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Abstract—The expression of genes is a fundamental process
in living cells, both eukaryotic and prokaryotic. The regulation
of gene expression is achieved via sophisticated networks of
interactions between DNA, RNA, proteins, and small chemical
compounds. The qualitative and quantitative characterisation of
interactions between genes is one of the major current research
targets in systems biology. In this PhD research project, we
view gene regulatory networks as Markov chains, resulting from
popular formalisation frameworks such as Dynamic Bayesian
Networks and Probabilistic Boolean Networks. This will allow
us to reason about both the structure and strength of gene
interactions. Our goal is to develop new algorithms and tools,
which are tailored for the modelling and analysis of gene
regulatory networks, by exploring model checking techniques
that have been developed and widely used in computer science.
More specifically, we will combine model checking techniques
with sampling and optimisation methods from the literature to
derive new techniques to solve the parameter estimation problem
of Markov models of gene regulatory networks.

I. INTRODUCTION

Systems biology is a new, emerging and rapidly developing,
multidisciplinary research field. The topics associated with
systems biology attract interest of researchers having their
background in a wide range of field of expertise, e.g., bi-
ology, chemistry, computer science, mathematics, physics or
engineering. Systems biology aims to study biological systems
from a holistic perspective, with the goal to provide a com-
prehensive, system-level understanding of cellular behaviour.
The research in this field involves identification, modelling
and analysis of biochemical networks (e.g., metabolic path-
ways, regulatory networks or signal transduction networks), in
close linkage to experiments with the focus on understanding
the system’s structure and dynamics. Such comprehensive
approach enables the capturing of complex properties of
a system such as robustness, emergence or adaptation, which
are ubiquitous features of biological systems [1].

Computer science plays a prominent role in the field of sys-
tems biology. One of the main reasons is that the key concepts
in systems biology, such as component, network, robustness,
efficiency, regulation, control, signalling, synchronisation, par-
allelism, etc., have been studied for a long time in computer
science (albeit from different perspectives). A key contribution
brought to systems biology by computer science is the formal
means for manipulation, analysis, and reasoning about system-

level concepts and structures. For example, formal system
specifications, control design, mathematical modelling belong
to the mainstream techniques utilised in systems biology [2].
Over the last decade concepts and approaches from computer
science, and software engineering in particular, have started to
penetrate the field of systems biology in an increasing pace. In
this project, we focus on the application of model-checking,
which is a mathematically-based technique for the specifica-
tion, development and verification of computer systems, to the
analysis of biological systems. More specifically, our goal in
this project is to develop and apply model-checking algorithms
and tools which are tailored for the modelling and analysis of
biological systems.

Literature review. The expression of genes is a fundamental
process in living cells, both eukaryotic and prokaryotic. It
is central to the control of cellular processes, such as cell
differentiation, cell division, and the response of a cell to
environmental signals. The regulation of gene expression is
achieved via sophisticated networks of interactions between
DNA, RNA, proteins, and small chemical compounds. These
interactions form positive and negative feedback loops. Their
orchestrated operation leads to a dynamic, complex behaviour
of the system. Obtaining an intuitive understanding of this
behaviour is usually infeasible. Hence, utilisation of formal
methods and computer tools for modelling and simulation is
indispensable for acquiring insight into the dynamics of the
system. Particularly, the qualitative and quantitative charac-
terisation of interactions between genes is one of the major
current research targets in systems biology. A number of
formalisms has been employed to study genetic regulatory
systems. These formalisms include Directed Graphs, Bayesian
Networks, Boolean Networks and Probabilistic Boolean Net-
works, ordinary and partial differential equations, qualitative
differential equations, stochastic equations, and rule-based
formalisms [3], [4].

The frameworks of Dynamic Bayesian Networks and Prob-
abilistic Boolean Networks are broadly applied to represent
gene regulatory networks [5], [6], [7], [8], [9], [10], [11]. In
both cases the resulting network can be recast as a Markov
chain. This allows the reasoning on both the structure and
strength of gene interactions. The dynamics of the resulting
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system can be investigated by applying techniques originating
from the theory of Markov chains. One class of standard tech-
niques relies on Monte Carlo simulations. However, simulation
covers only a subset of the behaviour of the investigated sys-
tem as covering the complete behaviour would be extremely
costly in terms of processing time and computational demand.
In contrast, model-checking [12] can provide a formal valida-
tion by exploring all possible behaviours of system models and
grant higher precision. Due to efficient algorithms and state-
space reduction techniques, model-checking can analyse large
systems exhibiting complex behaviours, and this process is
typically supported by computer tools. As biological systems
usually have complicated stochastic behaviours, the stochastic
model-checking approach has been applied for the analysis of
biological systems, e.g., see [13], [14], [15], many of which
use the model checker PRISM [16].

A Markov model contains a number of parameters, which
values need to be determined so that the dynamics of the
model is in accordance with experimental results. There exist
a number of methods for parameter estimation for Markov
models describing networks of biochemical reactions. These
methods either make use of the moment closure techniques to
derive equations for the moments of the solution of the master
equation (e.g., [17], [18]) or focus on the solution of the master
equation (e.g., [19]). In the former case certain assumptions
regarding the distribution of the Markov chain at each time
point are made, in the latter case the methods are built upon
various approximations, e.g., some form of state space trun-
cation. Various classes of parameter inference methods can be
distinguished. For example, inference methods that maximise
the likelihood of the discrete-time observations of system
states (e.g., [20], [19], [21], [22]), methods for inference
given complete data (e.g., [23]), likelihood-free methods for
observations with measurement errors (e.g., [24]), etc. Usually
the inference techniques are based on Bayesian inference and
make use of Markov chain Monte Carlo algorithms (e.g., [25]).

Structure of the paper. In the following, for this PhD research
project we discuss its hypothesis and objectives (Section II), its
innovation and originality (Section III), and our methodology
to achieve our goals of the project (Section IV).

II. HYPOTHESIS AND RESEARCH OBJECTIVES

The formalisms of Probabilistic Boolean Networks (PBNs)
and Dynamic Bayesian Networks (DBNs) are well-established
frameworks for modelling gene regulatory networks. The
dynamics of these networks is given by the underlying Markov
chain. We assume that the possible interactions, i.e., a prior
knowledge on the structure of the network, is given from
literature studies. This is a common assumption as the model
structure can often be identified from the literature, though
model identification itself is another important and long-
standing research problem in systems biology. However, the
relative strengths of interactions are often unknown and are
treated as model parameters. By investigating the models
underlying Markov chain and by fitting its steady-state distri-
bution to steady-state experimental measurements, we aim to

infer the relative strengths of the given interactions between
the nodes of the network. In particular, we aim to combine
model-checking techniques with sampling and optimisation
methods from the literature for parameter estimation of gene
regulatory networks modelled as Markov chains.

III. INNOVATION AND ORIGINALITY

The novelty of this PhD project comes from the fact that we
model gene regulatory networks as Markov chains and analyse
them through model-checking techniques.

We consider Markov chains as models of gene regulatory
networks. For example, the qualitative behaviour of gene
regulatory networks is often analysed in the well-established
framework of Probabilistic Boolean Networks ([9]) or Dy-
namic Bayesian Networks, which dynamics is governed by
a Markov chain. We plan to combine parameter estimation
techniques with Markov chain analysis techniques for infer-
ring model parameters, e.g., relative strengths of interactions
between genes. The main task is to find the parameter values
of the models that lead to Markov chain which steady-state
distributions correspond with the steady-state experimental
read-outs. However, obtaining the steady-state distribution of
a Markov chain poses a challenge. The originality of our
approach is to classify the resulting models with respect to
the size of the underlying Markov chain state space and
consider different methods for different classes: (1) In the
case of small gene regulatory networks, numerical model
checking techniques, e.g., available in PRISM, allow us to
obtain the steady-state distribution in an accurate and exact
way. (2) For medium-size gene regulatory networks, we will
apply statistical model checking which combines sampling
methods such as perfect simulation and statistical hypothesis
testing [26] to study the steady-state properties of Markov
chains. (3) Finally, for large gene regulatory networks, we
aim to perform pre-analysis of the structure of the underlying
Markov chain and utilise from the structure when obtaining
the steady-state distribution with stochastic model checking.

IV. METHODOLOGY

In this project we focus on biological models of gene
regulatory networks in the form of Markov chains and inves-
tigate the role of model-checking algorithms when estimating
parameters of such models. We first discuss the type of
experimental data required for our research and briefly present
our methodology.

Experimental data. The existing parameter estimation meth-
ods for Markov models require high-resolution time-course
measurements. Therefore, we will focus on the use of wet-
lab results on steady-state levels, which currently can be
obtained more easily than time-course data of required quality.
The number of steady-state measurements may, however, be
insufficient to identify all the parameters of the model. To
address this difficulty, we will design our new methods by
taking into account (1) steady-state experimental data of the
so called knockout mutant models [27], and (2) qualitative



and/or quantitative information derived from existing time-
course measurements, e.g., available at the Gene Expression
Omnibus database (see http://www.ncbi.nlm.nih.gov/geo/).

Our methodology. The core idea of our approach is to exploit
the capabilities of stochastic model checking to efficiently
compute steady-state distributions of Markov chains and com-
bine them with existing sampling and optimisation techniques.
This will allow us to search for parameter values that give rise
to a Markov chain with its steady-state distribution best fitting
the distribution given by the experimental data. The goodness
of the fit will be evaluated by means of a cost function,
e.g., the Kullback-Leibler divergence. It can be perceived as
corresponding to the method of [20], where instead of time-
course data the steady-state data are used and maximisation
of likelihood is replaced with minimisation of the distance
between two probability distributions.

As obtaining the steady-state distribution of a Markov chain
(MC) is the main challenge of our research, we will develop
different parameter estimation methods for gene regulatory
networks of different size. Namely, we will consider

• small networks with ≤ 20 nodes leading to Markov
chains of the size of not more than 220 states,

• medium-size networks with 20 to 50 nodes, and
• large networks with ≥ 50 nodes.

This will allow us to achieve a good balance between the
efficiency (in terms of computational overhead) and effective-
ness (in terms of quality of the estimated parameters) for the
developed methods.

More specifically, to infer strengths of interactions between
genes of small regulatory networks, the strengths will be
treated as parameters and inference will be performed by
fitting the parameters to experimental data such that the steady-
state distribution of the underlying MC will be in agreement
with the experimental steady-state data. Numerical model
checking techniques will be utilised to obtain the steady-state
distribution of the MC in an accurate and exact way. This will
lead us to high quality estimates of the model parameters.
For medium-size gene regulatory networks, we plan to apply
statistical model checking which combines sampling methods
and statistical hypothesis testing to study the steady-state
properties of the underlying Markov chains. This approach
will enable us to obtain the steady-state distribution with
high confidence. Sampling methods such as perfect simulation
will be explored. In this case, issues of (fast) convergence
to steady-state distribution and its efficient estimation will be
relevant. For the analysis of Markov chains underlying models
of large gene regulatory networks, we aim to pre-analyse the
structure of the Markov chains and utilise such information
when obtaining the steady-state distribution with stochastic
model checking.

V. CONCLUSION

In this paper, we describe our PhD research project, where
we view gene regulatory networks as Markov chains, allowing
us to reason about both the structure and strength of gene

interactions. We aim to explore model checking techniques
with sampling and optimisation methods from the literature to
derive new techniques to solve the parameter estimation prob-
lem of Markov models of gene regulatory networks. Currently,
the project has already started and our preliminary results from
the implemented sampling methods seem promising. We will
continue to report on new results from this project.
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