
1

Symbolic Analysis of an Electric Vehicle Charging
Protocol

Li Li⇤, Jun Pang†, Yang Liu‡, Jun Sun§, Jin Song Dong⇤
⇤School of Computing, National University of Singapore, Singapore

†FSTC and SnT, University of Luxembourg, Luxembourg
‡School of Computer Engineering, Nanyang Technological University, Singapore

§Information System Technology and Design, Singapore University of Technology and Design, Singapore

Abstract—In this paper, we describe our analysis of a recently
proposed electric vehicle charing protocol. The protocol builds
on complex cryptographic primitives such as commitment, zero-
knowledge proofs, BBS+ signature and etc. Moreover, interesting
properties such as secrecy, authentication, anonymity, and lo-
cation privacy are claimed on this protocol. It thus presents a
challenge for formal verification, as no single existing tool for
security protocol analysis support for all the required features.
In our analysis, we employ and combine the strength of two state-
of-the-art symbolic verifiers, Tamarin and ProVerif, to check all
important properties of the protocol.

I. INTRODUCTION

Electric vehicles are promising and futuristic automobiles
which use electric batteries for clean energy. They dominate
conventional vehicles from several aspects such as air pollution
reductions, less power emissions and lower oil dependencies.
In addition, Vehicle-to-Grid (V2G) is proposed to balance
electricity load for electric system. In V2G, it is possible
and highly recommended to do charging when the demand is
low, especially after midnight, and to send the electricity back
(recharging) to the system during the peak time. Despite these
advantages, one of the concerns is the potential privacy leakage
along with the charging route. Since energy storage devices
nowadays cannot meet the requirement for long-term driving,
electric vehicles need to visit charging stations frequently
for energy supplying. As a consequence, the location privacy
disclosed along with the charging and recharging behaviors
has drawn particular attentions.

Due to this specific application requirement, a privacy-
preserving electric vehicle charging protocol (ECP) has been
recently designed by Liu et al. [1]. In this protocol, various
complex cryptographic primitives are used and many security
properties are claimed. Firstly, the user could make commit-
ment to some data and expose the key later to open the
commitment. It requires that the secrecy properties of the keys
are related to the order of events happened in the protocol.
Specifically, the commitment scheme requires that the private
opening keys for the commitments should be unknown to the
supplier until the user exposes them explicitly in the protocol.
Secondly, this protocol supports the two-way transmission,
which means the users are allowed to charge their vehicle at the
stations, as well as recharge the electricity back to the stations
with their balance refunded. This is achieved using multiple

generators in the commitment scheme which is homomorphic,
such that operations could be made on commitment to change
the balance without knowing the explicit value. In addition,
the supplier is potentially dishonest in this protocol. Injective
agreement between the user and the supplier should always
be guaranteed, which ensures that the supplier could only
charge the users just as he should. Fourthly, the protocol is
stateful in which manipulations over global mutable state are
required. In this protocol, each user gets an account state after
the registration. He needs to use the information stored in the
state to communicate with the supplier in the later sessions and
update them after each successful transaction.1 Lastly, privacy
properties such as anonymity and location privacy should be
preserved by the protocol against the supplier. Anonymity
makes sure that the supplier could not get any partial infor-
mation about the users when they charge and recharge at the
stations. Meanwhile, location privacy ensures that the supplier
could not identify the station where users perform charing or
recharging. In this protocol, privacy properties are achieved by
using the zero-knowledge proofs and BBS+ signature [2] with
commitment scheme.

Even though most of security protocol are designed carefully
and manual proofs are given along with their publication, the
protocols as well as their proofs are still proven to be error-
prone. This can be well illustrated by the famous Needham-
Schroeder public-key protocol [3], in which a security flaw
was found by Gavin Lowe 17 years after its publication [4].
Therefore, automatic verification is very helpful for ensuring
the correctness or finding attack on security protocols. In this
paper, we thoroughly perform a formal analysis for the electric
vehicle charging protocol [1]. As many symbolic tools, such
as Scyther [5], Tamarin [6], ProVerif [7], StateVerif [8], and
Athena [9] have been developed for automatic analysis of
security protocols using different approaches, selecting the
right techniques and tools to verify a complex protocol such
as [1] is non-trivial. Due to the number of security and privacy
properties claimed by the protocol, no single protocol verifier
could give a complete verification of the protocol at present.
Thus, we combine the verification capacities from Tamarin
and ProVerif, to give a thorough verification of the protocol:
Tamarin [6] can handle stateful protocols naturally and allows

1As a result, some security protocol checkers could not terminate or even
specify this protocol because of the infinite execution trace involved.

Registration

Charging Recharging

Statement

Information Center

Station Station

Information Center

Fig. 1. Protocol Overview

us to check event order related secrecy and authentication
properties, while ProVerif [7] can check observational equiva-
lence [10] so that we use it for checking privacy properties.

Our contributions. First, we present a study of a few state-of-
the-art symbolic tools for security protocol analysis and discuss
their strength and weakness. We then propose to combine the
verification capacities of Tamarin and ProVerif to analyze the
electric vehicle charging protocol, in which secrecy, authenti-
cation and privacy properties all play important roles. To the
best of our knowledge, this is the first work to use Tamarin and
ProVerif together for analyzing a single protocol. We formally
define the properties claimed by the protocol and give their
verification results in Tamarin and ProVerif.

Structure of the paper. In Section II, we present the structural
overview for this protocol, the cryptographic primitives used
in the protocol and the properties required by this protocol.
We then describe and compare four state-of-the-art security
protocol verifiers in details and address the reasons why we
choose ProVerif and Tamarin as the verification tools for this
protocol in Section III. In Section IV, we will illustrate the
modeling in Tamarin along with the verification for secrecy
and authentication properties. In Section V, we will show how
we specify protocol in ProVerif as well as the anonymity and
privacy properties checked. Finally, we draw conclusions and
discuss about the future work in Section VI

II. THE PROTOCOL

In this paper, we perform formal verification for the prop-
erties claimed by an electronic vehicle charging protocol [1].
This protocol is designed to protect the users’ privacy, e.g.,
anonymity and unlinkability, against the supplier even when
they frequently charge and recharge at the stations. It consists
of four sub-routines such as registration, charging, recharging
and statement, whose overall structure is shown in Figure 1. 2

Registration. Firstly, the users need to register at the informa-
tion center. They show their identities to the supplier and pay

2The dash rectangles represent the anonymous charging and recharging
operations taking place at the stations.

a default deposit to open their accounts. The supplier then give
each user a token in return with his balance embedded inside.

Charging and Recharging. During the charging and recharging
phases, the users provide their token to the station in an
anonymous way. After checking the token, the station will
update the token and send it back to the user. Since the
station can record the information he receives from the users,
the charging and recharging transactions should be taken in a
partially blind way.

Statement. When the balance in the user’s account is running
low, the users could go to the information center again to
disclose their identities and top-up money directly into their
accounts.

A. Cryptographic Primitives
To achieve the desired properties, various cryptographic

primitives have been used in the protocol, including commit-
ment, zero knowledge proof, and BBS+ signature combined
with bilinear pairing.

Commitment. This protocol used the well known commitment
scheme developed by Pedersen [11], in which a secret opening
value t is chosen randomly by the committer to compute the
commitment c over a tuple of public values (x0, x1, . . . , xn

)
as C(x0, x1, . . . , xn

, t) = g

x0
0 g

x1
1 . . . g

xn
n

g

t

n+1. t is unknown to
the public at first. When the committer wants to prove that c is
the commitment for (x0, x1, . . . , xn

) he made, he could reveal
the opening value t so that everyone can test if the following
equation holds

C (x0, x1, . . . , xn

, t)
?
= c.

It has been proven that given a commitment c, no polynomial
algorithm exists to find the opening value t with respect
to (x0, x1, . . . , xn

) [12], which means only the committer
could open the commitment c. Since the commitment scheme
is homomorphic, the multiplying of two commitments will
give a new commitment with its opening value equals to the
sum of the openings from the formers. In this protocol, the
commitment is constructed on the basis of four independent
generators in a cyclic group G denoted as g1, g2, g3, g4 2 G
and we have:

C (x0, x1, x2, t) = g0
x0
g1

x1
g2

x2
g3

t

Zero-Knowledge Proof. As the protocol needs to preserve
the privacy properties, the user could not send the datas such
as signatures, balances and etc. to the supplier directly. As a
result, several zero-knowledge proofs are used in this protocol.
Zero knowledge proof protocols generally could be represented
by PK{(s0, . . . , sn) : f0 ^ . . . ^ f

m

} where PK is the proof
given, (s0, . . . , sn) are the private informations and f0 . . . fm

are the targets the prover wants to prove. As we treat the
zero knowledge proofs as black boxes in the verification, we
modeled them as functions with two parts of information.
One is the public information pub and another is the private
information pvt . The prover generates the proof based on both

2

of the public and private information denoted as prf (pub, pvt).
To check the proof, the verifier feeds the public information
and the proof into the verification function in the form of

verif (pub, prf (pub, pvt)) = true,

which will return true only when they are correctly matched.
Because the prover could give the proof only if he knows the
private information, the verifier could then be sure that the
prover has the private information he claimed.

BBS+ Signature with Bilinear Pairing. In this protocol, the
BBS+ signature proposed by Au et al. [2] is employed. It
uses an additional generator g 2 G. The BBS+ signature
allows the signer to produce signature in a partially blind way.
Specifically, the signer could compute a signature denoted as
A(c, e, r) over a commitment c without knowing the values
encoded in c by

A(c, e, r) = (g ⇤ c)
1

e+r
, (1)

where e is a fresh random number, r is the long-term private
signing key of the signer, and w = g

r is the respective long-
term public verification key. To verify the signature, a bilinear
pairing function ê is employed because of its feature such as
ê(ga, hb) = ê(g, h)ab. As a result, everyone could verify the
signature by testing

ê(A(c, e, r), w ⇤ ge) ?
= ê(g ⇤ c, g). (2)

B. Protocol Overview
We give detailed descriptions for the four sub-routines of

the protocol as follows.

Registration. Before doing payment at the stations, the users
need to go to the information center to create their account. At
the information center, each user discloses his identity I and
pays a fixed deposit D to the supplier. Additionally, he freshly
chooses random numbers y

0
, s and sends c0 = g

y

0

0 g

s

3 along
with a zero knowledge proof p = PK1{(y0, s) : c0 = g

y

0

0 g

s

3}
to the supplier. After receiving I , c0 and p, the supplier
checks the identity and verifies the proof p and computes
A = (c0gg

y

00

0 g

I

1g
D

2)
1

e+r according to (1) where y

00 and e are
fresh random numbers. Since the opening of g

y

00

0 g

I

1g
D

2 is 0,
the opening of the commitment encoded in A is the same as
of c0. When the user gets A, y00 and e from the supplier, he
could verify the signature using (2) with c = c0g

y

00

0 g

I

1g
D

2 . If
the signature is verified successfully, the user stores the tuple
(A, e, y

0 + y

00
, I,D, s) for later operations.

Charging. Charging operations are conducted at the stations
with users’ privacy preserved. Initially, the user has the tuple
(Ã, ẽ, ỹ, I, B̃, s̃) stored in his device. Firstly, the user randomly
picks y

0 and s to compute the commitment c0 = g

y

0

0 g

I

1g
B̃

2 g

s

3
and sends it as well as s̃ to the supplier together with a
zero knowledge proof p = PK2{(Ã, ẽ, ỹ, I, B̃, y

0
, s) : c0 =

g

y

0

0 g

I

1g
B̃

2 g

s

3^ ŝ(Ã, wgẽ) = ê(ggỹ0g
I

1g
B̃

2 g

s̃

3, g)^D � B̃�v � 0}.
After receiving c0, s̃ and p, the supplier checks that s̃ has never
been used and the proof is correct. If the checking is passed,

the supplier picks random numbers y

00 and e and computes
the signature A = (c0gg

y

00

0 g

�v

2)
1

e+r where v is the amount
of electricity charged. As can be seen, the new commitment
encoded in A equals to g

y

0+y

00

0 g

I

1g
B̃�v

2 g

s

3, so the balance is
updated to B̃ � v and the opening is unchanged. The supplier
then sends A to the user with y

00 and e. When the user receives
the A, y00 and e from the supplier, he verifies the correctness
of A by (2) with c = c0g

y

00

0 g

�v

2 and updates his internal state
to (A, e, y0 + y

00
, I, B̃ � v, s).

Recharging. Recharging operation is the same as charging
operation except that the updated balance is increased rather
than decreased. This could be achieved by multiplying a com-
mitment with a positive balance, which means that the supplier
will compute the commitment as c = c0 ⇤ gy

00

0 g

+v

2 to increase
the balance by v. In addition, the zero knowledge proof PK3
in Recharging phase is also the same as PK2 except that the
balance checking is rewritten into D � B̃ + v � 0.

Statement. When the user wants to increase the balance in his
account, the user could go to the information center and top-
up money into his account so that the balance in this account
could be reset to the default deposit D. If the state stored
in the user’s device is (Ã, ẽ, ỹ, I, B̃, s̃), he needs to disclose
his identity I and pay D � B̃ to the supplier. Besides, he
randomly picks two numbers y

0 and s, computes and sends
c0 = g

y

0

0 g

s

3 to the supplier with s̃, I , B̃ and a zero knowledge
proof p = PK4{(Ã, ẽ, ỹ, y

0
, s) : c0 = g

y

0

0 g

s

3 ^ ŝ(Ã, wgẽ) =
ê(ggỹ0g

I

1g
B̃

2 g

s̃

3, g)}. If s̃ has not been used before, the supplier
checks the correctness of the proof p and computes the
signature A = (c0gg

y

00

0 g

I

1g
D

2)
1

e+r where y

00 and e are freshly
generated random numbers. Then, the supplier will send it
with y

00 and e to the user. After checking the signature with
(2) where c = c0g

y

00

0 g

I

1g
D

2 , the user updates the tuple in his
device as (A, e, y

0 + y

00
, I,D, s) and completes the statement.

C. Assumptions
Complex cryptographic primitives are used in the protocol.

Additionally, the protocol requires redundancy checking, infi-
nite set maintenance and algebra calculation. Modeling these
complex operations could easily lead to non-termination of the
verification process. Thus we make some assumptions below.

The cryptographic primitives are prefect. For commitment
scheme, a commitment could not be opened without knowing
the its opening and the opening could not be computed from
the commitment. For zero-knowledge proofs, we assume that
they will not cause any information leakage for the secret
values and they can prove what they intended to prove. For
BBS+ signature, signature could not be forged without the
signing key.

The supplier will not accept a same opening value twice. This
assumption ensures that no user could use the opening value
and the signature issued from the supplier twice. The reasons
are as follows. The zero-knowledge proofs make sure that
the opening value is embedded in the commitment. Besides,

3

the commitment scheme requires that no other opening value
could be forged. When the supplier receives a non-duplicated
opening value, if the verification is passed, the opening value
and the signature should never be used before.

Algebraic operations on random numbers never introduce
duplicated values. In the protocol, add function is used to com-
pute the sum of two numbers, which is used in cryptos such as
BBS+ signature and commitment. In symbolic verification, we
say two terms are equal when they are structurally equivalent.
Since we only apply add function to random numbers in the
protocol, if algebraic operations on random numbers never
introduce duplicated values, two add results should be equal
whenever they are structurally equivalent, which ensures the
correctness of the symbolic verification in this paper.

Balance bound checking in zero knowledge proofs are not con-
sidered. During the charging and recharging, balance checking
is implicitly checked in the zero knowledge proofs PK2

and PK3 . Since checking the explicit values in symbolic
verification tools are not possible and bounding the balance or
not will not affect the verification results, we omit the balance
bound checking in PK2 and PK3 .

D. Primitives Modeling
According to the applications of the primitives and the

structure of the protocol, we modeled the primitives as follows:

Commitment. Two forms of commitments are generated in
the protocol such as g

y

0g
s

3 and g

y

0g
I

1g
B

2 g

s

3. We modeled them
as resC(y, s) and chtC(y, I, B, s) in the tools. When the sup-
plier receives them, he computes the signature A accordingly
into a consistent representation.

Zero Knowledge Proof. In this protocol, four zero knowledge
proofs are used such as PK1 , PK2 , PK3 and PK4 . Since
the balance bound checking is omitted in PK2 and PK3 ,
they become identical so we merged them into one zero
knowledge proof of PK23 . For PK1, the prover provide a
proof knowledge regZK (c0, y0, s) with a verification function
to check the correctness of c0

PK1 (resC (y0, s), regZK (resC (y0, s), y0, s)) = true.

In PK23 , the prover’s secrets are (Ã, ẽ, ỹ, I, B̃, y

0
, s) and

the known information to the supplier are (c0, s̃, r), so he
provide a proof of chtZK (c0, Ã, ẽ, ỹ, I, B̃, y

0
, s) along with

a verification function

PK23 (chtC (y0, I, B̃, s), s̃, r, chtZK (chtC (y0, I, B̃, s),

sysA(ỹ, I, B̃, s̃, ẽ, r), ẽ, ỹ, I, B̃, y

0
, s)) = true,

which checks if the c0 and Ã are correctly formed with
respect to (ẽ, ỹ, I, B̃, y

0
, s). For statement sub-routine, the

proof knowledge zk = stmZK (c0, Ã, ẽ, ỹ, y

0
, s). The verifier

check the zk with PK4 to ensure the c0 and Ã are correct.

PK4 (resC (y0, s), s̃, I, B̃, r, stmZK (resC (y0, s),

sysA(ỹ, I, B̃, s̃, ẽ, r), ẽ, ỹ, y0, s)) = true.

BBS+ signature with bilinear pairing. We model the BBS+
signatures in a systematic form as sysA(y, I, B, s, e, r) in
which y is the addition of two nonces, I is the identity
of the user, B is the current balance in his account, s is
the opening of the commitment encoded in the signature,
e is the random number chosen by the supplier and r is
the private signing key of the supplier. wg

e is modeled by
compose(sysgr(r), e) = sysger(e, r) and w = sysgr(r) is a
public information. We defined an extract function to model
the behavior of (2) as

extract(sysA(y, I,D, s, e, r), sysger(e, r))

= syse(sysall(y, I,D, s))

in which the e and r is eliminated because of the bilinear
function is used. Thus the user could compute the value of
syse(sysall(y, I,D, s)) directly.

III. TOOLS

Nowadays, many symbolic tools, such as Scyther [5],
Tamarin [6], ProVerif [7], StatVerif [8] have been developed
for automatic analysis of security protocols using different
approaches. They have different capabilities for analyzing
different protocols with respect to different properties.

Scyther [5] is a tool based on the strand space [13] and the
Athena [9] but extends them with trace patterns to reduce
the search space. Although unbounded verification could be
achieved by Scyther for some protocols, Scyther sometimes
bounds the session number to ensure termination of the verifi-
cation. Additionally, stateful protocol verification and privacy
properties are not supported in Scyther.

Tamarin [6], [14] uses multiset rewriting [15] to specify the
adversary’s capabilities together with a guarded fragment [16]
of first-order logic for security properties and equational the-
ories for algebraic properties. Due to the fact that multiset
rewriting rules can be directly specified in a model to represent
the execution state of the protocol, Tamarin becomes a power-
ful tool for verifying stateful protocols. Additionally, session
indexes can be specified in the query so that authentication
properties and secrecy properties with event ordering could be
checked in Tamarin.

ProVerif [7] is developed actively since 2001, which uses horn
clauses to represent the adversary’s capability and backward
deduction to check for secrecy. Over approximation on gener-
ated session nonces is deployed to limit the searching space but
also leads to false attacks. By combining the secrecy checking
with inserting special events which indicates the begin and
end of the protocol execution [17], authentication checking
is then allowed in ProVerif. Blanchet et al. later extended
ProVerif with observational equivalence checking [10] and
strong secrecy checking [18] so that privacy leakage can be
found in protocols.

StatVerif [8] later extends ProVerif with the global mutable
state. It could handle protocol with explicit global state by
converting the processes into a set of clauses upon which

4

Property Scyther Tamarin ProVerif StatVerif
Secrecy UB/B UB UB UB

Authentication UB/B UB UB N.A.
Stateful Verification N.A. Infinite Weak Explicit
Explicit Event Index N.A. Supported N.A. N.A.

Strong Secrecy N.A. N.A. Supported N.A.
Observational Equivalence N.A. N.A. Supported N.A.

TABLE I. TOOL COMPARISON. (UB : UNBOUNDED; B : BOUNDED;
N.A. : NOT AVAILABLE.)

ProVerif could verify. In the meanwhile, further abstractions
are needed for verifying protocol with infinite state spaces.
Comparison. The differences of these tools are summarized
in Table I. As the electric charging protocol [1] analyzed in
this paper is a stateful protocol and it uses the commitment
scheme which requires explicit event index ordering, Tamarin
is the best candidate for analyzing secrecy and authentication
properties. On the other hand, strong secrecy and observational
equivalence are required for checking privacy properties in this
protocol. ProVerif is the only tool that supports these features.
Thus, we integrate the verification capacities from Tamarin and
ProVerif to give a thorough verification of the protocol.

IV. ANALYSIS IN TAMARIN

A. Abstractions
We abstract the original protocol to ensure the termination of

the verification process in Tamarin. Since protocol abstraction
can only introduce false alarms, if the protocol is proven as
secure after abstraction, its original version should be secure
as well.
Fixing the balance for each sub-routines. During the verifi-
cation in Tamarin, if the balance is allowed to be increased
and decreased in the protocol, verification procedure will try
to increase its value by infinite times without termination.
Because the balance value is not relevant to the secrecy
and authentication properties considered in the verification,
we fixed the balance along the protocol execution. Since
the balance is abstracted to a fixed value, the charging and
recharging behavior are then identical. So we merged them
into one operation denoted as cht in the model.
Setting the value y

00 to 0. In the protocol, y

00 is chosen
randomly in every sub-routine by the supplier. When the
supplier computes the signature, he adds y

00 to y

0 which is
encoded in the commitment generated by the user. Since the
add function is communicative, we need to reflect the algebra
property for add in the model. In the meanwhile, the multiset
rewriting rules can only apply to a whole message, so we
have to rewrite all the messages where the add function may
appear. As a result, the verification process could not terminate
because of the complexity introduced by the duplicated rules
specified in the model. In order to make the model terminable,
we set the y

00 generated by the supplier to 0. Thus add(y0, y00)
is equivalent to y

0 and modeling the behavior of the algebra
function add becomes unnecessary. In fact, y00 is a public value
as the supplier will send it out in every session, so fixing its
value will not affect the verification results for secrecy and
authentication checking.

B. Modeling
Multiset rewriting rules are specified in Tamarin to model

the protocol execution. For each sub-routine described in
Section II-B, we divide the user’s part into two phases. One
for sending out the commitment and zero-knowledge proofs,
and the other for verifying the signature and updating the
internal state of the user. After the registration, every user
maintains an internal state of User(A, e, y, I, B, s) in which
A is the signature issued from supplier, e and y are nonces,
I is the identity of the user, B is the balance in the user’s
account and s is the opening for the user’s commitment
encoded in A. Registration and charging/recharging behaviors
for both participants are shown in Figure 2. Similar behaviors
are defined for statement sub-routine. We use user reg 0 and
user reg 1 to represent the user actions during the registration,
and use server reg to specify the server’s registration behavior.
The two user actions in the registration phase are linked by
the user state UserReg. Charging/recharging and statement
phases have similar structures. As can be seen from the figure,
a loop exists in the user charging/recharging phase, which
means that a user could do charging/recharging for infinite
times. In Tamarin, pk1, pk23, pk4 and signature checking
are modeled according to Section II-D. In order to check the
zero knowledge proofs and signatures, we defined an axiom
on function Eq to test the equivalence of two terms

Eq(x, y)) x = y.

Thus Eq(pk1(c, zk), true) could be tested along the execu-
tion. More details are available in [19].

C. Checking Secrecy and Authentication
Secrecy. One interesting secrecy property required by the
electric charging protocol is the conditional secrecy property
for the opening value s of the commitment. As the user
explicitly sends the opening s out for verification, s will be
known to the public. In the meanwhile, s should be kept secret
before the user intends to do so.

Definition 1: (Commitment secrecy). A nonce s satisfies
commitment secrecy with respect to the event open if and only
if s is secret before event open is engaged.
This property can be specified in Tamarin as follows:

8I, s, i, j.generate(I, s)@i ^ know(s)@j

=) (9r.open(I, s)@r ^ r < j)

in which i, j and r are session ids, I is the identity of the
user, and s is the value that should satisfy commitment secrecy
regarding to open event. The formula means whenever the
opening value s generated by I is known to the adversary,
there exists an event open explicitly engaged by I before it is
known.

Authentication. As this protocol is a charging protocol, we
need to make sure that the correspondences between the
users and the supplier are established correctly. We adopt the
definition of non-injective agreement and agreement from [20]
and formalize them for the protocol in Tamarin. In the protocol,
because we deem the supplier as the adversary, the users

5

rule user_reg_0:
 [Fr(~yp)
 , Fr(~s)
 , UserName($I)]
 --[UserInitEvent($I), UserGen($I, ~s)]->
 [Out(resC(~yp, ~s))
 , Out(regZK(resC(~yp, ~s), ~yp, ~s))
 , UserReg($I, ~yp, ~s)]

rule user_reg_1:
 [In(A)
 , !BalanceInit(D)
 , In(e)
 , !Pks(gr)
 , UserReg(I, yp, s)]
 --[Eq(extract(A, sysger(gr, e), syse(sysall(yp, I, D, s))), true)]->
 [User(A, e, yp, I, D, s)]

rule server_reg:
 [In(c)
 , In(zk)
 , !Sks(r)
 , UserName($I)
 , !BalanceInit(D)
 , Fr(~e)]
 --[Eq(pk1(c, zk), true)]->
 [RegA(c, $I, D, ~e, r)
 , Out(~e)]

rule user_cht_0:
 [User(oA, oe, oy, I, oB, os)
 , Fr(~yp)
 , Fr(~s)]
 --[UserGen(I, ~s), UserReveal(I, os)]->
 [Out(chtC(~yp, I, oB, ~s))
 , Out(chtZK(chtC(~yp, I, oB, ~s), oA, oe, oy, I, oB, ~yp, ~s))
 , Out(os)
 , UserCht(oA, oe, oy, I, oB, os, ~yp, ~s)]

rule user_cht_1:
 [UserCht(oA, oe, oy, I, B, os, yp, s)
 , In(A)
 , In(e)
 , !Pks(gr)]
 --[UserChtEvent(I, os), Eq(extract(A, sysger(gr, e), syse(sysall(yp, I, B, s))), true)]->
 [User(A, e, yp, I, B, s)]

rule server_cht:
 [In(c)
 , In(zk)
 , In(os)
 , !Sks(r)
 , Fr(~e)]
 --[ServerChtEvent(os), Eq(pk23(c, zk, r, os), true)]->
 [ChtA(c, ~e, r)
 , Out(~e)]

Fig. 2. Modeling in Tamarin

Routine Property Result Time Step

Charging
and Recharging

Secrecy SAT 1.72s 54
Non-injective Auth SAT 7.14s 231

Injective Auth SAT 1092.87s 23895

Statement
Secrecy SAT 1.12s 20

Non-injective Auth SAT 1.56s 33
Injective Auth SAT 9.09s 251

Charging, Recharging
and Statement

Secrecy N.T. - -
Non-injective Auth N.T. - -

Injective Auth N.T. - -

TABLE II. VERIFICATION RESULTS FOR TAMARIN : SAT - SATISFIED,
N.T. - NON-TERMINATING

need to make sure that the other participant of the protocol
is taking the role of supplier. Thus, we formalize the non-
injective agreement between the supplier and the user as

8I, s, i.UserCht(I, s)@i =) (9r.SupplierCht(s)@r)

which means whenever a user is taking his role for charging or
recharging, the supplier is also taking his role in the protocol.
Additionally, we formalize the injective agreement as

8I, s, i.UserCht(I, s)@i =) (9r.SupplierCht(s)@r

^ (8j.UserCht(I, s)@j) i = j)).

The injective agreement makes sure that for any operation
taken by the supplier, there is only one user who is talking
to him.

Verification results. We have checked the above properties
against different scenarios of the protocol, the verification
results are summarized in Table II. All the experiments are
conducted under Mac OS X 10.9.1 with 2.3 GHz Intel Core
i5 and 16G 1333MHz DDR3. After the registration is finished,
any user could do charging/recharging for infinite times with
these three properties being preserved. In addition, these prop-
erties are also hold for infinite times of statement operations
after registration. However, if we check the properties with the

charging/recharging and statement sub-routines combined, the
verification procedure does not terminate.

V. ANALYSIS IN PROVERIF

A. Abstractions
During the protocol modeling in ProVerif, some abstractions

are made to ensure the termination of the verification process.
Fixing the values of y00 and e. In ProVerif, the value of a newly
generated nonce depends on two factors: the name of the nonce
and the value of the messages received before the generation
point. In Section II-B, we have shown that two nonces y

00 and
e will be generated by the supplier in every session after the
supplier receives the commitment, the zero-knowledge proof
and an opening value s̃. Additionally, the nonces ỹ

00 and ẽ

generated in the last session are encoded in the zero-knowledge
proof, which then leads to the infinite dependency traces of
y

00 and e. Thus, the verification process cannot terminate. To
break the infinite dependency chain, we model y

00 and e as
two globally shared nonces instead of generating them freshly
in every session. Because fixing the value of y00 and e will not
affect the users’ privacy, this abstraction will not introduce
false positives into the verification result.
Setting the value of y00 to 0 for intractability and unlinkability
checking. During intractability and unlinkability analysis, the
communicative law required by the function add will lead
to the non-termination of the verification. Since we could
not remove the communicative law which may lead to false
negatives, we set y

00 = 0 so that add(y0, y00) is equivalent
to y

0. Then we could safely eliminate the usage of add with
its functionality preserved. As the users’ privacy will not be
weaken by fixing y

00, this abstraction will not introduce any
false positives either.

B. Modeling
During the modeling in ProVerif, locations are modeled

by public channels and the users’ state are passed by the

6

process arguments to simulate the protocol execution. We
have modeled eight processes for four communication sub-
routines between the users and the supplier by following the
protocol specification described in Section II-B. Since the
infinite iterations cannot be specified in ProVerif model, we
explicitly call different phases when the current routine is
finished. For instance, when we check location privacy, we
call UserCrg by passing the user state as arguments to the
process. (See more details in [19].)

C. Checking Privacy

Users’ privacy is the main purpose of designing this pro-
tocol, in which the supplier is the potential adversary for
breaking the users’ privacy. In this section, we give precise
definitions of anonymity and location privacy for the protocol,
and we investigate other properties for the protocol as well,
including intractability, anonymity, strong anonymity and un-
linkability. We present the verification results for all of them.
Privacy properties are normally modeled by observational
equivalence in the applied pi calculus, which is a widely ac-
cepted approach [21], [22], [23]. In the following discussions,
we use ECP to represent the well-formed representation [22]
for the electric vehicle charging protocol and use Reg,
Crg, Rcg and Stm for registration, charging, recharging and
statement sub-routines respectively. Rtn{n1/p1, . . . , nm

/p

m

}
means that the routine Rtn parameterized with p1, . . . , pm is
instantiated by the values n1, . . . , nm

. Since the protocol is
stateful, Reg.Crg.Crg is different from Reg.(Crg|Crg). Ad-
ditionally, infinite iterations of the process cannot be specified
in ProVerif, so we only give proofs to finite execution iterations
with infinite replications and define ECPReg and ECPCrg as
follows

ECPReg =!v(i).Reg{i/id},
ECPCrg =!v(i).Reg{i/id}.Crg{i/id}.

Similarly, we could define the well-formed protocol for
recharging as ECPRcg .

Location privacy. Location privacy should be guaranteed for
the users’ behaviors in the stations, which could be specified
as

Definition 2: (Location privacy). A user A’s charging be-
havior conducted at station X satisfies location privacy if there
exists a user B at station Y s.t.

C[(Reg{A/id}.Crg{A/id , X/l}
|Reg{B/id}.Crg{B/id , Y/l})]

⇠ C[(Reg{A/id}.Crg{A/id , Y/l}
|Reg{B/id}.Crg{B/id , X/l})].

The stations could be modeled in ProVerif by different chan-
nels. Location privacy could also be defined for recharging
behaviors similarly. In addition, we also specify intractability
for users’ behaviors as

Routine Property Result Time

Charging

Location Privacy SAT 131.64s
Intractability SAT 13.87s
Anonymity SAT 1391.20s

Strong Anonymity SAT 1717.25s
Unlinkability SAT 5.94s

Recharging

Location Privacy SAT 132.43s
Intractability SAT 14.96s
Anonymity SAT 1372.65s

Strong Anonymity SAT 1804.23s
Unlinkability SAT 6.63s

TABLE III. VERIFICATION RESULTS FOR PROVERIF : SAT - SATISFIED

Definition 3: (Intractability). Two subsequent charging be-
haviors conducted by a user A at station X satisfies intractabil-
ity if there exists a user B and a station Y s.t.

C[(Reg{A/id}.Crg{A/id , X/l}.Crg{A/id , X/l}
|Reg{B/id}.Crg{B/id , Y/l}.Crg{B/id , Y/l})]

⇠ C[(Reg{A/id}.Crg{A/id , X/l}.Crg{A/id , Y/l}
|Reg{B/id}.Crg{B/id , Y/l}.Crg{B/id , X/l})]

which means the adversary cannot distinguish if a user per-
forms charging at a same station or different stations. Similarly,
we can define intractability for recharging behaviors.

Anonymity and strong anonymity. Anonymity should be
preserved when the user is doing charging and recharging at
stations. Anonymity for charging is defined as follows.

Definition 4: (Anonymity). A well formed protocol
ECPCrg satisfies anonymity property for a user A’s charging
behavior if there exists a user B s.t.

C[ECPCrg |(Reg{A/id}|Reg{B/id}).Crg{A/id}]
⇠ C[ECPCrg |(Reg{A/id}|Reg{B/id}).Crg{B/id}]

A stronger notion for anonymity is proposed in [22] which
ensures that the adversary cannot tell whether a user A has
participated a protocol run or not.

Definition 5: (Strong anonymity). A well formed protocol
ECPCrg satisfies strong anonymity property for a user A’s
charging behavior if

C[ECPCrg |Reg{A/id}]
⇠ C[ECPCrg |Reg{A/id}.Crg{A/id}]

Similarly, we could define (strong) anonymity for recharging
behaviors.

Unlinkability. In protocol ECP , unlinkability is claimed for
charging and recharging operations at stations so that the no
adversary, including the supplier, could tell that two operations
are initiated by the same user.

Definition 6: (Unlinkability). A well formed protocol
ECPCrg satisfies unlinkability for a user A’s charging behavior
if there exists a user B s.t.

C[(Reg{A/id}.Crg{A/id}.Crg{A/id})|(Reg{B/id})]
⇠ C[(Reg{A/id}.Crg{A/id})|(Reg{B/id}.Crg{B/id})]

7

Verification results. We have successfully verified location
privacy, intractability, anonymity, strong anonymity and un-
linkability for users’ charging and recharging behaviors in
ProVerif. We do the experiments under Mac OS X 10.9.1
with 2.3 GHz Intel Core i5 and 16G 1333MHz DDR3. The
verification results are summarized in Table III.

VI. DISCUSSION AND CONCLUSION

In this paper, we presented a verification of an electric
vehicle charging protocol proposed by Liu et al. [1] using
two most efficient tools. We have checked various security
and privacy properties for the protocol, such as secrecy and
authentication in Tamarin, and location privacy, intractability,
anonymity and unlinkability in ProVerif. Moreover, we have
addressed the capabilities of Tamarin and ProVerif and we are
the first to combine their verification results for the symbolic
analysis of a single protocol.

We have made a few assumptions on the cryptos used in
the protocol in the paper. In the future, it is very interesting
for us to use CryptoVerif [24], an automatic protocol prover
which is sound in proving computational models, to verify the
cryptographic primitives used in this protocol.

Acknowledgement. We would like to thank Sjouke Mauw for
his support for our research cooperation. Besides, Sun Jun is
supported by project ”IGDSi1301012” from SUTD.

REFERENCES

[1] J. K. Liu, M. H. Au, W. Susilo, and J. Zhou, “Enhancing location
privacy for electric vehicles (at the right time),” in Proc. 17th European
Symposium on Research in Computer Security (ESORICS), ser. LNCS,
vol. 7459. Springer, 2012, pp. 397–414.

[2] M. H. Au, W. Susilo, and Y. Mu, “Constant-size dynamic k-TAA,”
in Proc. 5th Conference on Security and Cryptography for Networks
(SCN), ser. LNCS, vol. 4116, 2006, pp. 111–125.

[3] R. M. Needham and M. D. Schroeder, “Using encryption for authenti-
cation in large networks of computers,” Communications of the ACM,
vol. 21, no. 12, pp. 993–999, 1978.

[4] G. Lowe, “Breaking and fixing the needham-schroeder public-key
protocol using fdr,” in Proc. 2nd Workshop on Tools and Algorithms for
Construction and Analysis of Systems (TACAS), ser. LNCS, vol. 1055.
Springer, 1996, pp. 147–166.

[5] C. Cremers, “The Scyther tool: Verification, falsification, and analysis
of security protocols,” in Proc. 20th Conference on Computer Aided
Verification (CAV), ser. LNCS, vol. 5123. Springer, 2008, pp. 414–
418.

[6] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin, “The Tamarin
prover for the symbolic analysis of security protocols,” in Proc. 25th
Conference on Computer Aided Verification (CAV), ser. LNCS, vol.
8044. Springer, 2013, pp. 696–701.

[7] B. Blanchet, “An efficient cryptographic protocol verifier based on
Prolog rules,” in Proc. 14th IEEE Computer Security Foundations
Workshop (CSFW). IEEE CS, 2001, pp. 82–96.

[8] M. Arapinis, E. Ritter, and M. D. Ryan, “StatVerif: Verification of
stateful processes,” in Proc. 24th IEEE Computer Security Foundations
Symposium (CSF). IEEE CS, 2011, pp. 33–47.

[9] D. X. Song, S. Berezin, and A. Perrig, “Athena: a novel approach to
efficient automatic security protocol analysis,” Journal of Computer
Security, vol. 9, no. 1-2, pp. 47–74, 2001.

[10] B. Blanchet, M. Abadi, and C. Fournet, “Automated verification of
selected equivalences for security protocols,” Journal of Logic and
Algebraic Programming, vol. 75, no. 1, pp. 3–51, 2008.

[11] T. P. Pedersen, “Non-interactive and information-theoretic secure ver-
ifiable secret sharing,” in Proc. 11th Annual International Cryptology
Conference (CRYPTO), ser. LNCS, vol. 576. Springer, 1991, pp. 129–
140.

[12] M. Naor, “Bit commitment using pseudorandomness,” Journal of Cryp-
tology, vol. 4, no. 2, pp. 151–158, 1991.

[13] F. J. T. Fábrega, “Strand spaces: proving security protocols correct,”
Journal Computer Security, vol. 7, no. 2-3, pp. 191–230, 1999.

[14] B. Schmidt, S. Meier, C. Cremers, and D. A. Basin, “Automated analysis
of Diffie-Hellman protocols and advanced security properties,” in Proc.
25th IEEE Computer Security Foundations Symposium (CSF). IEEE
CS, 2012, pp. 78–94.

[15] I. Cervesato, N. A. Durgin, P. Lincoln, J. C. Mitchell, and A. Scedrov,
“A meta-notation for protocol analysis,” in Proc. 12th IEEE Computer
Security Foundations Workshop (CSFW). IEEE CS, 1999, pp. 55–69.

[16] H. Andréka, I. Németi, and J. van Benthem, “Modal languages and
bounded fragments of predicate logic,” Journal of Philosophical Logic,
vol. 27, no. 3, pp. 217–274, 1998.

[17] B. Blanchet, “From secrecy to authenticity in security protocols,” in
Proc. 10th Symposium on Static Analysis (SAS), ser. LNCS, vol. 2477.
Springer, 2002, pp. 342–359.

[18] ——, “Automatic proof of strong secrecy for security protocols,” in
Proc. 25th IEEE Symposium on Security and Privacy (S&P). IEEE
CS, 2004, pp. 86–100.

[19] “Models of the electric vehicle charging protocol in ProVerif
and Tamarin.” [Online]. Available: http://www.comp.nus.edu.sg/⇠li-li/
r/saevcp.html

[20] G. Lowe, “A hierarchy of authentication specification,” in Proc. 10th
Computer Security Foundations Workshop (CSFW). IEEE CS, 1997,
pp. 31–44.

[21] S. Delaune, S. Kremer, and M. Ryan, “Verifying privacy-type properties
of electronic voting protocols,” Journal of Computer Security, vol. 17,
no. 4, pp. 435–487, 2009.

[22] M. Arapinis, T. Chothia, E. Ritter, and M. Ryan, “Analysing unlinka-
bility and anonymity using the applied pi calculus,” in Proc. 23rd IEEE
Computer Security Foundations Symposium (CSF). IEEE CS, 2010,
pp. 107–121.

[23] N. Dong, H. L. Jonker, and J. Pang, “Formal analysis of privacy in an
eHealth protocol,” in Proc. 17th European Symposium on Research in
Computer Security (ESORICS), ser. LNCS, vol. 7459. Springer, 2012,
pp. 325–342.

[24] B. Blanchet, “A computationally sound mechanized prover for security
protocols,” in Proc. 27th IEEE Symposium on Security and Privacy
(S&P). IEEE CS, 2006, pp. 140–154.

8

