
A Learning-based Framework for Automatic
Parameterized Verification

Yongjian Li
Chinese Academy of Sciences,

Institute of Software,
The State Key Laboratory of

Computer Science,
Beijing, China

Jialun Cao
Chinese Academy of Sciences,

Institute of Software,
The State Key Laboratory of

Computer Science,
Beijing, China

Jun Pang
University of Luxembourg

FSTC & SnT
Esch-sur-Alzette, Luxembourg

Abstract—Parameterized verification is shown to be a compli-
cated and undecidable problem. The challenge of parameterized
verification lies in how to construct appropriate invariants.
Designing algorithms to find such invariants automatically has
become an active research area since the last decade. With the
advent of some recent works, automatically finding invariants has
become possible, but most of these invariants are unreadable,
making them difficult to be understood by protocol designers
and researchers. Therefore, we propose an automatic framework
that learns a set of readable and simple invariants to support
in protocol design. It takes advantage of association rule learn-
ing, and combines the learning algorithm with parameterized
verification. It is noteworthy that the gap between machine
learning algorithms and parameterized verification seems to
be huge, as they rely on statistical learning and symbolic
reasoning, respectively. Our framework, however, builds a bridge
through association rules and invariants, making their combi-
nation possible. Besides, we also propose an invariant-guided
strengthening paradigm, providing an innovative perspective to
existing abstraction-strengthening methods. Our framework has
been successfully applied to several benchmarks, including an
industrial-scale protocol FLASH.

Index Terms—Formal methods, parameterized verification,
machine learning, association rule learning, invariant learning

I. INTRODUCTION

Parameterized concurrent systems are underlying architec-
tures of modern computing systems [1], such as mutual exclu-
sion protocols, bus protocols in embedded systems, networking
communication, cache coherence protocols, web services and
sensor networks [2]. In general, a parameterized protocol
P (N) is defined as a protocol that consists of N instances,
where the term parameterized refers to the fact that the size
of the system is a parameter of the verification problem [2].
The task of verifying such systems is to show their correctness
regardless of the number of instances. Although model check-
ing techniques [3]–[5] can verify properties for finite instances
of such protocols, as the scale and number of instance of the
protocols increase, model checkers reach their limits in both
time and memory consumption [1], resulting in the correctness
of these protocols of arbitrary sizes unable to be proved. In
fact, this problem has been proved to be undecidable [6].

Nevertheless however, due to its practical importance, this
problem has kept attracting considerable interests from both

model checking and theorem proving communities throughout
the last few decades [7]. Many approaches have been proposed
in the literature [1], [8]–[15]. At an early stage, model check-
ing for finite-state parameterized protocols was an alternative
solution for this problem [16]–[18]. With this approach being
well studied, its limitation was also revealed: the time and
memory consumption of model checking is unacceptable as
the size of the protocols being increased. For instance, to
verify the safety properties of Stanford FLASH multiprocessor
architecture [19] with five instances it took the model checker
Murphi more than 24 hours and 20 GB of memory [1].
Although the cut-off technique has been developed in the
literature, trying to conclude the protocols’ correctness based
on small instantiations [20], [21], it still can run into serious
problems when the cut-off value itself is too large [22]. In the
next stage, some approaches have been proposed to scale for
large systems, including compositional verification [23], ab-
straction methods such as parameterized abstraction [10]–[12],
[24], predicate abstraction [25], environment abstraction [26],
and inductive assertions [9]. However, all these methods
require human effort to provide hand-crafted invariants and
guidance, which are often error-prone, especially when the
protocol description is long and complex [11].

In the last decade, how to find sufficient and appropriate
invariants automatically has gradually been an active research
area [15], [25], [27]–[30]. The concept of “invisible invariants”
has been proposed in 2001 [8]. It is an automatic technique for
parameterized verification. In this method, auxiliary invariants
are computed in a finite system instance to aid inductive
invariant checking. Combining this idea with parameterized
abstraction, Lv et al. used a small protocol instance to compute
candidate invariants [7]. However, the invariants found by
these works are “raw” boolean predicates, which are hard to
understand. Later, a SMT-based model checker Cubicle has
been proposed [15] and developed [1]. In their works, the
BRAB algorithm has been introduced, which can automati-
cally infer invariants and generate Why3-proof certificates for
SMT-solvers. It was the first tool that proves automatically
the safety properties of FLASH. Although these works can
automatically verify parameterized protocols, the invariants
they found are not readable and understandable for researchers,

let alone outsiders of the research area. Therefore, our target
is to develop a framework, which can not only automatically
verify parameterized protocols, but also find invariants that are
understandable and useful for protocol designers.

To achieve this goal, the invariants need to satisfy certain
requirements. First, the form of the invariants needs to be
readable and somehow straightforward. Second, the invariants
should be used to verify parameterized protocol directly. Third,
we hope that the underlying theory of verification is not too
complicated, so that the entire verification can be understood
by both researchers and outsiders. The underlying theory we
exploit is the “parameterized abstraction and guard strength-
ening” method, also known as the “CMP” method [10],
[11]. It has been widely applied to verify large-scale and
industrial cache coherence protocols, including Intel’s Chipset
and FLASH protocols, and at the same time, its main idea is
relatively simple. For a parameterized protocol P (N), CMP
constructs an abstract model AP (m) (m is usually small) to
simulate the behavior of the original protocol. Thus, if the
properties can be verified with AP (m), then the correctness
of the original protocol can be inferred. The soundness of this
method is proved in [12]. The difficulty of automatizing CMP
lies in how to construct sufficient invariants. In the original
paper, the construction is guided by counterexamples and error
traces generated by Murphi. Yet, this process highly relies on
human guidance, and is hard to automatize. Therefore, instead
we propose an invariant-guided strengthening paradigm, which
avoids analyzing counterexamples and error traces, so the
human effort part can be omitted. The invariants learned from
association rule learning can be used in the verification process
directly. As a consequence, the aforementioned requirements
are satisfied in our framework: it learns invariants and veri-
fies parametrized protocols automatically, and meanwhile, the
invariants it infers can help researchers get better insight for
protocols and guide their design.

Main contributions. Our contributions in the current paper
can be summarized as follows.

• We develop an automatic framework which can verify
parameterized protocols automatically and provide read-
able auxiliary invariants for both protocol designers and
researchers.

• We build a bridge between learning algorithms and pa-
rameterized verification. To the best of our knowledge,
learning algorithms, which is mainly based on statistical
reasoning, have never been combined with parameterized
verification based on symbolic reasoning. Through find-
ing auxiliary invariants, we link these two areas, and
achieve an initial success. We hope that our work can
shed lights on the further combination of parameterized
verification and machine learning.

• We successfully apply our framework to several bench-
marks. Especially, we have verified the FLASH protocol
automatically.

Paper structure. The rest of this paper is organized as follows.
We first review related works in Section II. In Section III,

we introduce preliminaries used in this paper. Section IV
provides an overview of our framework. In the following
section (Section V), we give detailed implementation of the
framework. Section VI shows the experiment result, followed
by conclusions and future work in Section VII.

II. RELATED WORK

There have been many studies in the field of parameterized
verification [1], [7]–[11], [14], [15], [31]. The standard way
of verifying a system or protocol is to enumerate its entire
state space [32]. However, this method reaches its limits in
both time and memory consumption [1]. Thus, some ap-
proaches have been proposed to be scalable for large systems,
such as compositional [23] and abstraction model checking
techniques [11]. McMillan et al. proposed the “parameter
abstraction and guard strengthening” technique to maintain
the desired properties in the abstract system [10]–[12]. Later,
Talupur et al. accelerated this technique using high-quality
invariants which are derived from message flows [24]. Chen
et al. employed a meta-circular assume/guarantee technique to
reduce the complexity of verifying finite instances of param-
eterized protocols [13], [33]. However, these methods require
hand-crafted invariants, which is often error-prone especially
when the protocol description is long and complicated [11].

In the last decade, an active research area is to design
automatic methods to find good quality invariants. Arons
et al. proposed the concept of “invisible invariants”, which
are computed in a finite system instance to aid inductive
invariant checking [9]. Inspired by this idea and “parameter
abstraction and guard strengthening”, Lv et al. [7] used a small
instance of a parameterized protocol as a “reference instance”
to compute candidate invariants. These approaches attempt
to automatically find invariants, yet the invisible invariants
are “raw” boolean formulas, which are BDDs computed by
TLV (a variant of the BDD-based SMV model checker) and
hard to understand. Conchon et al. developed a SMT-based
model checker Cubicle together with a new algorithm BRAB.
It computes over-approximations of backward reachable states
that are checked to be unreachable in the parameterized
system [15]. Their method is the first one that proves auto-
matically safety properties of the FLASH protocol. However,
its generalization was limited because it cannot be generalized
to other general-purpose theorem provers such as Isabelle [34]
or Coq [35]. Li et al. proposed a novel method to automatically
generate auxiliary invariants from a small reference instance
of protocols and construct a parameterized formal proof in the
theorem prover Isabelle [30]. The form of auxiliary invariants
they found is more straightforward and understandable when
compared with all the previous works.

As a summary, we can see that the trend in paramterized ver-
ification, in particularly for invariant learning, is to switch from
manual construction to automatic detection. As the automatic
methods being developed, the form of auxiliary invariants is
required to be more readable and understandable in order to
make contributions not only in formal verification, but also in
the fields of the protocol design and further research.

III. PRELIMINARIES

In this section, we present how to specify parameterized
protocols using one example, and briefly introduce the CMP
method for parameterized verification and the Aprioir algo-
rithm for association rule learning. In the end, we describe
the idea of symmetry reduction in model checking.

A. Parameterized protocols

Let P (N) be a parameterized protocol. If the parameter
N is assigned an exact value m, P (m) becomes an instance
of P (N). A complete protocol mainly consists of three parts:
type declarations and initialization, transition rules and desired
safety properties (i.e., in the form of invariants). To better
introduce these concepts, we take the Mutual Exclusion pro-
tocol1 written in the model checker Murphi’s language as an
example. In the rest of the paper, this protocol will serve as
a running example. The protocol describes a parameterized
system where N nodes share a resource and follow the
protocol to ensure its mutual exclusive access. Each node
maintains a record to mark its state and store the cached data.
The node state can be I (idle), T (try to enter critical region),
C (enter the Critical region) and E (exit the critical region).
Each node acts under the guidance of transition rules in the
protocol. The mutual exclusive access to the shared resource is
guaranteed by a semaphore x, which acts as a lock, ensuring
only one node can occupy the resource. The resource, in this
case, is some data in the memory (memDATA). Besides, an
auxiliary data (auxDATA) is used to keep a copy of the latest
data. Now, we elaborate three main parts of this protocol.

-- Configuration
parameters --
Const

NODENUM : 2;
DATANUMS: 2;

-- Type declarations --
Type

NODE: 1..NODENUM;
DATA: 1..DATANUMS;
state: enum

{I,T,C,E};
status: record

st: state;
data: DATA;

end;

-- State variables --
Var

n: array [NODE] of state;
x: boolean;
auxDATA: DATA;
memDATA: DATA;

ruleset d: DATA do
startstate

for i: NODE do
n[i]:= I;
n[i].data:=d;

endfor;
x:= true;
auxDATA:= d;
memDATA:=d;

endstartstate;
endruleset;

The above first part defines the variables that occur in the
protocol and their initial assignments. We can see that in this
example, the parameter is initially set to be 2, which means
there are 2 nodes in this instance. Variable n is an array-based
variable, which denotes 2 nodes and each of them contains a
state type. This kind of variables are local variables, compared
with global variables such as x, auxDATA and memDATA.

1To better explain our framework, we add data controls to the naive mutual
exclusion protocol [36].

ruleset i: NODE do
rule "rule_name"

guard part -- conjunction of predicates
==>

action part -- a set of statements
endrule;
endruleset;

Transition rulesets and rules are crucial in protocol spec-
ification. A transition rule mainly includes two parts: guard
and action. If the predicates in the guard are satisfied, the
statements in the action part can be executed. We can see that
the guard part is conjunction of predicates (e.g., see rule “Crit”
below), while the action part consists of a set of assignments.
There are five transition rules in the ruleset of the Mutual
Exclusion protocol.

ruleset i:NODE do
rule "Try"
n[i].st = I ==>
n[i].st:= T;

endrule;

rule "Crit"
n[i].st = T & x = true
==>
n[i].st:= C;
n[i].data:= memDATA;
x:= false;

endrule;

rule "Exit"
n[i].st = C ==>
n[i].st:= E;

endrule;

rule "Idle"
n[i].st = E ==>
n[i].st:= I;
x:= true;
memDATA:= n[i].data;

endrule;

rule "Store"
n[i].st = C ==>
auxDATA:= data;
n[i].data:= data;

endrule;
endruleset;

In the third part, desired properties such as safety properties
can be stated. Once they are not satisfied by the protocol,
a counterexample and its error trace will be generated by a
model checker (i.e., Murphi in the current paper). It means
the design of protocol needs to be adjusted to prevent such a
situation from happening. The safety properties of the Mutual
Exclusion protocol are:

invariant "CntrlProp"
forall i:NODE do
forall j:NODE do
i!=j->
(n[i].st=C->n[j].st!=C)

endfor; endfor;

invariant "DataProp"
forall i:NODE do
n[i].st=C->
n[i].data=auxDATA

endfor;

We can see the above description that there are two proper-
ties in this protocol. The first one states that it is not allowed
for any two nodes to enter the critical region at the same time.
While the second requires once a node is in the critical region,
the data needs to be synchronized to auxDATA as well. This
is because auxDATA is used to record the latest data.

Given the above Mutual Exclusion protocol, the model
checker Murphi will enumerate the entire state space explicitly
until no new reachable state can be explored or the properties
fail to hold on the protocol. Here, the term reachable state is
not the same with node’s state we defined in the first part, it
refers to one possible assignment for all the variables. In this
paper, for convenience, we will simply refer to the “reachable
state” as “state”. Relatively, a set of all possible reachable
states is regarded as reachable state set (abbrv. RS(P)).

(a) The original protocol P

(b) The abstracted protocol AP

Fig. 1. Illustration of the CMP method. For a parameterized protocol P
with N nodes, the basic idea is to retain M nodes and abstract the rest
nodes (NM+1, . . . , NN) as a single node NOther . The abstracted protocol
is denoted as AP .

Murphi starts from the initial states, which is prescribed by
initialization in the first part. Then, the Murphi randomly finds
a transition rule whose guard is satisfied and executes its action
part. This “find-execute” process will be iterated until either a
property is violated or no new reachable state can be found.

B. The CMP method

The “Parameterized abstraction and guard strengthening”
method, also known as CMP [10], [11] has been well studied
and applied to verify industrial protocols. Its main idea is
rather clear and easy to understand, as shown in Figure 1.
For a parameterized protocol P with N nodes, CMP retains
M nodes (e.g., M = 2), and abstracts the remaining nodes
(NM+1, . . . , NN) as a single node NOther . In general, the ab-
stracted protocol AP may fail to satisfy the desired properties
because it is too ‘permissive’ [11], so Murphi will generate
a counterexample and the error trace. The researchers need
to analyze the error trace and construct an auxiliary invariant
to restrict the behavior of NOther . This process stops when
the AP eventually satisfies the properties as well as all the
constructed auxiliary invariants.

The detailed implementation of the CMP method can be
divided into two steps: parameterized abstraction and guard
strengthening. We use the Mutual Exclusion protocol to ex-
plain how the method works.

1) Parameterized abstraction: This step abstracts the o-
riginal protocol P to an abstracted protocol AP manually.
To be more specific, for a transition rule, CMP will firstly
instantiate the parameterized indexes (e.g., i and j) as an
abstracted node Other , which is an unobservable node that
simulates the behavior of abstracted nodes NM+1, . . . , NN .
Then, it abstracts the local variables by eliminating them from
predicates in guard and statements in actions. After that, the
abstracted rules together with P consist of a new abstracted
protocol AP . Take the rule “Crit” as an example. First,
the parameter i is instantiated to Other , then the predicates
and statements relating to Other will be removed. So, after
abstraction, only the global variable x will remain. If after
abstraction, there is no statement left in action part of the

rule, the transition rule will be removed as well. Therefore,
after this step, the transition rules in the Mutual Exclusion
protocol will be abstracted to:

rule "ABS_Crit"
x = true ==>
x:= false;

endrule;

rule "ABS_Idle"
true ==> x:= true;

endrule;

rule "ABS_Store"
true ==>
x:= false;
auxDATA:= data;

endrule;

The guard of rules “ABS Idle” and “ABS Store” is set to
be true because there is no predicate left after abstraction.
After this step, we can see that the abstracted rules are too
permissive. For example, the global variable x, which serves
as a critical lock, can be set to available without any condition
(see rule “ABS Idle”). Thus, the guards of these rules need to
be strengthened.

2) Guard strengthening: In this step, the “counterexample-
guided” strengthening paradigm is executed iteratively [11]. It
depends on the model checker Murphi to check the protocol
instance, and once a counterexample occurs, researchers will
analyze its error trace and come up with an auxiliary invariant
to prevent it from happening.

C. Association rule learning

Association rules learning is a classical data mining al-
gorithm [37]. It was designed to mine correlations between
items in large databases. Let D = {t1, t2, . . . , tn} be a set
of transactions called the database and I = {i1, i2, . . . , im}
be a set of m items called itemset, each tk ∈ D contains a
subset of the items in I . An association rule is composed by
two different itemsets X and Y , where X is called antecedent
or left-hand-side (LHS) and Y consequent or right-hand-side
(RHS). It is defined as an implication of the form X → Y
where X,Y ∈ I . In this paper, we follow the original
definition in [37] to restrict Y only containing one item.

In order to select association rules from the set of all possi-
ble rules, constraints on various measures of significance and
frequency are used. The best-known constraints are minimum
thresholds on support and confidence. Support is an indication
of how frequently the itemset appears in the dataset. The
formula is defined as follow:

S(X) = P (X) = | {t ∈ D | X ⊆ t} |/|T | (1)

where X denotes an itemset, |t| denotes the number of
transaction that contains X , |T | represents the number of
transaction in the database. Confidence is an indication of how
often the association rule has been found to be true in the
database. It is defined as:

C(X → Y) = S(X,Y)/S(X). (2)

Mining association rules are usually required to satisfy both
a user-specified minimum support and a user-specified mini-
mum confidence. Given the minimum support and minimum
confidence, there are usually two steps to learn the expected

association rules: (1) mining frequent itemsets whose Support
is greater than the minimum support, and (2) mining asso-
ciation rules whose Confidence is greater than the minimum
confidence. In this paper, we adopt the Apriori algorithm [37]
to perform this learning process.

D. Symmetry reduction

In automatic verification of finite-state systems, the general
process is to enumerate all the reachable states of the system.
Yet, the major problem of this method is the state explosion
problem, i.e., the size of the state space grows rapidly with the
size of the system [38]. To address this problem, symmetry
reduction techniques have been developed [38]. The basic
idea is simple but effective: it utilizes the equivalence relation
between states to explore only one state per equivalence class.
Take the Mutual Exclusion protocol as an example. For two
processes A and B, the state where A is in the critical section
and B is waiting is equivalent to the state in which B is in
the critical section and A is waiting [38].

With the help of symmetry reduction, often the states space
can be reduced by over 90%, and the computational time
can be reduced by more than 40% according to statistical
results provided by [38]. Below we list the comparison of
the numbers of reachable states before (#states-b) and after
(#states-a) applying symmetry reduction in Table I. It is rather
clear that the usefulness of symmetry reduction technique
increases with the increasing size of original reachable sets.
Thus, we adopt this technique in our framework as well.

TABLE I
COMPARISON ON SCALES OF REACHABLE STATES SETS

Protocol #instance #states-b #states-a
MOESI 2 23 6
MESI 2 8 5
MutualEx 2 12 7
MutData 2 88 23
GERMAN 2 43,422 852
FLASH 3 764,100,000 1,350,226

IV. AN OVERVIEW OF OUR FRAMEWORK

In this section, we give an overview of our proposed
framework for automatic parameterized verification. There are
two main phases in our framework, as shown in Figure 2.
Part 1. Learning invariants. This phase aims at learning
auxiliary invariants by association rule learning. There are
three main steps in this part, including data collection and
preprocessing, learning association rule and selecting auxiliary
invariants. At first, an instance of protocol is given to the
model checker to generate the reachable state set. If the
instance fails when verifying the safety properties, then the
overall verification stops. Otherwise, the reachable state set is
converted to a dataset which is suitable for association rule
learning. This step is crucial and innovative (Section V-A).
Because of it, the learning algorithm can learn sufficiently
many invariants of high quality. Next, the association rule
learning is applied to this dataset, and a set of association rules
can be learned (Section V-B). Note that these association rules

are not necessarily invariants of the protocol, so a selection
step is needed with the help of a model checker (Section V-C).

Part 2. Strengthening and abstraction. Unlike the CMP
method, in this part, the guard strengthening (Section V-D)
is performed before parameterized abstraction (Section V-E).
Besides, different from the origianl “counterexample-guided”
paradigm, we propose an “invariant-guided” strengthening
paradigm, which avoids the laborious human effort and repeat-
ed strengthening process. After strengthening and abstraction,
the resulting abstracted protocol is subjected to the model
checker (Section V-F). Note that the invariants which are used
to strengthen the guard of rules also need to be verified as true
invariants. If the protocol passes the verification step, then the
overall parameterized verification has finished. Otherwise, the
resulting protocol is still too “permissive”, which means more
auxiliary invariants are needed, so the next round of invariant
learning will start (moving to step 1 of the whole framework).

V. IMPLEMENTATION DETAILS

In this section, we present the technical details of our
framework. We use the Mutual Exclusion protocol as a running
example to explain its realization.

A. Data Collection and Preprocessing

We collect the reachable state set of the Mutual Exclusion
protocol (with NODE NUM = 2, DATA NUM = 2) from the
model checker Murphi and list a few of its states below.

State 1:
n[1].st:I
n[1].data:1
n[2].st:I
n[2].data:1
x:true
auxDATA:1
memDATA:1

State 2:
n[1].st:I
n[1].data:2
n[2].st:I
n[2].data:2
x:true
auxDATA:2
memDATA:2

State 3:
n[1].st:T
n[1].data:1
n[2].st:I
n[2].data:1
x:true
auxDATA:1
memDATA:1

State 4:
n[1].st:I
n[1].data:1
n[2].st:T
n[2].data:1
x:true
auxDATA:1
memDATA:1

Recall the concepts of “transaction” and “itemset” in Sec-
tion III-C, for the reachable state set, if each state represents a
transaction, then what about itemset? Intuitively, every pair of
variable-value (e.g., n[1].st = I) can be regarded as an item,
thus all possible pairs make up the itemset. However, this
method may ignore some crucial relations. For example, for
the variable auxDATA, its exact value does not really matter,
but its relation with other variables like n[1].data is important.
In other words, for some variables, the significance of the
relation with other variables goes beyond its exact assignment.
Given this intuition, we need to take pairs of variables into
account. Nevertheless, assume there are n = 15 variable, then
the possible combinations will be n(n − 1)/2 = 105, while
not all of them are really useful. Thus, we need to figure out
how to construct a sufficient itemset effectively.

After a few attempts, we find that the predicates in the
guards of protocols rules are ideal items. They are atomic,
and given a reachable state they are decidable. Furthermore,
we extend this idea to predicates in the safety properties as
well. The entire searching process works as follows:

WP(A, f) ≡ f [v1 7→ e1, . . . , vn 7→ en]

Fig. 2. An illustration of our framework.

where WP is the weakest precondition operator, WP(A, f)
substitutes each occurrence of a variable v` by the correspond-
ing term e` in formula f . Initially, our algorithm computes

A0 =
⋃
{atoms(f), f ∈ ({guard(r) | r ∈ R} ∪ invs)},

where atoms(f) returns atomic predicate of f , and R and
invs are the set of protocol rules and safety properties under
verification; then it continues to compute

Ai+1 = {WP(action(r), f), f ∈ Ai, r ∈ R},

until Ai+1 = Ai. Finally, the returned An (n being the final
step) is the set of atomic predicates and can be used as items.

Then, the reachable state set can be transformed to a dataset
where the values in the first line are the atomic predicates, and
the following values in each row means the presence of the
predicate in the corresponding state (row).

B. Learning association rules

We adopt the Apriori algorithm to learn association rules
from the constructed dataset. We add a constrain K to the size
of frequent itemset, which sets an upper bound. The algorithm
is presented as below, which is almost the same as the original
Apriori algorithm [37], [39].

Algorithm 1: K −Apriori(D, θ,K)

Input: a dataset D, minimum support θ, maximum
frequent itemset size K

Output: a set of frequent itemsets
- Ck: Candidate itemset of size k
- Lk: frequent itemset of size k
- L1: {itemset}

1: for k = 1; k ≤ K; k ++ do
2: Ck+1 = candidates generated from Lk;
3: for each t ∈ D do
4: increment the count of all candidates in Ck+1

that are contained in t
5: end for
6: Lk+1 ← candidates in Ck+1 that satisfy θ
7: end for
8: return

⋃
k Lk;

After performing the Apriori algorithm, a set of association
rules can be learned for the Mutual Exclusion protocol, part
of the rules are listed below:

asR1:n[1].st!= I & n[1].st = C -> x = false
asR2:n[1].st!= T & n[1].st = E -> x = false
asR3:n[1].st = T & n[2].st = T -> x = true
asR4:n[1].st = E & n[2].st = I -> n[1].data=auxDATA
asR5:n[1].st!= T & n[2].st = C -> x = false
asR6:n[1].st!= C & n[2].st = E -> n[2].data=auxDATA

In our framework, we need to set the size of frequent itemset
for the sake of feasibility and reducing time consumption.
Empirically, we have carried out a series of experiments with
different sizes of K starting from 2, and the experiments show
that the association rules that learned from 3-frequent itemset
are always sufficient. Besides, when increasing the size of
frequent itemset, it takes too much time to learn the association
rules, this leads us to set K as small as possible (3 in the
current paper). Second, we need to figure out what is the best
minimum support for protocols. It is generally practical to
set minimum support as small as possible, i.e., 0.0, so that
all possible frequent itemset will be considered. Experiments
show that the minimum support rate does not largely affect
the verification results for small protocols, while its effect
on larger protocols cannot be ignored – with larger rates the
protocols might fail to be strengthened and verified with the
learned association rules. For minimum confidence, it needs
to ensure the certainty of association rules, so we set it as 1.0
to guarantee the highest certainty of the association rules.

C. Selecting auxiliary invariants

In the previous step, the minimum confidence of association
rules is set to be 1.0, this does not indicate that they are
invariants of the protocol. There are two reasons. First, the
dataset from which association rules are learned is transformed
from the reachable state set of a small protocol instance, so
the rules may not be true for larger instances. For example,
see “asR3” in Section V-B, this association rule has 100%
confidence as there are only 2 nodes in the instance. However,
in a 3-node instance, this rule will be violated if n[3].st = E.
In other words, this association rule is not a true invariant.
Second, for large protocols like FLASH whose state space is
huge, we adopt symmetry reduction technique to scale down
the searching space. This technique saves verification time and
space, but at the same time the pruned states may draw some
association rules that are incorrect in the reachable state set of
the instance. This type of association rules need be removed.

To remove above-mentioned association rules, we use a
model checker to filter them. At first, we treat all of the

learned associate rules as invariants of the original protocol
instance and submit them to the model checker. Once some of
them are violated, they will be removed. Then, we increase
the size of the protocol instance, and repeat the previous
step. The iteration stops until no association rules can be
removed or the size of the reachable state set reaches a limit,
which is set to be 10G. The remaining association rules are
considered as auxiliary invariants. Note that these auxiliary
invariants are still not guaranteed to be invariants, and they
need to be verified in the final abstracted protocol. Note some
auxiliary invariants for the Mutual Exclusion protocol are show
in Figure 3.

D. Guard strengthening

Unlike the counterexample-guided’ strengthening in the o-
riginal CMP method, we propose an invariant-guided’ paradig-
m, which strengthens the guards of protocol rules in one step.
In the former paradigm, from the original protocol instance the
abstraction can make the abstracted protocol too “permissive”
resulting in counterexamples. Researchers need to analyze
the error traces of a counterexample and add constrains to
the guard of protocol rules in order to avoid such a coun-
terexample. After several attempts of the above operation, the
reachable state set will be constrained in a safe region. On the
contrary, our paradigm is more direct. It expands the reachable
set to a safe boundary, avoiding repeated attempts. Besides, our
paradigm allows us to automatically strengthen the abstracted
protocol instead of relying on experts’ analysis.

Recall that the guard of a protocol rule is a conjunction
of predicates, and the auxiliary invariants are in form of
implication, where the LHS is a set of predicates and the RHS
is an atomic predicate. At first, for each rule, we select those
auxiliary invariants whose LHS can be implied by the guards.
Then, we add the RHS into the guard. We repeat the above two
steps until no more predicates can be added into the guard.

Take the transition rules “Idle” and “Store” of the Mutual
Exclusion protocol as examples. As shown in Figures 3(a)
and 3(b), the guard of rule “Idle” n[i].st = E could imply
the LHS of three auxiliary invariants as shown at the bottom
of Figure 3(a). Then we add the RHS of these invariants to
the guard of this rule (as shown in Figure 3(b) in blue). Note
that the RHS of the first two auxiliary invariants include the
parameter j, so they need to be generalized to all parameters;
while the last one include the same parameter i as the ruleset
definition, so it can be added directly. Rule “Store” can be
strengthened in the same way (see Figures 3(d) and 3(e)).

E. Parameterized abstraction

The purpose of this step is to remove the predicates and
statements related to the parameters. If a rule contains more
than one parameter, then they will be abstracted one by one.
Again, take rule “Store” as an example. In Figure 3(e), the
parameter regarding abstract object (i.e., NODE) is i, so
predicates n[i].st = C and n[i].data = auxDATA in its guard
will be abstracted away, as well as the statement n[i].data :=

Fig. 3. Original, strengthened and abstracted protocol rules “Idle” and “Store”.

d in action will also be removed, resulting in the abstracted
rule “ABS Store” in Figure 3(f).

However, if we directly abstract rule “Str Idle” in Fig-
ure 3(b), the safety properties will be violated since the
behavior of other nodes will be changed due to the abstraction.
For example, assume we directly remove the predicates and
statements regarding i in rule “Str Idle”, resulting in rule “AB-
S Idle” (Figure 3(b) without the part memDATA := n[i].data).
Now assume the system works according to the abstracted rule
“ABS Idle” and “ABS Store” as well as the original transition
rules, when memData is 1 and the node Other is in the
critical region, it changes the auxData from 1 to 2 according
to rule “ABS Store” then exits the critical region according
to the rule “ABS Idle”. Then, another normal node enters
the critical region and reads memData , which is 1. At this
moment, the property “DataProp” will be violated because
the node Other has already changed auxData to 2, while
the changed data has not been synchronized to memData .
Such mistakes introduced by direct abstraction needs to be
prevented in order to make sure normal nodes hold the original
properties.

We thus introduce a replacement link to deal with the
statements in the action part. Links are built between a local
variable and global variable only if they are the RHS of
auxiliary invariants used in guard strengthening and linked
by the equal sign. For instance, for rule “Str Idle” in Fig-
ure 3(b), among the RHS of three used auxiliary invariants,
only n[i].data= auxDATA satisfies the requirement, so the
replacement link could be built as shown at the bottom of
Figure 3(c). Next, we need to check the right side of each
statement if it contains local variables and a replacement link
exists for the local variables, and then we replace them with
the corresponding global variables. For example, as shown in
Figure 3(b), the right side of the last statement is n[i].data,
which is a local variable and appears in the replacement link,
so in Figure 3(c), n[i].data is replaced by auxDATA according
to the replacement link. Finally, parameterized abstraction is
carried out on all the protocol rules. Note that if there are more

TABLE II
EXPERIMENTAL RESULTS

Protocol Instance # of RS # of assoRules # of auxInvs # of used auxInvs # of RS(abs) Time (min) Result
MOESI 2 6 736 10 5 7 0.03 X
MESI 2 5 144 8 5 5 0.03 X
MutualEx 2 12 656 12 3 18 0.12 X
MutData 2 88 540 12 6 768 0.12 X
GERMAN 2 852 21,202 224 37 1,314 0.83 X
FLASH 3 1,350,226 234,578 1,638 331 26,962,920 384.89 X

than two parameters (e.g., i and j) in a rule, then there will
be three situations: 1) i : Other , j: normal node; 2) i: normal
node, j : Other ; and 3) i: Other , j : Other . The first two
situations can be treated symmetrically. When parameter i is
instantiated by node Other , then the predicates and statements
on it will be abstracted as in case 2), while those on j are
retained. For the last situation, the predicates and statements
on both i and j need to be abstracted.

F. Verification

In this final step, the abstracted protocol needs to be model
checked. The size of instance remains the same as the one from
which the reachable state set is generated. The used auxiliary
invariants need to be verified as invariants in this step as well.

VI. EVALUATION

We have implemented our framework [?] and applied it
to several typical parameterized cache coherence protocols.
Among these protocols, Mutual Exclusion, MOESI, MESI are
small-scale protocols, while German and FLASH protocols
are relatively more complicated and large-scale protocols.2

German is a cache coherence protocol devised by Steven
German in 2000 [40], which is now a common example
in research papers on parameterized verification [8], [11],
[25], [41], [42], while FLASH is much more complex and
realistic than German. It has more than 67 million states when
instantiated with four processes. As Chou et al. pointed out
in [11], “if the method works on FLASH protocol, then there
is a good chance that it will also work on many real-world
cache coherence protocols”, this marks FLASH as an industrial
benchmark for parameterized verification.

Our experimental results are summarized in Table II. The
configuration indicates the size of benchmarks. We can see
from the table that when the parameter is set to be 2, the first
four protocols are quite small, with less than 100 reachable
states. German is a bit larger, with more than 800 states. While
for 3-node FLASH, the number of reachable states is more
than 1,500 times that of German. How the number of nodes
is set is mainly due to the architecture of the protocols. If the
protocol only contains homogeneous nodes, then the parameter
is set to be 2, mainly thanks to the symmetry in the protocols.
Sometimes, a protocol also contains a heterogeneous node
(e.g., FLASH protocol contains a ‘Home’ node), then the
parameter is set to be 3 – there are 2 normal nodes and one
‘Home’ node.

2The versions of German and FLASH protocols we use are the same as
those used in Chou et al.’s work [11].

The statistics includes four types of data, which are the
number of learned association rules, the number of auxiliary
invariants, the number of used invariants, and the size of the
reachable state set of the corresponding abstracted protocols.
We can see that even from the reachable state set of small-
scale protocols, a considerable amount of association rules
can be learned. Yet after model checking these rules, only
small proportion of them (approximately 1%) will remain,
regarded as auxiliary invariants. Then, less than half of them
can next be used to actually strengthen the protocol rules.
After strengthening and abstraction, the abstracted systems
can be converged within a reasonable and acceptable scale.
Regarding the total amount of time consumption, we can see
that the small-scale protocols can be verified with few seconds,
followed by German taking less than a minute. Whereas,
FLASH takes about 12 hours to complete the verification.
Overall most time is consumed by selecting invariants and
verifying abstracted systems in our framework, except for
FLASH, where it takes more than half of the total amount of
time to learn association rules – mainly due to its enormous
reachable state set. Although the entire verification of FLASH
takes a considerable amount of time, we believe that this can
be accelerated by allocating more processors in parallel.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a learning-based framework
to conduct parameterized verification automatically with the
support of an association rule learning algorithm. The auxiliary
invariants we learned are in a rather simple but powerful form
(i.e., implications). Besides, we proposed a new invariant-
guided strengthening paradigm, which is more effective than
the counterexample-guided paradigm in the literature. Our
framework has been successfully applied to several parameter-
ized verification benchmarks including the FLASH protocol.
The novelty of our work lies in the two aspects: (1) the
combination of learning algorithms and parameterized veri-
fication; and (2) the invariant-guided strengthening paradigm,
which is an effective strengthening strategy and provides a
new perspective to the original CMP method.

In future, we plan to perform more case studies to further
evaluate our framework. We also want to develop techniques or
heuristics to improve the quality of learned association rules
within our framework. Next, we want to extend the ability
of our framework to prove not only safety properties but
also liveness properties. Furthermore, we will also investigate
other learning algorithms, and explore more possibilities in
combining them with parameterized verification.

Acknowledgments Yongjian Li is supported by grant
61672503 from National Natural Science Foundation and
grant 2017YFB0801900 from the National Key Research and
Development Program in China.

REFERENCES

[1] S. Conchon, A. Goel, S. Krstic, A. Mebsout, and F. Zaı̈di, “Invariants
for finite instances and beyond,” in Formal Methods in Computer-Aided
Design (FMCAD’13). IEEE CS, 2013, pp. 61–68.

[2] P. A. Abdulla, A. P. Sistla, and M. Talupur, “Model checking parame-
terized systems,” in Handbook of Model Checking. Springer, 2018, pp.
685–725.

[3] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite-state concurrent systems using temporal logic specifications,”
ACM Transactions on Programming Languages and Systems, vol. 8,
no. 2, pp. 244–263, 1986.

[4] O. Lichtenstein and A. Pnueli, “Checking that finite state concurrent
programs satisfy their linear specification,” in Proc. 12th ACM Sym-
posium on Principles of Programming Languages (POPL’85). ACM
Press, 1985, pp. 97–107.

[5] J. Queille and J. Sifakis, “Specification and verification of concurrent
systems in CESAR,” in Proc. 5th International Symposium on Program-
ming, ser. Lecture Notes in Computer Science, vol. 137. Springer, 1982,
pp. 337–351.

[6] K. R. Apt and D. Kozen, “Limits for automatic verification of finite-state
concurrent systems,” Information Processing Letters, vol. 22, no. 6, pp.
307–309, 1986.

[7] Y. Lv, H. Lin, and H. Pan, “Computing invariants for parameter ab-
straction,” in Proc. 5th IEEE/ACM International Conference on Formal
Methods and Models for Codesign (MEMOCODE’07). IEEE CS, 2007,
pp. 29–38.

[8] A. Pnueli, S. Ruah, and L. D. Zuck, “Automatic deductive verifica-
tion with invisible invariants,” in Proc. 7th International Conference
Tools and Algorithms for the Construction and Analysis of System-
s, (TACAS’01), ser. Lecture Notes in Computer Science, vol. 2031.
Springer, 2001, pp. 82–97.

[9] T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. D. Zuck, “Parameterized veri-
fication with automatically computed inductive assertions,” in Proc. 13th
International Conference on Computer Aided Verification (CAV’01), ser.
Lecture Notes in Computer Science, vol. 2102. Springer, 2001, pp.
221–234.

[10] K. L. McMillan, “Parameterized verification of the FLASH cache
coherence protocol by compositional model checking,” in Proc. 11th
IFIP WG 10.5 Advanced Research Working Conference on Correct
Hardware Design and Verification Methods (CHARME’01), ser. Lecture
Notes in Computer Science, vol. 2144. Springer, 2001, pp. 179–195.

[11] C. Chou, P. K. Mannava, and S. Park, “A simple method for pa-
rameterized verification of cache coherence protocols,” in Proc. 5th
International Conference on Formal Methods in Computer-Aided Design
(FMCAD’04), ser. Lecture Notes in Computer Science, vol. 3312.
Springer, 2004, pp. 382–398.

[12] S. Krstic, “Parameterized system verification with guard strengthening
and parameter abstraction,” Proc. 4th Workshop on Automated Verifica-
tion of Infinite State Systems (AVIS’05), 2005.

[13] X. Chen and G. Gopalakrishnan, “A general compositional approach
to verifying hierarchical cache coherence protocols,” Technical Report,
School of Computing, University of Utah, Tech. Rep., 2006.

[14] A. Tiwari, H. Rueß, H. Saı̈di, and N. Shankar, “A technique for
invariant generation,” in Proc. 7th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’01),
ser. Lecture Notes in Computer Science, vol. 2031. Springer, 2001, pp.
113–127.

[15] S. Conchon, A. Goel, S. Krstic, A. Mebsout, and F. Zaı̈di, “Cubicle:
A parallel smt-based model checker for parameterized systems - tool
paper,” in Proc. 24th International Conference on Computer Aided
Verification (CAV’12), ser. Lecture Notes in Computer Science, vol.
7358. Springer, 2012, pp. 718–724.

[16] K. R. Apt and D. Kozen, “Limits for automatic verification of finite-state
concurrent systems,” Information Processing Letters, vol. 22, no. 6, pp.
307–309, 1986.

[17] M. C. Browne, E. M. Clarke, and O. Grumberg, “Reasoning about
networks with many identical finite state processes,” Information and
Computation, vol. 81, no. 1, pp. 13–31, 1989.

[18] S. M. German and A. P. Sistla, “Reasoning about systems with many
processes,” Journal of the ACM, vol. 39, no. 3, pp. 675–735, 1992.

[19] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Ghara-
chorloo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta,
M. Rosenblum, and J. L. Hennessy, “The stanford FLASH multi-
processor,” in Proc. International Symposia on Computer Architecture
(ISCA’98). ACM Press, 1998, pp. 485–496.

[20] P. A. Abdulla, F. Haziza, and L. Holı́k, “All for the price of few,” in
Proc. 14th International Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI’13), ser. Lecture Notes in Computer
Science, vol. 7737. Springer, 2013, pp. 476–495.

[21] A. Kaiser, D. Kroening, and T. Wahl, “Dynamic cutoff detection in
parameterized concurrent programs,” in Proc. 22nd International Con-
ference on Computer Aided Verification (CAV’10), ser. Lecture Notes in
Computer Science, vol. 6174. Springer, 2010, pp. 645–659.

[22] Y. Li, K. Duan, D. N. Jansen, J. Pang, L. Zhang, Y. Lv, and S. Cai,
“An automatic proving approach to parameterized verification,” ACM
Transactions on Computational Logic, vol. 19, no. 4, pp. 27:1–27:25,
2018.

[23] E. M. Clarke, D. E. Long, and K. L. McMillan, “Compositional model
checking,” in Proc. 4th Annual Symposium on Logic in Computer
Science (LICS’89). IEEE CS, 1989, pp. 353–362.

[24] M. Talupur and M. R. Tuttle, “Going with the flow: Parameterized ver-
ification using message flows,” in Proc. Formal Methods in Computer-
Aided Design (FMCAD’08). IEEE CS, 2008, pp. 1–8.

[25] S. K. Lahiri and R. E. Bryant, “Constructing quantified invariants
via predicate abstraction,” in Proc. 5th International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCAI’04),
ser. Lecture Notes in Computer Science, vol. 2937. Springer, 2004, pp.
267–281.

[26] E. Clarke, M. Talupur, and H. Veith, “Environment abstraction for
parameterized verification,” in Proc. 7th International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCAI’06),
ser. Lecture Notes in Computer Science, vol. 3855. Springer, 2006, pp.
126–141.

[27] A. Cohen and K. S. Namjoshi, “Local proofs for global safety proper-
ties,” Formal Methods in System Design, vol. 34, no. 2, pp. 104–125,
2009.

[28] O. Grinchtein, M. Leucker, and N. Piterman, “Inferring network in-
variants automatically,” in Proc. 3rd International Joint Conference
on Automated Reasoning (IJCAR’06), ser. Lecture Notes in Computer
Science, vol. 4130. Springer, 2006, pp. 483–497.

[29] K. L. McMillan, “Quantified invariant generation using an interpolating
saturation prover,” in Proc. 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’08),
ser. Lecture Notes in Computer Science, vol. 4963. Springer, 2008, pp.
413–427.

[30] Y. Li, K. Duan, Y. Lv, J. Pang, and S. Cai, “A novel approach to
parameterized verification of cache coherence protocols,” in Proc. 34th
IEEE International Conference on Computer Design (ICCD’16). IEEE
CS, 2016, pp. 560–567.

[31] N. Bjørner, A. Browne, and Z. Manna, “Automatic generation of
invariants and intermediate assertions,” Theoretical Computer Science,
vol. 173, no. 1, pp. 49–87, 1997.

[32] G. J. Holzmann, Design and Validation of Computer Protocols. Prentice
Hall, 1991.

[33] X. Chen, Y. Yang, G. Gopalakrishnan, and C.-T. Chou, “Reducing
verification complexity of a multicore coherence protocol using as-
sume/guarantee,” in Proc. 6th International Conference on Formal
Methods in Computer Aided Design (FMCAD’06). IEEE CS, 2006,
pp. 81–88.

[34] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL - A Proof
Assistant for Higher-Order Logic, ser. Lecture Notes in Computer
Science. Springer, 2002, vol. 2283.

[35] Y. Bertot and P. Castéran, Interactive Theorem Proving and Program
Development - Coq’Art: The Calculus of Inductive Constructions, ser.
Texts in Theoretical Computer Science. An EATCS Series. Springer,
2004.

[36] S. Conchon, D. Declerck, and F. Zaı̈di, “Cubicle- W: Parameterized
model checking on weak memory,” in Proc. 9th International Joint
Conference on Automated Reasoning (IJCAR’18), ser. Lecture Notes
in Computer Science, vol. 10900. Springer, 2018, pp. 152–160.

[37] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” in Proc. ACM International

Conference on Special Interest Group on Management of Data (SIG-
MOD’93), vol. 22, no. 2. ACM Press, 1993, pp. 207–216.

[38] C. N. Ip and D. L. Dill, “Better verification through symmetry,” Formal
Methods in System Design, vol. 9, no. 1/2, pp. 41–75, 1996.

[39] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules
in large databases,” in Proc. 20th International Conference on Very Large
Data Bases (VLDB’94), vol. 1215. Morgan Kaufmann, 1994, pp. 487–
499.

[40] S. M. German, “Personal communications,” 2000.
[41] K. Baukus, Y. Lakhnech, and K. Stahl, “Parameterized verification

of a cache coherence protocol: Safety and liveness,” in Proc. 3rd
International Workshop on Verification, Model Checking, and Abstract
Interpretation (VMCAI’02), ser. Lecture Notes in Computer Science, vol.
2294. Springer, 2002, pp. 317–330.

[42] E. A. Emerson and V. Kahlon, “Exact and efficient verification of param-
eterized cache coherence protocols,” in Proc. 12th Advanced Research
Working Conference Correct Hardware Design and Verification Methods
(CHARME’03), ser. Lecture Notes in Computer Science, vol. 2860.
Springer, 2003, pp. 247–262.

