definition 1 ([14]). A timed labelled transition system (TLTS) [8] is a tuple
(S,T , U), where:

1. S is a set of states, including a special state
√
to represent successful termi-

nation;

2

2. T ⊆ S ×Actτ × Time × S is a set of transitions;
3. U ⊆ S × Time is a delay relation, which satisfies:

– if T (s, `, u, r), then U(s, u);
– if u < v and U(s, v), then U(s, u).

Transitions (s, `, u, s′) express that state s evolves into state s′ by the execution
of action ` at (absolute) time u. It is assumed that the execution of transitions

does not consume any time. A transition (s, `, u, s′) is denoted by s
`−→u s′. If

U(s, u), then state s can let time pass until time u; these predicates are used to
express time deadlocks.

3 Van der Zwaag’s timed branching bisimulation

Van Glabbeek and Weijland [7] introduced the notion of a branching bisimulation

relation for untimed LTSs. Intuitively, a τ -transition s
τ−→ s′ is invisible if it

does not lose possible behaviour (i.e., if s and s′ can be related by a branching
bisimulation relation). See [5] for a lucid exposition on the motivations behind
the definition of a branching bisimulation relation.
The reflexive transitive closure of

τ−→ is denoted by =⇒ .

Definition 2 ([7]). Assume an untimed LTS. A symmetric binary relation B ⊆
S × S is a branching bisimulation if sBt implies:

1. if s
`−→ s′, then

i either ` = τ and s′Bt,

ii or t=⇒ t̂
`−→ t′ with sBt̂ and s′Bt′;

2. if s ↓, then t=⇒ t′ ↓ with sBt′.

Two states s and t are branching bisimilar, denoted by s ↔b t, if there is a
branching bisimulation B with sBt.

Van der Zwaag [14] defined a timed version of branching bisimulation, which
takes into account time stamps of transitions and ultimate delays U(s, u).

For u ∈ Time, the reflexive transitive closure of
τ−→u is denoted by =⇒u .

Definition 3 ([14]). Assume a TLTS (S,T , U). A collection B of symmetric
binary relations Bu ⊆ S × S for u ∈ Time is a timed branching bisimulation if
sBut implies:

1. if s
`−→u s′, then

i either ` = τ and s′But,

ii or t=⇒u t̂
`−→u t′ with sBut̂ and s′But

′;
2. if s ↓, then t=⇒u t′ ↓ with sBut

′;
3. if u < v and U(s, v), then for some n > 0 there are t0, . . . , tn ∈ S with t = t0

and U(tn, v), and u0 < · · · < un ∈ Time with u = u0 and v = un, such that
for i < n, ti=⇒ui

ti+1, sBui
ti+1 and sBui+1

ti+1.

3

Two states s and t are timed branching bisimilar at u if there is a timed branch-
ing bisimulation B with sBut. States s and t are timed branching bisimilar,
denoted by s↔Z

tb t,4 if they are timed branching bisimilar at all u ∈ Time.

Transitions can be executed at the same time consecutively. By the first
clause in Definition 3, the behavior of a state at some point in time is treated
like untimed behavior. The second clause deals with successful termination.5 By
the last clause, time passing in a state s is matched by a related state t with a “τ -
path” where all intermediate states are related to s at times when a τ -transition
is performed.
In the following examples,

�
≥0 ⊆ Time.

Example 1. Consider the following two TLTSs: s0
a−→2 s1

b−→1 s2 and t0
a−→2 t1.

We have s0 ↔Z
tb t0, since s0Bwt0 for w ≥ 0, s1Bwt1 for w > 1, and s2Bwt1 for

w ≥ 0 is a timed branching bisimulation.

Example 2. Consider the following two TLTSs: s0
a−→1 s1

τ−→2 s2
b−→3 s3 and

t0
a−→1 t1

b−→3 t2. We have s0 ↔Z
tb t0, since s0Bwt0 for w ≥ 0, s1Bwt1 for w ≤ 2,

s2Bwt1 for w ≥ 0, and s3Bwt2 for w ≥ 0 is a timed branching bisimulation.

Example 3. Consider the following two TLTSs: s0
a−→u s1

τ−→v s2 ↓ and t0
a−→u

t1 ↓. If u = v, we have s0 ↔Z
tb t0, since s0Bwt0 for w ≥ 0, s1But1, and s2Bwt1 for

w ≥ 0 is a timed branching bisimulation. If u 6= v, we have s0 6↔Z
tb t0, because s1

and t1 are not timed branching bisimilar at time u; namely, t1 has a successful
termination, and s1 cannot simulate this at time u, as it cannot do a τ -transition
at time u.

Example 4. Consider the following two TLTSs: s0
τ−→u s1

a−→v s2 ↓ and t0
a−→v

t1 ↓. If u = v, we have s0 ↔Z
tb t0, since s0Bwt0 for w ≥ 0, s1Bwt0 for w ≥ 0, and

s2Bwt1 for w ≥ 0 is a timed branching bisimulation. If u 6= v, we have s0 6↔Z
tb t0,

because s0 and t0 are not timed branching bisimilar at time
u+v

2 .
6

Van der Zwaag [14, 15] wrote about his definition: “It is straightforward to verify
that branching bisimilarity is an equivalence relation.” However, we found that
in general this is not the case. A counter-example is presented below. Note that
it uses a non-discrete time domain.

Example 5. Let p, q, and r defined as in Figures 1, 2 and 3, with Time = � ≥0.

We depict s
a−→u s′ as s

a(u)−→ s′.
p ↔Z

tb q, since pBwq for w ≥ 0, piBwqi for w ≤ 1
i+2 , and p′iBwqi for w > 0

(for i ≥ 0) is a timed branching bisimulation.
4 The superscript Z refers to van der Zwaag, to distinguish it from the adaptation of
his definition of timed branching bisimulation that we will define later.

5 Van der Zwaag does not take into account successful termination, so the second
clause is missing in his definition.

6 s0 ↔
tb

t0 would hold for u < v if in Definition 3 we would require that they are
timed branching bisimilar at 0 (instead of at all u ∈ Time).

4

p2 . . .

p′0 p′1

a(1)

√

τ(0)

τ(0)

τ(0)

τ(0)

τ(1

3
) τ(1

4
)

p′2

a(1

2
) a(1) a(1

2
)

√

a(1

3
)

p

τ(0)

p1

a(1)

√

τ(1

2
)

p0

Fig. 1. A timed process p

τ(0)

q1 q2 . . .
τ(0)

τ(0)

a(1

2
)a(1) a(1) a(1

2
) a(1

3
)

√√

τ(0)

q

τ(0)
q0

a(1)

√

Fig. 2. A timed process q

Moreover, q ↔Z
tb r, since qBwr for w ≥ 0, qiBwri for w ≥ 0, qiB0rj , and

qiBwr∞ for w = 0 ∨ w > 1
i+2 (for i, j ≥ 0) is a timed branching bisimulation.

(Note that qi and r∞ are not timed branching bisimilar in the time interval
〈0, 1

i+2].)

However, p 6↔Z
tb r, due to the fact that none of the pi can simulate r∞.

Namely, r∞ can idle until time 1; pi can only simulate this by executing a τ at
time 1

i+2 , but the resulting process
∑i+1

n=1 a(1
n
) is not timed branching bisimilar

to r∞ at time
1

i+2 , since only the latter can execute action a at time 1
i+2 .

4 A strengthened timed branching bisimulation

In this section, we propose a way to fix the definition of van der Zwaag (see Def-
inition 3). Our adaptation requires the stuttering property [7] (see Definition 6)
at all time intervals. That is, in the last clause of Definition 3, we require that

5

a(1)

√

a(1) a(1

2
)

√

a(1) a(1

2
) a(1

3
)

√

r∞

. . .

a(1)a(1

2
)

τ(0)

τ(0)

τ(0)

τ(0)

τ(0)

τ(0)

√

τ(0)

r

. . .r0 r1 r2

Fig. 3. A timed process r

sBwti+1 for ui ≤ w ≤ ui+1. Hence, we achieve a stronger version of van der
Zwaag’s definition. We prove that this new notion of timed branching bisimilar-
ity is an equivalence relation.

4.1 Timed branching bisimulation

Definition 4. Assume a TLTS (S,T , U). A collection B of binary relations
Bu ⊆ S × S for u ∈ Time is a timed branching bisimulation if sBut implies:

1. if s
`−→u s′, then

i either ` = τ and s′But,

ii or t=⇒u t̂
`−→u t′ with sBut̂ and s′But

′;

2. if t
`−→u t′, then

i either ` = τ and sBut
′,

ii or s=⇒u ŝ
`−→u s′ with ŝBut and s′But

′;
3. if s ↓, then t=⇒u t′ ↓ with sBut

′;
4. if t ↓, then s=⇒u s′ ↓ with s′But;
5. if u < v and U(s, v), then for some n > 0 there are t0, . . . , tn ∈ S with t = t0

and U(tn, v), and u0 < · · · < un ∈ Time with u = u0 and v = un, such that
for i < n, ti=⇒ui

ti+1 and sBwti+1 for ui ≤ w ≤ ui+1;
6. if u < v and U(t, v), then for some n > 0 there are s0, . . . , sn ∈ S with

s = s0 and U(sn, v), and u0 < · · · < un ∈ Time with u = u0 and v = un,
such that for i < n, si=⇒ui

si+1 and si+1Bwt for ui ≤ w ≤ ui+1.

Two states s and t are timed branching bisimilar at u if there is a timed branch-
ing bisimulation B with sBut. States s and t are timed branching bisimilar,
denoted by s↔tb t, if they are timed branching bisimilar at all u ∈ Time.

It is not hard to see that the union of timed branching bisimulations is again a
timed branching bisimulation.
Note that states q and r from Example 5 are not timed branching bisimilar

according to Definition 4. Namely, none of the qi can simulate r∞ in the time
interval 〈0, 1

i+2], so that the stuttering property is violated.

6

Starting from this point, we focus on timed branching bisimulation as defined
in Definition 4. We did not define this new notion of timed branching bisimulation
as a symmetric relation (like in Definition 3), in view of the equivalence proof
that we are going to present. Namely, in general the relation composition of two
symmetric relations is not symmetric. Clearly any symmetric timed branching
bisimulation is a timed branching bisimulation. Furthermore, it follows from
Definition 4 that the inverse of a timed branching bisimulation is again a timed
branching bisimulation, so the union of a timed branching bisimulation and its
inverse is a symmetric timed branching bisimulation. Hence, Definition 4 and
the definition of timed branching bisimulation as a symmetric relation give rise
to the same notion.

4.2 Timed semi-branching bisimulation

Basten [3] showed that the relation composition of two (untimed) branching
bisimulations is not necessarily again a branching bisimulation. Figure 4 illus-
trates an example, showing that the relation composition of two timed branching
bisimulations is not always a timed branching bisimulation. It is a slightly sim-
plified version of an example from [3], here applied at time 0. Clearly, B and
D are timed branching bisimulations. However, B◦D is not, and the problem
arises at the transition r0

τ−→0 r1. According to case 1 of Definition 3, since
r0 (B◦D) t0, either r1 (B◦D) t0, or r0 (B◦D) t1 and r1 (B◦D) t2, must hold. But
neither of these cases hold, so B◦D is not a timed branching bisimulation.

r3

r2

r1

r0

t2

t1

t0

s3

s2

s1

s0

r3

r2

r1

r0

B

t0

τ(0)

τ(0)

τ(0)

τ(0)

τ(0)

τ(0)

τ(0)

B◦D

τ(0)

τ(0)

τ(0)

τ(0) τ(0)

τ(0)

t2

t1

D

Fig. 4. Composition does not preserve timed branching bisimulation

Semi-branching bisimulation [7] relaxes case 1i of Definition 2: if s
τ−→ s′,

then it is allowed that t=⇒ t′ with sBt′ and s′Bt′. Basten proved that the rela-
tion composition of two semi-branching bisimulations is again a semi-branching
bisimulation. It is easy to see that semi-branching bisimilarity is reflexive and
symmetric. Hence, semi-branching bisimilarity is an equivalence relation. Then
he proved that semi-branching bisimilarity and branching bisimilarity coincide,

7

that means two states in an (untimed) LTS are related by a branching bisimu-
lation relation if and only if they are related by a semi-branching bisimulation
relation. We mimic the approach in [3] to prove that timed branching bisimilarity
is an equivalence relation.

Definition 5. Assume a TLTS (S,T , U). A collection B of binary relations
Bu ⊆ S × Time × S for u ∈ Time is a timed semi-branching bisimulation if
sBut implies:

1. if s
`−→u s′, then

i either ` = τ and t=⇒u t′ with sBut
′ and s′But

′,

ii or t=⇒u t̂
`−→u t′ with sBut̂ and s′But

′;

2. if t
`−→u t′, then

i either ` = τ and s=⇒u s′ with s′But and s′But
′,

ii or s=⇒u ŝ
`−→u s′ with ŝBut and s′But

′;
3. if s ↓, then t=⇒u t′ ↓ with sBut

′;
4. if t ↓, then s=⇒u s′ ↓ with s′But;
5. if u < v and U(s, v), then for some n > 0 there are t0, . . . , tn ∈ S with t = t0

and U(tn, v), and u0 < · · · < un ∈ Time with u = u0 and v = un, such that
for i < n, ti=⇒ui

ti+1 and sBwti+1 for ui ≤ w ≤ ui+1;
6. if u < v and U(t, v), then for some n > 0 there are s0, . . . , sn ∈ S with

s = s0 and U(sn, v), and u0 < · · · < un ∈ Time with u = u0 and v = un,
such that for i < n, si=⇒ui

si+1 and si+1Bwt for ui ≤ w ≤ ui+1.

Two states s and t are timed semi-branching bisimilar at u if there is a timed
semi-branching bisimulation B with sBut. States s and t are timed semi-branching
bisimilar, denoted by s ↔tsb t, if they are timed semi-branching bisimilar at all
u ∈ Time.

It is not hard to see that the union of timed semi-branching bisimulations is
again a timed semi-branching bisimulation. Furthermore, any timed branching
bisimulation is a timed semi-branching bisimulation.

Definition 6 ([7]). A timed semi-branching bisimulation B is said to satisfy
the stuttering property if:

1. sBut, s′But and s
τ−→u s1

τ−→u · · · τ−→u sn
τ−→u s′ implies that siBut for

1 ≤ i ≤ n;
2. sBut, sBut

′ and t
τ−→u t1

τ−→u · · · τ−→u tn
τ−→u t′ implies that sButi for

1 ≤ i ≤ n.

Lemma 1. Any timed semi-branching bisimulation satisfying the stuttering prop-
erty is a timed branching bisimulation.

Proof. Let B be a timed semi-branching bisimulation that satisfies the stuttering
property. We prove that B is a timed branching bisimulation.
Let sBut. We only consider case 1i of Definition 5, because cases 1ii, 2ii and

3-6 are the same for both timed semi-branching and branching bisimulation.
Moreover, case 2i can be dealt with in a similar way as case 1i. So let s

τ−→u s′

and t=⇒u t′ with sBut
′ and s′But

′. We distinguish two cases.

8

1. t = t′. Then s′But, which agrees with case 1i of Definition 4.
2. t 6= t′. Then t=⇒u t′′

τ−→u t′. Since B satisfies the stuttering property, sBut
′′.

This agrees with case 1ii of Definition 4. ut

4.3 Timed branching bisimilarity is an equivalence.

Our equivalence proof consists of the following main steps:

1. We first prove that the relation composition of two timed semi-branching
bisimulation relations is again a semi-branching bisimulation relation (Propo-
sition 1).

2. Then we prove that timed semi-branching bisimilarity is an equivalence re-
lation (Theorem 1).

3. Finally, we prove that the largest timed semi-branching bisimulation satisfies
the stuttering property (Proposition 2).

According to Lemma 1, any timed semi-branching bisimulation satisfying the
stuttering property is a timed branching bisimulation. So by the 3rd point, two
states are related by a timed branching bisimulation if and only if they are
related by a timed semi-branching bisimulation.

Lemma 2. Let B be a timed semi-branching bisimulation, and sBut.

1. s=⇒u s′ =⇒ (∃t′ ∈ S : t=⇒u t′ ∧ s′But
′);

2. t=⇒u t′ =⇒ (∃s′ ∈ S : s=⇒u s′ ∧ t′Bus
′).

Proof. We prove the first part, by induction on the number of τ -transitions at
u from s to s′.

1. Base case: The number of τ -transitions at u from s to s′ is zero. Then s = s′.
Take t′ = t. Clearly t=⇒u t′ and s′But

′.
2. Inductive case: s=⇒u s′ consists of n ≥ 1 τ -transitions at u. Then there exists
an s′′ ∈ S such that s=⇒u s′′ in n− 1 τ -transitions at u, and s′′

τ−→u s′. By
the induction hypothesis, t=⇒u t′′ with s′′But

′′. Since s′′
τ−→u s′ and B is a

timed semi-branching bisimulation:
– either t′′=⇒u t′ and s′′But

′ and s′But
′;

– or t′′=⇒u t̂
τ−→u t′ with s′′But̂ and s′But

′.
In both cases t=⇒u t′ with s′But

′.

The proof of the second part is similar. ut

Proposition 1. The relation composition of two timed semi-branching bisimu-
lations is again a timed semi-branching bisimulation.

Proof. Let B and D be timed semi-branching bisimulations. We prove that the
composition of B andD (or better, the compositions of Bu andDu for u ∈ Time)
is a timed semi-branching bisimulation. Suppose that rBusDut for r, s, t ∈ S.
We check that the conditions of Definition 5 are satisfied with respect to the
pair r, t. We distinguish four cases.

9

1. r
τ−→u r′ and s=⇒u s′ with rBus

′ and r′Bus
′. Since sDut and s=⇒u s′,

Lemma 2 yields that t=⇒u t′ with s′Dut
′. Hence, rBus

′Dut
′ and r′Bus

′Dut
′.

2. r
`−→ur

′ and s=⇒u s′′
`−→us

′ with rBus
′′ and r′Bus

′. Since sDut and s=⇒u s′′,

Lemma 2 yields that t=⇒u t′′ with s′′Dut
′′. Since s′′

`−→u s′ and s′′Dut
′′:

– Either ` = τ and t′′=⇒u t′ with s′′Dut
′ and s′Dut

′. Then t=⇒u t′ with
rBus

′′Dut
′ and r′Bus

′Dut
′.

– Or t′′=⇒u t′′′
`−→u t′ with s′′Dut

′′′ and s′Dut
′. Then t=⇒u t′′′

`−→u t′ with
rBus

′′Dut
′′′ and r′Bus

′Dut
′.

3. r ↓. Since rBus, s=⇒u s′ ↓ with rBus
′. Since sDut and s=⇒u s′, Lemma 2

yields that t=⇒u t′′ with s′Dut
′′. Since s′ ↓ and s′Dut

′′, t′′=⇒u t′ ↓ with
s′Dut

′. Hence, t=⇒u t′ ↓ with rBus
′Dut

′.
4. u < v and U(r, v). Since rBus, for some n > 0 there are s0, . . . , sn ∈ S with

s = s0 and U(sn, v), and u0 < · · · < un ∈ Time with u = u0 and v = un,
such that si=⇒ui

si+1 and rBwsi+1 for ui ≤ w ≤ ui+1 and i < n.
For i ≤ n we show that for some mi > 0 there are t

i
0, . . . , t

i
mi
∈ S with t = t00

and U(tnmn
, v), and vi0 ≤ · · · ≤ vimi

∈ Time with (Ai) ui−1 = vi0 (if i > 0)
and (Bi) ui = vimi

, such that:
(Ci) tij =⇒vi

j
tij+1 for j < mi;

(Di) ti−1
mi−1

=⇒ui−1
ti0 (if i > 0);

(Ei) siDui−1
ti0 (if i > 0);

(Fi) siDwtij+1 for v
i
j ≤ w ≤ vij+1 and j < mi.

We apply induction with respect to i.
– Base case: i = 0.
Let m0 = 1, t

0
0 = t01 = t and v0

0 = v0
1 = u0. Note that B0, C0 and F0

hold.
– Inductive case: 0 < i ≤ n.
Suppose that mk, t

k
0 , . . . , t

k
mk

, vk0 , . . . , v
k
mk
have been defined for 0 ≤ k <

i. Moreover, suppose that Bk, Ck and Fk hold for 0 ≤ k < i, and that
Ak, Dk and Ek hold for 0 < k < i.
Fi−1 for j = mi−1 − 1 together with Bi−1 yields si−1Dui−1

ti−1
mi−1

. Since

si−1=⇒ui−1
si, Lemma 2 implies that t

i−1
mi−1

=⇒ui−1
t′ with siDui−1

t′. We

define ti0 = t′ [then Di and Ei hold] and vi0 = ui−1 [then Ai holds].
si=⇒ui

· · · =⇒un−1
sn with U(sn, v) implies that U(si, ui). Since siDui−1

ti0,
according to case 5 of Definition 5, for somemi > 0 there are t

i
1, . . . , t

i
mi
∈

S with U(timi
, ui), and vi1 < · · · < vimi

∈ Time with vi0 < vi1 and ui = vimi

[then Bi holds], such that for j < mi, t
i
j =⇒vi

j
tij+1 [then Ci holds] and

siDwtij+1 for v
i
j ≤ w ≤ vij+1 [then Fi holds].

Concluding, for i < n, rBui
si+1Dui

ti+1
0 and rBwsi+1Dwti+1

j+1 for v
i+1
j ≤ w ≤

vi+1
j+1 and j < mi. Since vij ≤ vij+1, v

i
mi
= ui = vi+1

0 , t = t00, u = u0 = v0
0 ,

tij =⇒vi
j
tij+1, t

i
mi
=⇒ui

ti+1
0 , and U(tnmn

, v), we are done.

So cases 1,3,5 of Definition 5 are satisfied. Similarly it can be checked that cases
2,4,6 are satisfied. So the composition ofB andD is again a timed semi-branching
bisimulation. ut

10

Theorem 1. Timed semi-branching bisimilarity, ↔tsb, is an equivalence rela-
tion.

Proof. Reflexivity:Obviously, the identity relation on S is a timed semi-branching
bisimulation.

Symmetry: Let B a timed semi-branching bisimulation. Obviously, B−1 is also
a timed semi-branching bisimulation.

Transitivity: This follows from Proposition 1. ut

Proposition 2. The largest timed semi-branching bisimulation satisfies the stut-
tering property.

Proof. Let B be the largest timed semi-branching bisimulation on S. Let s
τ−→u

s1
τ−→u · · · τ−→u sn

τ−→u s′ with sBut and s′But. We prove that B
′ = B∪{(si, t) |

1 ≤ i ≤ n} is a timed semi-branching bisimulation.
We check that all cases of Definition 5 are satisfied for the relations siB

′
ut,

for 1 ≤ i ≤ n. First we check that the transitions of si are matched by t. Since
s=⇒u si and sBut, by Lemma 2 t=⇒u t′ with siBut

′.

– If si
`−→u s′′, then it follows from siBut

′ that:

• Either ` = τ and t′=⇒u t′′ with siBut
′′ and s′′But

′′. Since t=⇒u t′=⇒u t′′,
this agrees with case 1i of Definition 5.

• Or t′=⇒u t′′′
`−→u t′′ with siBut

′′′ and s′′But
′′. Since t=⇒u t′=⇒u t′′′, this

agrees with case 1ii of Definition 5.

– If si ↓, then it follows from siBut
′ that t′=⇒u t′′ ↓ with siBut

′′. Since
t=⇒u t′=⇒u t′′, this agrees with case 3 of Definition 5.

– If u < v and U(si, v), then it follows from siBut
′ that for some n > 0 there

are t0, . . . , tn ∈ S with t′ = t0 and U(tn, v), and u0 < · · · < un ∈ Time
with u = u0 and v = un, such that for i < n, ti=⇒ui

ti+1 and siBwti for
ui ≤ w ≤ ui+1. Since t=⇒u t′=⇒u t1, this agrees with case 5 of Definition 5.

Next we check that the transitions of t are matched by si.

– If t
`−→u t′, then it follows from s′But that:

• Either ` = τ and s′=⇒u s′′ with s′′But and s′′But
′. Since si=⇒u s′=⇒u s′′,

this agrees with case 2i of Definition 5.

• Or s′=⇒u s′′′
`−→u s

′′ with s′′′But and s′′But
′. Since si=⇒u s′=⇒u s′′′, this

agrees with case 2ii of Definition 5.

– If t ↓, then it follows from s′But that s
′=⇒u s′′ ↓ with s′′But. Since si=⇒u s′=⇒u s′′,

this agrees with case 4 of Definition 5.

– If u < v and U(t, v), then it follows from s′But that for some n > 0 there
are s′0, . . . , s

′
n ∈ S with s′ = s′0 and U(sn, v), and u0 < · · · < un ∈ Time

with u = u0 and v = un, such that for i < n, s′i=⇒ui
s′i+1 and s′i+1Bwt for

ui ≤ w ≤ ui+1. Since si=⇒u s′=⇒u s′1, this agrees with case 6 of Definition 5.

11

Hence B′ is a timed semi-branching bisimulation. Since B is the largest, and
B ⊆ B′, we find that B = B′. So B satisfies the first requirement of Definition 6.

Since B is the largest timed semi-branching bisimulation and ↔tsb is an
equivalence, B is symmetric. Then B also satisfies the second requirement of
Definition 6. Hence B satisfies the stuttering property. ut

As a consequence, the largest timed semi-branching bisimulation is a timed
branching bisimulation (by Lemma 1 and Proposition 2). Since any timed branch-
ing bisimulation is a timed semi-branching bisimulation, we have the following
two corollaries.

Corollary 1. Two states are related by a timed branching bisimulation if and
only if they are related by a timed semi-branching bisimulation.

Corollary 2. Timed branching bisimilarity, ↔tb, is an equivalence relation.

We note that for each u ∈ Time, timed branching bisimilarity at time u is also
an equivalence relation.

5 Discrete time domains

Theorem 2. In case of a discrete time domain, ↔Z
tb and ↔tb coincide.

Proof. Clearly ↔tb⊆↔Z
tb. We prove that ↔Z

tb⊆↔tb. Suppose B is a timed
branching bisimulation relation according to Definition 3. We show that B is
a timed branching bisimulation relation according to Definition 4. B satisfies
cases 1-4 of Definition 4, since they coincide with cases 1-2 of Definition 3. We
prove that case 5 of Definition 4 is satisfied.

Let sBut and U(s, v) with u < v. Let u0 < · · · < un ∈ Time with u0 = u and
un = v, where u1, . . . , un−1 are all the elements from Time that are between u

and v. (Here we use that Time is discrete.) We prove induction on n that there
are t0, . . . , tn ∈ S with t = t0 and U(tn, v), such that for i < n, ti=⇒ui

ti+1 and
sBwti+1 for ui ≤ w ≤ ui+1.

– Base case: n = 1. By case 3 of Definition 3 there is a t1 ∈ S with U(t1, v),
such that t=⇒u t1, sBut1 and sBvt1. Hence, sBwt1 for u ≤ w ≤ v.

– Inductive case: n > 1. Since U(s, v), clearly also U(s, u1). By case 3 of Defini-
tion 3 there is a t1 ∈ S such that t=⇒u t1, sBut1 and sBu1

t1. Hence, sBwt1
for u ≤ w ≤ u1. By induction, sBu1

t1 together with U(s, v) implies that
there are t2, . . . , tn ∈ S with U(tn, v), such that for 1 ≤ i < n, ti=⇒ui

ti+1,
sBui

ti+1 and sBui+1
ti+1. Hence, sBwti+1 for ui ≤ w ≤ ui+1.

We conclude that case 5 of Definition 4 holds. Similarly it can be proved that
B satisfies case 6 of Definition 4. Hence B is a timed branching bisimulation
relation according to Definition 4. So ↔Z

tb⊆↔tb. ut

12

6 Future work

We conclude the paper by pointing out some possible research directions for the
future.

1. It is an interesting question whether a rooted version of timed branching
bisimilarity is a congruence over a basic timed process algebra (such as
Baeten and Bergstra’s BPAur

ρδ [1], which is basic real time process algebra
with time stamped urgent actions). Similar to equivalence, congruence prop-
erties for timed branching bisimilarity are often claimed, but hardly ever
proved. We only know of one such congruence proof, in [13].

2. Van der Zwaag [14] extended the cones and foci verification method from
Groote and Springintveld [9] to TLTSs. Fokkink and Pang [10] proposed an
adapted version of this timed cones and foci method. Both papers take ↔Z

tb

as a starting point. It should be investigated whether a timed cones and foci
method can be formulated for ↔tb as defined in the current paper.

3. Van Glabbeek [4] presented a wide range of concurrency semantics for un-
timed processes with the silent step τ . It would be a challenge to try and
formulate timed versions of these semantics, and prove equivalence and con-
gruence properties for the resulting timed semantics.

References

1. J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal Aspects of
Computing, 3(2):142–188, 1991.

2. J.C.M. Baeten and C.A. Middelburg. Process Algebra with Timing. EATCS Mono-
graph, Springer, 2002.

3. T. Basten. Branching bisimilarity is an equivalence indeed! Information Processing
Letters, 58(3):141–147, 1996.

4. R.J. van Glabbeek. The linear time – branching time spectrum II: The semantics
of sequential systems with silent moves. In (E. Best, ed.) Proceedings of the 4th
Conference on Concurrency Theory (CONCUR’93), Hildesheim, LNCS 715, pp.
66–81, 1993.

5. R.J. van Glabbeek. What is branching time and why to use it? In (M. Nielsen,
ed.), The Concurrency Column, Bulletin of the EATCS, 53:190-198, 1994.

6. R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimu-
lation semantics. In (G. Ritter, ed.) Proceedings of the IFIP 11th World Computer
Congress (Information Processing ’89), San Francisco, pp. 613–618, 1989.

7. R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisim-
ulation semantics. Journal of the ACM, 43(3):555–600, 1996.

8. J.F. Groote, M.A. Reniers, J.J. van Wamel, and M.B. van der Zwaag. Completeness
of timed µCRL. Fundamenta Informaticae, 50(3/4):361–402, 2002.

9. J.F. Groote and J.G. Springintveld. Focus points and convergent process oper-
ators. A proof strategy for protocol verification. Journal of Logic and Algebraic
Programming, 49(1/2):31–60, 2001.

10. W.J. Fokkink and J. Pang. Formal verification of timed systems using cones and
foci. In (I. Ulidowski, ed.) Proceedings of the 6th Workshop on Real-Time Systems
(ARTS’04), Stirling, ENTCS, 2005. To appear.

13

11. A.S. Klusener. Abstraction in real time process algebra. In (J.W. de Bakker, C.
Huizing, W.P. de Roever, and G. Rozenberg, eds.) Proceedings of the REX Work-
shop “Real-Time: Theory in Practice”, Mook, LNCS 600, pp. 325–352, 1991.

12. A.S. Klusener. The silent step in time. In (R. Cleaveland, ed.) Proceedings of the
3rd Conference on Concurrency Theory (CONCUR’92), LNCS 630, pp. 421–435,
1992.

13. A.S. Klusener. Models and Axioms for a Fragment of Real Time Process Algebra.
PhD thesis, Eindhoven University of Technology, 1993.

14. M.B. van der Zwaag. The cones and foci proof technique for timed transition
systems. Information Processing Letters, 80(1):33–40, 2001.

15. M.B. van der Zwaag. Models and Logics for Process Algebra. PhD thesis, University
of Amsterdam, 2002.

A Branching tail bisimulation

Baeten and Middelburg [2] defined the notion of branching tail bisimulation,
which is closely related to van der Zwaag’s definition of timed branching bisim-
ulation. We show that in case of dense time, our counter-example (see Example
5) again shows that branching tail bisimilarity is not an equivalence relation.

In the absolute time setting of Baeten and Middelburg, states are of the
form <p, u> with p a process algebraic term and u a time stamp referring to the
absolute time. They give operational semantics to their process algebras such
that if <p, u>

v7−→<p, u+v> (where
v7−→ for v > 0 denotes a time step of v time

units), then <p, u>
w7−→<p, u+w> for 0 < w < v; in our example this saturation

with time steps will be mimicked. The relation s
u7−→−→ s′ is defined by: either

s⇒ ŝ
u7−→ s′, or s

v7−→−→ ŝ
w7−→−→ s′ with v + w = u.7

Branching tail bisimulation is defined as follows.8

Definition 7 ([2]). Assume a TLTS in the style of Baeten and Middelburg. A
symmetric binary relation B ⊆ S × S is a branching tail bisimulation if sBt

implies:

1. if s
`−→ s′, then

i either ` = τ and t=⇒ t′ with sBt′ and s′Bt′;

ii or t=⇒ t̂
a−→ t′ with sBt̂ and s′Bt′;

2. if s
`−→<

√
, u>, then t=⇒ t′

`−→<
√
, u> with sBt′;

3. if s
u7−→ s′, then

i either t=⇒ t̂
v7−→ t̂′

w7−→−→ t′ with v + w = u, sBt̂ and s′Bt′;

ii or t=⇒ t̂
u7−→ t′ with sBt̂ and s′Bt′.

7 Baeten and Middelburg also have a deadlock predicate £, which we do not take into
account here, as it does not play a role in our counter-example.

8 Baeten and Middelburg define this notion in the setting with relative time, and
remark that the adaptation of this definition to absolute time is straightforward.
Here we present this straightforward adaptation.

14

Two states s and t are branching tail bisimilar, written s ↔BM

tb t, if there is a
branching tail bisimulation B with sBt.9

We proceed to transpose the TLTSs from Example 5 into the setting of Baeten
and Middelburg. We now have the following transitions, for i ≥ 0:

<p, 0>
τ−→<p0, 0>

<pi, 0>
τ−→<pi+1, 0>

<pi+1, 0>
τ−→<pi, 0>

<pi, u>
v−u7−→<pi, v>, 0 ≤ u < v ≤ 1

i+2

<pi,
1

i+2>
τ−→<p′i,

1
i+2>

<p′i, u>
v−u7−→<p′i, v>,

1
i+2 ≤ u < v ≤ 1

<p′i,
1
n
>

a−→<
√
, 1
n
>, n = 1, . . . , i+ 1

<q, 0>
τ−→<q0, 0>

<qi, 0>
τ−→<qi+1, 0>

<qi+1, 0>
τ−→<qi, 0>

<qi, u>
v−u7−→<qi, v>, 0 ≤ u < v ≤ 1

<qi,
1
n
>

a−→<
√
, 1
n
>, n = 1, . . . , i+ 1

<r, 0>
τ−→<r0, 0>

<ri, 0>
τ−→<ri+1, 0>

<ri+1, 0>
τ−→<ri, 0>

<ri, u>
v−u7−→<ri, v>,

1
i+2 ≤ u < v ≤ 1

<ri,
1
n
>

a−→<
√
, 1
n
>, n = 1, . . . , i+ 1

<r0, 0>
τ−→<r∞, 0>

<r∞, 0>
τ−→<r0, 0>

<r∞, u>
v−u7−→<r∞, v>, 0 ≤ u < v ≤ 1

<r∞, 1
n
>

a−→<
√
, 1
n
>, n ∈ �

<p, 0> ↔BM

tb <q, 0>, since <p,w>B<q,w> for w ≥ 0, <pi, w>B<qi, w> for
w ≤ 1

i+2 , and <p′i, w>B<qi, w> for w > 0 (for i ≥ 0) is a branching tail
bisimulation.
Moreover,<q, 0>↔BM

tb <r, 0>, since<q,w>B<r,w> for w ≥ 0,<qi, w>B<ri, w>

for w ≥ 0, <qi, 0>B<rj , 0>, and <qi, w>B<r∞, w> for w = 0 ∨ w > 1
i+2 (for

i, j ≥ 0) is a branching tail bisimulation.
However, <p, 0> 6↔BM

tb <r, 0>, since p cannot simulate r. This is due to the
fact that none of the pi can simulate r∞. Namely, r∞ can idle until time 1. pi
can only simulate this by executing a τ at time 1

i+2 , but the resulting process

<p′i,
1

i+2> is not timed branching bisimilar to <r∞, 1
i+2>, since only the latter

can execute action a at time 1
i+2 .

9 The superscript BM refers to Baeten and Middelburg, to distinguish it from the
notion of timed branching bisimulation as defined in this paper.

15

