
Active Learning based Structural Inference

Aoran Wang 1 Jun Pang 1 2

Abstract
In this paper, we propose a novel framework Ac-
tive Learning based Structural Inference (ALaSI),
to infer the existence of directed connections from
observed agents’ states over a time period in a dy-
namical system. With the help of deep active
learning, ALaSI is competent in learning the rep-
resentation of connections with a relatively small
pool of prior knowledge. Moreover, based on
information theory, the proposed inter- and out-
of-scope message learning pipelines are remark-
ably beneficial to structural inference for large dy-
namical systems. We evaluate ALaSI on various
large datasets including simulated systems and
real-world networks, to demonstrate that ALaSI
is able to outperform previous methods in pre-
cisely inferring the existence of connections in
large systems under either supervised learning or
unsupervised learning.

1 Introduction
Dynamical systems are commonly observed in real-world,
including physical systems (Kwapień & Drożdż, 2012; Ha
& Jeong, 2021), biological systems (Tsubaki et al., 2019;
Pratapa et al., 2020), and multi-agent systems (Brasó & Leal-
Taixé, 2020; Li et al., 2022). A dynamical system can be
described as a set of three core elements: (a) the state of the
system in a time period, including the state of the individual
agents, and can be viewed as time series; (b) the state-space
of the system; and (c) the state-transition function (Irwin &
Wang, 2017). Knowing these core elements, we can describe
and predict how a dynamical system behaves. Yet the three
elements are not independent of each other. The evolution of
the state is affected by the state-transition function, which
suggests that the future state may be predicted based on
the current state and the entities which affect the agents

1Faculty of Science, Technology and Medicine, University of
Luxembourg, Luxembourg 2Institute for Advanced Studies, Uni-
versity of Luxembourg, Luxembourg. Correspondence to: Aoran
Wang <aoran.wang@uni.lu>, Jun Pang <jun.pang@uni.lu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

(i.e. connectivity). Moreover, the state-transition function
is often deterministic (Katok & Hasselblatt, 1995), which
simplifies the derivation of the future state as a Markovian
transition function.

However, in most cases, we hardly have access to the con-
nectivity, or only have limited knowledge about the con-
nectivity. Is it possible to infer the connectivity from the
observed states of the agents over a time period? We for-
mulate it as the problem of structural inference, and several
machine learning frameworks have been proposed to ad-
dress it (Kipf et al., 2018; Webb et al., 2019; Alet et al.,
2019; Chen et al., 2021; Löwe et al., 2022; Wang & Pang,
2022). Although these frameworks can accurately infer the
connectivity, as they perform representation learning on a
fully connected graph, these methods can only work for
small systems (up to dozens of agents), and cannot scale
well to real-world large dynamical systems, for example,
with hundreds of agents. Besides, as we show in the experi-
ment and appendix sections in this work, the integration of
prior knowledge about partial connectivity of the system is
quite problematic among these methods.

In this work, we propose a novel structural inference frame-
work, namely, Active Learning based Structural Inference
(ALaSI), which is designed for the structural inference of
large dynamical systems based on Deep Active Learning
(DeepAL) (Ren et al., 2022), and is suitable for the in-
tegration of prior knowledge. In order to perform struc-
tural inference on large dynamical systems, unlike ordinal
deep active learning methods that build feature pools on
batches (Kirsch et al., 2019; Zhdanov, 2019; Ash et al.,
2020; Gentile et al., 2022), the pools of ALaSI are built
on agents, and the framework can consequently infer the
existence of directed connections with a little prior knowl-
edge of the connections. ALaSI leverages query strategy
with dynamics for agent-wise selection to update the pool
with the most informative partial system, which encourages
ALaSI to infer the connections efficiently and accurately
with partial prior knowledge of the connectivity (named
‘scope’). Based on information theory, ALaSI learns both
inter-scope (IS) and out-of-scope (OOS) messages from the
current scope to distinguish the information which repre-
sents connections from agents within the scope and from
agents out of the scope, which reserves redundancy when
new agents come into scope. Moreover, with oracle such as

1

Active Learning based Structural Inference

Partial Information Decomposition (PID) (Williams & Beer,
2010), ALaSI can infer the connectivity even without prior
knowledge and be trained in an unsupervised way. We show
with extensive experiments that ALaSI can infer the directed
connections of dynamical systems with up to 1.5K agents
with either supervised learning or unsupervised learning.
The main contribution of this paper is the following:

• We propose a novel structural inference algorithm, ALaSI,
tailored to infer the connection of large dynamical sys-
tems based on DeepAL. It is the first attempt to structural
inference with DeepAL to the best of our knowledge.

• We design a novel dynamic query strategy, which queries
the most informative agents to be labeled based on the
dynamic error, and enables ALaSI to learn efficiently on
prior knowledge of the partial dynamical system.

• Based on information theory, we propose IS and OOS rep-
resentation learning pipelines, which facilitate the learn-
ing of OOS connections from the current scope of the
system, and reserve redundancy for new agents to be
added to the current scope.

• We experimentally evaluate ALaSI with seven large dy-
namical systems, and show that ALaSI manages to pre-
cisely and efficiently infer the connections under both
supervised and unsupervised settings.

2 Related Work
Structural inference. The aim of structural inference is to
accurately reconstruct the connections between the agents
in a dynamical system with observational agents’ states.
Among the wide variety of methods, Neural Relational In-
ference (NRI) (Kipf et al., 2018) was the first to address
the problem of structural inference based on observational
agents’ states with the help of a Variational Auto-encoder
(VAE) operating on a fixed fully connected graph structure.
Several works have been proposed based on further im-
provement on NRI. Such as extending to multi-interaction
systems (Webb et al., 2019), integrating efficient message-
passing mechanisms (Chen et al., 2021), using modular
meta-learning (Alet et al., 2019), and eliminating indirect
connections with iterative process (Wang & Pang, 2022).
From the aspect of Granger-causality, amortized causality
discovery (ACD) (Löwe et al., 2022) attempted to infer a la-
tent posterior graph from temporal conditional dependence,
while Wu et al. (2020) proposed the Minimum Predictive
Information Regularization (MPIR) model and used a learn-
able noise mask on nodes to reduce the computational cost.
In addition to the work mentioned above, several frame-
works inferred the connectivity with different problem set-
tings. Some approaches fitted a dynamics model and then
produced a causal graph estimate of the model by using
recurrent models (Tank et al., 2021; Khanna & Tan, 2020),
or inferred the connections by generating edges sequen-

tially (Johnson, 2017; Li et al., 2018), or were specially de-
signed to infer the connections of dynamic graphs (Ivanovic
& Pavone, 2019; Graber & Schwing, 2020; Li et al., 2022).
However, because of the fixed latent space in VAE or ex-
ponential computational efficiency, most of the methods
mentioned above are incapable of structural inference on
large dynamical systems and have difficulties in the efficient
utilization of prior knowledge.

Deep Active learning. ALaSI follows the strategy of
DeepAL (Gal et al., 2017; Pop & Fulop, 2018; Kirsch et al.,
2019; Tran et al., 2019; Ren et al., 2022), attempting to
combine the strong learning capability of deep learning in
the context of high-dimensional data processing and the
significant potential of Active Learning (AL) in effectively
reducing labeling costs. To solve the problem of insufficient
labeled sample data, (Tran et al., 2019) leveraged generative
networks for data augmentation, and (Wang et al., 2016)
expanded the labeled training set with pseudo-labels. More-
over, Hossain & Roy (2019) and Siméoni et al. (2020) used
labeled and unlabeled datasets to combine supervised and
semisupervised training with AL methods. Several works
have been proposed on how to improve the batch sample
query strategy (Shi & Yu, 2019; Kirsch et al., 2019; Zh-
danov, 2019; Ash et al., 2020). As we will show, by lever-
aging the advantages of DeepAL, ALaSI is competent in
efficiently and accurately inferring the existence of directed
connections with a small labeled pool of prior knowledge.

Partial Information Decomposition. Partial Information
Decomposition (PID) explicitly quantifies the information
associated with two or more information sources that is not
present in any subset of those sources (Williams & Beer,
2010; Lizier et al., 2013; Pakman et al., 2021). Therefore,
PID is widely utilized to uncover the underlying connec-
tions between the agents in the dynamical systems in the
field of physics (Barrett, 2015; Makkeh et al., 2018) and
biology (Chan et al., 2017; Cang & Nie, 2020). Moreover,
Lizier et al. (2013) extended the ordinary PID to cases with
two or more sources and also considered past ego state as
a source. Based on (Lizier et al., 2013), we derive a novel
method for learning OOS messages from the current scope.
Besides that, we also extend the original symmetric formu-
lation of PID to unsymmetric cases by integrating temporal
information, to enable ALaSI to infer the existence of di-
rected connections even without any prior knowledge.

3 Preliminaries

3.1 Notations and General Problem Definition

We view a dynamical system S as S = {V, E}, in which V
represents the set of n agents in the system: V = {vi, 1 ≤
i ≤ n}, and E denotes the directed connections between
the agents: (vi, vj) ∈ E ⊆ V × V . We focus on the cases

2

Active Learning based Structural Inference

where we have recordings of the agents’ states over a time
period: V = {V t, 0 ≤ t ≤ T}, where T is the total number
of time steps, and V t is the set of features of all the n
agents at time step t: V t = {vt1, vt2, . . . , vtn}. We name the
recordings as trajectories. Based on the trajectories, we aim
to infer the existence of directed connections between any
agent-pair in the system. The connections are represented
as E = {eij ∈ {0, 1}}, where eij = 1 (or 0) denotes the
existence of connection from agent i to j (or not). We
sample a total number of K trajectories. With the notations
above, the dynamics for agents within the system is:

vt+1
i = vti +∆ ·

∑
j∈Ui

f
(
||vi, vj ||α

)
, (1)

where ∆ denotes a time interval, Ui is the set of agents con-
nected with agent i, and f(·) is the state-transition function
deriving to dynamics caused by the edge from agent j to
i, and ||·, ·||α denotes the α-distance. We state the problem
of structural inference as searching for a combinatorial dis-
tribution to describe the existence of a directed connection
between any agent pair in the dynamical system.

3.2 Problem Definition in the Context of DeepAL

Assume we have two sets of trajectories, the set of trajec-
tories without knowing connectivity Dpool = {Vpool, E∅},
and the set of trajectories for trainingDtrain = {Vtrain, Etrain},
where E∅ denotes the empty set of connectivity. We con-
sider two scenarios: in the first scenario we have access to
the ground truth of connectivity E in the system, and we
perform a supervised-learning-based DeepAL with ALaSI:

min
sL:|sL|<K

Ee∼PEtrain ,v∼PVtrain
[L(e, v;As0∪sL)], (2)

where s0 is the initial pool of m agents chosen from Dtrain,
as well as the connectivity between them, sL is the ex-
tra pool with budget K, A represents the algorithm of
ALaSI, L denotes the learning objective and we denote
Px as the sampling space of variable x. The second scenario
is where the ground-truth connectivity is inaccessible dur-
ing training, and we show that ALaSI is competent to infer
the connections in an unsupervised setting with an oracle:
PID (Williams & Beer, 2010; Lizier et al., 2013). Thus,
instead of having Etrain available in Dtrain, we leverage PID
to calculate the connectivity between the agents in the pool
at every round of sampling:

min
sk:|sk|<K

Ee∼PEPID ,v∼PVtrain
[L(e, v;As0∪sk)], (3)

where sk = {Vtrain, EPID} denotes the pool, with EPID de-
noting the connections generated by PID operating on the
agents in the pool, and the number of agents in sk has a
budget K. PID set up the initial set s0 as that of sk, but with
a different size of agents m. We consider ALaSI with both
supervised and unsupervised learning and conduct experi-

ments on both settings, to demonstrate its performance.

3.3 Background on PID

PID of two sources X1, X2 amounts to expressing the mu-
tual information (MI) of X1, X2 with a target Y as a sum
of four non-negative terms (Pakman et al., 2021):

I(Y ; (X1, X2)) = U(Y ;X1) + U(Y ;X2)

+R(Y ;X1, X2) + Sy(Y ;X1, X2),
(4)

corresponding to unique (U1, U2), redundant (R) and syner-
gistic (Sy) contributions, respectively. To calculate the PID
terms, the redundant information is first calculated using the
specific information Ispec , which quantifies the information
provided by one variable about a specific state of another
variable (Chan et al., 2017), such as from X1 about state y
of variable Y :

Ispec(y;X1) =
∑
x∈X1

p(x|z)
(
log

1

p(z)
−log 1

p(z|x)

)
. (5)

Then the redundant contribution is calculated by comparing
the amount of information provided by each source within
set B = {X1, X2} about each state of the target Y :

R(Y ;X1, X2) =
∑
y∈Y

p(y)min
B

Ispec(y;B). (6)

The unique information and the synergistic information can
be calculated from the redundant information based on the
consistency equations (Williams & Beer, 2010):

U(Y ;X1) = I(X1;Y)−R(Y ;X1, X2), (7)
Sy(Y ;X1, X2) = II(Y ;X1;X2) +R(Y ;X1, X2), (8)

where the interaction information (McGill, 1954) of three
variables II(a; b; c) is calculated as I(a; b|c)− I(a; b). In a
system of n agents, given a pair of agents X1 and Y , there
are n−2 triplets involving the pair. The MI between X1 and
Y is unaffected by the choice of a third agent X2, because
MI is a pairwise measure. But U(Y ;X1) varies depending
on X2, and the difference between I(Y ;X1) and U(Y ;X1)
is equal to the redundancy between all three agents (Equa-
tion 7). So a popular method (Chan et al., 2017) is calcu-
lating the ratio score r = U(Y ;X1)/I(Y ;X1) as capturing
the proportion of MI that is accounted for by unique in-
formation between X1 and Y , as opposed to redundant
information between all three agents. If X1 and Y are con-
nected, their r is higher than any other pairs, and we can
follow this method to infer the connectivity by calculating
the ratio scores for all agent pairs.

4 Method
In this section, we present ALaSI, a scalable structural in-
ference framework based on agent-wise DeepAL. We start
by formulating such a learnable framework in Section 4.1.

3

Active Learning based Structural Inference

ALaSI

Select
Train Query with

Dynamics
Query

 agents

Update

PID

If unsupervised learning, leverage PID as oracle.

Figure 1. Overview of the pipeline of ALaSI.

After that, we describe the IS and OOS operations in Sec-
tion 4.2, which are of great significance to make the frame-
work scalable. Especially, we propose the hybrid loss and
the query strategy with dynamics in Sections 4.3 and 4.4,
respectively. Last but not least, we discuss the integration
of PID into ALaSI in Section 4.5, which enables ALaSI to
infer the connectivity with unsupervised learning.

4.1 Active Structural Inference with Dynamics

The basic idea behind ALaSI is to infer the existence of
directed connection between two agents with the help of
dynamics. According to Equation 1, we may describe it as:
the correct inference of the connectivity enables the algo-
rithm to predict the future states of the agent with smaller
error. We formulate the statement as:

argmin
Ui⊆V

Eθ∼p(θ|{V,E})R
(
vt+1
i , P (v̂t+1

i |vti ,Ui, θ)
)
, (9)

where Ui represents the agents connected to agent i, R is
the loss function to quantify the dynamics prediction error
between actual dynamics vt+1

i and predicted dynamics v̂t+1
i ,

and θ is the parameters of the model. The problem setting
in Equation 9 is also widely adopted (Kipf et al., 2018;
Webb et al., 2019; Löwe et al., 2022; Wang & Pang, 2022).
For small dynamical systems, we can directly follow this
formulation and leverage generative models such as a VAE
to work on a fully-connected initial graph, in order to infer
the connectivity of the whole system. However, for large
dynamical systems, it is impractical and unattainable to infer
the connectivity in the same way, which is also a common
problem observed in the literature on structural inference.

In this work, we extend Equation 9 for large dynamical sys-
tems with the help of DeepAL. Unlike previous DeepAL al-
gorithms, which train models on batch-wise selections (Gal
et al., 2017; Kirsch et al., 2019; Pop & Fulop, 2018; Tran
et al., 2019), we design ALaSI to train on agent-wise selec-
tions. The pool consists of features of different agents, and
the directed connections between these agents. By training
ALaSI on the pool, we try to encourage the framework to
capture the statistics to describe the existence of connections
between any agent-pair:

argmin
Ui⊆D

Eθ∼p(θ|D)R
(
vt+1
i , Q(v̂t+1

i |vti ,Ui, θ)
)
. (10)

Different from Equation 9, we have a limited scopeD on the

available agents and their features, and we can only learn
the representation of connections based on current scope D.
However, there possibly simultaneously exist connections
between the OOS agents and the agents inside the scope, and
discarding the influences of these OOS connections would
lead to inaccurate inference results. As a consequence,
we need to design the model Q so that it can distinguish
the portion of information related to OOS connections and
the portion of information coming from connections in the
scope, in order to learn the representation of connection
precisely and also reserve redundancy for new agents to be
added into the pool. We describe the pipeline of ALaSI in
Figure 1 and Algorithm 2 in the appendix.

4.2 Inter- / Out-of-Scope Operations

Previous works leveraged a fixed scope on the entire set of
agents of the dynamical system, and thus struggled with the
curse of scalability (Kipf et al., 2018; Webb et al., 2019;
Löwe et al., 2022; Wang & Pang, 2022). To address this
issue, we propose a set of inter-/out-of-scope operations in
order to make ALaSI scalable. Suppose we have a partial
view of np agents in the dynamical system (np < n), and we
call the partial view a scope. For any agent i in the scope, it
is possible that it has connections within the scope and also
has connections from agents out of the scope simultaneously.
We demonstrate an example in Figure 2.

(a)

Scope

(b)

Figure 2. (a) A dynamical system with 11 agents. (b) A scope of 4
agents on the same system.

In Figure 2(a), there is a dynamical system consisting of 11
agents and directed connections. Then suppose we have a
scope with 4 agents on the system and is shown as the cloud
line in Figure 5(b). Based on the segmentation of the scope,
the agents in the system are divided into two groups: IS
agents (in original color), and OOS agents (in nattier blue).
But the connections are segmented into three groups:(a) IS
connections (in blue), (b) OOS connections (in red) and (c)

4

Active Learning based Structural Inference

non-observable connections (in cream). Besides agents in
the scope, IS agents may also be affected by OOS agents,
thus we need to take the OOS connections into consideration
and separate their influence.

We denote Vtinter as the set of IS agents’ states and Ztoos
as the summary of OOS agents’ states for an ego agent i
at time-step t. Vtinter and Ztoos share many characteristics:
(1) Since both of them represent the features within the
same system, the connections between either IS agents or
OOS agents and agent i have the same dynamic function
as shown in Equation 9; (2) From the perspective of infor-
mation theory (Kraskov et al., 2004; Belghazi et al., 2018),
we can easily reach the statement that: I(vti ;Vtinter) ̸= 0 and
I(vti ;Z

t
oos) ̸= 0, where vti represents the features of agent

i at time step t, and I(· ; ·) denotes the MI between two
entities. Therefore, we reformulate Equation 10 as:

argmin
Ui⊆D

Eθ∼p(θ|D)R
(
vt+1
i , Q(v̂t+1

i |vti ,Vtinter, Z
t
oos, θ)

)
.

(11)
Yet the calculation of Ztoos is agnostic, it is necessary to have
another set of derivations:

Proposition 4.1. If we assume Ztoos only captures the in-
formation that affects vti and is different from Vtinter, we can
reach the following statements:

I(Vtinter;Z
t
oos) < I(vt+1

i ;Ztoos),

and I(Vtinter;Z
t
oos) < I(vt+1

i ;Vtinter).
(12)

Proposition 4.1 infers that the MI between Vtinter and Ztoos
is the smallest among the MI between any pair from Vtinter,
Ztoos and vt+1

i . It also suggests that we can infer information
about Ztoos from vt+1

i . We prove the proposition in Sec-
tion B.1 in the appendix. Based on the MI of time series
between two sources and its own present state (Lizier et al.,
2013), as well as the Markovian assumption, we have:

I(vt+1
i ; vti ,Vtinter, Z

t
oos) = I(vt+1

i ; vti) + I(vt+1
i ;Vtinter| vti)

+ I(vt+1
i ;Ztoos| vti ,Vtinter). (13)

Since MI terms are non-negative by design, the last term
on the right of Equation 13 suggests that given vt+1

i , we
can derive the information about Ztoos conditional on vti
and Vtinter. Therefore, we implement the inter-/out-of-scope
message learning pipelines with neural networks and the
pipeline of which is shown in the following equations:

Zi = finter1([v
t
i ,Vtinter]), (14)

einter = finter2([Zi ⊙ Vtinter, v
t
i]), (15)

eoos = foos2([foos1(v
t
i), einter]), (16)

eout = foutput(fdynamics(einter, eoos), v
t
i), (17)

where einter and eoos are learned inter-/out-of-scope repre-
sentations (Vtinter / Ztoos), respectively, [·, ·] is the concate-
nation operation, finter1 is the neural network to learn the

existence of connections between agent i and the agents
inside the current scope, Zi represents the connectivity in-
side the scope with regards to agent i, and ⊙ is the oper-
ation to select agents based on connectivity. Suppose we
have K agents in the scope, then Zi ∈ [0, 1]K. So for any
agent i, j in the scope, we have zij ∈ [0, 1], representing
the connectivity from agent i to agent j. In practice, we
reparametrize zij with Gumbel-Softmax (Jang et al., 2017)
to enable backpropagation (see Section C.5 in the appendix
for implementation). Besides that, finter2, foos1, and foos2 are
the neural networks to learn representations of IS messages,
OOS embeddings, and OOS messages, respectively. Finally,
in Equation 17, we learn the representations for dynamics
with fdynamics, and output the future state of agent i (eout)
with foutput. In addition to the operations mentioned above,
we leverage loss functions (in Section 4.3) to encourage
ALaSI to extract OOS messages from vti and Vtinter.

4.3 Train with a Hybrid Loss

The loss function has three roles: (a) encouraging the model
to learn OOS representations; (b) calculating dynamics er-
ror; and (c) estimating the connectivity prediction error.
As mentioned in Section 4.2, the OOS message Ztoos can
be derived from vt+1

i , vti and Vtinter. Based on the triplet
loss (Schultz & Joachims, 2003; Schroff et al., 2015) and
Proposition 4.1, we derive the following loss function to
learn the OOS message:

Loos =
1

(T − 1) · |D|

T−1∑
t

∑
i∈D

[
− I(Ztoos; v

t+1
i)

]
, (18)

where T represents the total count of time-steps, D repre-
sents the current scope, |D| denotes the number of agents
in the scope. (We discuss the derivation in Section B.2.)
We implement the calculation and maximization of mutual
information with the help of DeepInfoMax (Hjelm et al.,
2019). However, we have to introduce a regularization term
to encourage the learned representations of Ztoos and Vtinter to
be independent of each other, and we leverage distance cor-
relation (Székely et al., 2007). As already proved (Székely
& Rizzo, 2009; 2012; 2014), the distance correlation be-
tween two variables is zero only when two variables are
independent of each other. Therefore, we calculate and
minimize the distance correlation between Ztoos and Vtinter:

Ldc =
1

(T − 1) · |D|

T−1∑
t

∑
i∈D

dCov2(Ztoos,Vtinter)√
dVar(Ztoos)dVar(Vtinter)

,

(19)
where dCov and dVar are the squared sample distance co-
variance and the distance variance, respectively, and we
describe the procedures for calculating these terms in Sec-
tion C.4.2 in the appendix. Besides that, we also need the

5

Active Learning based Structural Inference

Trained ALaSI Model agents

Select Update

Figure 3. Query strategy with dynamics in ALaSI.

loss function for dynamics:

LD = − 1

(T − 1) · |D|

T−1∑
t

∑
i∈D

||vt+1
i − v̂t+1

i ||2

2σ2
+ const,

(20)
where vt+1 and v̂t+1 are the ground-truth dynamics and pre-
dicted dynamics, respectively, and σ is the variance. More-
over, we have the loss function for connectivity:

Lcon = − 1

|D|2
∑
i,j∈D

zij log
(
f(ẑij)

)
, (21)

where f(·) denotes the softmax function, zi and ẑi represent
the ground-truth connectivity and predicted connectivity in
the scope, respectively. With the proposed terms above, we
can summarize the hybrid loss functionR as:

R = α · LD + β · Lcon + γ · Loos + η · Ldc, (22)

where α, β, γ and η are the weights for the loss terms,
trying to match the scales of the last three loss terms with
the dynamic loss LD. We discuss the details of loss terms in
Section C.4 in the appendix.

4.4 Query with Dynamics

Interestingly, AL is also called “query learning” in the statis-
tics literature (Settles, 2009), indicating the importance of
query strategies in the algorithms of AL. Query strategies
are leveraged to decide which instances are most informative
and aim to maximize different performance metrics (Settles,
2009; Konyushkova et al., 2017). Query strategies select
queries from the pool and update the training set accord-
ingly. In this work, we propose a novel pool-based strategy:

Algorithm 1 Query with Dynamics Q.
Input: Dtrain = a pool of labeled trajectories {Vtrain, E},
Input: Dpool = a pool of test trajectories {Vpool},
Input: D = a pool of agents we have for training,
Parameters: Query Size: K,
Model Weights: θ, Dynamic Loss: LD,
Output: Query of K agents,
Calculate dynamics loss LD on all of the agents in Dpool
with only one other agent in scope,
Select K agents with largest dynamics prediction error,
Return: K agents and update D = D∪Vi, i ∈ {K} with
features and connectivity from Dtrain.

Query with Dynamics, which selects queries of K agents

with the largest dynamics prediction error LD from the pool
Dpool, and then we update training set D with the features
and connectivity of K agents from Dtrain. If we have no
access to the connectivity as in unsupervised learning, we
run PID to align directed connections to the agents in pool
D with additional K agents (as shown in Algorithm 2). We
describe the query strategy in Algorithm 1 and Figure 3. It
is notable that although we have labels on the existence of
connections, we do not query agents purely on them. On
one hand, the characteristic of dynamical systems (Equa-
tion 9) provides strong support that the wrong alignment
of connections leads to large dynamics error LD. On the
other hand, we try to reserve redundancy for unsupervised
learning cases, where ALaSI has no access to ground-truth
connections. In this case, we ought to use alternative algo-
rithms as an oracle, such as PID, to estimate the existence of
connections and build Dtrain. However, it may be risky that
the oracle has a strong bias on the set for training D, and
thus errors in this set are unavoidable. As a result, we query
agents from the entire pool Dpool according to their dynam-
ics error LD, thus wrong connections would be recognized
by our query strategy.

4.5 Structural Inference with PID

As mentioned above, it is possible that we have no ac-
cess to the ground-truth connectivity of the dynamical sys-
tem. ALaSI manages to infer the connections with the help
of an oracle: PID (Williams & Beer, 2010; Lizier et al.,
2013). The PID framework decomposes the information
that a source of variables provides about a destination vari-
able (Lizier et al., 2013). In our cases to infer the exis-
tence of directed connections between a pair of agents i
and j, we extend the formulation in (Pratapa et al., 2020)
with temporal ordering to infer the direction of connections.
We first decompose the features of agent i in the scope:
Vi, into two sets: X0:T−1

i = {vti , 0 ≤ t ≤ T − 1} and
X1:T
i = {vti , 1 ≤ t ≤ T}. Then we calculate the rij be-

tween two agents i and j over all other agents in the scope:

rij = U(X1:T
j ;X0:T−1

i)/I(X1:T
j ;X0:T−1

i), (23)

where rij is the ratio score for connection from agent i to j,
and is then ranked with the results obtained from all of the
agent pairs in the scope. So the temporal information derives
directed connections in this formulation. We summarize the
details of PID in ALaSI in Algorithm 3 in the appendix.
With the help of PID, ALaSI can infer the existence of di-

6

Active Learning based Structural Inference

rected connections even without any prior knowledge about
the connectivity, which broadens the application scenarios
of ALaSI. It is possible to use other methods as an oracle
for ALaSI, such as pure mutual-information-based methods,
SCODE (Matsumoto et al., 2017) or even classic VAE-based
structural inference methods (Kipf et al., 2018; Webb et al.,
2019; Alet et al., 2019; Löwe et al., 2022), which shows a
high ability of adaption of ALaSI.

5 Experiments
We test ALaSI on seven different large dynamical systems,
including simulated networks and real-world gene regula-
tory networks (GRNs). Implementation details can be found
in Section C in the appendix. Besides that, we include ad-
ditional experiments on the integration of prior knowledge
with unsupervised learning and ablation study in Section D.

Datasets. We first test our framework on physical simula-
tions of spring systems, which is also mentioned in (Kipf
et al., 2018). Different from that in (Kipf et al., 2018),
we sample the trajectories of balls in the system with
fixed connectivity, but with different initial conditions.
We sample the trajectories by varying the number of
balls: {50, 100, 200, 500}, and we name the correspond-
ing datasets as: “Springs50”, “Springs100”, “Springs200”,
and “Springs500”. Moreover, we collect three real-world
GRNs from literature, namely single cell dataset of em-
bryonic stem cells (ESC) (Biase et al., 2014), a cutoff of
Escherichia coli microarray data (E. coli) (Jozefczuk et al.,
2010), and a cutoff of Staphylococcus aureus microarray
data (S. aureus) (Marbach et al., 2012). And the three GRNs
have 96, 1505 and 1084 agents, respectively.

Baselines and metrics. We compare ALaSI with the state-
of-the-art baseline methods:
• NRI (Kipf et al., 2018): a variational-auto-encoder model

for relational inference.
• fNRI (Webb et al., 2019): an NRI-based model with a

multiplex graph, allowing each layer to encode for each
connection-type.

• MPM (Chen et al., 2021): an NRI-based method with
a relation interaction mechanism and a spatio-temporal
message passing mechanism.

• ACD (Löwe et al., 2022): a variational model that lever-
ages shared dynamics to infer causal relations across sam-
ples with different underlying causal graphs.

• MPIR (Wu et al., 2020): a model based on minimum
predictive information regularization.

• PID (Williams & Beer, 2010): computes the ratio between
unique mutual information between any agent-pair in the
system and aligns connections according to the ranking.

Despite NRI, fNRI, MPM and ACD being originally de-
signed to operate with unsupervised learning, we follow the

instruction in their paper and only train the encoders to show
their results of supervised learning. We describe the imple-
mentation details of the baseline methods in Section C.6.
The evaluation results are demonstrated with the Area Under
the Receiver Operating Characteristic (AUROC), showing
the model’s ability to discriminate between cases (positive
examples) and non-cases (negative examples), and in this
paper, it is used to make clear the method’s ability to distin-
guish actual connections and non-connections.

5.1 Experimental Results of Supervised Learning

We first train ALaSI and baseline methods with supervised
learning. It is worth mentioning that despite our efforts, we
did not find an approach to train MPIR and PID in a super-
vised way without violating their inference mechanisms. For
the rest of the baseline methods, we follow the instruction in
their paper and only train the encoders on the partial knowl-
edge of connections. The experimental results of ALaSI
and baseline methods are shown in Figure 4. We report the
results as the average AUROC values of ten runs and as
a function of the proportion of labeled connections. The
number of labeled connections is calculated as the square
of the number of agents in the scope, where we mark both
connections and non-connections as labeled. We subtract
the number of labeled connections with the square of the
total number of agents in the system to obtain the proportion
of labeled connections. Each sub-figure corresponds to the
experimental results on a specific dataset.

As shown in Figure 4, the results of baseline methods are
positively affected by the proportion of labeled connections
during training, and only MPM is marginally better than
the other baseline methods on most of the datasets. The
rest of the baselines perform almost equally. The results of
ALaSI are also positively correlated with the proportion of
labeled connections, but the results are much better than any
of the baselines. Although ALaSI is only marginally better
than any of the baselines on the datasets of “Springs50” and
“Springs100” when the proportion of labeled connections
is relatively small (smaller than 0.1), ALaSI outperforms
baselines greatly when the proportion of labeled connections
is greater than 0.2 on these datasets. ALaSI also infers
connectivity with remarkably higher accuracy than baseline
methods on the rest of the datasets.

Moreover, we also observe that ALaSI learns the connectiv-
ity of large dynamical systems more efficiently than base-
lines. For example, as shown in the experimental results
on all of the datasets except “Springs200”, with only 60%
of the prior knowledge, ALaSI reaches higher inference
accuracy than any baseline methods operating with 80% of
the prior knowledge. And this phenomenon is more remark-
able in “Springs100”, “Springs500” and “E. coli”, where
ALaSI outperforms baselines with only 50% of the prior

7

Active Learning based Structural Inference

0.0 0.2 0.4 0.6
Proportion of Labeled Connections

0.6

0.7

0.8

0.9

A
U

R
O

C
Springs50

0.0 0.2 0.4 0.6
Proportion of Labeled Connections

0.65

0.70

0.75

0.80

A
U

R
O

C

Springs100

0.0 0.2 0.4 0.6
Proportion of Labeled Connections

0.62

0.64

0.66

0.68

0.70

0.72

A
U

R
O

C

Springs200

0.0 0.2 0.4 0.6
Proportion of Labeled Connections

0.550

0.575

0.600

0.625

0.650

A
U

R
O

C

Springs500

0.0 0.2 0.4 0.6
Proportion of Labeled Connections

0.50

0.55

0.60

0.65

A
U

R
O

C

ESC

0.0 0.2 0.4 0.6
Proportion of Labeled Connections

0.20

0.25

0.30

0.35

A
U

R
O

C

E. coli

0.0 0.2 0.4 0.6
Proportion of Labeled Connections

0.20

0.25

0.30

0.35

0.40

0.45

A
U

R
O

C

S. aureus

ALaSI
NRI
fNRI
MPM
ACD

Figure 4. Averaged AUROC results of ALaSI and baseline methods as a function of the proportion of labeled connections. Baseline
methods are modified to be trained in a supervised way.

Table 1. Averaged AUROC results (in %) of baseline methods and ALaSI with unsupervised learning.

Method Springs50 Springs100 Springs200 Springs500 ESC E. coli S. aureus

NRI 61.7± 0.04 55.2± 0.05 53.7± 0.05 51.1± 0.06 39.2± 0.06 15.6± 0.06 35.1± 0.07

fNRI 62.1± 0.03 56.7± 0.04 54.0± 0.04 51.6± 0.03 39.8± 0.07 15.4± 0.06 35.1± 0.06

MPM 63.1± 0.05 59.0± 0.05 54.4± 0.04 51.8± 0.04 40.2± 0.07 17.0± 0.05 37.5± 0.05

ACD 62.0± 0.04 58.9± 0.03 53.9± 0.05 51.5± 0.03 38.7± 0.04 16.2± 0.07 36.9± 0.08

MPIR 49.7± 0.02 44.4± 0.03 42.0± 0.03 41.1± 0.03 30.6± 0.05 15.1± 0.04 33.1± 0.04

PID 67.8± 0.01 63.0± 0.02 59.2± 0.03 54.7± 0.03 45.1± 0.04 19.5± 0.03 37.8± 0.03

ALaSI 73.5± 0.03 69.8± 0.04 66.1± 0.05 63.2± 0.06 57.3± 0.07 23.4± 0.05 39.2± 0.05

Table 2. Averaged training time (in hours) of baseline methods and ALaSI with unsupervised learning.

Method Springs50 Springs100 Springs200 Springs500 ESC E. coli S. aureus

NRI 29.2± 0.02 40.6± 0.03 57.1± 0.05 85.1± 0.03 39.4± 0.04 118.6± 0.06 101.7± 0.06

fNRI 31.0± 0.03 49.0± 0.04 58.0± 0.03 86.8± 0.05 42.0± 0.06 121.4± 0.07 105.3± 0.05

MPM 35.9± 0.02 51.6± 0.03 57.4± 0.03 85.6± 0.04 44.1± 0.05 124.0± 0.06 105.9± 0.06

ACD 49.0± 0.04 82.4± 0.02 63.9± 0.03 90.0± 0.04 80.4± 0.04 130.9± 0.06 113.5± 0.05

MPIR 12.6± 0.01 20.7± 0.02 42.0± 0.03 51.5± 0.03 19.5± 0.04 65.1± 0.03 47.6± 0.02

PID 51.6± 0.01 100.2± 0.01 151.0± 0.02 183.4± 0.02 89.3± 0.02 267.1± 0.02 230.8± 0.01

ALaSI 25.5± 0.04 33.8± 0.03 46.1± 0.04 60.3± 0.04 37.2± 0.05 87.0± 0.04 72.9± 0.05

knowledge. Thanks to DeepAL and query with dynamics,
ALaSI can update the labeling pool with the most infor-
mative addition of agents. Besides that, the IS and OOS
operations encourage the model to learn connections within
the scope and meanwhile also reserve redundancy for possi-
ble OOS connections. Consequently, ALaSI is able to learn
the connectivity of large dynamical systems with less prior
knowledge under supervised learning.

5.2 Experimental Results of Unsupervised Learning

We report the final average AUROC values and standard de-
viations of ALaSI and baseline methods under unsupervised
learning from ten runs in Table 1, the average training time
and standard deviations in Table 2, as well as the number of
required GPUs in Table 3. We can observe from Table 1 that
all of the methods unsurprisingly perform worse than them-
selves in supervised learning, which is also stated in (Kipf
et al., 2018; Chen et al., 2021). ALaSI performs better than

8

Active Learning based Structural Inference

Table 3. Number of utilized GPU cards of baseline methods and ALaSI with unsupervised learning.

Method Springs50 Springs100 Springs200 Springs500 ESC E. coli S. aureus

NRI 1 2 4 6 1 8 6
fNRI 1 2 4 6 1 8 6
MPM 1 2 4 6 1 8 6
ACD 1 2 4 6 1 8 6
MPIR 1 1 1 1 1 1 1
PID 1 1 1 1 1 1 1

ALaSI 1 1 1 1 1 1 1

any of the baseline methods on all of the datasets with large
margins (up to 17.1%), which certainly verifies the inference
accuracy of ALaSI on the unsupervised structural inference
of large dynamical systems. Moreover, the average training
time of ALaSI and baseline methods is shown in Table 2.
It is worth mentioning that as shown in Table 3, most of
the baseline methods are trained on multiple GPU cards
when the dataset has more than 100 agents, while ALaSI is
trained on a single GPU card. Experimental settings with
details may refer to Section C.1. The averaged training
time of ALaSI is only longer than MPIR across all of the
datasets, while much more accurate than MPIR.Although
the AUROC values of PID are the highest among baseline
methods, its operation time is much longer than the rest, and
it is nevertheless less accurate than ALaSI. Compared with
the rest of the baselines, thanks to the query strategy with
dynamics and the OOS operation, ALaSI manages to infer
the connections for large dynamical systems with higher
efficiency even with unsupervised learning. These results
demonstrate the computational efficiency and effectiveness
of ALaSI for structural inference on large dynamical sys-
tems. More experimental results on noisy data and ablation
studies can be found in Section D in the appendix.

6 Conclusion
This paper has introduced ALaSI, a scalable structural infer-
ence framework based on DeepAL. The query with dynam-
ics encourages the framework to select the most informative
agents to be labeled based on dynamics error, and thus leads
to faster convergence. The OOS operation enables the frame-
work to distinguish IS messages and OOS messages based
on the current view of the partial system, which on the other
hand promotes the scalability of ALaSI. The experimental
results on the seven large datasets have validated the scal-
ability and inference accuracy of ALaSI. The experiments
under supervised settings suggest the possibility of lever-
aging ALaSI to infer the connectivity of large dynamical
systems with less prior knowledge. Moreover, the experi-
ments under unsupervised settings demonstrate the broad
application scenarios of ALaSI to infer the connectivity even
without prior knowledge. Future research includes struc-

tural inference based on causality and structural inference
for systems with changing agents and connections.

Acknowledgment
Author Jun Pang acknowledges financial support from the
Institute for Advanced Studies of the University of Luxem-
bourg through an Audacity Grant (AUDACITY-2021).

References
Alet, F., Weng, E., Lozano-Pérez, T., and Kaelbling,

L. P. Neural relational inference with fast modular meta-
learning. In Advances in Neural Information Processing
Systems (NeurIPS), volume 32, pp. 11804–11815, 2019.

Ash, J. T., Zhang, C., Krishnamurthy, A., Langford, J., and
Agarwal, A. Deep batch active learning by diverse, un-
certain gradient lower bounds. In Proceedings of the 8th
International Conference on Learning Representations
(ICLR), 2020.

Barrett, A. B. Exploration of synergistic and redundant
information sharing in static and dynamical gaussian sys-
tems. Physical Review E, 91(5):052802, 2015.

Belghazi, M. I., Baratin, A., Rajeshwar, S., Ozair, S., Ben-
gio, Y., Courville, A., and Hjelm, D. Mutual information
neural estimation. In Proceedings of the 35th Interna-
tional Conference on Machine Learning (ICML), pp. 531–
540. PMLR, 2018.

Biase, F. H., Cao, X., and Zhong, S. Cell fate inclina-
tion within 2-cell and 4-cell mouse embryos revealed by
single-cell RNA sequencing. Genome Research, 24(11):
1787–1796, 2014.

Brasó, G. and Leal-Taixé, L. Learning a neural solver for
multiple object tracking. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 6247–6257, 2020.

Cang, Z. and Nie, Q. Inferring spatial and signaling rela-
tionships between cells from single cell transcriptomic
data. Nature Communications, 11(1):1–13, 2020.

9

Active Learning based Structural Inference

Chan, T. E., Stumpf, M. P., and Babtie, A. C. Gene reg-
ulatory network inference from single-cell data using
multivariate information measures. Cell Systems, 5(3):
251–267.e3, 2017.

Chen, S., Wang, J., and Li, G. Neural relational inference
with efficient message passing mechanisms. In Proceed-
ings of the 35th AAAI Conference on Artificial Intelli-
gence (AAAI), pp. 7055–7063, 2021.

Cowen-Rivers, A., Lyu, W., Tutunov, R., Wang, Z., Grosnit,
A., Griffiths, R.-R., Maravel, A., Hao, J., Wang, J., Peters,
J., and Bou Ammar, H. Hebo: Pushing the limits of
sample-efficient hyperparameter optimisation. Journal of
Artificial Intelligence Research, 74, 07 2022.

Eriksson, D., Pearce, M., Gardner, J., Turner, R. D., and
Poloczek, M. Scalable global optimization via local
Bayesian optimization. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), volume 32, 2019.

Gal, Y., Islam, R., and Ghahramani, Z. Deep bayesian active
learning with image data. In Proceedings of the 34th
International Conference on Machine Learning (ICML),
pp. 1183–1192. PMLR, 2017.

Gentile, C., Wang, Z., and Zhang, T. Achieving minimax
rates in pool-based batch active learning. In Proceed-
ings of the 39th International Conference on Machine
Learning (ICML), pp. 7339–7367. PMLR, 2022.

Graber, C. and Schwing, A. G. Dynamic neural relational
inference for forecasting trajectories. In Proceedings of
the 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, pp. 4383–4392,
2020.

Ha, S. and Jeong, H. Unraveling hidden interactions in
complex systems with deep learning. Scientific Reports,
11(1):1–13, 2021.

Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal,
K., Bachman, P., Trischler, A., and Bengio, Y. Learning
deep representations by mutual information estimation
and maximization. In Proceddings of the 7th Interna-
tional Conference on Learning Representations (ICLR),
2019.

Hossain, H. M. S. and Roy, N. Active deep learning for ac-
tivity recognition with context aware annotator selection.
In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining
(KDD), pp. 1862–1870. ACM, 2019.

Irwin, M. and Wang, Z. Dynamic Systems Modeling, pp.
1–12. John Wiley & Sons, Ltd, 2017.

Ivanovic, B. and Pavone, M. The Trajectron: Probabilistic
multi-agent trajectory modeling with dynamic spatiotem-
poral graphs. In Proceedings of the 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pp.
2375–2384, 2019.

Jang, E., Gu, S., and Poole, B. Categorical reparameteri-
zation with gumbel-softmax. In Proceedings of the 5th
International Conference on Learning Representations
(ICLR), 2017.

Johnson, D. D. Learning graphical state transitions. In Pro-
ceedings of the 5th International Conference on Learning
Representations (ICLR), 2017.

Jozefczuk, S., Klie, S., Catchpole, G., Szymanski, J.,
Cuadros-Inostroza, A., Steinhauser, D., Selbig, J., and
Willmitzer, L. Metabolomic and transcriptomic stress
response of Escherichia coli. Molecular Systems Biology,
6(1):364, 2010.

Katok, A. and Hasselblatt, B. Introduction to the Modern
Theory of Dynamical Systems. Encyclopedia of Mathe-
matics and its Applications. Cambridge University Press,
1995.

Khanna, S. and Tan, V. Y. F. Economy statistical recurrent
units for inferring nonlinear granger causality. In Pro-
ceedings of the 8th International Conference on Learning
Representations (ICLR), 2020.

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel,
R. Neural relational inference for interacting systems.
In Proceedings of the 35th International Conference on
Machine Learning (ICML), pp. 2688–2697. PMLR, 2018.

Kirsch, A., van Amersfoort, J., and Gal, Y. BatchBALD:
Efficient and diverse batch acquisition for deep bayesian
active learning. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 32, pp. 7024–7035,
2019.

Konyushkova, K., Sznitman, R., and Fua, P. Learning active
learning from data. In Advances in Neural Information
Processing Systems (NIPS), volume 30, pp. 4225–4235,
2017.

Kraskov, A., Stögbauer, H., and Grassberger, P. Estimating
mutual information. Physical Review E, 69:066138, 2004.

Kwapień, J. and Drożdż, S. Physical approach to complex
systems. Physics Reports, 515(3-4):115–226, 2012.

Li, J., Ma, H., Zhang, Z., Li, J., and Tomizuka, M. Spatio-
temporal graph dual-attention network for multi-agent
prediction and tracking. IEEE Transactions on Intelligent
Transportation Systems, 23(8):10556–10569, 2022.

10

Active Learning based Structural Inference

Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and Battaglia,
P. W. Learning deep generative models of graphs. arXiv
preprint arXiv:1803.03324, 2018.

Lizier, J. T., Flecker, B., and Williams, P. L. Towards a
synergy-based approach to measuring information modi-
fication. In Proceedings of the 2013 IEEE Symposium on
Artificial Life (ALife), pp. 43–51. IEEE, 2013.

Löwe, S., Madras, D., Shilling, R. Z., and Welling, M.
Amortized causal discovery: Learning to infer causal
graphs from time-series data. In Proceedings of the 1st
Conference on Causal Learning and Reasoning (CLeaR),
pp. 509–525. PMLR, 2022.

Makkeh, A., Theis, D. O., and Vicente, R. Broja-2pid: A
robust estimator for bivariate partial information decom-
position. Entropy, 20(4):271, 2018.

Marbach, D., Costello, J. C., Küffner, R., Vega, N. M., Prill,
R. J., Camacho, D. M., Allison, K. R., Kellis, M., Collins,
J. J., and Stolovitzky, G. Wisdom of crowds for robust
gene network inference. Nature Methods, 9(8):796–804,
2012.

Matsumoto, H., Kiryu, H., Furusawa, C., Ko, M. S., Ko,
S. B., Gouda, N., Hayashi, T., and Nikaido, I. SCODE:
an efficient regulatory network inference algorithm from
single-cell RNA-Seq during differentiation. Bioinformat-
ics, 33(15):2314–2321, 2017.

McGill, W. Multivariate information transmission. Trans-
actions of the IRE Professional Group on Information
Theory, 4(4):93–111, 1954.

Pakman, A., Nejatbakhsh, A., Gilboa, D., Makkeh, A.,
Mazzucato, L., Wibral, M., and Schneidman, E. Esti-
mating the unique information of continuous variables.
In Advances in Neural Information Processing Systems
(NeurIPS), volume 34, 2021.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. PyTorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems (NeurIPS),
volume 33, pp. 8024–8035, 2019.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Pop, R. and Fulop, P. Deep ensemble bayesian active learn-
ing: Addressing the mode collapse issue in monte carlo
dropout via ensembles. arXiv preprint arXiv:1811.03897,
2018.

Pratapa, A., Jalihal, A. P., Law, J. N., Bharadwaj, A., and
Murali, T. Benchmarking algorithms for gene regulatory
network inference from single-cell transcriptomic data.
Nature Methods, 17(2):147–154, 2020.

Ren, P., Xiao, Y., Chang, X., Huang, P., Li, Z., Gupta, B. B.,
Chen, X., and Wang, X. A survey of deep active learning.
ACM Computing Surveys, 54(9):1–40, 2022.

Schroff, F., Kalenichenko, D., and Philbin, J. FaceNet: A
unified embedding for face recognition and clustering. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 815–823, 2015.

Schultz, M. and Joachims, T. Learning a distance metric
from relative comparisons. In Advances in Neural Infor-
mation Processing Systems (NIPS), volume 16, pp. 41–48.
MIT Press, 2003.

Settles, B. Active learning literature survey. Technical
report, University of Wisconsin-Madison, 2009.

Shi, W. and Yu, Q. Integrating bayesian and discriminative
sparse kernel machines for multi-class active learning.
In Advances in Neural Information Processing Systems
(NeurIPS), volume 32, pp. 2282–2291, 2019.

Siméoni, O., Budnik, M., Avrithis, Y., and Gravier, G. Re-
thinking deep active learning: Using unlabeled data at
model training. In Proceedings of the 25th International
Conference on Pattern Recognition (ICPR), pp. 1220–
1227. IEEE, 2020.

Székely, G. J. and Rizzo, M. L. Brownian distance covari-
ance. The Annals of Applied Statistics, 3(4):1236–1265,
2009.

Székely, G. J. and Rizzo, M. L. On the uniqueness of
distance covariance. Statistics & Probability Letters, 82
(12):2278–2282, 2012.

Székely, G. J. and Rizzo, M. L. Partial distance correlation
with methods for dissimilarities. The Annals of Statistics,
42(6):2382–2412, 2014.

Székely, G. J., Rizzo, M. L., and Bakirov, N. K. Measuring
and testing dependence by correlation of distances. The
Annals of Statistics, 35(6):2769–2794, 2007.

Tank, A., Covert, I., Foti, N., Shojaie, A., and Fox, E. B.
Neural granger causality. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(8):4267–4279,
2021.

11

Active Learning based Structural Inference

Tran, T., Do, T., Reid, I. D., and Carneiro, G. Bayesian gen-
erative active deep learning. In Proceedings of the 36th
International Conference on Machine Learning (ICML),
pp. 6295–6304. PMLR, 2019.

Tsubaki, M., Tomii, K., and Sese, J. Compound–protein
interaction prediction with end-to-end learning of neural
networks for graphs and sequences. Bioinformatics, 35
(2):309–318, 2019.

Wang, A. and Pang, J. Iterative structural inference of
directed graphs. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 35, 2022.

Wang, K., Zhang, D., Li, Y., Zhang, R., and Lin, L. Cost-
effective active learning for deep image classification.
IEEE Transactions on Circuits and Systems for Video
Technology, 27(12):2591–2600, 2016.

Webb, E., Day, B., Andres-Terre, H., and Lió, P. Factorised
neural relational inference for multi-interaction systems.
arXiv preprints arXiv:1905.08721, 2019.

Williams, P. L. and Beer, R. D. Nonnegative decom-
position of multivariate information. arXiv preprint
arXiv:1004.2515, 2010.

Wu, T., Breuel, T., Skuhersky, M., and Kautz, J. Discovering
nonlinear relations with minimum predictive information
regularization. arXiv preprint arXiv:2001.01885, 2020.

Zhdanov, F. Diverse mini-batch active learning. arXiv
preprint arXiv:1901.05954, 2019.

Zhen, X., Meng, Z., Chakraborty, R., and Singh, V. On
the versatile uses of partial distance correlation in deep
learning. arXiv preprint arXiv:2207.09684, 2022.

12

Active Learning based Structural Inference

A What are IS and OOS Connections?

(a)

Scope

(b)

Figure 5. (a) A dynamical system with 11 agents. (b) A scope of 4 agents on the same system.

In Figure 5(a), there is a dynamical system consisting of 11 agents and directed connections. Then suppose we have
a scope with 4 agents on the system and is shown as the cloud line in Figure 5(b). Based on the segmentation of the
scope, the agents in the system are divided into two groups: IS agents (in original color), and OOS agents (in nattier blue).
But the connections are segmented into three groups:(a) IS connections (in blue), (b) OOS connections (in red) and (c)
non-observable connections (in cream). During the training of ALaSI, the query strategy with dynamics (Section 4.4) selects
the most informative agents and builds a scope upon these agents. If ALaSI operates without the OOS message learning
pipeline, at every update of the scope, ALaSI can only learn the representation of the connections within the scope. Yet IS
agents may also be affected by OOS agents, thus we need to take the OOS connections into consideration and separate their
influence. Therefore, the OOS message learning pipeline expands the learning field of ALaSI to OOS connections, even
though one agent of every OOS connection is not observable in the current scope, which significantly promotes the learning
efficiency of ALaSI.

B Proofs

B.1 Proof of Proposition 4.1

We prove Proposition 4.1 in this section. Since we assume the independence between Vtinter and Ztoos, based on the definition
of mutual information between two independent variables, we can easily get to the first statement:

I(Vtinter;Z
t
oos) ≈ 0. (24)

Moreover, from the proposed PI-diagram of information in a target decomposed from three source variables (Lizier et al.,
2013), we have the following statement:

I(vt+1
i ; vti ,Vtinter, Z

t
oos) > 0. (25)

We refer to Figure 3 in (Lizier et al., 2013) and search for the terms related to Xt
inter and Ztoos:

I(vt+1
i ;Vtinter) = {Vtinter}+ {Vtinter}{vti , Ztoos}+ {vti}{Vtinter}{Ztoos}+ {Vtinter}{Ztoos}+ {vti}{Vtinter} ≫ 0, (26)

I(vt+1
i ;Ztoos) = {Ztoos}+ {Ztoos}{vti ,Vtinter}+ {vti}{Vtinter}{Ztoos}+ {Vtinter}{Ztoos}+ {vti}{Ztoos} ≫ 0, (27)

where {·}{·} denotes the redundant information in the two sources, {·}{·}{·} denotes the redundant information in the
three sources, {·} represents the unique information in the single source, and {· , ·} is the synergistic information from the
sources. We summarize the results from Equation 24 to 27, and can derive to:

I(Vtinter;Z
t
oos) < I(vt+1

i ;Ztoos), and I(Vtinter;Z
t
oos) < I(vt+1

i ;Vtinter), (28)

which is Proposition 4.1.

B.2 Derivation of OOS Loss Function

We describe the derivation procedure for Equation 18 in this section. As mentioned in Section 4.2, we can derive the
OOS message Ztoos from vt+1

i , vti and Vtinter. Based on the triplet loss (Schroff et al., 2015; Schultz & Joachims, 2003) and

13

Active Learning based Structural Inference

Proposition 4.1, we derive the following loss function to learn OOS message:

Loos =
1

(T − 1) · |D|

T−1∑
t

∑
i∈D

[
I(Vtinter;Z

t
oos)− I(vt+1

i ;Ztoos) + α1 + I(Vtinter;Z
t
oos)− I(vt+1

i ;Vtinter) + α2

]
, (29)

where T represents the total count of time-steps, D represents the current scope, |D| denotes the number of agents in the
scope, and α1 and α2 are margins to regulate the distance between two pairs of mutual information, respectively, in order
to encourage larger values of I(vt+1

i ;Ztoos) and I(vt+1
i ;Vtinter) compared to I(Vtinter;Z

t
oos). It is notable that Ztoos and Vtinter

are calculated according to every agent in the scope, respectively. We omit the subscript of Ztoos and Vtinter for agent i in
Equation 29 for concise. Then we can derive:

Loos =
1

(T − 1) · |D|

T−1∑
t

∑
i∈D

[
I(Vtinter;Z

t
oos)− I(vt+1

i ;Ztoos) + α1 + I(Vtinter;Z
t
oos)− I(vt+1

i ;Vtinter) + α2

]
=

1

(T − 1) · |D|

T−1∑
t

∑
i∈D

[
H(Ztoos)−H(Ztoos|Vtinter)−

(
H(Ztoos)−H(Ztoos|vt+1

i)
)
+ α1 +H(Vtinter)−H(Vtinter|Ztoos)

−
(
H(Vtinter)−H(Vtinter|vt+1

i)
)
+ α2

]
=

1

(T − 1) · |D|

T−1∑
t

∑
i∈D

[
H(Ztoos|vt+1

i)−H(Ztoos|Vtinter) + α1 +H(Vtinter|vt+1
i)−H(Vtinter|Ztoos) + α2

]
.

We assume Ztoos and Vtinter are independent of each other, and we can reformulate the equation as:

Loos =
1

(T − 1) · |D|

T−1∑
t

∑
i∈D

[
H(Ztoos|vt+1

i)−H(Ztoos) + α1 +H(Vtinter|vt+1
i)−H(Vtinter) + α2

]
=

1

(T − 1) · |D|

T−1∑
t

∑
i∈D

[
− I(Ztoos; v

t+1
i)− I(Vtinter; v

t+1
i) + α1 + α2

]
.

Since the mutual information between two fixed variables is certain, we omit the second term in the above derivation.
Besides that, since the target is minimization, the constant term has no effect on the formulation. As a result, we can obtain:

Loos =
1

(T − 1) · |D|

T−1∑
t

∑
i∈D

[
− I(Ztoos; v

t+1
i)

]
,

which is the formulation in Equation 18. As a result, we only need to minimize −I(Zoos; v
t+1
i), and we can implement it

with DeepInfoMax (Hjelm et al., 2019) algorithm. DeepInfoMax maximizes the mutual information between input data and
learned high-level representations with the help of global and local information.

C Implementation

C.1 General Settings

We implement ALaSI in PyTorch (Paszke et al., 2019) with the help of Scikit-Learn (Pedregosa et al., 2011) to calculate
various metrics. We run experiments of ALaSI on a single NVIDIA Tesla V100 SXM2 graphic card, which has 32 GB
graphic memory and 5120 NVIDIA CUDA Cores. We attach our pseudocode and implementation as the supplementary
document to this paper. During training, we set batch size as 64 for datasets which have less than 100 agents, for those equal
or more than 100 agents, we set batch size as 16. We train our ALaSI model with 500 epochs for each updated label pool on
every dataset.

As for baseline methods, since the training under supervised settings only requires the encoder of the model, which demands
moderate space, we managed to run the methods on a single NVIDIA Tesla V100 SXM2 graphic card, and the batch sizes
are the same as ALaSI. However, when it came to unsupervised learning, the computational requirement of variational
auto-encoder-based methods increased significantly. As a result, in order to run these methods on scalable datasets with
more than 100 agents, we use “DistributedDataParallel” of PyTorch to enable the parallel training of these models. And
we ran these methods on four NVIDIA Tesla V100 SXM2 graphic cards, with a batch size of 128. For the experiments

14

Active Learning based Structural Inference

on datasets with less than 100 agents, we just ran the baselines on a single NVIDIA Tesla V100 SXM2 graphic card with
a batch size of 64. For MPIR, since the model is super small and the computational requirement is the smallest among
all of the baselines, we ran it on a single NVIDIA Tesla V100 SXM2 graphic card with a batch size of 64. For all of the
experiments, we train ALaSI with a learning rate of 0.0005.

C.2 Hyper-parameters

We have the following hyper-parameters: initial sample size m, query size K, number of epochs E, number of selection
rounds N , variance σ of Ldc, weights α, β, γ, ξ in hybrid loss, and proportion of rank in PID η. We utilized grid search for
the rough values of these hyper-parameters, and show them in Table 4. We reported the choice of parameters based on the
values that can match all of the loss terms into the same scale. And even based on these easy searches, ALaSI managed
to outperform other baseline methods. We think that it is feasible to tune these parameters with the help of Bayesian
Optimization packages, such as HEBO (Cowen-Rivers et al., 2022) and TuRBO (Eriksson et al., 2019).

Table 4. Hyper parameter choices for every dataset.
DATASET m K E N σ α β γ ξ η

Springs50 5 0.10 500 12 0.0008 0.05 0.8 20 2 0.3
Springs100 5 0.05 500 15 0.0008 0.02 0.8 30 2 0.3
Springs200 10 0.04 500 20 0.0008 0.02 0.5 20 3 0.2
Springs500 20 0.02 600 30 0.0008 0.02 0.6 40 3 0.2
ESC 5 0.05 500 20 0.0008 0.02 0.5 50 2 0.2
E. coli 20 0.02 600 50 0.0008 0.01 0.4 40 3 0.3
S. aureus 20 0.02 600 50 0.0008 0.01 0.4 20 3 0.3

C.3 Details of Pipelines

In this section, we first demonstrate the general pipeline of ALaSI in Algorithm 2. Then we show the description of PID
algorithm in ALaSI in Algorithm 3, which is followed by the implementation of ALaSI in Algorithm 4.

C.4 Details of Loss Function

In this section, we discuss and state the details of loss terms and the implementation details of the proposed loss terms in
hybrid loss (Equation 22).

C.4.1. OOS Loss

In this section, we describe the implementation of OOS loss function (Equation 18). As shown in Section B.2, the loss
function is simplified as the maximization of mutual information between Ztoos and vt+1

i for all 0 ≤ t ≤ T − 1, and for
all agent i in the current scope. As mentioned in Section 4.3, we leverage DeepInfoMax (Hjelm et al., 2019) to maxi-
mize I(Ztoos, v

t+1
i). We follow the implementation of DeepInfoMax at: https://github.com/DuaneNielsen/

DeepInfomaxPytorch, which is a pytorch version of official implementation at https://github.com/rdevon/
DIM. Interestingly, DeepInfoMax requires output variables, input variables and also the negative samples of input variables.
As a result, besides Ztoos and vt+1

i , we also feed Vtinter to DeepInfoMax, as the negative samples.

C.4.2. Distance Correlation

In this section, we firstly describe the procedures to calculate distance correlation Ldc in Equation 19, then we describe the
implementation of distance correlation in our work.

Procedures. We firstly pair the K samples of Ztoos and Vtinter as pairs: (zp, xp)p∈K . Then we calculate the distance matrices
A,B ∈ RK×K as:

Apq = ||zp − zq||F , and Bpq = ||xp − xq||F , p, q = 1, ...,K.

15

https://github.com/DuaneNielsen/DeepInfomaxPytorch
https://github.com/DuaneNielsen/DeepInfomaxPytorch
https://github.com/rdevon/DIM
https://github.com/rdevon/DIM

Active Learning based Structural Inference

Algorithm 2 Pipeline of ALaSI.
Input: Dtrain = a pool of labeled trajectories {Vtrain, E},
Input: Dpool = a pool of test trajectories {Vpool},
Parameters: initial sample size m, query size K, number of epochs E, number of selection rounds N ,
Model Weights: θ, Hybrid Loss: R, Query with Dynamics: Q,
Output: Trained Active Structural Inference ModelM,
if Supervised learning then

Set of data points D ← Select m agents with features Vm and connectivity Em from Dtrain,
else

Select m agents with features Vm from Dtrain,
Run PID on Vm and obtain connections between m nodes: EPID0,
Set of data points D ← {Vm, EPID0},

end if
Train modelM E epochs with lossR on D and obtain parameters θ0,
Query K agents with the strategy of query with dynamics Q(θ0, {Vpool}, E),
if Supervised learning then

Update D with K agents with features VK and connectivity EK from Dtrain,
else

Select m agents with features Vm from Dtrain,
Run PID on features VK and obtain connections between K nodes: EPIDK ,
Update D ← {VK, EPIDK},

end if
while Round i < N do

Train modelM E epochs with lossR on D and obtain parameters θi,
Query agent features with Q(θi, {Vpool}, E) and choose K agents,
if Supervised learning then

Update D with K agents with features VK and connectivity VK from Dtrain,
else

Select m agents with features Vm from Dtrain,
Run PID on features VK and obtain connections between K nodes: EPIDK ,
Update D ← {VK, EPIDK},

end if
end while
Return: trained modelM and parameters θ.

Algorithm 3 PID Algorithm in ALaSI.
Input: {Vpool} = a pool of trajectories of p agents,
Parameters: Rank or proportion of rank: ξ, Total number of time steps of features: T ,
Output: Dtrain = a pool of labeled trajectories {Vpool, E},
for agent i in total p agents do

for agent j in p− 1 agents do
for agent r in p− 2 agents do

Compute the unique component IUni between X1:T−1
i and X2:T

j given X2:T
r ,

Compute the mutual information I between X1:T−1
i and X2:T

j given X2:T
r ,

Compute the ratio qr between the IUni and I ,
end for
Calculate the sum of qr over all agents r as qij ,

end for
end for
Rank all qij , and select ξ (or ξ · p) agent-pairs with highest qij ,
Mark the connections from i to j in these pairs as exist, the rest as non-exist,
Return: the connectivity between p agents.

16

Active Learning based Structural Inference

After that, we double center the distance matrices to get Ãpq , B̃pq:

Ãpq = Apq − Āp. − Ā.q + Ā..,

where Āi. denoted the mean of row i, Ā.j denotes the mean of column j, Ā.. denotes the overall mean of A. So this centers
both the rows and columns of A,B. All rows and columns of Ã and B̃ sum to 0. In short notation:

Ãqm = (I −M)A(I −M), and B̃qm = (I −M)A(I −M),

where M = 1
K11T . The distance covariance of Ztoos and Vtinter is defined as the square root of:

dcov2(Ztoos,Vtinter) =
1

K2

K∑
p,q=1

ÃpqB̃pq.

And the distance variance is defined as: dvar2(x) = dcov2(x, x). Thus we can calculate the distance correlation with:

Ldc =
1

(T − 1) · |D|

T−1∑
t

∑
i∈D

dCov2(Ztoos,Vtinter)√
dVar(Ztoos)dVar(Vtinter)

,

which is the same formulation as Equation 19.

Implementation. As for the implementation of distance correlation, we originally follow the official implementation of
distance correlation implementation of (Zhen et al., 2022) at https://github.com/zhenxingjian/Partial_
Distance_Correlation. We then extend the implementation to suit batch-wise calculation and GPU acceleration.

C.4.3. Discussion on the Loss Terms

In this section, we would like to discuss the importance of different terms in the hybrid loss mentioned in Section 4.3. The
hybrid loss consists of four terms, Loos: to learn OOS messages, Ldc: to ensure the independence assumption of learning
OOS messages, LD: loss function for dynamics, and Lcon: loss function for connectivity. Among the four terms, Loos and
Ldc should appear in pairs to learn OOS messages (as stated and proved in Section B.2). LD and Lcon are the very important
terms to make ALaSI work (terms for AL training), which cannot be discarded. Therefore, we conducted ablation studies to
check the importance of terms for OOS message learning, and presented the results in Section D.3. In the ablation studies,
we state ”ALaSI-no OOS” as the one without Loos and Ldc by setting γ and η as zero. And Figure 9 clearly shows the
importance of Loos and Ldc. Without these two terms, the algorithm can only learn about the representations of connections
within the scope and cannot extrapolate onto OOS connections, which results in an almost linear dependence between
AUROC and the proportion of labeled connections.

C.5 Implementation of Pipelines

We first briefly describe the pipeline of learning of ALaSI in Algorithm 4. We then describe the components of several
networks mentioned in Algorithm 4. The design of finter1, finter2, foos1, foos2 and fdynamics follows modular-design practice and
are based on a multi-layer-perceptron shown in Algorithm 5. We name the functional pipeline shown in Algorithm 5 as MLP ,
and we can represent the networks in Algorithm 4 as: finter1 = MLP (MLP (·)), finter2 = MLP (·), foos1 = MLP (·),
foos2 = MLP (·) and fdynamics = MLP (·). We briefly report the dimension of the layers of each networks in Table 5,
where f ,inter1 represents the second MLP (·) of finter1, f ,inter1 represents the first MLP (·) of finter1, xdim is the number of
dimensions of an agent at a time step, and |T | represents the total time steps of the trajectory.

C.6 Implementation of Baselines

NRI. We use the official implementation code by the author from https://github.com/ethanfetaya/NRI with
customized data loader for our chosen datasets. We add our metric-evaluation in “test” function, after the calculation of
accuracy in the original code.

fNRI. We use the official implementation code by the author from https://github.com/ekwebb/fNRI with
customized data loader for our chosen datasets. We add our metric-evaluation in “test” function, after the calculation of
accuracy and the selection of correct order for the representations in latent spaces in the original code.

MPM. We use the official implementation code by the author from https://github.com/hilbert9221/NRI-MPM

17

https://github.com/zhenxingjian/Partial_Distance_Correlation
https://github.com/zhenxingjian/Partial_Distance_Correlation
https://github.com/ethanfetaya/NRI
https://github.com/ekwebb/fNRI
https://github.com/hilbert9221/NRI-MPM

Active Learning based Structural Inference

Algorithm 4 Pipeline of learning in ALaSI.
Input: V = set of agent features of current scope,
Input: n = number of agents in the current scope,
Input: Zgt = ground truth connectivity in the current scope,
Connection Learning Network: finter1, IS Message Network: finter2, OOS Embedding Network: foos1, OOS Message
Network: foos2, Dynamics Learning Network: fdynamics, Output Function: foutput, DeepInfoMax: fDIM
Split agent features according to time steps: Vτ = V0:T−1 for training, Vψ = V1:T for loss calculation, where T
represents the total time steps,
Learn representation of connections: Z = finter1(Vτ , n),
Summarize connectivity inside the scope: Ẑ = GumbelSoftmax(Z),
Learn inter scope messages: einter = finter2(Vτ , Ẑ),
Learn OOS messages: eoos = foos2(foos1(Vτ , einter)),
Learn dynamics: eout = foutput(fdynamics(einter, eoos),Vτ),
Calculate OOS loss with DeepInfoMax: LOOS = fDIM(einter, eoos,Vτ),
Calculate distance correlations: Ldc from eoos and Vτ for each agent in the scope,
Calculate dynamics prediction loss: LD ← {eout,Vψ},
Calculate connectivity loss: Lcon ← {Ẑ, Zgt},
Summarize as the hybrid loss: R ← {LD,Lcon,LOOS,Ldc},
Update parameters with back-propagation,
Return: trained model.

Algorithm 5 The Multi-layer-perceptron.
Input: features input
x = elu(Linear1(input))
x = dropout(x)
x = elu(Linear2(x))
out = batch norm(x)
Return: out

with customized data loader for our chosen datasets. We add our metric-evaluation for AUROC in “evaluate()” function of
class “XNRIDECIns” in the original code.

Table 5. Dimension of the layers and dropout rates.
Parameters f ,,

inter1 f ,
inter1 finter2 foos1 foos2 fdynamics

Linear1 2 · xdim · |T | 256 2 · xdim (xdim + 256) ∗ (|T | − 1) 2 · xdim 256
Dropout 0.0 0.0 0.0 0.5 0.0 0.0
Linear2 256 2 256 xdim ∗ (|T | − 1) 256 256

ACD. We follow the official implementation code by the author as the framework for ACD (https://github.com/
loeweX/AmortizedCausalDiscovery). We run the code with customized data loader for our datasets. We imple-
ment the metric-calculation pipeline in the “forward pass and eval()” function.

MPIR. We follow the official implementation from https://github.com/tailintalent/causal as the model
for MPIR. We run the model with customized data loader for the chosen datasets. After the obtain of the results, we run
another script to calculate the metrics.

PID. Based on the Julia implementation of PID in https://github.com/Tchanders/InformationMeasures.
jl, we implement PID in Python. Then we implement the mutual information calculation of PID with KDTree (see https:
//github.com/paulbrodersen/entropy_estimators), in order to enable PID to operate on continuous high-
dimensional data. Different from other methods, we run PID on all of the dataset we have in experiments. For instance,
when running experiments on “Springs50”, PID infer the connections of the entire dynamical system based on a union set of
the trajectories for training, validation and testing.

18

https://github.com/loeweX/AmortizedCausalDiscovery
https://github.com/loeweX/AmortizedCausalDiscovery
https://github.com/tailintalent/causal
https://github.com/Tchanders/InformationMeasures.jl
https://github.com/Tchanders/InformationMeasures.jl
https://github.com/paulbrodersen/entropy_estimators
https://github.com/paulbrodersen/entropy_estimators

Active Learning based Structural Inference

C.7 Further Details about Datasets

Spring Datasets To generate these springs datasets (“Springs50”, “Springs100”, “Springs200”, and “Springs500”), we
follow the description of the data in (Kipf et al., 2018) but with fixed connections. To be specific, at the beginning of the
data generation for each springs dataset, we randomly generate a ground truth graph and then simulate 12000 trajectories on
the same ground truth graph, but with different initial conditions. The rest settings are the same as that mentioned in (Kipf
et al., 2018). We collect the trajectories and randomly group them into three sets for training, validation and testing with the
ratio of 8: 2: 2, respectively.

GRN Datasets Different from springs datasets, GRN datasets (ESC, E. coli, and S. aureus) are sampled from publicly
available data sources. We download the datasets from the links mentioned in the corresponding literature, sample the
trajectories with the same amount of time steps as of springs datasets, and randomly group the trajectories of gene expressions
into three sets for training, validation and testing with the ratio of 8: 2: 2, respectively.

D Further Experimental Results
In this section, we demonstrate additional experimental results as the supplement to Section 5.

D.1 Integration of Prior Knowledge with Unsupervised Learning

We conduct the integration of prior knowledge with unsupervised learning with ALaSI. At the beginning of every experiment,
we randomly assign a portion of agents with true connectivity, and keep the remaining settings the same as those in
Section 5.2. During a query, if the agents with true connectivity are selected and the connections of these agents assigned
by PID are contrary to the true label, we set the connectivity the same as the label and maintain the connections of the
rest agents. We summarize the results and plot them in Figure 6, where we plot the AUROC results of fully supervised

0.0 0.2 0.4 0.6
Proportion of Labeled Connections

0.6

0.7

0.8

A
U

R
O

C

Springs50

0.0 0.2 0.4 0.6
Proportion of Labeled Connections

0.55

0.60

0.65

0.70

0.75

A
U

R
O

C

Springs100

0.0 0.2 0.4 0.6
Proportion of Labeled Connections

0.55

0.60

0.65

0.70

A
U

R
O

C

Springs200

0.0 0.2 0.4 0.6
Proportion of Labeled Connections

0.525

0.550

0.575

0.600

0.625

0.650

A
U

R
O

C

Springs500

0.0 0.2 0.4 0.6
Proportion of Labeled Connections

0.50

0.55

0.60

A
U

R
O

C

ESC

0.0 0.2 0.4 0.6
Proportion of Labeled Connections

0.15

0.20

0.25

0.30

A
U

R
O

C

E. coli

0.0 0.2 0.4 0.6
Proportion of Labeled Connections

0.20

0.25

0.30

0.35

0.40

A
U

R
O

C

S. aureus

ALaSI-sup
ALaSI-unsup
ALaSI-p20
ALaSI-p50
ALaSI-p80

Figure 6. Averaged AUROC results of ALaSI-sup, ALaSI-unsup, ALaSI-p20, ALaSI-p50, and ALaSI-p80 as a function of the proportion
of labeled connections on “Springs50”, “Springs100”, “Springs200”, “Springs500”, ESC, E. coli and S. aureus datasets.

ALaSI (ALaSI-sup), fully unsupervised ALaSI (ALaSI-unsup), and unsupervised ALaSI with 20%, 50% and 80% of prior
knowledge on agents (ALaSI-p20, ALaSI-p50 and ALaSI-p80). As we can observe from the plots, ALaSI is capable of
being integrated with prior knowledge, and the AUROC value is positively correlated with the proportion of integrated prior
knowledge. Interestingly, ALaSI-p80 moves generally closer to the fully supervised ALaSI, which on the other hand verifies
the data efficiency of ALaSI. ALaSI has the capability of accurately inferring accurate connectivity of dynamical systems
with less prior knowledge. In comparison, we also tested the integration of prior knowledge with baseline methods that uses

19

Active Learning based Structural Inference

VAE under unsupervised settings, but surprisingly we observed performance drops in terms of AUROC. We think the reason
might be the integration of prior knowledge happened in the latent space, violating the generation process of these methods.
We leave the study of these performance drops to future work.

D.2 Robustness Tests of ALaSI

Although ALaSI is tested on several real-world datasets and the results are reported in Sections 5.1 and 5.2, it is interesting
to carry out more experiments to further test the robustness of ALaSI. We generate a series of “Springs50” datasets with
different levels of Gaussian noise. The Gaussian noise is added to the features of the agents and the levels ∆ amplify the
noise as follows:

ṽti = vti + ζ · 0.02 ·∆, where ζ ∼ N (0, 1), (30)

where vti represents raw feature vector of agent i at time t. And we plot the experimental results of ALaSI on these datasets
in Figure 7. As shown in Figure 7, noises in the agents’ features have an effect on the performance of ALaSI. The effect

0.0 0.2 0.4 0.6
Proportion of Labeled Connections

0.60

0.65

0.70

0.75

0.80

0.85

A
U

R
O

C

Supervised

0.0 0.2 0.4 0.6
Proportion of Labeled Connections

0.50

0.55

0.60

0.65

0.70

A
U

R
O

C

Unsupervised

Raw
Δ = 1
Δ = 2
Δ = 3
Δ = 4
Δ = 5

Figure 7. Averaged AUROC results of ALaSI as a function of the proportion of labeled connections on “Springs50” dataset with different
levels of noise under supervised or unsupervised setting.

is minor when ALaSI is trained in supervised setting. But under unsupervised setting, especially when the proportion of
labeled connections in the pool is smaller than 0.4, ALaSI faces a bigger challenge to infer the connections compared
with it when under supervised setting. When the proportion of labeled connections increases, the effect of noises becomes
smaller and smaller. So in summary, although noises have a negative impact on the performance, ALaSI still can infer the
connections with moderate to high accuracy. Besides that, we also test the baseline methods on the dataset of “Springs50”
with different levels of Gaussian noise, and plot the results in Figure 8. Each subplot in Figure 8 reports the performance of
ALaSI and baseline methods on the “Springs50” dataset with a certain noise level, respectively. As we can learn from the
figure, although the baseline methods are trained under supervised settings, compared to ALaSI, they are more sensitive to
noises. The margins between the AUROC results of ALaSI and the best baseline methods become larger when the noise
level increases. We think the reason may come from the baseline methods utilizing a full-sized computational graph, so
during training, all of the connections within the system are learned simultaneously. Therefore, a high level of noise leads
to an enormous uncertainty in the loss functions of these methods (their loss functions are summations of errors of all the
connections in the system). Different from baseline methods, ALaSI learns the connections agent-wise, which eases the
uncertainty in the loss function. Besides that, the query with dynamics can correctly select the most informative agent to be
added to the scope, regardless of the noise level. We think a combination of these two functioning mechanisms helps ALaSI
to reduce the uncertainty created by noisy data.

D.3 Ablation Study

We conduct ablation studies on the effectiveness of query with dynamics, as well as OOS operation. We modify ALaSI
into (a) ALaSI-ran: where we replace the query with dynamics strategy with a random sampling strategy on agents; and (b)
ALaSI-no OOS: where we remove the pipeline for OOS representation learning and the corresponding terms in the loss
function. We report the results of unsupervised learning, which we believe is closer to real-world scenarios, and report the
averaged AUROC results of these variants as a function of the proportion of labeled connections by PID.

As shown in Figure 9, ALaSI with query strategy with dynamics and OOS operation outperforms its variants, ALaSI-random
and ALaSI-no OOS. Despite the inference accuracy of all these methods increasing when a large portion of agents are
labeled, we observe that ALaSI converges much faster than the other two methods. Besides that, OOS operation is of

20

Active Learning based Structural Inference

0.0 0.2 0.4 0.6
Proportion of Labeled Connections

0.6

0.7

0.8

A
U

R
O

C

Δ = 1

0.0 0.2 0.4 0.6
Proportion of Labeled Connections

0.6

0.7

0.8

A
U

R
O

C

Δ = 2

0.0 0.2 0.4 0.6
Proportion of Labeled Connections

0.6

0.7

0.8

A
U

R
O

C

Δ = 3

0.0 0.2 0.4 0.6
Proportion of Labeled Connections

0.6

0.7

0.8

A
U

R
O

C

Δ = 4

0.0 0.2 0.4 0.6
Proportion of Labeled Connections

0.6

0.7

0.8

A
U

R
O

C

Δ = 5

ALaSI
NRI
fNRI
MPM
ACD

Figure 8. Averaged AUROC results of ALaSI and baseline methods as a function of the proportion of labeled connections on “Springs50”
dataset with different levels of noise under supervised setting.

0.0 0.2 0.4 0.6
Proportion of Labeled Connections

0.50

0.55

0.60

0.65

A
U

R
O

C

Springs200

0.0 0.2 0.4 0.6
Proportion of Labeled Connections

0.450

0.475

0.500

0.525

0.550

0.575

A
U

R
O

C

ESC

0.0 0.2 0.4 0.6
Proportion of Labeled Connections

0.10

0.15

0.20

0.25

A
U

R
O

C

E. coli

ALaSI
ALaSI-ran
ALaSI-no OOS

Figure 9. Averaged AUROC results of ALaSI, ALaSI-ran and ALaSI-no OOS as a function of the proportion of labeled connections under
unsupervised learning.

great importance to the design of a scalable structural inference method. It is commonly observed among the subplots that
ALaSI-no OOS can only learn about the representations of connections within the scope and cannot extrapolate onto OOS
connections, which results in an almost linear dependence between AUROC and the proportion of labeled connections.
Therefore, the query strategy with dynamics and the OOS operation of ALaSI effectively encourage faster convergence
under unsupervised settings.

E Limitation of ALaSI
Besides the datasets mentioned in this work, we also test ALaSI on the physic simulation datasets mentioned in NRI (Kipf
et al., 2018). Most of the physic simulation datasets have no more than 10 agents in the system, which are much smaller than
the ones used in this work. Based on the experiments on these datasets, ALaSI cannot outperform baseline methods when
the size of the dynamical system is small. Since ALaSI works on agent-wise selection to build the pool for training, when
the total count of agents is small, ALaSI cannot benefit from the mechanism of active learning. Moreover, if there exist
multiple types of connections in the dynamical system, we doubt whether ALaSI can be qualified as the structural inference
method for this kind of system. We think it is possible to extend the application scenario of ALaSI to these systems with a
built-in multiplex graph, and we leave this for future work.

21

Active Learning based Structural Inference

F Broader Impact
ALaSI allows researchers in the field of network science, biology and physics to study the underlying interacting structure
of large dynamical systems, which is the first algorithm targeting the structural inference of large systems. We have shown
that ALaSI has outstanding performance facing large dynamical systems even with additive Gaussian noise, which proves
its broad application scenarios. While the emergence of structural inference technology for large systems may be helpful for
many, it can be potentially misused either. For example, it can be likely to be used to reveal private anonymous connections
which could erode privacy and anonymity.

G Ethics Statement
ALaSI is a framework for structural inference of dynamical systems. No matter how effective it is at this task, there may still
be failure modes ALaSI will not catch. So far in this work, we haven’t seen any issue with ethics.

H Reproducibility
We will make the implementation public on GitHub. We will include the code of ALaSI, and the procedures for accessing
the dataset we used in this work. Please refer to it as the implementation of ALaSI.

22

