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Abstract. Recent years have witnessed the tremendous success of dif-
fusion models in data synthesis. However, when diffusion models are
applied to sensitive data, they also give rise to severe privacy concerns.
In this paper, we present a comprehensive study about membership in-
ference attacks against diffusion models, which aims to infer whether
a sample was used to train the model. Two attack methods are pro-
posed, namely loss-based and likelihood-based attacks. Our attack meth-
ods are evaluated on several state-of-the-art diffusion models, over dif-
ferent datasets in relation to privacy-sensitive data. Extensive experi-
mental evaluations reveal the relationship between membership leakages
and generative mechanisms of diffusion models. Furthermore, we exhaus-
tively investigate various factors which can affect membership inference.
Finally, we evaluate the membership risks of diffusion models trained
with differential privacy.

Keywords: Membership inference attacks · Diffusion models · Human
face synthesis · Medical image generation · Privacy threats

1 Introduction

Diffusion models [34] have recently made remarkable progress in image synthe-
sis [16,19,38], even being able to generate better-quality images than generative
adversarial networks (GANs) [11] in some situations [8]. They have also been
applied to sensitive personal data, such as the human face [19, 37] or medical
images [21,30], which might unwittingly lead to the leakage of training data. As
a consequence, it is paramount to study privacy breaches in diffusion models.

Membership inference (MI) attacks aim to infer whether a given sample was
used to train the model [33]. In practice, they are widely applied to analyze the
privacy risks of a machine learning model [27,35]. To date, a growing number of
studies concentrate on classification models [2,25,32,33,40], GANs [6,13], text-to-
image generative models [39], and language models [4,5]. However, there is still a
lack of work on MI attacks against diffusion models. In addition, data protection
regulations, such as GDPR [29], require that it is mandatory to assess privacy
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threats of technologies when they are involving sensitive data. Therefore, all of
these drive us to investigate the membership vulnerability of diffusion models.

In this paper, we systematically study the problem of membership inference
of diffusion models. Specifically, we consider two threat models: in threat model I,
adversaries are allowed to obtain the target diffusion model, and adversaries also
can calculate the loss values of a sample through the model. This scenario might
occur when institutions share a generative model with their collaborators to
avoid directly sharing original data [24,28]. We emphasize that obtaining losses
of a model is realistic because it is widely adopted in studying MI attacks on
classification models [2, 25, 33, 40]. In threat model II, adversaries can obtain
the likelihood value of a sample from a diffusion model. Providing the exact
likelihood value of any sample is one of the advantages of diffusion models [38].
Thus, here we aim to study whether the likelihood value of a sample can be
considered as a clue to infer membership. Based on both threat models, two types
of attack methods are developed respectively: loss-based attack and likelihood-
based attack. They are detailed in Section 3.

We evaluate our methods on four state-of-the-art diffusion models:
DDPM [16], SMLD [37], VPSDE [38] and VESDE [38]. We use two privacy-
sensitive datasets: a human face dataset FFHQ [20] and a diabetic retinopathy
dataset DRD [18]. Extensive experimental evaluations show that our methods
can achieve excellent attack performance, and provide novel insights into mem-
bership vulnerabilities in diffusion models (see Section 5). For instance, the loss-
based attack demonstrates that different diffusion steps of a diffusion model have
significantly different privacy risks, and there exist high-risk regions which lead
to leakage of training samples. The likelihood-based attack shows that the like-
lihood values of samples from a diffusion model provide a strong indication to
infer training samples. We also analyze attack performance with respect to vari-
ous factors in Section 6. For example, we find that the high-risk regions still exist
with the increase in the number of training samples (see Figure 5). This indicates
that it is urgent to redesign the current noise mechanisms used by almost all dif-
fusion models. Finally, we evaluate our attack performance on a classical defense
- differential privacy [10] (see Section 7). Specifically, we train target models
using differentially-private stochastic gradient descent (DP-SGD) [1]. Extensive
evaluations show that although the performance of both types of attack can
be alleviated on models trained with DP-SGD, they sacrifice too much model
utility, which also gives a new research direction for the future.

Our contributions in this paper are twofold. (1) We propose two types of at-
tacks to infer the membership of diffusion models. Our attack methods reveal the
relationship between the leakage of training samples and the generative mecha-
nism of diffusion models. (2) We evaluate our attacks on one classical defense —
diffusion models trained with DP-SGD, showing that it mitigates our attacks at
the cost of the quality of synthetic samples.

In the end, we want to emphasize that although we study membership in-
ference from the perspective of attackers, our proposed methods can directly be



applied to audit the privacy risks of diffusion models when model providers need
to evaluate the privacy risks of their models.

2 Background: Diffusion Models

Diffusion models [34] are a class of probabilistic generative models. They aim to
learn the distribution of a training set, and the resulting model can be utilized
to synthesize new data samples.

In general, a diffusion model includes two processes: a forward process and a
reverse process [34]. In the forward process, i.e. the diffusion process, it aims to
transform a complex data distribution pdata into a simple prior distribution, e.g.
Gaussian distribution N (0, σ2I), by gradually adding different levels of noise 0 =
σ0 < σ1 <, ..., < σT = σmax , into the data x. In the reverse process, it targets
at synthesizing a new data sample x̃0 through step by step denoising a data
sample x̃T ∼ N (0, σ2

maxI). Both processes are defined as Markov chains, and
the transitions from one step to another step are described by transition kernels.
In the following, we briefly introduce three typical diffusion models.
DDPM. A denoising diffusion probabilistic model (DDPM) proposed by Ho et
al. [16] defines the forward process: q(x1, ..., xT |x0) =

∏T
t=1 q(xt|xt−1),where T

is the number of diffusion steps. The transition kernel uses a Gaussian tran-
sition kernel: q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI), where the hyperparameter

βt ∈ (0, 1) is a variance schedule. Based on the transition kernel, we can get a
perturbed sample by: xt ←

√
1− βtxt−1 +

√
βtε, where ε ∼ N (0, I). The tran-

sition kernel from the initial step to any t step can be expressed as: q(xt|x0) =
N (xt;

√
ᾱtx0, (1 − ᾱt)I), where ᾱt =

∏t
i=0 αi and αt := 1 − βt. Therefore, any

perturbed sample can be obtained by: xt ←
√
ᾱtx0 +

√
1− ᾱtε. In the reverse

process, DDPM generates a new sample by: x̃t−1 ← 1√
αt
(x̃t− βt√

1−ᾱt
εθ(x̃t, t))+σtϵ,

where ϵθ(xt, t) is a neural network predicting noise. In practice, DDPM is trained
by minimizing the following loss:

L(θ) = Et∼[1,T ],x∼pdata ,ε∼N (0,I)[||ε− εθ(
√
ᾱtx+

√
1− ᾱtε, t)||2]. (1)

SMLD. Score matching with Langevin dynamics (SMLD) [37] first learns to
estimate the score, then generates new samples by Langevin dynamics. The
score refers to the gradient of the log probability density with respect to data,
i.e. ∇xlog p(x). The transition kernel in the forward process is: q(xt|x0) =
N (xt;x0, σ

2
t I). Thus, a perturbed sample is obtained by: xt ← x0 + σtϵ. In

the reverse process, SMLD uses an annealed Langevin dynamics to generate a
new sample by: x̃t ← x̃t−1 +

αi

2 sθ(x̃t−1, σi) +
√
αiϵ, where the hyperparameter

σi controls the updating magnitudes and sθ(xt, σi) is a noise conditioned neural
network predicting the score. Training of the SMLD is performed by minimizing
the following loss:

Lθ = Et∼[1,T ],x∼pdata ,xt∼q(xt|x)[λ(σt)||sθ(xt, σt)−∇xt
log q(xt|x)||2], (2)

where λ(σt) is a coefficient function and ∇xt log q(xt|x) = −xt−x
σ2
t

.



SSDE. Unlike prior works DDPM or SMLD which utilize a finite number of
noise distributions, i.e. t is discrete and usually at most T , Song et al. [38]
propose a score-based generative framework through the lens of stochastic dif-
ferential equations (SDEs), which can add an infinite number of noise distri-
butions to further improve the performance of generative models. The forward
process which adds an infinite number of noise distributions can be described
as a continuous-time stochastic process. Specifically, the forward process of the
score-based SDE (SSDE) is defined as:

dx = f(x, t)dt+ g(t)dw, (3)

where f(x, t), g(t) and dw are the drift coefficient, the diffusion coefficient and
a standard Wiener process, respectively. The reverse process corresponds to a
reverse-time SDE: dx = [f(x, t) − g(t)2∇xlog qt(x)]dt + g(t)dw̄, where w̄ is a
standard Wiener process in the reverse time. Training of the SSDE is performed
by minimizing the following loss:

Lθ = Et∈U(0,T ),x∼pdata ,xt∼q(xt|x)[λ(t)||sθ(xt, t)−∇xt log q(xt|x)||2]. (4)

The SSDE is a general and unified framework. Based on different coefficients in
Equation 3, the variance preserving (VP) and variance exploding (VE) are in-
stantiated. The VPSDE is defined as: dx = − 1

2β(t)xdt+
√
β(t)dw. The VESDE

is defined as: dx =
√

d[σ2(t)]
dt dw. Furthermore, the SSDE also shows the noise

perturbations of DDPM and SMLD are discretizations of VP and VE, respec-
tively. Note that, diffusion steps usually used in diffusion models also refer to
time steps that are used in SDEs. In this work, we study the privacy risks of
four target models: DDPM, SMLD, VPSDE, and VESDE.

3 Methodology

The objective of MI attacks is to infer if a sample was used to train a model. This
provides model providers with a method to evaluate the information leakage of
a machine learning model. In this section, we first introduce threat models and
then present our MI methods.

3.1 Threat Models

Threat Model I. In this setting, we assume adversaries can only obtain the tar-
get model, i.e. the victim diffusion model. This setting is realistic because insti-
tutions might share generative models with their collaborators instead of directly
utilizing original data, considering privacy threats or data regulations [24, 28].
We emphasize that adversaries do not gain any knowledge of the training set.
Obtaining the target model indicates that adversaries can get the loss values
through the model, and this is realistic because most MI attacks on classifica-
tion models also assume adversaries can get loss values [2,25,33,40]. Under this
threat model, we propose a loss-based MI attack.



Threat Model II. In this setting, we assume adversaries can have access to
the likelihood values of samples from a diffusion model. Diffusion models have
advantages in providing the exact likelihood value of any sample [38]. Here we
aim to study whether the likelihood values of samples can be utilized as a sig-
nal to perform membership inference. Under this threat model, we propose a
likelihood-based MI attack.

3.2 Intuition

We propose MI attacks based on the following two intuitions.
Intuition I. As introduced in Section 2, a diffusion model aims to minimize
the loss values over the training set in the training phase. One intuition is that
member samples, i.e. the training samples, should have smaller loss values, com-
pared to nonmember samples. This is because training/member samples involve
the training process and their loss values could be minimized.
Intuition II. A diffusion model is a generative model that learns the distri-
bution of a training set. Therefore, the likelihood values of training/member
samples should be higher than these of nonmember samples. This is because
training/member samples are from the distribution of the training set.

3.3 Attack Methods

Problem Formulation. Given a target diffusion model Gtar , the objective of
MI attacks is to infer whether a sample x from a target dataset Xtar is used to
train the Gtar .
Loss-based Attack. For threat model I and following intuition I, we develop a
loss-based attack. As illustrated in Section 2, diffusion models can add an infinite
or finite number of noise distributions, which are corresponding to continuous or
discrete SDE, respectively. Therefore, we can calculate the loss value of a sample
at each diffusion step t. Specifically, based on Equation 1, the loss of a sample x
at t diffusion step of DDPM is calculated by:

L =
1

m

∑
||ε− εθ⋆(

√
ᾱtx+

√
1− ᾱtε, t)||2, (5)

where m is the dimension of x and εθ⋆(.) is the trained network. By Equation 2,
the loss of a sample x at t diffusion step of SMLD is calculated by:

L =
1

m

∑
λ(σt)||sθ⋆(xt, σt)−∇xt log q(xt|x)||2, (6)

where sθ⋆(.) is the trained network. Based on Equation 4, the loss of a sample
x at t diffusion step of VPSDE and VESDE is:

L =
1

m

∑
λ(t)||sθ⋆(xt, t)−∇xt

log q(xt|x)||2. (7)



Then, we make a membership inference directly based on the loss value of a
sample at one diffusion step. Namely, if a sample’s loss value is less than certain
thresholds, this sample is marked as a member sample. For one sample, we can
get T or infinite losses, depending on continuous or discrete SDEs. In this work,
in order to thoroughly demonstrate the performance of our attack, we compute
losses of all diffusion steps T for the discrete case. We randomly select T diffusion
steps for the continuous case although it has infinite steps.
Likelihood-based Attack. For threat model II and following intuition II, we
propose to utilize the likelihood value of a sample to infer membership. We
compute the log-likelihood of a sample x based on the equation proposed by [38].

log p(x) = log pT (xT )−
∫ T

0

∇ · f̃θ⋆(xt, t)dt, (8)

where ∇ · f̃θ⋆(x, t) is estimated by the Skilling-Hutchinson trace estimator [12].
If the log-likelihood value of a sample is higher than certain thresholds, this
sample is predicted as a member sample. As introduced in Section 2, the work
SSDE [38] is a unified framework. In other words, DDPM, SMLD, VPSDE and
VESDE can be described by Equation 3. Therefore, Equation 8 can be applied to
these models to estimate the likelihood of one sample. In this work, we compute
the likelihood values of all training samples.

4 Experiments

4.1 Datasets

We use two different datasets to evaluate our attack methods. They cover the
human face and medical images, which are all considered privacy-sensitive data.
FFHQ. The Flickr-Faces-HQ dataset (FFHQ) [20] is a new dataset that contains
70, 000 high-quality human face images. In this work, we randomly choose 1, 000
images to train target models. We also explore the effect of the size of the training
set in Section 6.1.
DRD. The Diabetic Retinopathy dataset (DRD) [18] contains 88, 703 retina
images. In this work, we only consider images that have diabetic retinopathy,
which is a total of 23, 359 images. Furthermore, we randomly choose 1, 000 images
to train target models. Note that images in all datasets are resized to 64 × 64
just for the purpose of computation efficiency.

4.2 Metrics

Evaluation metrics for diffusion models. We use the popular Fréchet Incep-
tion Distance (FID) metric to evaluate the performance of a diffusion model [14].
A lower FID score is better, which implies that the generated samples are more
realistic and diverse. Considering the efficiency of sampling, in our work the FID
score is computed with all training samples and 1, 000 generated samples.



Evaluation metrics for MI attacks. We primarily use the full log-scale re-
ceiver operating characteristic (ROC) curve to evaluate the performance of our
attack methods, because it can better characterize the worst-case privacy threats
of a victim model [2]. We also report the true-positive rate (TPR) at the false-
positive rate (FPR) as it can give a quick evaluation. We use average-case metrics
— accuracy as a reference, although it cannot assess the worst-case privacy.

4.3 Experimental Setups

In terms of target models, we use open source codes [36] to train diffusion mod-
els, and their recommended hyperparameters about training and sampling are
adopted. More specifically, the number of training steps for all models is fixed
at 500, 000. For discrete SDEs, T is fixed as 1, 000 while T is set as 1 for contin-
uous SDEs. In terms of our attack methods, we evaluate the attack performance
using all training samples as member samples and equal numbers of nonmember
samples.

5 Evaluation

5.1 Performance of Target Models

Considering their excellent performance in image generation, we choose
DDPM [16], SMLD [37], VPSDE [38] and VESDE [38] as our target models.
They are trained on the FFHQ dataset containing 1k samples. Target models
with the best FID during the training progress are selected to be attacked. Ta-
ble 1 shows the performance of the target models. Figure 9 in Appendix shows
the qualitative results for these target models. Overall, all target models can
synthesize high-quality and realistic images.

Table 1: The performance of target models on FFHQ.

Target Models DDPM SMLD VPSDE VESDE
FID 57.88 92.81 20.27 63.37

5.2 Performance of Loss-based Attack

We present our attack performance from two aspects: TPRs at fixed FPRs for
all diffusion steps and log-scale ROC curves at one diffusion step. The former
aims to provide the holistic performance of our attacks in diffusion models. In
contrast, the latter concentrates on one diffusion step and is able to exhaustively
show TPR values at a wide range of FPR values, which is key to assessing the
worst-case privacy risks of a model.
TPRs at fixed FPRs for all diffusion steps. Figure 1 shows the performance
of our loss-based attack on four target models trained on FFHQ. We plot TPRs
at different FPRs with regard to diffusion steps for each target model. Recall
DDPM and SMLD models are discrete SDEs while VPSDE and VESDE models
are continuous SDEs. Thus, the number of diffusion steps for DDPM and SMLD
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Fig. 1: Performance of the loss-based attack on all diffusion steps. Target models
are trained on FFHQ.

is finite and is fixed as 1,000, while for VPSDE and VESDE models, we uniformly
generate 1, 000 points within [0, 1] and compute corresponding losses. Overall,
all models are vulnerable to our attacks, even under the worst-case, i.e. TPR at
0.01% FPR, depicted by the purple line of Figure 1.

We observe that our attack presents different performances in different diffu-
sion steps. To be more specific, there exist high privacy risk regions for diffusion
models in terms of diffusion steps. In these regions (i.e. diffusion steps), our
attack can achieve as high as 100% TPR at 0.01% FPR. Even for the SMLD
model, close to 80% TPR at 0.01% FPR can be achieved. Recall the training
mechanisms of diffusion models, different levels of noise at different diffusion
steps are added during the forward process. DDPM and VPSDE and VESDE
are added growing levels of noise while SMLD starts with maximum levels of
noise and gradually decreases the levels of noise. Thus, we can see that these
models (DDPM and VPSDE, and VESDE) are more vulnerable to leak training
samples in the first half part of the diffusion steps while the SMLD model shows
membership vulnerability in the second half part of the diffusion steps.

In brief, all models are prone to suffer from membership leakage in low levels
of noise while they become more resistant in high levels of noise. In fact, in these
diffusion steps where high levels of noise are added to training data, perturbed
data is almost close to pure Gaussian noise, which can enhance the privacy
of training data to some degree. We also notice that at the starting diffusion
step, our attack performance suffers from a decrease. This is because there is an
instability issue at this step during the training process [38]. Despite this, these
peak regions still show the effectiveness of our attack.
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Fig. 2: Performance of the loss-based attacks at one diffusion step. Target models
are trained on FFHQ.

Log-scale ROC curves at one diffusion step. Figure 2 plots full log-scale
ROC curves of the loss-based attack on four target models. We choose six differ-
ent diffusion steps for each target model. The rules of choosing diffusion steps for
discrete SDEs (i.e. DDPM and SMLD) are: starting and ending diffusion step
and the diffusion step that experiences significant changes in terms of attack
performance. For continuous SDEs (i.e. VPSDE and VESDE), we first get 1, 000
points that are uniformly sampled from [0, 1]. Then, we choose diffusion steps
from these points based on the same rule of discrete SDEs. Overall, our excellent
attack performance is exhaustively shown through log-scale ROC curves.

We can observe that when the levels of noise are not too large, our method
can achieve a perfect attack, such as at t = 200 for the DDPM model, t = 800
for the SMLD model, and t = 0.21 for the VPSDE and VESDE models. Again,
we can clearly see that the ROC curves on all target models are more aligned
with the grey diagonal line with the increase in the magnitudes of noise. The
grey diagonal line means that the attack performance is equivalent to random
guesses. For example, the ROC curves are almost close to the grey diagonal
line when the maximal level of noise is added, such as the DDPM model at
t = 999, the SMLD model at t = 0, and the VPSDE and VESDE models at
t = 9.99× 10−1. It is not surprising because at that time the input samples are
perturbed as Gaussian noise data in theory and indeed do not have something
with original training samples.

Table 2 summarizes our attack performance on four target models with regard
to diffusion steps and FPR values. We also report the average metric accuracy
for reference. Here, we emphasize that only focusing on average metrics cannot



Table 2: Performance of the loss-based attack on target models trained on FFHQ.
Models T TPR@ TPR@ TPR@ TPR@ Accuracy Models T TPR@ TPR@ TPR@ TPR@ Accuracy

10%FPR 1%FPR 0.1%FPR 0.01%FPR 10%FPR 1%FPR 0.1%FPR 0.01%FPR

DDPM

0 63.50% 36.40% 22.50% 21.10% 78.25%

SMLD

0 7.90% 0.80% 0.00% 0.00% 51.20%
200 100.00% 100.00% 100.00% 100.00% 100.00% 200 11.20% 0.70% 0.10% 0.00% 52.30%
500 100.00% 99.50% 80.80% 72.50% 99.30% 500 88.50% 64.40% 56.10% 35.70% 89.50%
600 59.50% 18.80% 4.30% 2.30% 81.15% 800 99.10% 91.70% 78.60% 76.10% 96.40%
800 13.90% 2.50% 0.60% 0.30% 52.80% 900 85.80% 52.00% 22.80% 15.30% 88.80%
999 12.60% 1.70% 0.00% 0.00% 52.45% 999 41.50% 8.60% 1.90% 0.10% 70.55%

VPSDE

1.97× 10−4 93.00% 85.00% 81.60% 77.60% 93.15%

VESDE

1.97× 10−4 100.00% 100.00% 100.00% 100.00% 100.00%
0.21 100.00% 100.00% 100.00% 100.00% 100.00% 0.21 100.00% 100.00% 100.00% 100.00% 100.00%
0.52 100.00% 100.00% 99.50% 78.40% 99..90% 0.52 100.00% 100.00% 100.00% 99.90% 99.95%
0.62 66.50% 14.50% 8.20% 4.30% 85.70% 0.62 96.00% 53.60% 18.60% 14.20% 93.25%
0.72 17.90% 3.70% 1.20% 0.20% 57.30% 0.82 13.10% 1.90% 0.50% 0.30% 52.50%

9.99× 10−1 13.00% 1.8% 0.40% 0.10% 52.20% 9.99× 10−1 11.60% 1.70% 0.30% 0.10% 51.50%

assess the worst-case privacy risks. For instance, for the DDPM model at t = 800,
the attack accuracy is 52.80%, which indicates the model at this diffusion step
almost does not lead to the leakage of training samples, because it is close to
50% (the accuracy of random guesses). In fact, the TPR is 0.3% at the false
positive rate of 0.01%, which is 30 times more powerful than random guesses. It
means that adversaries can infer confidently member samples under extremely
low false positive rates.

(a) DDPM (b) SMLD

(c) VPSDE (d) VESDE

Fig. 3: Perturbed data of four target models under different diffusion steps. The
diffusion steps correspond to these in Figure 2. Specifically, from left to right for
each model: DDPM (0, 200, 500, 600, 800, 999); SMLD (0, 200, 600, 800, 900,
999); VPSDE (1.97× 10−4, 0.21, 0.52, 0.62, 0.72, 9.99× 10−1); VESDE (1.97×
10−4, 0.21, 0.52, 0.62, 0.82, 9.99× 10−1).

Figure 3 shows perturbed data of four target models under different diffusion
steps. The diffusion steps in Figure 3 are corresponding to these in Figure 2.
We observe that even when some perturbed data that is almost not recognized
by human beings is used to train the model, it seems not to prevent model
memorization. For example, for the DDPM model at t = 600, the perturbed
image is meaningless for humans. However, the attack accuracy is as high as
81.15%. At the same time, the TPR at 0.01% FPR is 2.30%, which is 230 times
more powerful times than random guesses. It indicates that models trained on
perturbed data, except for Gaussian noise data, can still leak training samples.
The noise mechanism of diffusion models does not provide privacy protection.
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Fig. 4: Performance of the likelihood-based attack.

5.3 Performance of Likelihood-based Attack

Figure 4(a) demonstrates our likelihood-based attack performance on four target
models. Overall, our attacks still perform well on all target models. For example,
our attack on the SMLD and VPSDE models almost remains 100% true positive
rates on all false positive rate regimes. For the VESDE model, attack results are
slightly inferior to the SMLD model, yet still higher than the 10% true positive
rate at an extremely low 0.001% false positive rate.

Table 3 shows our attack results at different FPR values for all target models.
Once again, we can clearly see that even at the 0.01% FPR, the lowest TPR
among all models is as high as 23.10%, which is 2, 310 times than random guesses.
In addition, we also observe that the attack accuracy is above 98% for all target
models. Our attack results also remind model providers that they should be
careful when using likelihood values.

Table 3: Likelihood-based attack. Target models are trained on FFHQ.

Models TPR@ TPR@ TPR@ TPR@ Accuracy
10%FPR 1%FPR 0.1%FPR 0.01%FPR

DDPM 98.00% 89.00% 79.70% 71.00% 95.75%
SMLD 100.00% 100.00% 100.00% 100.00% 100.00%
VPSDE 100.00% 99.60% 98.90% 98.20% 99.45%
VESDE 100.00% 93.80% 58.40% 23.10% 98.50%

5.4 Takeaways

Our loss-based attack utilizes loss values to make a membership inference. Al-
though the loss-based attack requires adversaries to choose a suitable diffusion
step to mount the attack, our extensive experiments identify the high privacy
risk region. More importantly, our loss-based attack reveals the relationship be-
tween membership risks and the generative mechanism of diffusion models. This
provides a new angle to mitigate membership risks by designing novel noise
mechanisms of diffusion models. Our likelihood-based attack does not need to
choose a diffusion step and infers membership directly based on likelihood values.
Both loss and likelihood information can lead to the leakage of training samples.
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Fig. 5: Performance of loss-based attack with different sizes of datasets. The tar-
get model is DDPM trained on FFHQ. Each subfigure shows attack performance
with different sizes of datasets on fixed FPRs.

6 Analysis

6.1 Effects of Size of a Training Dataset

We study attack performance with regard to different sizes of the training set of
a target model. Here, we choose the DDPM models trained on FFHQ as target
models. We use FFHQ-1k, FFHQ-10k, and FFHQ-30k to represent different sizes
of a dataset, which refer to 1, 000, 10, 000, and 30, 000 training samples in each
dataset respectively. The FID of the target model DDPM trained on FFHQ-
1k, FFHQ-10k, and FFHQ-30k are 57.88, 34.34, and 24.06, respectively. In the
following, we present the performance of our both attacks.
Performance of loss-based attack. Figure 5 depicts the performance of loss-
based attacks on all diffusion steps under different sizes of a training set. Overall,
we can observe that attack performance gradually becomes weak when the size
of training sets increases. For example, at diffusion step t = 200, the TPR at
10% FPR decreases from 100% to about 15% when the training samples increase
from 1k to 30k. Here, note that the starting points of the y-axis in Figure 5 are
not 0 and we set them as the probability of random guesses. Thus, as long as
the lines can be shown in the figure, it indicates this is an effective attack.

However, the peak regions still exist even if the number of training samples
increases to 30k and the FPR value is as low as 0.1%. For instance, as shown in
Figure 5(c), it shows our attack performance of 0.1% FPR on all models. Diffu-
sion steps in the range of 0 to 400 are still vulnerable to our attack, compared to
other steps. It indicates that these diffusion steps indeed lead a model to more
easily leak training data. We further show the attack performance based on each
dataset in Figure 11 in Appendix.

Figure 6 shows ROC curves of our attack against target models trained on
different sizes of training sets. Based on the same rules described in Section 5.2,
we select several different diffusion steps and plot their ROC curves. On the one
hand, we can see that indeed models become less vulnerable as the number of
training samples increases. For instance, Figure 6(c) shows the DDPM trained
on FFHQ-30K is more resistant to MI attacks on the full log-scale TPR-FPR
curve. On the other hand, when diffusion step t equals 250, our attack shows
higher attack performance than random guesses at the low false positive rate,
such as 10−4. This is also corresponding to the peak steps in Figure 5.
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Fig. 6: Performance of loss-based attack with different sizes of datasets. The
target model is DDPM. TPR-FPR Curves under different time steps.

We also observe from Figure 6 that TPR values in diffusion steps of high
privacy risks do not further go down with the increase in FPR values, especially
in extremely low FPR regimes. Take the DDPM trained on FFHQ-30K as an
example (see Figure 6(c)), the TPR value at diffusion step t = 250 are still about
10−4 at the FPR value of 10−5, while at t = 999, the TPR value at 10−5 FPR
value is 0. This indicates that at t = 250, there are some training samples whose
loss values are always smaller than the minimal loss value of the nonmember
sample. Otherwise, the green line (t = 250) will go down to zero, similar to the
brown line (t = 999). In other words, there are partial training samples that can
be inferred with 100% confidence at this diffusion step. Note that in reality, even
if only one sample can be inferred as a member confidently, it still constitutes a
severe privacy violation [2, 17,22].
Performance of likelihood-based attack. Figure 4(b) shows the performance
of likelihood-based attacks in terms of different sizes of training sets. Similar to
the loss-based attack, the performance of the likelihood-based attack decrease
with an increase in the sizes of training sets. Specifically, the likelihood-based
attack shows perfect performance on the target model trained on FFHQ-1k.
When the size of a training set increases to 10K, there is a significant drop but
still better than random guesses on the full log-scale ROC curve. In particular, in
the extremely low false positive rate regime, such as 10−4, the true positive rate
is about 6× 10−4, which is 6 times more powerful than random guesses. In the
model trained on FFHQ-30K, the ROC curve is almost close to the diagonal line,
which indicates that adversaries are difficult to infer member samples through
likelihood values.

6.2 Effects of Different Datasets

In this subsection, we show our attack performance on a medical image dataset
about diabetic retinopathy. We choose the medical image dataset because the
number of images that have diabetic retinopathy is usually insufficient in prac-
tice [21]. These types of images could be used for training a diffusion model
and later the trained model is utilized to generate more novel images. We have
described this dataset DRD in Section 4.1. We choose the SMLD as the target
model and the number of training samples is 1, 000. Overall, the SMLD model
can achieve excellent performance in image synthesis, with an FID of 33.20. Fig-
ure 10 in Appendix visualizes synthetic samples, which all show good quality.



0 200 400 600 800 1000
Diffusion Steps

0.0
0.2
0.4
0.6
0.8
1.0

Tr
ue

 P
os

iti
ve

 R
at

e TPR@10%FPR
TPR@1%FPR
TPR@0.1%FPR
TPR@0.01%FPR

(a) Loss-based attack

10 5 10 4 10 3 10 2 10 1 100

False Positive Rate
10 5

10 4

10 3

10 2

10 1

100

Tr
ue

 P
os

iti
ve

 R
at

e

t=0
t=200
t=700
t=800
t=900
t=999

(b) Loss-based attack

10 5 10 4 10 3 10 2 10 1 100

False Positive Rate
10 5

10 4

10 3

10 2

10 1

100

Tr
ue

 P
os

iti
ve

 R
at

e

Likelihood-based attack

(c) Likelihood-based attack

Fig. 7: Attack performance on the DRD dataset.

Performance of loss-based attack. Figure 7 shows the performance of loss-
based attacks for the target model SMLD trained on DRD. Here, note that the
levels of the noise of the SMLD model gradually become small with an increase
in diffusion steps. Figure 7(a) shows the performance of our loss-based attack on
all diffusion steps. Figure 7(b) depicts ROC curves for different diffusion steps
on target model SMLD trained on DRD. We can again observe our attacks can
still perform perfectly on DRD at diffusion steps of low levels of noise.
Performance of likelihood-based attack. Figure 7(c) reports the perfor-
mance of our likelihood-based attack on the SMLD model trained on DRD. As
expected, our attack still shows excellent performance. We can clearly find that
the attack achieves 100% TPR on all FPR values, which means that all mem-
ber samples are inferred correctly. Table 4 in Appendix reports the quantitative
results of both attacks.

7 Defenses

Differential privacy (DP) [1, 10] is considered as a common defense measure for
preventing the leakage of training samples of a machine learning model. In this
section, we present our attack results on diffusion models using the DP defense.

We adopt Differentially-Private Stochastic Gradient Descent (DP-SGD) [1]
to train diffusion models. DP-SGD is widely used for privately training a ma-
chine learning model. Generally, DP-SGD achieves differential privacy by adding
noise into per-sample gradients. In our work, we implement DP diffusion models
through the Opacus library [41] which allows us to set privacy budgets through
hyperparameters. Here, we set the clip bound C and the failure probability δ
as 1 and 5× 10−4. The batch size and the number of epochs are 64 and 1, 800.
Thus, the final privacy budget ϵ is 19.62. Generally, a smaller privacy budget
means a higher privacy setting and more severe model utility loss. The common
choice of privacy budget is ϵ ≤ 10 [1, 41], and in this work we choose a higher
privacy budget because we consider the utility of a diffusion model. We choose
the DDPM model as the target model. It is trained on FFHQ containing 1, 000
training samples, and the FID is 393.94.
Performance of loss-based attack. Figure 8 shows the performance of both
types of attacks on DDPM trained with DP-SGD on FFHQ. In Figure 8(a), we
present the performance of the loss-based attack on all diffusion steps. Clearly, we
can see that although differentially training DDPM, i.e. DDPM with DP-SGD,
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Fig. 8: Attack performance on DDPM with DP-SGD.

indeed can significantly decrease the membership leakages, the peak regions can
be still identified between 400 and 800 diffusion step. Figure 8(b) further shows
ROC curves of our loss-based attack on different diffusion steps. Again, we can
observe that in the low FPR regimes, some training samples are still inferred
with a higher probability, such as 10−2 TPR at 10−4 FPR at t=500. This is
higher than 100 times than random guesses (TPR is 10−4 at 10−4 FPR).
Performance of likelihood-based attack. Figure 8(c) shows the performance
of the likelihood-based attack on DDPM training with DP-SGD on FFHQ.
Again, we can see that differentially private training of a diffusion model in-
deed can mitigate our attack. At the same time, we also see at the low false
positive rate regime, our attack still remains at 0.1% true positive rate, which
illustrates the effectiveness of our attack even in the worst-case. Here, we also
note that the FID of the target model is 393.94, which means that the utility of
the target model suffers from a severe performance drop. We leave developing
more usable techniques to train a diffusion model with DP-SGD as future work.
Table 5 in Appendix summarizes the quantitative results of both attacks.

8 Related Work

Diffusion models. Diffusion models have attracted increasing attention in the
past years. Sohl-Dickstein et al. [34] first introduce nonequilibrium thermody-
namics to build generative models. The key idea is to slowly add noise into
data in the forward process and learn to generate data from noise through a re-
verse process. Ho et al. [16] further propose to use parameterization techniques
in diffusion models, which enable diffusion models to generate high-quality im-
ages. Song et al. [37] present to train a generative model by estimating gradients
of data distribution, i.e. score. Furthermore, Song et al. [38] propose a unified
framework to describe these diffusion models through the lens of stochastic dif-
ferential equations. However, in this work, we study diffusion models from the
perspective of privacy.
Membership inference attacks. There are extensive works on membership
inference (MI) attacks on classification models. Various attack methods under
different threat models are proposed, such as using fewer shadow models [32],
using loss values [2,25,33,40] and using labels of victim models [7,23]. In addition,
there are several MI attacks on generative models [6,13,15]. Nevertheless, these
attacks are more specific to GANs and heavily rely on the unique characteristics



of GANs, such as discriminators or generators. They cannot be extended to
diffusion models, because diffusion models have different training and sampling
mechanisms. Therefore, our work on MI of diffusion models aims to fill this gap.

Membership inference attacks in diffusion models. In this paragraph, we
discuss our work and its relation to several similar/concurrent works studying
MI attacks in diffusion models. Wu et al. [39] study MI attacks against text-to-
image generative models. One diffusion-based text-to-image generative model,
LDM [31], is attacked by their methods based on query data pair, i.e. text and
corresponding output image. Unlike text-to-image generative models, we focus
on unconditional diffusion models. Furthermore, our MI attack methods, such as
the loss-based attack, are totally different from their methods [39]. Subsequently,
there are several concurrent works that investigate MI attacks against diffusion
models based on the loss information [3, 9, 26, 42]. However, they only consider
discrete diffusion models where the number of noise distributions is finite. Our
work systematically studies both discrete and continuous diffusion models. Al-
though Carlini et al. [3] design more sophisticated and effective methods, they
require extraordinarily huge computation resources, such as training hundreds
of shadow diffusion models or millions of queries from diffusion models. In con-
trast, our method only utilizes loss values, which is much more computationally
efficient. In addition, we also propose the likelihood-based method which is not
considered in these works [3, 9, 26,42].

9 Conclusion

In this paper, we have developed two types of membership inference attack meth-
ods: loss-based attack and likelihood-based attack. Our methods have demon-
strated the connection between membership inference risks and the generative
mechanism of diffusion models. To be more specific, our loss-based attack re-
veals that in terms of diffusion steps, there exist high-risk regions where training
samples can be inferred with high precision. Although membership inference be-
comes more challenging with the increase in the number of training samples, the
high-risk regions still exist. Our experimental results on classic privacy protec-
tion mechanisms, i.e. diffusion models trained with DP-SGD, further show that
DP-SGD alleviates our attacks at the expense of severe model utility.

Designing an effective differential privacy strategy to produce high-quality
images for diffusion models is promising and challenging, which is part of our
future work. In addition, it is an interesting direction to study MI attacks of
diffusion models in stricter scenarios, such as only obtaining synthetic data.
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Appendix

In this section, we show additional results and introduce each result in its caption.

(a) DDPM (b) SMLD (c) VPSDE (d) VESDE

Fig. 9: Generated images from different target models trained on FFHQ. It is
corresponding to Section 5.1.

Fig. 10: Generated images from the target model SMLD trained on the DRD
dataset. It is corresponding to Section 6.2.

Table 4: Quantitative results of our attacks on SMLD trained on DRD. It is
corresponding to Section 6.2.

Attack T TPR@ TPR@ TPR@ TPR@ Accuracy
10%FPR 1%FPR 0.1%FPR 0.01%FPR

Loss-based 0 7.50% 1.10% 0.00% 0.00% 50.25%
200 11.20% 0.70% 0.10% 0.00% 52.25%
700 80.60% 50.50% 33.34% 18.80% 85.45%
800 93.30% 72.20% 60.00% 40.10% 92.25%
900 79.80% 42.40% 17.70% 12.30% 86.35%
999 43.60% 9.70% 2.00% 0.10% 70.95%

Likelihood-based - 100.00% 100.00% 100.00% 99.90% 99.95%
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