
Model Checking a Cache Coherence Protocol for a Java DSM Implementation ∗

Jun Pang1 Wan Fokkink1,2 Rutger Hofman2 Ronald Veldema2

1CWI, Software Engineering Department 2Vrije Universiteit, Department of Computer Science
Kruislaan 413, 1098 SJ De Boelelaan 1081A, 1081 HV

Amsterdam, The Netherlands Amsterdam, The Netherlands
{pangjun,wan}@cwi.nl {wanf,rutger,rveldema}@cs.vu.nl

Abstract

Jackal is a fine-grained distributed shared memory im-
plementation of the Java programming language. It aims to
implement Java’s memory model and allows multithreaded
Java programs to run unmodified on a distributed memory
system. It employs a multiple-writer cache coherence proto-
col. In this paper, we report on our analysis of this protocol.
We present its formal specification in µCRL, and discuss
the abstractions that were made to avoid state explosion.
Requirements were formulated and model checked with re-
spect to several configurations. Our analysis revealed two
errors in the implementation.

1. Introduction

Multithreading is a programming paradigm for imple-
menting parallel applications on shared memory multipro-
cessors. The Java memory model (JMM) [9] prescribes cer-
tain abstract rules that any implementation of Java multi-
threading must follow.

Shared memory is an attractive programming model for
interprocess communication and synchronization in multi-
process computations. In the past decade, a popular re-
search topic has been the design of systems to provide a
shared memory abstraction on physically distributed mem-
ory machines. This abstraction, known as Distributed
Shared Memory (DSM), has been implemented both in soft-
ware (e.g., to provide the shared memory programming
model on networks of workstations) and in hardware (e.g.,
using cache coherence protocols to support shared memory
across physically distributed main memories).

Jackal [25] is a fine-grained DSM implementation of the
Java programming language. It aims to implement the JMM
∗This research is partly supported by the Dutch Technology Founda-

tion STW under the project CES5008: Improving the quality of embedded
systems using formal design and systematic testing.

and allows multithreaded Java programs to run unmodified
on DSM. It employs a self-invalidation based, multiple-
writer cache coherence protocol, which allows processors
to cache a region (which is either an object or a fixed-size
partition of an array) created on another processor (i.e., the
region’s home). All threads on one process share one copy
of a cached region. The home node and the caching proces-
sors store this copy at the same virtual address. A cached
region copy remains valid for a particular thread until that
thread reaches a synchronization point. In Jackal, several
optimizations [24, 25] improve both sequential and paral-
lel application performance. Among them, the automatic
home node migration reduces the amount of synchroniza-
tion, by automatically appointing the processor that is likely
to access a region most often as the region’s home.
µCRL [11] is a formal language for specifying proto-

cols and distributed systems in an algebraic style. To each
µCRL specification there belongs a labeled transition sys-
tem (LTS), in which the edges between states are labeled
with actions. The µCRL toolset [3] can be used in com-
bination with CADP [8] to generate, visualize and analyze
this LTS. For example, one can detect deadlocks and live-
locks, or check the validity of temporal logic formulas.

In this paper, we present our formal analysis of a cache
coherence protocol for Jackal using the µCRL toolset and
CADP. A µCRL specification of the protocol (including au-
tomatic home node migration) was extracted from an infor-
mal (C language-like) description of the protocol. To avoid
state explosion, we made certain abstractions with respect
to the protocol’s implementation. Requirements were veri-
fied by the µCRL toolset together with CADP. Our analysis
revealed many inconsistencies between the description and
the implementation. Two errors were found in the imple-
mentation. Both errors can happen when a thread is writ-
ing a region from remote (i.e., the thread does not run on
the home of the region). During the thread’s waiting for a
proper protocol lock or an up-to-date copy of the region,
the home node may migrate to the thread’s processor, so



that the thread actually accesses the region at home. The
first error resulted into a deadlock. The second error was
found when model checking the property of only one home
for each region. After updating our formal specification, the
requirements were successfully checked on several config-
urations. Our solutions to the errors were adapted in the
implementation of the protocol.

The remainder of this paper is structured as follows. In
Section 2, we discuss related work on analyzing the JMM
or its replacement proposal and verifying cache coherence
protocols using formal techniques. An informal description
of the JMM is given in Section 3. Section 4 presents the
Jackal system and its cache coherence protocol. Section 5
focuses on our formal analysis in µCRL. The µCRL spec-
ifications for each component of the protocol and the veri-
fication results are given. Discussions and future work are
mentioned in Section 6.

2 Related Work

Using formal methods to analyze the JMM is an active
research topic. In [21], the authors developed an equivalent
formal executable specification of the JMM [9]. Their spec-
ification is operational and uses guarded commands. This
model can be used to verify popular software construction
idioms for multithreaded Java. In [26], the Murφ verifica-
tion system was applied to study the CRF memory mode
[16]. A suite of test programs was designed to reveal piv-
otal properties of the model. This approach was also ap-
plied to Manson and Pugh’s proposal [17] by the same au-
thors [27]. Two proofs of the correctness for Cachet [22],
an adaptive cache coherence protocol, were presented in
[23]. Each proof demonstrates soundness (conformance to
the CRF memory model) and liveness. One proof is man-
ual, based on a term-rewriting system definition; the other
is machine-assisted, based on a TLA formulation and using
the theorem prover PVS. Similar to [26, 27], we use for-
mal specification and model checking techniques. A major
difference is that we analyzed a cache coherence protocol
within a Java DSM system that is already implemented and
far more complicated than the abstract memory models an-
alyzed in [21, 23, 26, 27]. Our analysis helped to improve
the actual design and implementation of the protocol.

Our work is also related to the verification of cache co-
herence protocols. Formal methods have been successfully
applied in the automatic verification of cache coherence on
sequentially consistent systems [15], e.g. [4, 5, 12]. Co-
herence in shared memory multiprocessors is much more
difficult to verify. Recently, Pong and Dubois [20] used
their state-based tool for the verification of a delayed proto-
col, [6], which is an aggressive protocol for relaxed mem-
ory models. We encountered the same difficulties as [20],
such as that the hardware to model is complex, and that

the properties of the protocol are hard to formulate. Differ-
ences between our work and [20] are: we analyzed a proto-
col designed for distributed shared memory machines; and
the protocol supports multithreaded Java programs, which
makes matters more complicated.

3 Java Memory Model

The Java language supports multithreaded programming,
where threads can interact among themselves via read/write
of shared data. The JMM prescribes certain abstract rules
that any implementation of Java multithreading must follow.
We briefly present the current JMM as given in [9].

The JMM allows each thread to cache variables in its
working memory, which keeps its own working copy of the
variables. A thread can only manipulate the values in its
working memory, which is inaccessible to other threads.
The working memories are caches of a single main mem-
ory, which is shared by all threads. Main memory keeps the
main copy of every variable. A thread’s working memory
must be flushed to main memory at each synchronization
point. A synchronization point is a lock or unlock operation
corresponding to the entry or exit of a synchronized block.

The JMM defines a set of actions that threads may use to
interact with memory. A thread invokes four actions: use,
assign, lock and unlock. The other actions; read, load, store
and write, are invoked by a multithreaded implementation
following the temporal ordering constraints in the current
JMM ([9, Chapter 17]). The meaning of each action can be
found in [9].

There are many problems in the current JMM [9], such
as that semantics for final variable operations is omitted and
that Volatile variable operations do not have synchroniza-
tion effects for normal variable operations. In view of these
problems, the Java Specification Request (JSR) 133 is under
development.

4 Jackal DSM System

Jackal [25] is a fine-grained DSM implementation of the
Java programming language. Its runtime system imple-
ments a self-invalidation based, multiple-writer cache co-
herence protocol for regions.

The Jackal memory model allows processors to cache
a region created on another processor (i.e., the region’s
home). All threads on one processor share one copy of a
cached region. The home node and the caching processors
all store this copy at the same virtual address. The proto-
col is based on self-invalidation, which means the cached
copy of a region remains valid until the thread itself invali-
dates the copy, which occurs whenever it reaches a synchro-
nization point. Jackal combines features of HLRC [28] and



TreadMarks [14]. As in HLRC, modifications are flushed
to a home node; as in TreadMarks, twinning and diffing
are used to allow concurrent writes to shared data. Unlike
TreadMarks, Jackal uses software access checks inserted
before each object usage to detect non-local or stable data.

The implementation of the Jackal memory model con-
tains three components: address space management, access
checks and synchronization. Several optimizations were
made to improve both sequential and parallel application
performance [24, 25].

4.1 Address space management

Jackal stores all regions in a single, shared virtual ad-
dress space. Each region occupies the same virtual address
range on all processors that store a copy of the region. Re-
gions are named and accessed through their virtual address.
Each processor owns part of the physical memory and cre-
ates objects and arrays in its own part. In this way, each
processor can allocate objects without synchronizing with
other processors. When a thread wishes to access a region
created by another processor, it must potentially allocate
physical memory for the virtual memory pages in which
the object is stored, and retrieve an up-to-date copy of the
region from its home node. If a processor runs out of free
physical memory, it initiates a global garbage collection that
frees both Java objects and physical memory pages.

To implement self-invalidation, each thread keeps track
of the regions it accessed and cached since its last synchro-
nization point. The data structure storing this information is
called the flush list. At synchronization points, all regions
on the thread’s flush list are invalidated for that thread, by
writing diffs back to their home nodes. A diff contains the
difference between a region’s object data and its twin data.

4.2 Access check

Jackal’s compiler generates a software access check for
every use of a region. The access check determines whether
the region referenced by a given pointer contains a valid
local copy. Whenever an access check detects an invalid
local copy, the runtime system contacts the region’s home.
It asks the home node for a copy of the region and stores
this copy at the same virtual address as at the home node.
The thread requesting the region receives a pointer to that
region and adds it to its flush list. This flush list is similar
to the working memory in the current JMM [9].

4.3 Synchronization

Logically, each Java object contains an object lock and a
condition variable. Since threads can access objects from

different processors, Jackal provides distributed synchro-
nization protocols. Briefly, an object’s home node acts as
the object’s object lock manager. lock, unlock, wait and no-
tify calls are implemented as control messages to the lock’s
home node. To acquire an object lock, a thread sends a
lock request message to the object lock manager and waits.
When the lock is available, the manager replies with a grant
message; otherwise, the thread needs to wait for the lock
to be released. To unlock, the lock holder sends an unlock
message to the home node. We did not model object locks,
since they are not relevant to the requirements that we for-
mulated for the protocol (see Section 5.3).

4.4 Automatic home node migration

Java programs do not indicate which object locks protect
which data items. This make it difficult to combine date and
synchronization traffic. Jackal may have to communicate
multiple times to acquire an object lock, to access the data
protected by the lock and to release the lock. Recall that
the home of a region acts as the manager of the object lock.
To decrease synchronization traffic, automatic home node
migration has been implemented in Jackal. It means that
Jackal may automatically appoint the processor that is likely
to access a region most often as the region’s home. This
optimization is triggered during the following two cases.

1. A thread writes to a region, and an access check de-
tects an invalid local copy; the runtime system contacts
the region’s home, and finds that the thread’s processor
is the only one from which threads are writing to this
region. Then the home of this region migrates to the
thread’s processor.

2. A thread flushes at a synchronization point, and there is
only one processor left from which threads are writing
to some region. Then the home of this region migrates
to this processor.

Jackal can detect these situations in runtime, and thus re-
duce synchronization traffic. Automatic home node migra-
tion complicates meeting the requirements in Section 5.3.

4.5 Other features

To improve performance, a source-level global optimiza-
tion object-graph aggregation, and runtime optimization
adaptive lazy flushing, are implemented in Jackal.

The Jackal compiler can detect situations where an ac-
cess to some object (called root object) is always followed
by accesses to subobjects. In that case, the system views
the root object and the subobjects as an object graph. Jackal
attempts to aggregate all access checks on objects in such a
graph into a single access check on the graph’s root object.



If this check fails, the entire object graph is fetched, which
can reduce the number of network round-trips. We did not
model object-graph aggregation since we modeled memory
at a rather abstract level.

The Jackal cache coherence protocol invalidates all data
in a thread’s working memory at each synchronization
point. That is, the protocol exactly follows the specification
of the JMM, which potentially leads to much interproces-
sor communication. Due to adaptive lazy flushing, it is not
necessary to invalidate and flush a region that is accessed by
only a single processor or that is only read by its accessing
threads. We did not model adaptive lazy flushing, since it is
not relevant to the requirements that we formulated.

5 Specification and Analysis in µCRL

In this section, we present a formal specification of
Jackal’s cache coherence protocol in µCRL and verify some
general requirements at the behavioral level.

5.1 µCRL

µCRL is a language for specifying distributed systems
and protocols in an algebraic style. It is based on the pro-
cess algebra ACP [2] extended with equational abstract
data types. A µCRL specification consists of two parts:
one part specifies the data types, the other part specifies the
processes. Processes are represented by process terms. Pro-
cess terms consist of action names and recursion variables
with zero or more data parameters, combined with process-
algebraic operators. There are two predefined actions in
µCRL: δ represents deadlock, and τ represents a hidden ac-
tion. These two actions never carry data parameters. p · q
denotes sequential composition, it first executes p and then
q. p + q denotes non-deterministic choice, meaning that it
can behave as p or q. Summation

∑
d:D p(d) provides the

possibly infinite choice over a data type D. The conditional
construct p�b�q with b a boolean data term behaves as p if
b and as q if not b. Parallel composition p ‖ q interleaves the
actions of p and q; moreover, actions from p and q may syn-
chronize into a communication action, when this is explic-
itly allowed by a predefined communication function. Two
actions can only synchronize if their data parameters are the
same, which means that communication can be used to cap-
ture data transfer from one process to another. If two actions
are able to synchronize, then in general we only want these
actions to occur in communication with each other, and not
on their own. This can be enforced by the encapsulation
operator ∂H(p), which renames all occurrences in p of ac-
tions from the set H into δ. Finally, hiding τI(p) renames
all occurrences in p of actions from the set I into τ . The
data part contains equational specifications; one can declare
sorts and functions working upon these sorts, and describe

the meaning of these functions by equations. The syntax
and semantics of µCRL are given in [11].

The µCRL toolset [3] is a collection of tools for analyz-
ing and manipulating µCRL specifications, based on term
rewriting and linearization techniques.The µCRL toolset,
together with the CADP toolset [8], which acts as a back-
end for the µCRL toolset, features visualization, simula-
tion, LTS generation, model checking, theorem proving and
statebit hashing capabilities. µCRL and its toolset have
been successfully used to analyze a wide range of protocols
and distributed systems (e.g., [1, 7, 10, 13, 19]).

5.2 Specification of the Protocol

The starting point of verifying a protocol with µCRL is
to give an algebraic specification. This generally involves
identifying the key behaviors of the protocol components
and understanding the way how each component communi-
cates with others.

The cache coherence protocol in Jackal is more complex
than an interleaved execution of the threads, where each
thread executes in program order. The permitted set of ex-
ecution traces is a superset of the simple interleaved exe-
cution of the individual threads. Furthermore, the µCRL
specification is an exhaustive nondeterministic description
of the cache coherence protocol. This may lead to state
explosion. To deal with this problem, we made some ab-
stractions on each component, if needed. In the follow-
ing discussion, we present the µCRL specification for each
component, together with the abstractions we made. Due
to space limitation, we only give parts of the specification
to illuminate the crucial points, and omit the specification
of data types. The complete specification can be found at
<http://www.cwi.nl/˜pangjun/ccp/>.

Our model of the cache coherence protocol is a parallel
composition of threads, processors, regions, protocol lock
managers and message queues upon a set of communication
actions. By means of these communications, data can be
transferred between two processes. The complete µCRL
specification of this protocol consists of around 1800 lines.

5.2.1 Threads

Each thread runs on a processor, and can perform a num-
ber of actions: read, write and invalidate. It maintains two
lists: ReadList contains the identifiers of regions that it is
reading or recently read from, and WriteList contains the
identifiers of regions that it is writing or recently wrote to.
When a thread starts reading from or writing to a region,
the corresponding access check determines whether there is
a valid local copy of this region at the thread’s processor.
The server lock is needed if the thread runs on the region’s
home (i.e., if the thread reads or writes at home); otherwise,



% Thread writes from remote, requires a fault lock,
% and asks for a fresh copy of the region.
WriteRemote(tid:ThreadId,pid:ProcessId,

FlushList:RegionIdSet) =
s require faultlock(pid).
(r no faultwait(pid)+r signal faultwait(pid)).
(
∑

r:Region
r sendback(tid,pid,r).

% Ask for a fresh copy of the region.
s data requiremsg(tid,pid,gethome(r)).
s norefresh(tid,pid).

% Copy arrives, the thread is notified.
(
∑

pid′ :ProcessId r signal(tid,pid′).
(
∑

newr:Region
r sendback(tid,pid,newr).

s refresh(tid,pid,setlocalthreads(newr,
S(getlocalthreads(newr)))).

s free faultlock(pid).Thread(tid,pid,wl))))

Table 1. Specification of a thread writing at a
region from remote

the fault lock of the thread’s processor is acquired (i.e., if
the thread reads or writes from remote). When a fault lock
is granted, the thread retrieves an up-to-date copy of the
region from its home node. The thread continues reading
from or writing to the region and finally releases the lock
by sending an unlock message to the protocol lock manager.
When a thread invalidates, it empties both its ReadList and
WriteList, and sends a Flush message to the home of each
region in these lists. If the thread invalidates a region in its
WriteList from remote, the Flush message also contains a
diff with the difference between the region’s object and twin
data. The flush lock of the home of each region is acquired
before invalidating, and released after invalidating.

In the µCRL specification, each thread is modeled as a
separate process with a unique identifier; see Table 1. It
contains one parameter pid to indicate on which processor
the corresponding thread executes. Since the behavior of
reading from a region is part of the behavior of writing to a
region, and since writing is far more critical for the correct-
ness of the protocol than reading, we abstracted away from
the read action of threads. As a result, a thread only main-
tains a FlushList and flushes the regions in this FlushList.

5.2.2 Regions

Jackal uses a single shared virtual address space. Each re-
gion occupies the same virtual address range on all proces-
sors that store a copy of it. When a region is created on
one processor, a copy of this region is also created on every
other processor. A region contains these information:

1. Location: A processor’s identifier, denoting at which
node the region (or a copy) is.

% Synchronization between actions:
s refresh | r refresh = c refresh
s norefresh | r norefresh = c norefresh
s sendback | r sendback = c sendback

% r contains the region’s information.
Region(pid:ProcessId, r:Region) =
% Communication with threads∑

tid:ThreadId
s sendback(tid,pid,r).

(r norefresh(tid,pid).Region(pid,r) +∑
r′:Region r refresh(tid,pid,r’).Region(pid,r’))+

% Communication with processors
s sendback(pid,r).
(r norefresh(pid).Region(pid,r) +∑

r′:Region r refresh(pid,r’).Region(pid,r’)))

Table 2. Specification of a region

2. Home: A processor’s identifier, denoting the home
node for this region.

3. State: A region can evolve into four kinds of states.
When no thread uses this region, the state of the region
is Unused; if a region is only used by threads on its
home node, its state is Homeonly; if all accesses of a
region are read actions, the state of this region is Read-
only; in all other cases, the state of a region is Shared.

4. ReaderList: A list of processors’ identifiers contain-
ing threads that are reading or recently read from this
region. It is only maintained at the home node.

5. WriterList: A list of processors’ identifiers containing
threads that are writing or recently wrote to this region.
It is only maintained at the home node.

6. Object data: An array of bytes.

7. Twin data: An array of bytes. It is a copy of the object
data for diffing at non-home nodes; initially it is null.

8. Localthreads: A natural number, the number of threads
accessing this region at the location of the region.

In µCRL, each region is modeled as a separate com-
ponent. As a result of our abstraction on the behavior of
threads, we made some corresponding abstractions for re-
gions. Each region has only two kinds of states; we kept
the Unused state, while the other three states are mapped
to a state Used. The region only needs to maintain the
WriterList. Furthermore, we did not model object and twin
data, since it they are not relevant to our requirements for
the protocol. So in our model a thread cannot write a real
value on a region. Still, when a thread flushes a region from
remote, a message (without a diff) is sent back to the home
of this region to unlock its fault lock.



Processor(pid:ProcessId) =
% Processor gets a Region Sponmigrate message.
% It becomes the region’s home node by refreshing
% the region’s parameters.∑

tid:ThreadId

∑
pid′ :ProcessId

∑
r′:Region

r region sponmigrate(tid,pid’,pid,r’).
(
∑

r:Region
r sendback(pid,r).

% Set the home by itself; maintain the state and writerlist.
s refresh(pid,sethome(setstate(

setwriterlist(r,getwriterlist(r’)),USED),pid)).
s free homequeuelock(pid).Processor(pid))

Table 3. Specification of a processor dealing
with a message

We use a set of synchronized actions to ensure that dur-
ing an access to a region, no other processes can change
the information of this region. For example, a thread
gets the information of a region by performing a synchro-
nized action r sendback, and the accesses to this region are
blocked until this thread executes another synchronized ac-
tion s norefresh (if it has changed nothing) or s fresh (if it
has changed something). The synchronized actions on a
region are presented in Table 2, together with the specifica-
tion for regions in µCRL. To avoid state explosion, we only
analyzed configurations containing one region.

5.2.3 Messages

Four kinds of messages can be delivered to a processor.

1. Data Request: This message is sent when a thread
starts writing to a region from remote. When a proces-
sor gets this message, and it is the home of the region,
it adds the thread’s processor into the WriterList of the
region and sends back an up-to-date copy of the region
to the thread’s processor by a Data Return message. If
it is not the home of the region (meaning that the re-
gion migrated its home in the meantime), it forwards
the Data Request message to the region’s new home.

2. Data Return: This message is received by a processor
when an up-to-date copy of a region has arrived. The
processor updates the object and twin data of the re-
gion. Moreover, if the message is a home node migra-
tion message, then the processor becomes the home of
this region, and starts maintaining the WriterList and
the state of the region.

3. Flush: This message is sent when a thread flushes from
remote. When a processor gets this message, and it is
the home of the region, it removes the thread’s proces-
sor from the WriterList of the region; moreover, it may

proc HomeQueue(pid:ProcessId) =
% Home queue gets a Region Sponmigrate message.
% To deal with it, the homequeue lock is needed.∑

tid:ThreadId

∑
pid′ :ProcessId

∑
r:Region

% Put a message into the queue.
r i region sponmigrate(tid,pid’,pid,r).
s require homequeuelock(pid).
(r no homequeuewait(pid)
+r signal homequeuewait(pid)).

% The processor takes this message.
s i region sponmigrate(tid,pid’,pid,r).
HomeQueue(pid)

Table 4. Part of specification for a home queue

send a home node migration message to a new home of
this region (by a Region Sponmigrate message). When
it is not the home of the region, it forwards the Flush
message to the region’s new home.

4. Region Sponmigrate: When a processor gets this mes-
sage, it becomes the home of the region in question.

In µCRL, each processor is modeled as a separate compo-
nent (with a unique identifier). How a processor deals with
a Region Sponmigrate messages is specified in Table 3.

Each processor maintains two message queues to store
incoming messages. The HomeQueue is designed to buffer
messages containing a request, while the RemoteQueue
buffers messages containing a reply. For example, when
a thread tries to get an up-to-date data copy from a region’s
home, first a Data Request message is put into the home
node’s HomeQueue. When a Data Return message arrives,
it is put into the RemoteQueue of the thread’s processor.
The µCRL process for a message queue contains one pa-
rameter pid to indicate which processor this message queue
belongs to (see Tables 4 and 5). To avoid state explosion,
we only modeled queues that can contain one message.

5.2.4 Protocol locks

As already explained in Section 5.2.1, protocol locks guar-
antee exclusivity when threads write to or flush a region.
Each processor acts as the protocol lock manager of its re-
gions and region copies. To acquire a protocol lock, a pro-
tocol lock request message is sent to the region’s home. If
the lock is available, the manager replies with a grant mes-
sage. Otherwise, the requester needs to wait for the lock
to be released, and the protocol lock manager adds the re-
quester into the lock’s waiting list. To unlock, the current
lock owner sends an unlock message to the protocol lock
manager. When the manager gets an unlock message, it



proc RemoteQueue(pid:ProcessId) =
% Remote queue gets a Data Return message.
% To deal with it, the remotequeue lock is needed.∑

tid:ThreadId

∑
pid′ :ProcessId

∑
r:Region

∑
b:Bool

% Put a message into the queue.
r o data returnmsg(tid,pid’,pid,r,b).
s require remotequeuelock(pid).
(r no remotequeuewait(pid)
+r signal remotequeuewait(pid)).

% The processor takes this message.
s o data returnmsg(tid,pid’,pid,r,b).
RemoteQueue(pid)

Table 5. Specification for a remote queue

checks whether a thread waiting for this lock can be noti-
fied, under some constraints. For instance, a fault lock can
be granted only if this fault lock and the flush lock are not
held by other threads.

There are five protocol locks for each processor: home-
queue lock, remotequeue lock, server lock, fault lock and
flush lock. The homequeue lock and remotequeue lock are
needed to make sure that the handling of a popped mes-
sage from a HomeQueue or a RemoteQueue by its proces-
sor is completed before the next message is popped from the
queue. The cache coherence protocol allows writes to a re-
gion at home and from remote to happen concurrently. The
server lock, fault lock and flush lock ensure exclusivity be-
tween threads at a processor. The server lock and flush lock
must be mutually exclusive for the home of a region, to pro-
tect the integrity of region data values and other region’s
information; likewise, the fault lock and flush lock must be
mutually exclusive for non-home nodes of a region. When
a thread writes at home or from remote, the server lock or
the fault lock of the thread’s processor is needed, respec-
tively. When a thread flushes, the flush lock of its processor
is needed.

Protocol lock management of a processor is modeled in
µCRL as a separate component; see Table 6. Each protocol
lock is modeled as a boolean variable, since a protocol lock
can be held by at most one thread at a time. The waiting list
of a lock is modeled as a natural number, representing the
number of threads in the waiting list, to enable checking for
emptiness; waiting lists do not need to contain thread iden-
tifiers, since waiting and notification are specified by means
of a pair of synchronized actions, carrying the identifier of
the waiting thread as a parameter. When a protocol lock
is available, the protocol lock manager randomly selects a
waiting thread to notify.

% To save space, we only present those parameters
% whose values are changed.
proc Locker(pid:ProcessId,faulters:Bool,flushers:Bool,

homequeue:Bool,remotequeue:Bool,wait faulters:Natural,
wait flushers:Natural,wait homequeue:Natural,
wait remotequeue:Natural)=

% Get a request for the fault lock. If this lock can be granted,
% send a no-wait message. Otherwise, increase the number
% of threads waiting for this lock.

r require faultlock(pid).
(s no faultwait(pid).Locker(T/faulters)
�and(faulters,flushers)�
Locker(S(wait faulters)/wait faulters))

% The fault lock is released, if a thread can be notified,
% send a signal wait message, and decrease the
% waiting number.

+r free faultlock(pid).
((s signal homequeuewait(pid).

Locker(F/faulters,T/homequeue,
sub1(wait homequeue)/wait homequeue)

�and(not(eq(wait homequeue,0)),homequeue)�...)
�and(not(and(eq(wait homequeue,0),

eq(wait remotequeue,0))),flushers)�...)

Table 6. Part of specification for a protocol
lock management

5.3 Requirements

We formulated four types of requirements for the cache
coherence protocol.

1. Deadlock freeness: The protocol never ends up in a
state where it cannot perform any action.

2. Assertion checking: The protocol violates none of the
assertions written in the informal description.

3. Relaxed cache coherence: For each region, at any time
there exists one home node.

4. Liveness: Requests for writing to or flushing a region
are not be bounced around the network forever.

5.4 Validation of the Requirements

The µCRL toolset was used to check the syntax and the
static semantics of the specification, and also to transform
it into a linear form. The linear form was used to generate
LTSs for various configurations of processors and threads.
Next, we validated the four types of requirements with re-
spect to these configurations.

5.4.1 Requirement 1

We used the µCRL toolset to check for deadlocks. This
deadlock checking exercise led to the detection of many



mistakes both in the informal description and in the µCRL
specification of the protocol. For the first case, when the de-
velopers extracted a C-like description of the protocol from
its implementation, they abstracted away from certain im-
plementation details; some of these details were actually
crucial for the correctness of the µCRL specification. For
the second case, at some points the analyzers understood
the description differently from what the developers really
meant. Whenever a deadlock trace was found, it was simu-
lated to understand the reason for the deadlock. This analy-
sis took us a lot of time, since many of the traces were quite
long (typically more than 300 transitions) and difficult to
comprehend. Whenever a mistake was found, the µCRL
specification was adapted and checked for deadlocks again.

One deadlock found by the analyzers, on a configura-
tion of two processors each containing one thread, was a
real problem in the implementation. When a thread wants
to write to a region from remote, it acquires the fault lock
of its home node by sending a lock message. If the lock
is unavailable, the thread waits for the lock to be released.
Whenever it is notified, it continues with its access to the
region and holds the fault lock until it sends an unlock mes-
sage to the home node. In the deadlock trace, we found that
while a thread is waiting for a fault lock, the home of the
region may migrate to the thread’s processor. Then in fact
the thread writes to the region at home, it needs to acquire
the server lock instead of the fault lock. This error resulted
in a deadlock in the implementation. The chosen solution
is that after a thread obtains a fault lock, it checks whether
it still writes from remote. If this is not the case, it sends
an unlock message to release the held fault lock, and then
sends a message to acquire the server lock. After fixing this
problem as proposed, no more deadlocks were found.

5.4.2 Requirement 2

The developers added many assertions into the description
and required that the protocol should not violate any of
them. The assertions can be divided into two classes: or-
der assertions and preconditions.
Order assertions: This class of assertions imposes a cer-
tain order on the usage of the system’s resource. For ex-
ample, when a thread performs an action on a region, the
corresponding protocol lock should be already held by the
thread. Order assertions are modeled in µCRL by imposing
a certain order on the execution of actions. In the foremen-
tioned example, in the µCRL specification, the behavior of
a thread is modeled like this: only after execution of the ac-
tion r no serverwait or r signal serverwait, the thread can
access a region at home.
Preconditions: This class of assertions requires that only
when a certain precondition is satisfied, the description after
it can be executed. For example, only under certain condi-

% Synchronization between actions:
s home | r home = c home
s copy | r copy = c copy

Region(pid:ProcessId, r:Region)=
% s home, r home indicate pid is the home.

r home.Region(pid,r)�eq(pid,gethome(r))�δ+
s home.Region(pid,r)�eq(pid,gethome(r))�δ+

% s copy, r copy indicate pid has a copy.
δ�eq(pid,gethome(r))�r copy.Region(pid,r)+
δ�eq(pid,gethome(r))�s copy.Region(pid,r)

Table 7. Modified specification of a region.

tions (see Section 4.4) the home of the region automatically
migrates. Preconditions are modeled in the µCRL specifi-
cation as boolean terms in conditional expressions.

5.4.3 Requirement 3

Due to automatic home node migration, it needs to be
checked that at any time there exists at most one home node
for each region. We divided this requirement into two parts.

3.1 Each region has at most one home node.

3.2 If the system is stable, each region has no more than
n− 1 copies, where n is the number of processors.

To verify these two parts, actions s home and r home were
added to the specification of a region, when a region finds
that its location equals its home node; s copy and r copy
were added, when a region finds that its location does not
equal its home node. We synchronized s home and r home
into c home, s copy and r copy into c copy; see Table 7.
Furthermore, we encapsulated s home, r home, s copy and
r copy, so that these actions are forced to synchronize.

We verified requirement 3.1 by checking the absence of
c home in the generated LTSs. This is formulated in the
regular alternation-free µ-calculus [18] as follows:

3.1 [T*.c home] F

It says that if an execution sequence contains c home, then
in the resulting state false holds. This formula was checked
to be true by Evaluator, a model checker among CADP.

For requirement 3.2, a stable state of a system means that
no protocol lock is held, and that the message queues are
empty. We added actions homequeue empty and remote-
queue empty to the µCRL specification of queues to indi-
cate that queues are empty, and added an action lock empty
to the specification of the protocol lock manager to indicate
that no lock is held. Then for a model with two processors,
we checked that the generated LTS does not contain a state
which can perform c copy, lock empty, homequeue empty
and remotequeue empty. This requirement is presented in
the regular alternation-free µ-calculus as follows:



3.2 ¬ <T*> (<c copy>T ∧ <lock empty>T ∧
<homequeue empty>T ∧ <remotequeue empty>T)

A second error in the implementation of the protocol was
found while model checking this property on a configura-
tion of two processors, with two threads running on one
processor and a third thread on the other processor. The
error may happen when a thread is writing to a region from
remote. During its waiting for an up-to-date copy of the re-
gion from the region’s home, the home node may migrate
(by a Region Sponmigrate message) to the processor where
the thread resides. When the Data Return message with an
up-to-date copy of the region arrives, the thread refreshes
the region’s home by the sender of the answer message. In
the resulting state of the protocol, neither of the two proces-
sors is the home of the region. So c copy may happen even
in a stable state. The chosen solution is that when a proces-
sor gets a Region Sponmigrate message, it informs those
local threads that are writing to the region at the previous
home node, so that these threads will behave as writing at
home. After fixing this problem as proposed, property 3.2
was successfully model checked.

5.4.4 Requirement 4

The fourth requirement, that requests of writing to or flush-
ing a region cannot be bounced around the network for-
ever, is a liveness property. Actions writeover and flushover
were added to the µCRL specification of a thread to indicate
that a thread completed its pending actions. The following
shows the code in the regular alternation-free µ-calculus for
this requirement.

4.1 A thread eventually finishes writing to a region:

[T*.write(?)] µ X · <T>T ∧ [¬writeover(?)] X

4.2 A thread eventually finishes its flush of a region:

[T*.flush(?)] µ X · <T>T ∧ [¬flushover(?)] X

We use ‘?’ to indicate an identifier of a thread. These
two formulas express that after a thread initiates its action
(writer(?) or flush(?)), the end of this action (writeover(?)
or flushover(?)) is inevitable. This requirement was suc-
cessfully model checked on two configurations.

5.5 Verification Results

We applied advanced techniques for generating LTSs on
a cluster at CWI, consisting of eight nodes. Each node is a
dual AMD Athlon MP 1600+ system, with 1.4Ghz proces-
sors 2GB RAM and 40GB disk. The nodes are connected
by a private ethernet network (100baseT switch) and by a
public fast ethernet network (1000baseT switch). Our case

Config. states transitions Req. Checked
1 65,234 460,162 1, 2, 3, 4
2 5,424,848 40,476,069 1, 2, 3, 4
3 82,371,105 893,181,444 1, 2

Table 8. Verification results

study benefitted a lot from the µCRL distributed LTS gen-
eration tool, and also pushed forward its development.

The sizes of the generated LTSs and the verification re-
sults are summarized in Table 8. Due to the complexity of
this protocol, the size of the LTS grows very rapidly with
respect to the number of threads and processors. With the
current µCRL toolset, we could generate LTSs for the fol-
lowing three configurations: 1) two processors, each with
one thread; 2) two processors, one with one thread, the
other with two threads; 3) three processors, each with one
thread. For the third configuration, we could only check the
first two requirements, because the generated LTS was too
large to serve as input to the model checker. The shortest
error traces for the two flaws in the original implementation
of the protocol that were detected during the model check-
ing phase (see Section 5.4) both consisted of more than 100
transitions.

6 Conclusions and Future Work

In this paper, we used formal specification and model
checking techniques to analyze a cache coherence protocol
for a Java DSM implementation. We specified the protocol
in µCRL and analyzed it. Some general requirements were
formulated and verified for several configurations. Our
analysis uncovered a lot of inconsistencies between the de-
scription and the implementation of this protocol. Two er-
rors were found and fixed in the implementation, which im-
proved the design and implementation of this protocol.

During the specification and analysis phase, we encoun-
tered quite a few difficulties. First, it took a relatively long
time to obtain a µCRL specification of the protocol. During
this period, the developers made important changes to the
protocol, so that the µCRL specification had to be updated
a number of times. Such gaps between an implementation
and its formal model could be avoided if formal methods
were used at an earlier design phase. Second, both the de-
velopers and analyzers made mistakes in their work. In our
analysis, many deadlocks were due to the inconsistencies
and misunderstandings. Third, some error traces were too
long to be analyzed; a simulation tool that helps to auto-
matically execute and interpret such long traces is needed.
Fourth, more advanced tools are needed to generate, store
and reduce LTSs. Our future work will mainly focus on
verifying whether the cache coherence protocol implements



the JMM in [9, Chapter 17], and checking the requirements
on more configurations.

Acknowledgments

We would like to thank Stefan Blom, Jan Friso Groote,
Natalia Ioustinova, Izak van Langevelde, Jaco van de Pol
and Judi Romijn for valuable discussions.

References

[1] T. Arts and I. v. Langevelde. Correct performance of transac-
tion capabilities. In Proc. 2nd Conference on Application of
Concurrency to System Design, pp. 35–42. IEEE CS, 2001.

[2] J. Baeten and W. Weijland. Process Algebra, volume 18 of
Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 1990.

[3] S. Blom, W. Fokkink, J. Groote, I. v. Langevelde, B. Lisser,
and J. van de Pol. µCRL: A toolset for analysing algebraic
specifications. In Proc. 13th Conference on Computer Aided
Verification, LNCS 2102, pp. 250–254. Springer, 2001.

[4] M. Broy, S. Merz, and M. Spies, editors. Formal Systems
Specification: The RPC-Memory Specification Case Study,
LNCS 1169. Springer, 1996.

[5] G. Delzanno. Automatic verification of parameterized cache
coherence protocols. In Proc. 12th Conference on Computer
Aided Verification, LNCS 1855, pp. 53–68. Springer, 2000.

[6] M. Dubois, J.-C. Wang, L. Barroso, K. Lee, and Y.-S. Chen.
Delayed consistency and its effects on the miss rate of par-
allel programs. In Proc. 1991 ACM/IEEE Conference on
Supercomputing, pp. 197–206, 1991.

[7] W.J. Fokkink, N.Y. Ioustinova, E. Kesseler, J. v. d. Pol,
Y.S. Usenko, and Y.A. Yushtein. Refinement and verifica-
tion applied to an in-flight data acquisition unit. In Proc.
13th Conference on Concurrency Theory, LNCS 2421, pp.
1–23. Springer, 2002.

[8] J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Ma-
teescu, and M. Sighireanu. CADP – a protocol valida-
tion and verification toolbox. In Proc. 8th Conference on
Computer-Aided Verification, LNCS 1102, pp. 437–440.
Springer, 1996.

[9] J. Gosling, B. Joy, and G. Steele. The Java Language Spec-
ification. Addison-Wesley, 1996.

[10] J.F. Groote, J. Pang, and A.G. Wouter. Analysis of a dis-
tributed system for lifting trucks. Journal of Logic and Al-
gebraic Programming, 55(1-2), pp. 21–56, 2003.

[11] J. Groote and A. Ponse. The syntax and semantics of
µCRL. In Proc. 1st Workshop on the Algebra of Communi-
cating Processes, Workshops in Computing Series, pp. 26–
62. Springer, 1995.

[12] T. Henzinger, S. Qadeer, and S. Rajamani. Verifying sequen-
tial consistency on shared memory multiprocessor systems.
In Proc. 11th Conference on Computer-Aided Verification,
LNCS 1633, pp. 301–315. Springer, 1999.

[13] J. Hooman and J. v. d. Pol. Formal verification of replication
on a distributed data space architecture. In Proc. ACM 2002
Symposium on Applied Computing, special track on Coordi-
nation Models, Languages and Applications, 2002.

[14] P. Keleher, A. Cox, S. Dwarkadas, and W. Zwaenepoel.
TreadMarks: distributed shared memory on standard work-
stations and operating systems. In Proc. USENIX Winter
1994 Conference, pp. 115–132, 1994.

[15] L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess program. IEEE Transaction
on Computers, 28(9), pp. 690–691, 1979.

[16] J. Maessen, Arvind, and X. Shen. Improving the Java
memory model using CRF. In Proc. 2000 ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Lan-
guages and Applications, pp. 1–12, 2000.

[17] J. Manson and W. Pugh. Core semantics of multithreaded
Java. In Proc. ACM 2001 Java Grande Conference, pp.29–
38, 2001.

[18] R. Mateescu and M. Sighireanu. Efficient on-the-fly model-
checking for regular alternation-free mu-calculus. In Proc.
5th Workshop on Formal Methods for Industrial Critical
Systems, pp. 65–86, 2000.

[19] J. v. d. Pol and M. Valero Espada. Formal specification
of JavaSpacesTM architecture using µCRL. In Proc. 5th
Conference on Coordination Models and Languages, LNCS
2315, pp. 274–290. Springer, 2002.

[20] F. Pong and M. Dubois. Formal automatic verification of
cache coherence in multiprocessors with relaxed memory
models. IEEE Transaction on Parallel and Distributed Sys-
tems, 11:989–1006, 2000.

[21] A. Roychoudhury and T. Mitra. Specifying multithreaded
Java semantics for program verification. In Proc. ACM SIG-
SOFT Conference on Software Engineering, pp. 192–201,
2002.

[22] X. Shen, Arvind, and L. Rodolph. Cachet: an adaptive
cache coherence protocol of distributed shared memory sys-
tems. In Proc. 13th ACM Conference on Supercomputing,
pp. 135–144, 1999.

[23] J. Stoy, X. Shen, and Arvind. Proofs of correctness of cache-
coherence protocols. In Formal Methods for Increasing Soft-
ware Productivity: Proc. Symposium of Formal Methods Eu-
rope, LNCS 2021, pp. 43–71. Springer, 2001.

[24] R. Veldema, R. Hofman, R. Bhoedjang, and H. Bal.
Runtime-optimizations for a Java DSM. In Proc. ACM 2001
Java Grande Conference, pp. 89–98, 2001.

[25] R. Veldema, R. Hofman, R. Bhoedjang, C. Jacobs, and
H. Bal. Source-level global optimizations for fine-grain dis-
tributed shared memory systems. In Proc. 8th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel
Programming, pp. 83–92, 2001.

[26] Y. Yang, G. Gopalakrishnan, and G. Lindstrom. Analyzing
the CRF Java memory model. In Proc. 8th Asia-Pacific Soft-
ware Engineering Conference, pp. 21–28, 2001.

[27] Y. Yang, G. Gopalakrishnan, and G. Lindstrom. Specify-
ing Java thread semantics using a uniform memory model.
In Proc. ACM 2002 Java Grande Conference, pp. 192–201,
2002.

[28] Y. Zhou, L. Iftode, and K. Li. Performance evaluation of two
home-based lazy release-consistency protocols for shared
virtual memory systems. In Proc. 2nd USENIX Symposium
on Operating Systems Design and Implementation, pp. 75–
88, 1996.


